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ABSTRACT: Sputter deposition is a facile and widely used technique for fabricating thin-film 

materials. Electrochemical dealloying, on the other hand, is a promising method for creating 

nanoporosity, and therefore increasing surface area, in metallic materials. Surprisingly, little 

work has been done on the application of electrochemical dealloying to sputterdeposited thin 

films. Here, we prepare FexCu1−x thin films by sputter deposition to be then electrochemically 

treated to create porosity. We investigate the structural and magnetic properties of as-

sputtered and electrochemically treated films. We find that the morphology, crystal structure, 

and magnetic properties are highly dependent on initial film composition. For high copper 

content films (Fe29Cu71), relative Cu content is found to decrease during the dealloying process. 

For these films, the crystal structure is not greatly affected by the induced porosity and the 

porous films show increased saturation magnetization. However, for the more Fe-rich 

compositions (Fe63Cu37), we find that Fe is preferentially lost and making the films nanoporous 

induces a crystal structure change from body-centered cubic (bcc) to a mixture of face-centered 

cubic (fcc) and bccphases. These same porous films show a decrease in saturation magnetization 

and a large increase in coercivity compared to the as-sputtered films. These films are attractive 

as high-surface-area magnetic components because of the tunability of their magnetic 

properties and their high surface area due to porosity. To the best of our knowledge, these 

results constitute the first example of nanoporous, magnetic thin films by prepared by 

sputtering and subsequent electrochemical treatment. 
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1. INTRODUCTION  

Materials with 3D nanoporosity have attracted significant research interest. Because of their 

porosity, these materials have a large surface area, which is useful for applications ranging from 

catalysis1−9 to energy storage.2,4,10−13 In the case of catalysis, nanoporous magnetic materials 

are particularly attractive because they are magnetically recoverable. Despite the advantages of 

nanoporous materials, they are not currently widely used commercially, partly due to the 

limitations of current fabrication methods. A common method to prepare porous materials is to 

use a sacrificial templating agent such as polymers, surfactants (soft templating), porous silica, 

or anodic alumina (hard templating).7,14−20 In these cases, the material is grown in or around 

the template which is then removed, leaving pores in its place. Although effective in a research 

setting, these methods are not very scalable and often require reasonably expensive templates. 

Among corrosion methods, electrochemical dealloying is a promising technique for fabricating 

nanoporous metals in a scalable manner without the need for a sacrificial template.3,21−25 

Electrochemical dealloying is a method for forming a porous metal or metal alloy by selectively 

dissolving the most electrochemically active element in an alloy. It is important to note that this 

type of electrochemical dealloying is highly dependent on composition. If the fraction of the 

nobler element (i.e., the less electrochemically active element) is too high, above what is called 

the “parting limit”, both elements are then removed. On the other hand, if the fraction of the 

nobler element is too low, then as the dealloying progresses, there is insufficient noble element 

available for passivation, and the entire structure can dissolve or collapse.10,26 This technique 

has been used on bulk metals,21−24,26 ribbons,3 as well as thin films made by a variety of 

methods such as electrodeposition,27 electron beam deposition,28 and sputter deposition.29 

Of particular interest is the application of electrochemical dealloying to create porosity in 

sputtered films. Sputtering is a highly effective and industrially scalable technique that is widely 

used to produce thin films. However, there are very few examples of porous films being made 

directly via sputtering alone.30,31 In some systems, porosity can be induced, but only to some 

extent and in a rather inhomogeneous manner, by tuning the Ar+ gas pressure in the sputtering 

chamber or the deposition angle during the growth of the films.30,31 Combining sputter 

deposition with electrochemical dealloying could therefore be a promising route to fabricate 

homogeneous porous thin films in a facile and reproducible way. 

Here we have investigated the structural and magnetic properties of FexCu1−x (31 ≤ x ≤ 73, at 

%) thin films fabricated in this manner. FexCu1−x is an attractive material system to study both 

because it is magnetically soft and made from earthabundant elements making it useful in 

sustainable devices. In addition, previous theoretical studies have suggested that Cu can force 

the Fe into the face-centered cubic (fcc) structure, which can lead to a higher magnetic moment 

per Fe atom than in body-centered cubic (bcc)-Fe alone.32−34 We investigated the structural 

and magnetic properties of both as-sputtered films as well as those made porous using a 

corrosive electrochemical treatment, as shown in Scheme 1. For a detailed investigation, we 

focused on two types of samples: high copper content films with an entirely fcc structure and 

films with a mixed fcc/ bccstructure. 

 

2. EXPERIMENTAL METHODS  

2.1. Preparation of Sputtered Films. Thin films were prepared by cosputtering Fe and Cu at room 

temperature in an AJA International, Inc. magnetron sputtering system. Clean Si substrates (5 × 

7 mm2 ) were mounted and then the chamber was put under vacuum overnight to achieve a 

pressure ∼1 × 10−7 torr. The Fe was always sputtered at a power of 200 W (direct current, DC) 



and the Cu was sputtered at various powers (40, 80, 120, 160, 200, and 240 W, alternating 

current, AC) for 15 min resulting in thin films with thicknesses between 200 and 300 nm. 

2.2. Electrochemical Treatment. The films were treated using an Autolab 

potentiostat/galvanostat in a 3-electrode configuration. The electrolytic solution was dilute 

nitric acid in water with acid concentrations ranging from 10 mM to 60 mM. The sputtered films 

were used at the working electrode with half of the film submerged in the electrolyte. The 

counter electrode was a platinum wire and the reference electrode was Ag/AgCl (3 M KCl) with 

20 mM nitric acid as the exterior solution. All potentials are referred to this electrode. The films 

were treated at +0.5 V for 60 s. The films were quickly removed from the solution and 

subsequently rinsed with distilled water and dried. The entire procedure was conducted in air. 

For characterization, the films were cut using a diamond scribe to remove the half of the film 

that was not submerged in the electrolyte solution, leaving just the electrochemically treated 

half. 

2.3. Characterization. X-ray diffraction (XRD) patterns were collected on a Philips X’Pert 

diffractometer using Cu Kα radiation. Field-emission scanning electron microscope (FE-SEM, 

Zeiss Merlin) with energy-dispersive X-ray spectroscopy (EDX) capabilities was used to 

characterize the microstructure of the films and the elemental composition. X-ray photoelectron 

spectroscopy (XPS) analysis was performed using a PHI 5500 multitechnique system (Physical 

Electronics) with a monochromatic Al Kα source under ultrahigh vacuum. XPS scans were done 

both on the surface as well as after 15 s of Ar+ sputtering to remove any surface contaminants. 

The magnetic properties were measured using a MicroSense vibrating sample magnetometer 

(VSM). The sample magnetization of the VSM data was normalized, in some cases, by mass as 

determined by inductively coupled plasma (ICP) spectroscopy. The ICP was done on an ICPE 9000 

from Shimadzu by dissolving each sample in 3 mL in a 1:1 solution of water and nitric acid (68%). 

3. RESULTS AND DISCUSSION  

Thin films of FexCu1−x with various compositions were grown using magnetron cosputtering as 

described above. The elemental composition of the films was determined using EDX and the 

crystal structure was probed using XRD, as shown in Figure 1a. As expected, the films with the 

highest Cu content, Fe31Cu69 (purple line), were found to have a facecentered cubic (fcc) 

structure, which is consistent with the native fcc structure of copper. The films with the highest 

Fe content, Fe73Cu27 (black line), were found to have a bodycentered cubic (bcc) structure, 

consistent with the native structure of iron. Films with the intermediate composition of 

Fe57Cu43 (red line), showed both fcc and bcc peaks indicating that both phases coexist in this 

case. The magnetic properties of these films were investigated using VSM and the resulting M-

H loops are presented in Figure 1b. As expected, the magnetic moment at saturation (MS), 

remanent magnetization (MR), and coercivity (HC) all increase with increasing Fe content. 

Moving forward, we chose to focus on two compositions for electrochemical treatments: the 

highest Cu content fccfilms (Figure 1, purple lines), and the films showing both fcc and bcc 

structure (Figure 1, red lines). The films were treated at +0.5 V for 60 s in aqueous solutions of 

nitric acid with various concentrations (10−60 mM). We also attempted to investigate films that 

showed only bcc structure (Figure 1, black lines), but were unable to successfully dealloy them. 

We believe that this was because the films were too Fe-rich and outside of the concentration 

range suitable for dealloying. For these two samples, we used both XPS and ICP in addition to 

EDX in order to determine the composition. The ratio of Fe:Cu was determined by all of these 

techniques and is now indicated in Table 1. As shown, there are differences in compositions as 

determined by the various techniques which is due to inherent differences in the techniques. 

For example, XPS is known to only probe the surface and is therefore viewed as indicative of the 

surface composition only. However, XPS is also the only technique used that can accurately 



quantify oxygen content. Furthermore, EDX and XPS are known to have high errors, which is why 

we conducted ICP. In an effort to be as accurate as possible, we have decided to use the ICP 

determined composition in referring to the samples from this point forward, and discuss the XPS 

composition only as it relates to oxygen content. 

Figure 2 shows top-view scanning electron microscopy (SEM) images of the high Cu content films 

(Fe29Cu71) both assputtered (a) and after electrochemical treatment (b−e). The as-sputtered 

films appear to be composed of fairly round particles and the structure does not seem to be 

altered by treatment in 10 or 20 mM nitric acid. However, films treated with 40 and 60 mM (d, 

e) nitric acid are seen to have a distinct porous structure. 

The elemental composition and surface oxidation state of the as-sputtered films and porous 

films (after treatment in 40 mM nitric acid) was determined using XPS as shown in Figure 3. In 

these experiments, the surface of the films was first etched for 15 s with Ar+ ions in order to 

remove the outermost layer of atoms and surface contaminants from handling the films in air. 

We expect that the etching rate is approximately 7 nm/min, so the 15 s of etching should have 

removed shows only Fe oxides on the surface, but the peak values are shifted to slightly higher 

binding energies than literature reports for pure Fe which could be due to the formation of an 

Fe−Cu solid solution. On the other hand, in the spectrum of the porous film the peak positions 

match those reported for pure Fe and Fe oxides.2,5,20,35 Here, we find a small contribution 

from Fe0 (blue peaks), and significant contributions from Fe2+ and Fe3+ (purple and green 

peaks). In the case of the Cu spectra, only Cu0 is found for both the as-sputtered and porous 

films which is consistent with the fact that Cu is the more noble metal. 

The surface composition was determined from XPS and the results are presented in Figure 3. 

The as-sputtered film is found to have less oxide (17 at %) than the porous film (28 at %). The 

films were handled and stored in air prior to the XPS measurements, so we expect that a 

passivation oxidation layer was formed at the film surface, which is why such high oxygen 

content was determined by XPS. Discounting the oxygen content, the films are found to become 

more Fe-rich after the electrochemical treatment. The as-sputtered films were found to be 

Fe25Cu75 (Fe31Cu69 by ICP) while the porous films were found to be Fe78Cu22 (Fe83Cu17 by 

ICP). As described above, typically in electrochemical dealloying, the more electrochemically 

active element, in this case iron, should be predominantly removed. However, at high 

concentrations of the more noble element, above what is referred to as the parting limit, both 

elements are removed simultaneously. Our results reveal that the relative amount of Cu became 

lower, which suggests that this composition was above the parting limit. 

The structure and magnetic properties of these films were investigated with XRD and VSM, as 

shown in Figure 4. The XRD diffractograms in Figure 4a show that the films all have an fcc 

structure and there is no observed change in crystallographic structure as a result of the 

electrochemical treatment. Despite the increase in Fe content upon dealloying, the fact that the 

films remain purely fccstructurally is interesting, but consistent with previous reports that the 

fccstructure can be stabilized in Fe−Cu films up to ∼80% Fe.36 It is worth noting that there are 

no iron or copper oxide peaks detectable in the XRD patterns, which suggests that the inner 

parts of the films are metallic, and that the oxide detected by XPS is only present on the surface. 

In addition, we used high resolution transmission electron microscopy (TEM) and selected area 

electron diffraction (SAED) to further characterize the crystal structure of the films and have 

included that data in Figures S2 and S3. In spite of slight oxidation (as revealed by the SAED 

patterns) is significant that these films contain a large fraction of metallic phases after dealloying 

(as evidenced by XRD), particularly because there are no noble metals here. Many previous 

reports have successfully used dealloying to make porous metals with noble metal alloys (Pt, Au, 

etc.),22,25,26,37,38 but often with nonnoble elements, dealloying causes oxidation.21,27,39,40 



The inplane M−H loops for these films are shown in Figure 4b. The films treated at 10 and 20 

mM nitric acid have almost identical properties to the as-sputtered films whereas the porous 

films, those treated with 40 and 60 mM nitric acid, have a higher HC and MS. We note that the 

loops for the films treated with 40 and 60 mM nitric acid are nosier because those films had less 

total amount of material and thus lower signal. Because all of the films show the same fcc 

structure, the changes in magnetic properties could be attributed to either the change in 

elemental composition and/or the porosity. In this case, we expect that both factors could 

increase the coercivity. The dealloying process made the films more Fe-rich, which would 

increase the coercivity and the induced porosity could have the same effect by limiting domain 

wall propagation. Because both factors could have caused the increase in coercivity, it is difficult 

to determine the exact cause, although we believe the increased coercivity was due to a 

combination of these factors. Next, we investigated the effects of the electrochemical treatment 

on the films showing both fcc and bcc structure (Figure 1, red lines). Figure 5 shows the top-view 

SEM images of these films both assputtered (a) and after electrochemical treatment (b−d). 

Similar to the high Cu content films, the films treated with 10 and 20 mM nitric acid (b, c) show 

little to no change in morphology compared to the as-sputtered films. The films treated with 40 

mM nitric acid (d), however, show significant porosity and a loss of the particulate structure. 

Instead, the occurrence of a 3D network with ligament size of 50−100 nm was evident. Note that 

films of this composition could not be treated with 60 mM nitric acid without significant 

delamination/dissolution. Figure 6 shows the results of the XPS analysis for these films and the 

calculated surface composition. The Fe spectra of the as-sputtered film shows that the surface 

Fe is entirely oxidized while the surface Fe in the porous film has a significant contribution from 

Fe0 (blue peaks). For both the assputtered film and the porous film, the Cu is found to be entirely 

metallic. This is similar to the results for the high Cu content films. The porous film is again more 

oxidized than the as-sputtered film with 28 at % oxygen compared to 21 at % oxygen in the as-

sputtered film. These films, unlike the previous ones, lost Fe during the electrochemical 

treatment to become more Cu-rich. Disregarding oxygen, the as-sputtered films were found to 

be Fe64Cu36, whereas the porous film was Fe31Cu69 after etching. These results are consistent 

with an electrochemical dealloying process below the parting limit.8,23,26,38 

Figure 7a shows the XRD diffraction patterns for these films. In the as-sputtered films, the 

bccpeak is larger than the fccpeak, but after electrochemical treatment the fccpeak increases 

relative to the bccpeak. This is consistent with the composition change because Cu promotes 

the fccstructure and, as iron is removed and the films become more Cu-rich, there is larger 

content of the fccphase present. This points to diffusion of the Cu adatoms during the dealloying 

treatment.8 Figure 7b shows the in-plane M−H loops for these films. The as-sputtered film (black 

line) has the highest MS and MR followed by the films treated with 10 and 20 mM nitric acid 

(blue and green lines). The porous film (red line) is found to have the lowest MS and a slightly 

higher HC. The reduction in MS is attributed to the change in composition (i.e., reduction in Fe 

fraction). However, a reduction of Fe content would be expected to decrease the HC, whereas 

here, the coercivity is increased. Therefore, we attribute the increased coercivity in this case to 

the induced porosity and the change in crystal structure. Furthermore, this loop has an obvious 

step in it (i.e., a staircase-like shape), which suggests that there are two distinct contributions to 

the magnetism. While it is unclear exactly what is causing this step, we believe that the second 

contribution (with higher coercivity) could be from the newly formed fccphase, in agreement 

with the XRD data. It is possible that a partially oxidized metal could produce similar data, but in 

this case, it is unlikely that oxidation is causing the step because XRD in Figure 7a suggests that 

the films are primarily metallic. Another possible cause of this step is that the dealloying process 

created porosity through most, but not all, of the film thickness, which was determined by 

looking at cross sections in SEM (included in Figure S1). It is possible that the two contributions 

are the porous component and the pristine layer underneath. However, we do not believe this 



this the primary cause of the step because the same underlayer is present in the Cu-rich films 

(also in Figure S1), and in that case, there is no step in the hysteresis loop (Figure 4). It is for 

these reasons that we believe that the cause of the dual contributions is the presence of both 

fccand bccphases in these films, whereas in the fcconly films, only a single magnetic contribution 

is observed. This is consistent with work previously published by our group on FeCu films 

deposited by electrodeposition which found that films with increased fcc contributions had 

higher coercivities.41  

We further investigated the in-plane and out-of-plane magnetization curves for both as-

sputtered films and the porous films (Figure 8). The M−Happlied loops of the high Cu content 

films (Fe29Cu71) are shown in Figure 8a. Both the assputtered (black lines) and porous (red lines) 

films were found to be isotropic with very little difference between the in-plane (solid lines) and 

out-of-plane (dashed lines) loops. However, the films with mixed fccand bccstructure 

(Fe63Cu37) in Figure 8b were found to be anisotropic. For both the as-sputtered (black lines) 

and porous (red lines) films MR and HC are all found to be higher in the in-plane direction (solid 

lines). We believe that this could be due to the Cu rich films being made of magnetic clusters, 

not necessarily interconnected, so that the in-plane shape anisotropy is not observed. That is, if 

the magnetic component it primarily made of randomly oriented clusters then we expect the 

magnetism to be the same in all directions (i.e., no shape anisotropy). Conversely, the 

ferromagnetic regions in the Fe63Cu37 films are likely to be more abundant and interconnected, 

which would make them behave more like a typical magnetic thin film than clusters. In this case, 

we would expect the demagnetizing field to be larger, leading to clear in plane shape anisotropy.  

4. CONCLUSIONS  

Here we have reported the fabrication of FexCu1−x thin films by cosputtering and the 

characterization of their magnetic properties. We have also presented a method for creating 

nanoporosity in these films using a corrosive electrochemical treatment. Remarkably, the 

fabrication of nanoporous thin films by combining sputter deposition with electrochemical 

treatments has been largely overlooked in the literature. Hence, this work constitutes one of 

the first studies on nanoporous magnetic thin films made using these methods. This is of 

particular interest for use in high-surface-area magnetic components because the induced 

porosity creates a highsurface-area, whereas the magnetic properties are highly tunable 

through composition. We found that the microstructure, crystal structure and magnetic 

properties of these films are all dependent on both initial film composition as well as porosity. 

Furthermore, the methods developed here can be applied to other systems to create porous 

magnetic thin films with tunable structural and magnetic properties. 
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FIGURES  

                                         

 

Scheme 1. Cartoon Representing the Electrochemical Dealloying Step Using the 40 mM 

HNO3 Solution, against a Pt Reference Electrode: (a) High-Fe Film Predominantly Loses Fe, 

Becoming More Cu-Rich ; (b) High-Cu Films Predominantly Lose Cu, Becoming More Fe-Rich. 

 

                          

 

Figure 1. (a) XRD diffraction patterns of as-sputtered films of various compositions (as 

determined by EDX analysis). (b) In-plane magnetic hysteresis loops of as-sputtered films of 

various compositions. Inset shows the loops zoomed into the low applied field region. Note that 

for these samples, the sample size was kept constant, so that the magnetic moment values can 

be compared even if they are not normalized by volume or mass. 



                                                         

 

Figure 2. Top-view SEM micrographs of Fe29Cu71 films (a) as-sputtered and after treatment for 

60 s at +0.5 V in (b) 10 mM HNO3, (c) 20 mM HNO3, (d) 40 mM HNO3, and (e) 60 mM HNO3. 

 

                            

 

Figure 3. Cu and Fe XPS spectra of high-Cu-content films with fits. Measurements were taken 

after 15 s of Ar+ etching to remove surface contaminants. Black dots correspond to raw data 

points, whereas colored lines are fitted peaks color coded to correspond to oxidation state. 

Different oxidation states were assigned according to literature reports found using the NIST 

XPS database.(2,4,7,20,35) 
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Figure 4. (a) XRD diffractograms of Fe29Cu71 films both as-sputtered (black) and after treatment 

at +0.5 V for 60 s in various concentrations of nitric acid (10 mM, blue line; 20 mM, green line; 

40 mM, red line; 60 mM, yellow line). (b) In-plane magnetic hysteresis loops of the same films. 

Inset shows the loops zoomed into the low-applied-field region. 

 

                                                         

 

Figure 5. Top-view SEM micrographs of Fe63Cu37 films (a) as-sputtered and after treatment for 

60 s at +0.5 V in (b) 10 mM HNO3, (c) 20 mM HNO3, and (d) 40 mM HNO3. 

 



     

 

Figure 6. Cu and Fe XPS spectra of high-Fe-content films with fits. Measurements were taken 

after 15 s of Ar+ etching to remove surface contaminants. Black dots correspond to raw data 

points, whereas colored lines are fitted peaks color coded to correspond to oxidation state. 

Different oxidation states were assigned according to literature reports found using the NIST 

XPS database.(2,5,8,20,35) 

 

 

                         

 

Figure 7. (a) XRD diffractograms of Fe63Cu37 films both as-sputtered (black) and after treatment 

at +0.5 V for 60 s in various concentrations of nitric acid (10 mM, blue line; 20 mM, green line; 

40 mM, red line). (b) In-plane magnetic hysteresis loops of the same films. Inset shows the loops 

zoomed into the low-applied-field region. 
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Figure 8. In-plane (solid lines) and out-of-plane (dashed lines) magnetic hysteresis loops of (a) 

Fe29Cu71 films and (b) Fe63Cu37 films both as-sputtered (black) and porous (red). Insets show the 

loops zoomed into the low-applied-field region. 

 

TABLES  

Table 1. Sample Composition Data, Acquired Using EDX, XPS, and ICP. 

 

                         


