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ABSTRACT: The electronic and optical properties of two-dimensional layered materials allow 

the miniaturization of nanoelectronic and optoelectronic devices in a competitive manner. Even 

larger opportunities arise when two or more layers of different materials are combined. Here we 

report on an ultrafast energy efficient strategy, using laser irradiation, which allows bulk 

synthesis of crystalline single-layered lead iodide in the cavities of carbon nanotubes by forming 

cylindrical van der Waals heterostructures. In contrast to the filling of van der Waals solids into 

carbon nanotubes by conventional thermal annealing, which favors de formation of inorganic 

nanowires, the present strategy is highly selective towards the growth of monolayers forming 

lead iodide nanotubes. The irradiated bulk material bearing the nanotubes reveals a decrease of 

the resistivity as well as a significant increase in the current flow upon illumination. Both effects 

are attributed to the presence of single-walled lead iodide nanotubes in the cavities of carbon 

nanotubes, which dominate the properties of the whole matrix. The present study brings in a 

simple, ultrafast and energy efficient strategy for the tailored synthesis of rolled-up single-layers 

of lead iodide (i.e. single-walled PbI2 nanotubes), which we believe could be expanded to other 

two-dimensional (2D) van der Waals solids. In fact, initial tests with ZnI2 already reveal the 

formation of single-walled ZnI2 nanotubes, thus proving the versatility of the approach. 

 

KEYWORDS: 2D materials, lead iodide, zinc iodide, metal halides, single-walled inorganic 

nanotubes, core-shell, encapsulation 
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Two-dimensional layered materials have become a major focus of research because of their 

extraordinary properties.1-4 The high flexibility of single-layered crystals allows rolling them up 

to form tubular structures which combine the properties of both two-dimensional and one-

dimensional materials, further expanding their range of application.5 Strain engineering can be 

accomplished by bending two-dimensional materials allowing a fine tuning of their properties.6 

For example, rolling up MoS2 sheets induces a tunable semiconducting to metallic phase 

transition,7 and an enhanced photoabsorption when integrated into rolled-up heterostructures 

compared to their "flat" configuration.8 Scrolled graphene/polycarbonate fibers show exotic 

telescoping elongation at break 30 times greater than Kevlar.9 Apart from nanoscrolls, cylindrical 

two-dimensional materials (i.e. nanotubes) are formed when two parallel edges are seamlessly 

joined. Edge states have a strong effect on the electronic properties of two-dimensional 

materials.10 Cylindrical 2D materials are being explored for nanophotonic circuitry because 

compressing and channeling of plasmons suffer from scattering at the edges of 2D sheets.11 From 

just these few examples it is clear that single-layered nanotubes, commonly referred to as single-

walled nanotubes, are of great interest for technological applications. However, despite efforts on 

the synthesis of nanotubes started more than a decade before the interest on their two-

dimensional “flat” analogues, the amount of single-walled inorganic nanotubes reported to date 

is limited because their multi-walled counter parts are favored during synthesis.12 The synthesis 

of elusive single-walled inorganic nanotubes remains as a grand challenge.13 Therefore, 

strategies are needed to fill this gap. A variety of single-walled nanotubes with a high catalytic 

performance,14, 15 not restricted to layered structures in their bulk form, have recently been 

synthesized taking advantage of weak interactions between building blocks.14-16 When it comes 

to the synthesis of single-walled nanotubes of van der Waals solids, which are the scope of the 
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present study, we recently reported on the use of carbon nanotubes for the template directed 

growth of single-walled materials in their interior.17 The synthetic strategy proved to be versatile 

but requires the use of high temperatures for prolonged periods of time. Furthermore, even under 

the best synthetic conditions, a large fraction (at least 35 %) of other nanostructures are formed 

in the interior of the carbon nanotubes18 which could strongly influence the properties. Here we 

present an ultrafast, energy efficient and easily scalable approach that allows the selective 

synthesis of single-walled lead iodide nanotubes coating the inner walls of carbon nanotubes, 

thus forming cylindrical van der Waals heterostructures. By exploiting the properties of van der 

Waals heterostructures, a variety of designs and devices emerge.19, 20 For instance, the 

combination of graphene with light-sensitive materials allows the creation of efficient 

photodetectors21 and photoresponsive memory devices.22 We focused the present study on the 

growth of monolayers of lead iodide since this material is of interest not only as a room-

temperature detector of γ- and X-radiation23 but has also become a strategic material for hybrid 

solar cells.24 Actually, interfacing electrically active graphene with light sensitive lead iodide has 

been predicted to substantially enhance its visible light response.25 To complete the study, the 

optoelectronic properties of the resulting heterostructures embedded in the bulk matrix of lead 

iodide have been investigated. Remarkably, whereas lead iodide monolayers must be handled 

under inert atmosphere to avoid decomposition,26 the composite materials prepared here can be 

handled in air since the carbon shell offers protection to the lead iodide single-layers. 

 

RESULTS AND DISCUSSION 

Laser-Assisted Filling of Carbon Nanotubes. The encapsulation of materials into the cavities 

of previously synthesized carbon nanotubes (CNTs) requires that the filling material either melts 
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or sublimes to allow its incorporation when using high temperature filling strategies.27-30 

Alternatively, solution filling can be employed but lower filling yields are generally reported and 

further processing is required to eliminate the solvent, unless the solvent itself is the chosen 

material.31-34 The controlled synthesis of materials within the cavities of CNTs is getting an 

increased attention,35-37 and for instance MoS2 and WS2 nanoribbons have been prepared in this 

manner.27, 38 Laser irradiation of materials can lead to a fast and local increase of the temperature 

and arises as a promising alternative to the conventional annealing using furnaces that have been 

widely employed to achieve molten phase capillary filling.39-41 Lead iodide single-walled 

nanotubes were grown by laser irradiation of a pellet consisting of open-ended multi-walled 

carbon nanotubes (MWCNTs) finely mixed with lead iodide powder. A schematic representation 

of the employed process is shown in Figure 1A. Pellets of 1.3 cm in diameter and ca. 0.5 mm in 

thickness were prepared by applying a pressure of 10 T to the MWCNT/PbI2 mixture. A variety 

of incident laser fluences (40-100 mJ·cm-2) was employed using different number of pulses (10, 

100 and 1000 pulses per site). Photothermal simulations were initially performed to obtain 

information about the temporal evolution of the temperature reached by the target during the 

irradiation with different laser fluences in the 40-100 mJ·cm-2 range. An idealized system, 

composed of a MWCNT immersed in a PbI2 matrix was employed. Figure 1B shows that the 

melting temperature of PbI2 (Tm = 410 ºC,42 purple dashed line) would be already exceeded even 

at the lowest considered laser fluence (530 °C, 40 mJ·cm-2), exhibiting extremely high heating-

cooling rates (up to ca. 2×109 °C·s-1). In these conditions, the maximum temperature is close to 

the temperature previously employed for the synthesis of PbI2 nanotubes by conventional 

annealing treatments (500 °C).17 The peak temperature is reached at about 4 ns and increases 
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 6

with the applied laser fluence. The maximum achieved temperature with the current strategy 

would be ca. 950 °C, after irradiation at 100 mJ·cm-2.  

Structural Analysis of Cylindrical van der Waals Heterostructures. Analyses of the laser 

irradiated samples by back-scattered scanning electron microscopy (SEM), which provides Z-

contrast images of the samples, indicated that filling of the CNTs occurred in the whole range of 

laser fluences and number of accumulated pulses (Figure S1). A small fraction of the pellet 

irradiated at different laser fluences and pulses was gently scratched and characterized by high-

angle annular dark field (HAADF) imaging in high resolution scanning transmission electron 

microscopy (STEM). Regardless of the laser fluence (40-100 mJ·cm-2) and pulses employed (10, 

100 and 1000 pulses) the vast majority of MWCNTs that were filled with PbI2 presented the 

characteristic contrast of PbI2 nanotubes and a minority of them revealed the presence of PbI2 

nanowires. A representative HAADF-STEM image providing a general view of the sample 

prepared at 80 mJ·cm-2 fluence and 1000 pulses is presented in Figure 2A and additional images 

are included in Figure S2. Since HAADF-STEM imaging is strongly dependent on the atomic 

number Z,43 heavy elements such as Pb (Z = 82) and I (Z = 53) appear with a bright contrast, 

whereas carbon (Z = 6) appears as pale grey. As it can be seen in the images, the inner cavities of 

the hosting CNTs are contoured by bright lines indicating the successful formation of single-

walled PbI2 nanotubes in their interior. At low laser fluences the observed inorganic PbI2 

presented a more defective/fractioned structure than at higher fluences. Figure S3 shows 

HAADF-STEM images of the sample prepared at 40 mJ·cm-2 fluence and 1000 pulses. Visual 

inspection of the irradiated pellet already reflects the cumulative effect of increasing the number 

of laser pulses (Figure S4). Thus, the highest amount of PbI2 filled MWCNTs would be expected 

at 1000 pulses. A quantitative determination of the ratio between filled and empty MWCNTs is 

Page 6 of 33

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 7

not possible since the irradiated areas were manually scratched for HAADF-STEM inspection. 

During this process non-irradiated areas could be also collected and imaged.   

It is worth stressing that all the inorganic PbI2 nanotubes imaged in the present study (over 

1000) are single-walled. The presence of multi-walled PbI2 was not observed regardless of the 

laser fluence and pulses employed. Two additional samples were prepared to assess whether the 

use of higher fluence (200 mJ·cm-2, 1000 pulses) or number of pulses (10000 pulses, 100 mJ·cm-

2) would favor the formation of multi-walled PbI2. Despite the extremely high temperature 

developed in the material at 200 mJ·cm-2 (ca. 1700 °C according to simulation, Figure S5) and 

much longer irradiation time, analyses of the irradiated areas by HAADF-STEM revealed the 

absence of multi-walled nanotubes.  

We also investigated the stability of the confined monolayers one year after their synthesis. 

Samples were kept under ambient conditions, thus exposed to humidity and air. Despite PbI2 is a 

rather unstable material which can decompose gradually in wet air,26 HAADF-STEM imaging 

reveals the presence of PbI2 nanotubes still inside the cavities of CNTs with only partial damage 

in some areas (Figure S6; 80 mJ·cm-2 fluence and 1000 pulses). This microscopy analysis 

confirms that MWCNTs not only act as templates for the growth of tubular inorganic 

nanostructures, but also offer shielding and protection of the inner PbI2 nanotubes from the 

external environment. This is a major advantage compared to physical vapor deposition grown 

PbI2 layers were the synthetic process, conservation, and testing has to be carried out under an 

inert atmosphere (N2) or under vacuum conditions.26 Further analysis with a state-of-the-art 

aberration corrected electron microscope was performed on the one year old sample to confirm 

the presence of PbI2 monolayers. Figure 2B shows a high resolution HAADF-STEM image of an 

individual PbI2 nanotube confined within a MWCNT. Due to the tubular nature of the material, 
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 8

brighter lines are observed at the edges indicating a higher density of atoms in the projected 

image, while the central area presents a lower contrast due to the presence of a hollow cavity. 

The PbI2 nanotube wall thickness (ca. 0.4 nm), indicated in the figure by orange lines, is in 

agreement with that of an individual layer of PbI2.
44 Both the curvature and the crystallinity of 

the structure are well appreciated.  

In order to provide direct evidence of the superiority of the laser-assisted approach compared 

to the conventional thermal annealing treatment for the growth of single-walled materials in the 

interior of CNTs, additional samples were prepared. MWCNT/PbI2 mixtures were furnace 

annealed maintaining the synthesis conditions previously reported for the growth of single-

walled PbI2 within CNTs,17 and the resulting sample was also analyzed by HAADF-STEM 

(Figure S7). Visual inspection of the images shows clear differences between the structures 

grown within MWCNTs by laser irradiation (Figure 2, Figure S2) and conventional thermal 

annealing (Figure S7). In the case of conventional thermal treatments there is a strong tendency 

towards the formation of nanowires of PbI2 (orange arrows), observed as continuous bright bars 

inside the MWCNTs. On the contrary, the presence of long PbI2 inorganic nanotubes (green 

arrows) covering the entire interior of CNTs was predominant when laser treatments were 

carried out. It is worth noting that when conventional annealing treatments are performed, metal 

halide nanotubes and nanorods tend to coexist in an individual CNT forming nanotube-nanorod 

junctions17 and therefore, metal halide nanotubes above 35 nm in length are already considered 

as “long” specimens.18 Remarkably, the majority of single-walled PbI2 nanotubes prepared by 

laser irradiation have lengths of hundreds of nanometers.  

HAADF-STEM analyses were performed to quantitatively determine the production yield of 

single-walled PbI2 nanotubes. The yield turned out to be more than four times higher when using 
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laser irradiation (ca. 94 % of filled CNTs contained PbI2 nanotubes; 80 mJ·cm-2 fluence and 

1000 pulses) compared to conventional thermal annealing (21.7 % of filled CNTs contained PbI2 

nanotubes). Similar production yields, within experimental error, were observed when 

employing 100 mJ·cm-2 fluence (1000 pulses). From these analyses it is clear that laser treatment 

leads to the selective formation of high quality single-walled PbI2 nanotubes, their dimensions 

depending on the length and inner diameter of the hosting carbon nanotubes.  

It should be remarked that hitherto such selective growth of inner metal halide nanotubes has 

not been obtained through conventional annealing treatments. Actually, using the same annealing 

temperature (500 ºC ± 25 ºC) a similar yield has been reported for the production of single-

walled ZnI2 inside CNTs18 (21.4 %; mp(ZnI2) = 446 ºC,42 Tfilling = 475 ºC), and even for the 

formation of multi-walled PbI2 and BiI3 in the cavities of WS2 nanotubes45 (around 20 % of 

iodide nanotubes; mp(PbI2) = 410 ºC,42 mp(BiI3) = 408.6 ºC,42 Tfilling = 500 ºC). Prolonged 14-30 

days of annealing were employed when using WS2 nanotubes as templates.45, 46 A higher amount 

of single-walled nanotubes within CNTs has been recently reported upon increasing the 

temperature of annealing, from 21.4 % at 475 ºC to 64.9 % at 1000 ºC, for the van der Waals 

solid ZnI2.
18 Nevertheless, not only the production yield is still lower than the one reported here 

(for PbI2 using laser) but also much longer tubular structures are obtained by laser irradiation. 

Considering that the temperature employed for the synthesis of PbI2 nanotubes by conventional 

annealing (500 ºC) is considerably lower than the temperature reached by laser irradiation at 80 

mJ·cm-2 and 100 mJ·cm-2 (796 ºC and 953 ºC respectively, as per photothermal simulations 

reported in Figure 1), additional thermal treatments of MWCNT/PbI2 pellets were carried out at 

these temperatures. Under these conditions the presence of inorganic nanostructures within 
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 10

MWCNTs was barely observed (Figure S8). Furthermore, the few observed structures did not 

show selectivity towards the formation of inorganic nanotubes.  

Raman spectroscopy analyses were performed to determine the quality of MWCNTs' structure 

after laser irradiation. Laser irradiation induces high temperature thermal cycles, which can lead 

to the formation of structural defects, premelting and even amorphisation of MWCNTs.47 Raman 

spectra recorded on both non-irradiated and irradiated MWCNT/PbI2 areas were fitted using four 

Lorentzian and one Gaussian function in the range from 1100-1700 cm-1 (Figure 3, Figure S9). 

The ID''/IG ratio was calculated to account for structural variations (Table S1). Despite a slight 

increase in the ID''/IG ratio in samples treated with fluences of 80 and 100 mJ·cm-2, this variation 

does not represent a significant change in the morphology and amount of structural defects of the 

MWCNTs. Therefore, the encapsulation of PbI2 within the hollow core of MWCNTs is expected 

to take place through the open-ends rather than through structural defects on the MWCNT walls. 

Mechanism of Formation of Tubular van der Waals Heterostructures. As mentioned 

above, the laser assisted synthesis is highly selective towards the formation of PbI2 nanotubes 

with respect to PbI2 nanowires. Furthermore, when PbI2 nanotubes are present within the cavities 

of MWCNTs a 100% selectivity towards the formation of single-walled PbI2 was observed; 

multi-walled PbI2 were not detected. The reason behind the high selectivity towards the 

formation of monolayered PbI2 nanotubes with respect to their multi-walled counterparts lies in 

the physico-chemical properties of the template employed (Elicarb® MWCNTs) rather than from 

the method employed for their synthesis. In the first report on the growth of PbI2 nanotubes using 

the conventional thermal annealing method, the formation of multi-walled PbI2 was also not 

observed.17 In a more recent study, from over 600 inorganic metal halide nanotubes grown 

within MWCNTs (CeI3, CeCl3, TbCl3 and ZnI2) only in one case an inorganic nanotube bearing 
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 11

more than one layer was reported (a triple-walled nanotube of ZnI2), the rest being single-walled 

(i.e. over 99.8 % selectivity).18 The employed MWCNTs in all these studies have internal 

diameters up to 9 nm, with a larger proportion of nanotubes between 4 and 6 nm.18 A PbI2 

monolayer has a larger thickness than atomically thin van der Waals solids such as graphene. As 

a consequence the formation of multi-walled metal halides within the relatively small cavities of 

the MWCNTs employed in this study might not be favored because it would have high strain 

energy. In contrast, the formation of multi-walled metal halide nanotubes has been observed in 

the cavities of WS2 nanotubes, which have larger diamters.45, 46 The diameter of the host is not 

the only parameter that needs to be taken into account when forming tubular core-shell 

heterostructures. For instance, using a semi‐empirical model, it was shown that PbI2 nanotubes 

became stable within the core of MoS2 nanotubes only above a critical core diameter of the host 

(>12 nm); below this diameter the PbI2 was found to crystallize as nanowires.45 These model 

calculations were in agreement with the experimental observations.45 In contrast, when using 

CNTs as templates the formation of PbI2 nanotubes occurs well below 12 nm.  

Molten phase capillary wetting has been suggested as the growth mechanism of a large variety 

of metal halide nanowires inside the cavities of carbon nanotubes, using the methodology that we 

are referring to as “conventional thermal annealing treatment”. Following this approach, PbI2 

nanowires were grown by Flahaut et al. inside the cavities of single-walled and double-walled 

carbon nanotubes back in 2006.48 Theoretical calculations on the capillary imbibition of PbI2 

melt into inorganic and carbon nanotubes suggest that when the ionic melt wets the interior of 

the host nanotube forming a convex meniscus a PbI2 nanowire will be obtained on cooling, 

whereas when a concave meniscus is created by capillary wetting an inorganic PbI2 nanotube 

will be formed on cooling.49 
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Other mechanisms have been employed for the growth of layered metal halides. Large-scale 

2D PbI2 monolayers and few-layers have been recently grown on a SiO2/Si substrate by a 

catalyst-free physical vapor deposition process.26 In this case, PbI2 was added to a ceramic boat 

and the substrate was placed on top. The furnace was then annealed to 683 K (409.85 ºC) at a 

rate of 24 K/min for short periods of time (1-3 min). Vapor deposition of PbI2 onto the substrate 

was observed under these conditions.26 In another study, Tenne et al. used electron beam 

irradiation of a powder of SbI3 to create tubular core-shell structures using WS2 as templates. 

Evaporation followed by recrystallization was suggested as the growth mechanism.45       

Despite further studies are needed, we reason that the laser irradiation method might favor the 

vapor deposition of PbI2 and enhance the formation of PbI2 nanotubes, whereas capillary wetting 

would be predominant by the conventional thermal annealing, the latter favoring the formation of 

nanowires. In fact, molecular dynamic simulations reveal that insertion of molten PbI2 into CNTs 

would lead to the formation of PbI2 nanowires because a convex meniscus is obtained due to the 

weak wetting of the CNTs by the ionic melt.49 Therefore an alternative growth mechanism 

should be proposed to justify the high yield of single-walled PbI2 obtained by the laser process. 

Taking into account that vapor deposition has been employed for the growth of monolayer PbI2 

onto a SiO2/Si substrate at ca. 410 ºC,26 it seems plausible that the same growth mechanism takes 

place during laser processing. Besides, after irradiation of the MWCNT/PbI2 pellet deposition of 

PbI2 is observed on the quartz window of the vacuum chamber, indicating the presence of PbI2 

vapor during the process. Nevertheless, molten phase capillary wetting cannot be ruled out since 

resolidified PbI2 is also observed in the irradiated areas. After the filling experiment using the 

conventional thermal annealing, the carbon nanotubes are embedded within resolidified PbI2, 

indicating that the carbon nanotubes were in direct contact with the PbI2 melt during the 
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annealing step. Therefore, molten phase capillary wetting seems to be favored when using this 

approach. As mentioned, in the conventional annealing treatment a mixture of CNTs and PbI2 is 

placed on one end of a silica ampoule and vacuum-sealed. After the heating step, a slight 

deposition of PbI2 is actually observed at the opposite end (cool end during the annealing), far 

away from the CNTs. Therefore under these experimental conditions vapor deposition would be 

less favored. 

 Optoelectronic Properties. Next, the electronic properties of the prepared materials were 

investigated. Local resistance characterization of PbI2 and MWCNT/PbI2 pellets irradiated with a 

laser fluence of 80 mJ·cm-2 and 1000 accumulated pulses were performed by conducting AFM 

(Figure 4). Resistance map histograms, presented in Figure 4A, clearly show that a non-

irradiated MWCNT/PbI2 pellet is less resistive than a pellet of PbI2 (six orders of magnitude 

difference in resistance), due to the conducting nature of the MWCNTs. Both, resistance map 

images (a1 and a2) and corresponding histograms indicate a pronounced decrease on the 

resistance of the MWCNT/PbI2 pellet (blue histogram; average resistance of 3 kΩ) after laser 

irradiation (red histogram; avg. resistance 1 kΩ). The non-irradiated material consists of a 

mixture of bulk PbI2 and empty MWCNTs. The irradiated sample still contains a PbI2 matrix but 

the MWCNTs become filled with concentric single-layers of PbI2. Therefore, the higher 

conductivity observed after irradiation could arise from the formed heterostructures of 

PbI2@MWCNTs. This hypothesis was confirmed by analyzing an additional control sample, 

prepared by irradiating a pellet of bulk PbI2 under the same laser conditions (80 mJ·cm-2 and 

1000 pulses). Conducting AFM measurements on the irradiated PbI2 did not present such an 

increase in conductivity but rather revealed some fading of its resistance. This was probably 

Page 13 of 33

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 14

caused by the formation of larger crystals, with an obvious decrease of grain boundaries, after 

laser-induced melting and resolidification processes.  

Lead iodide being a light sensitive material and taking into account the interest that van der 

Waals heterostructures of conductive (CNTs) and optically active (PbI2) materials have for the 

miniaturization of devices,20 we characterized the optoelectronic response of the material. 

Electrical characterization of laser irradiated MWCNT/PbI2 was carried out through current-

voltage spectroscopy loops in dark conditions and under illumination with a blue light emitting 

diode (LED, ca. 465 nm dominant wavelength). As it can be observed in Figure 4B, the current 

flowing through the material considerably increases upon illumination, accounting for significant 

carrier photogeneration processes. Remarkably this effect was not observed in a pellet of bulk 

PbI2 where no difference in the conductivity was registered upon illumination. A schematic 

representation of the experimental set-up employed for the conducting AFM measurements is 

presented in Figure 4C. It is worth noting that despite single-walled lead iodide nanotubes are 

protected by the concentric graphene layers of carbon nanotubes, they remain optically active. 

Actually, according to Geim et al. each graphene layer is expected to add 2.3 % opacity,50 

therefore since the employed CNTs have an average of nine concentric graphene walls (Figure 

S10), about 79.3 % of incident light is expected to reach the inner cavities of the carbon 

nanotubes, where lead iodide is present. Based on DFT calculations a substantial enhancement of 

the visible light response would be expected when interfacing electrically active graphene with 

single-layers of PbI2 nanosheets.25 

Versatility of the Laser-Assisted Filling of Carbon Nanotubes. To complete the study we 

investigated whether it was possible to expand the laser-assisted synthesis of tubular van der 

Waals heterostructures to other materials. For this purpose, the same strategy that was employed 
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for the formation of PbI2@MWCNTs was tested using ZnI2 as filling material and MWCNTs as 

hosts. Open-ended MWCNTs were finely ground with zinc iodide powder, and a pellet of 1.3 cm 

in diameter and ca. 0.5 mm in thickness was prepared by applying a pressure of 10 T to the 

MWCNT/ZnI2 mixture. The pellet was irradiated with an incident laser fluence of 100 mJ·cm-2 

using 1000 pulses. The laser-irradiated area was gently scratched and the collected sample was 

deposited onto a lacey carbon support grid for TEM inspection. As it can be seen in Figure 5, 

HAADF-STEM imaging confirmed the successful formation of single-walled ZnI2 nanotubes 

inside the cavities of MWCNT (see Figure S11 for additional images). The intensity profile 

acquired along the red arrow (right panel in Figure 5) is in agreement with the presence of a 

single-walled nanotube. The growth of inorganic nanotubes of ZnI2 within the cavities of 

MWCNTs provides evidence of the versatility of the laser-assisted methodology presented 

herein for the synthesis of tubular van der Waals heterostructures.  

 

CONCLUSIONS 

We explored an ultrafast energy efficient methodology for the synthesis of tubular van der 

Waals heterostructures composed of single-walled lead iodide nanotubes along the inner walls of 

multi-walled carbon nanotubes. The synthetic strategy, which benefits from fast thermal cycles 

induced by pulsed laser irradiation, is highly selective towards the growth of single-walled lead 

iodide nanotubes. This contrasts to previous reports on the encapsulation of van der Waals metal 

halides into the cavities of CNTs where the formation of nanowires is favored by conventional 

thermal annealing. It is worth pointing out that whereas core-shell nanostructures of carbon and 

inorganic materials have been traditionally prepared by filling carbon nanotubes, more recently a 

complementary synthetic strategy has received widespread attention where previously 
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synthesized nanowires are covered by a graphene sheet.51 The laser methodology employed here 

results in the formation of cylindrical van der Waals heterostructures of a conductive (CNT) and 

a light sensitive material (PbI2), which conductivity can be tuned upon illumination, caused by 

the photogeneration of carriers. The carbon shell offers protection and stability to the monolayers 

of air sensitive lead iodide26 thus allowing its manipulation under ambient conditions. 

Furthermore, since the single-layers of lead iodide easily accommodate to the inner diameter and 

shape of the CNTs, it should allow strain engineering of van der Waals solids. It is well 

established that the properties of single-layered crystals can be tuned by inducing strain, for 

instance upon bending.6 Versatility of the laser-assisted synthesis was confirmed by growing 

single-walled ZnI2 within MWCNTs. We believe that the use of laser irradiation, which is widely 

employed in industrial processes, will allow the encapsulation of a large variety of materials into 

CNTs including for the formation of van der Waals heterostructures in a simple, fast, and energy 

efficient manner. 

 

METHODS 

MWCNTs Purification. MWCNTs (CVD, Thomas Swan & Co. Ltd.) were firstly steam 

purified to remove amorphous carbon and catalyst nanoparticles, as previously reported.52 This 

procedure involves placing MWCNTs in a furnace at 900 °C for 5 h with a constant flow of 

steam/argon mixture. Being a mild oxidizer, steam oxidizes graphitic shell around catalyst 

nanoparticles and opens the nanotubes’ ends. Subsequently, the sample was placed into a round-

bottom flask and refluxed with 6 M HCl at 110 °C for 6 h to remove the catalyst particles, cooled 

down and filtered through 0.2 µm polycarbonate membrane filters, washing with distilled water 

until neutral pH was reached and dried.  
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Laser-assisted Synthesis of PbI2 Nanotubes. 36 mg of purified MWCNTs were mixed with 

210 mg of PbI2 (Strem Chemicals Inc.) and well homogenized using an agate pestle and mortar 

inside an argon-filled glovebox. Pellets with 1.3 cm in diameter and ca. 0.5 mm in thickness 

were formed applying a pressure of 10 T to the MWCNT/PbI2 mixture. An additional pellet 

containing 260 mg of PbI2 was prepared to be employed as a reference. 

Pulsed laser treatments of MWCNT/PbI2 pellets were carried out by means of a Nd:YAG laser 

system (266 nm, 3 ns pulse duration, 10 Hz pulse repetition rate; Brilliant model from Quantel). 

The experiments were performed inside a vacuum chamber at a pressure of 10-4 Pa to avoid 

oxidation reactions. A quartz window was placed on top of the pellet to prevent direct deposition 

of PbI2 onto the optical window of the vacuum chamber. The irradiations were done by focusing 

the laser beam onto the sample surface, creating 1×1 mm2 homogeneous squared spots. The 

distance between two adjacent irradiated spots was set to be 1 mm. Different samples were 

obtained by accumulation of 10, 100 and 1000 subsequent laser pulses per site with an incident 

laser fluence of 40, 60, 80 and 100 mJ·cm-2. Two additional samples were prepared using 10000 

pulses (100 mJ·cm-2) and 200 mJ·cm-2 (1000 pulses). 

Synthesis of PbI2 Single-walled Nanotubes by Thermal Treatment. Steam purified and HCl 

treated MWCNTs (6 mg) and PbI2 (140 mg) were ground together with an agate mortar in a free 

oxidant atmosphere and placed into a silica ampoule, evacuated and sealed under vacuum. 

Afterward, the sample was annealed employing a 5 ºC·min-1 heating rate, dwelled at 500 ºC for 

12 h and cooled to room temperature. Additional samples were prepared by annealing 

MWCNT/PbI2 pellets, prepared as detailed above for the laser assisted synthesis, at 796 ºC and 

953 ºC. 
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Laser-assisted Synthesis of ZnI2 Nanotubes. 9 mg of purified MWCNTs were mixed with 

300 mg of ZnI2 (Sigma-Aldrich) and well homogenized using an agate pestle and mortar inside 

an argon-filled glovebox. Pellets with 1.3 cm in diameter and ca. 0.5 mm in thickness were 

formed applying a pressure of 10 T to the MWCNT/ZnI2 mixture. The pellet was irradiated as 

described above for PbI2. 

Sample Characterization. Spots were characterized by Raman spectroscopy (Horiba Jobin 

Yvon) operating at 532 nm and using 100× objective. Acquisition time was set to 30 s and laser 

power to 0.5 mW. Spectra were obtained from several random places at each irradiated spot and 

fitted using OriginPro 8 software. Scanning electron microscopy characterization was performed 

on an FEI Magellan 400L at 5 kV, using a through-lens (TLD) detector for secondary electrons 

acquisition and a vCD detector optimized for high-contrast backscattered detection at low kV. 

Additionally the morphology of the irradiated spots was evaluated using high-angle annular dark 

field (HAADF) imaging in high resolution scanning transmission electron microscopy (STEM), 

carried out in a FEI Tecnai G2 F20 microscope operating at 200 kV. Samples were prepared by 

placing dropwise onto a lacey carbon support grid the dispersion obtained after sonication of a 

scratched fraction of the laser-irradiated area in hexane. Films morphology and resistance at the 

sub-micron scale was characterized by atomic force microscopy (AFM) using a 5500LS system 

from Agilent Technologies equipped with a Resiscope II module (CSI Instruments). Resistance 

maps were acquired in contact mode using diamond-coated silicon tips with a diameter of about 

100 nm. The resistance maps were acquired by applying 1 V between tip and sample. Current-

voltage (I-V) spectroscopy analyses were also performed at specific locations of the samples by 

measuring the current flow through the tip in contact with the samples’ surface while ranging the 
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applied voltage between -1 V and 1 V. The analysis of topographic and electric measurements 

was carried out with the MountainsMap 7.0 software package from Digital Surf. 

Photothermal Simulation. The temperature evolution of the MWCNT-PbI2 composite 

submitted to laser irradiation was modelled through a simple model composed by a carbon 

nanotube immersed in a matrix of PbI2. The calculation was carried out by solving a 3D transient 

heat conduction model by means of partial differential equations using COMSOL Multiphysics 

5.3 software. Specific details on the photothermal simulation are included in the Supporting 

Information. 
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FIGURES 

 

  
 

Figure 1. Laser-assisted filling of carbon nanotubes and photothermal simulation of the 

irradiated PbI2/MWCNT pellet. (a) Schematic representation of the laser-assisted filling of multi-

walled carbon nanotubes. C, Pb and I atoms are represented by black, purple and grey spheres 

respectively. Note that bulk PbI2 and the MWCNT are not schematically drawn in the same scale 

to better appreciate the layered crystal structure of bulk PbI2. The PbI2/MWCNT pellet (brown) 

is laser irradiated (plotted in green) inside the vaccum chamber. (b) Temporal evolution of the 

temperature of the pellet’s surface upon irradiation with different laser fluences. The time 

evolution of the laser intensity is plotted for reference with a blue continuous line (a. u.). (c) 3D 

plot of temperature distribution in the MWCNT-PbI2 system irradiated with 60 mJ·cm-2 at 5 ns. 
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Figure 2. HAADF-STEM images of PbI2@MWCNTs prepared by laser irradiation employing 

an 80 mJ·cm-2 fluence and 1000 pulses. (a) HAADF-STEM image (as prepared), (b) high 

resolution aberration corrected HAADF-STEM image (after one year of sample preparation). 

Green arrows in (a) point to well-defined single-walled inorganic PbI2 nanotubes, while orange 

lines in (b) indicate the PbI2 nanotube wall. 
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Figure 3. Deconvoluted Raman spectra acquired on PbI2/MWCNTs after laser irradiation 

employing 80 mJ·cm-2 fluence and 1000 pulses and a non-irradiated area (reference). The 

experimental data curve and the fitting curves are shown in black and red respectively. 
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Figure 4. Conducting AFM measurements of PbI2 and PbI2@MWCNTs pellets before and after 

laser irradiation with 80 mJ·cm-2 and 1000 pulses. (a) Resistance map histograms. a1: resistance 

map of PbI2@MWCNTs prior to irradiation; a2: resistance map of PbI2@MWCNTs after 

irradiation. (b) Current-voltage spectroscopies of laser irradiated PbI2@MWCNTs in dark 

conditions and illuminated with a blue LED (ca. 465 nm dominant wavelength). (c) Schematic 

representation of the experimental set-up employed for the conducting AFM measurements. 

Small orange cylinders represent PbI2@MWCNTs. 

Page 23 of 33

ACS Paragon Plus Environment

ACS Nano

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 24

 

 

Figure 5. HAADF-STEM image of ZnI2@MWCNT prepared by laser irradiation employing 100 

mJ·cm-2 fluence and 1000 pulses. The intensity profile along the red arrow is included on the 

right side of the image. 
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