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Under the unmet need of efficient tumor-targeted drugs for oncology, a recombinant version 

of the plant toxin ricin (the modular protein T22-mRTA-H6) was engineered to self-assemble 

as protein-only, CXCR4-targeted nanoparticles. The soluble version of the construct self-

organized as regular 11 nm-planar entities that were highly cytotoxic in cultured CXCR4+ 

cancer cells upon short time exposure, with a determined IC50 in the nanomolar order of 

magnitude. The chemical inhibition of CXCR4 binding sites in exposed cells results in a 

dramatic reduction of the cytotoxic potency, proving the receptor-dependent mechanism of 

cytotoxicity. The insoluble version of T22-mRTA-H6 was, contrarily, moderately active, 

indicating that free, nanostructured protein is the optimal drug form. In animal models of 

acute myeloid leukemia T22-mRTA-H6 nanoparticles showed an impressive and highly 

selective therapeutic effect, dramatically reducing the leukemia cells affectation of clinically 

relevant organs. Functionalized T22-mRTA-H6 nanoparticles are then promising prototypes 

of chemically homogeneous, highly potent anti-tumor nanostructured toxins for precise 

oncotherapies based on self-mediated intracellular drug delivery. 

 

 

1. Introduction 

Cancer is a major, growing, and unsolved health problem worldwide, with an incidence of 

454.8 new cases per 100,000 (men and women) per year, and a mortality of 207.9 per 100,000 

men and 145.4 per 100,000 women (US data; https://www.cancer.gov/about-

cancer/understanding/statistics). Only in 2018, 1,735,350 new cancer cases and 609,640 

cancer deaths are projected to occur in the United States.[1] Conventional cancer treatments 

continue to be based on potent small molecular weight chemicals administered systemically. 

Since these drugs are not targeted to cancer cells they do not preferentially accumulate in 

tumor or metastasis. Biodistributed across healthy tissues, they promote severe hepatic and 

renal damage that often results in numerous life-threatening side effects. [2] In the line with the 
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development of new and improved drugs, drug nanoconjugates, therapeutic antibodies, 

antibody-drug conjugates, tumor-targeted nanoscale vehicles and tumor-targeted toxins (such 

as immunotoxins) are being designed to gain specificity and potency, with still limited 

therapeutic improvement. [3] The nanoscale size of the drug, potentially reachable by coupling 

to a vehicle, minimizes renal clearance and favors the enhanced permeability and retention 

(EPR) effect. [4] Among the set of tested new drugs, protein toxins emerge as a very appealing 

alternative. [3] Proteins are biocompatible macromolecules, easily produced by recombinant 

DNA technologies, and more than 400 protein species have been already approved for use in 

humans. [5] As versatile molecules, they are suitable for fine tuning through protein fusion 

technologies, to incorporate relevant functions for use as targeted drugs (such as ligands to 

specific cell surface tumoral markers). [6] Engineered versions of natural protein toxins have 

become promising anti-tumor agents. The Corynebacterium diphtheriae toxin fused to 

interleukin-2 (Denileukin diftitox, ONTAK®), is an FDA-approved drug that targets 

leukemia and lymphoma cell types that display IL-2 receptors. [7] The exotoxin A from 

Pseudomonas aeruginosa has been also produced through recombinant methodologies in 

different versions (SS1P, LMB-2, or BL22), which are under clinical trials for the treatment 

of mesothelioma and leukemia. [8, 9] 

Compared to microbial toxins, plant toxins are extremely potent molecules. [3, 10, 11] Many of 

them (such as ricin, saporin, abrin, trichosanthin, bouganin and gelonin) are ribosome 

inactivating proteins (RIPs). Being N-glycosidases, they irreversibly depurinate a single 

adenine residue in the 23S/25S/28S rRNA stem-loop. This action blocks protein translation 

and leads to fast cell death. Ricin, a RIP originally extracted from the seeds of Ricinus 

communis of approximately 65 kDa, consists in two chains linked by a disulfide bond; the 

chain A (RTA) with N-glycosidase enzymatic activity and the chain B (RTB) with lectin 

properties which binds carbohydrate ligands on target cell surface. [12] A single ricin molecule 
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is estimated to inactivate 1,500-2,000 ribosomes per minute, [13] being very promising as 

highly active cytotoxic protein drug. We have previously identified the peptide T22, an 

efficient ligand of the cell surface marker CXCR4 (a cytokine receptor selectively over-

expressed in metastatic cells of many cancer types, [14-19]), as a targeting agent for the precise 

tumor delivery of protein-only self-assembling nanoparticles. [20, 21] Some of these constructs 

have been built by the controlled oligomerization of proteins with cytotoxic activity, such as 

pro-apoptotic factors, [22] anti-cancer peptides [22] and microbial toxins. [23] In this context, we 

intended to confer CXCR4+ cell-targeted delivery of ricin assembled as protein nanoparticles 

to determine their selectivity in cell internalization and their performance as cytotoxic drugs. 

This has been done through in vivo administration of either soluble CXCR4-targeted protein 

nanoparticles formed by ricin as building blocks or to particular protein-releasing amyloidal 

aggregates formed by CXCR4-targeted ricin, named bacterial inclusion bodies (IBs), [24] that 

might represent a steady source of functional protein for advanced therapies. [25-27] 

 

2. Results 

The recombinant T22-mRTA-H6 (Figure 1 A) was successfully produced in Escherichia coli 

Origami B, purified by His-based one-step affinity chromatography and detected as a single 

protein species with the expected molecular mass of 35.91 kDa (Figure 1 B), that was fully 

confirmed by mass spectrometry (not shown). The pure protein was straightforward observed 

by both, DLS and FESEM, as ~11 nm entities occurring in the storage buffer without further 

treatment (Figure 1 C, D), indicating the spontaneous formation of self-assembled 

nanoparticles. This was the expected outcome as the combination of cationic peptides at the 

amino terminus and polyhistidines at the carboxy terminus has been proved to be optimal to 

promote protein oligomerization as regular nanostructures, [28] irrespective of the core protein 

segment (ricin, in the case of T22-mRTA-H6, Figure 1 A). Treating the material with SDS 
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resulted in monomers of 5.5 nm (Figure 1 C), which represented the probable building blocks 

of the nanoparticles. In the related self-assembling protein T22-GFP-H6, in which the sizes of 

the building block and the assembled version are both equivalent to those of T22-mRTA-H6, 

the use of small-angle X-ray scattering and other sophisticated analytical methods [29] as well 

as in silico modelling [30] have revealed that the nanoparticle was formed by approximately 10 

monomers. Being estimative, this figure fits also to T22-mRTA-H6. The analysis of T22-

mRTA-H6 nanoparticles by circular dichroism (CD) revealed a structural composition in 

which α-helix predominates (29.2 %, Figure 1 E). However, a Thioflavin T (Th T) assay has 

also revealed the occurrence of intermolecular β-sheet interactions (Figure 1 F) that might 

contribute to the stability of protein nanoparticles, and that is also compatible with the extent 

of important β-sheet structure found in the CD (Figure 1 E). Since the nanostructured ricin 

was intended to be delivered in tumoral tissues, we wondered if the nanoparticles could be 

still stable in the abnormal pH values observed in the tumor environment, that have been 

reported to range from approximately 6.3 (intracellular) to 7.4 (extracellular). [31, 32] As 

observed, T22-mRTA-H6 remained fully assembled under these conditions (Figure 1 F), what 

supports the usability of construct from the stability point of view. 

 

Figure 1. Physicochemical properties of T22-mRTA-H6. A. Modular scheme and amino 

acid sequence of T22-mRTA-H6. mRTA is the modified fragment A of ricin, described in 
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material and methods, in which the Asn residue 123 has been replaced by Ala (underlined). 

Sizes of the boxes are only indicative. B. Fractioning between insoluble (I) and soluble (S) 

cell fractions in total cell extracts, revealed by WB, upon protein production at 37 ºC for 3 h. 

SDS-PAGE analysis of T22-mRTA-H6 upon one-step affinity purification, revealed by 

Comassie blue (CB) staining and by Western blot (WB) using an anti-his antibody. U and AB 

stand for Unstained and All Blue markers respectively (Bio-Rad, Refs161-0363 and 161-

0373), and 1, 2 and 3 indicate, respectively, the unspecific elution peak and two peaks with 

increasing level of purity. Protein in peak 3 was used in further experiments. C. 

Hydrodynamic size (and Z potential) of T22-mRTA-H6 nanoparticles formed spontaneously 

upon purification (red line), determined by DLS. Pdi is polydispersion index, and all figures 

indicate nm. The size of the monomer, determined upon disassembling the material with 1 % 

SDS for 40 min, is also indicated (green line). D. FESEM imaging, at different magnifications, 

of T22-mRTA-H6 nanoparticles. Bars represent 20 nm. E. Far UV CD of T22-mRTA-H6 in 

carbonate-bicarbonate buffer at pH 8 measured at 25ºC. F. ThT fluorescence emission spectra 

alone (black line) or in the presence of T22-mRTA-H6 (light grey line) and T22-mRTA-H6 

previously heated at 100ºC (dark grey line).  λex=450 nm. In the plot at the bottom, ThT 

fluorescence emission at 490 nm of T22-mRTA-H6 (black bar) and T22-mRTA-H6 

previously heated at 100ºC (grey bars). G. Size of T22-mRTA-H6 nanoparticles dialyzed 

against 51 mM sodium phosphate, 158.6 mM trehalose dehydrate, 0.01 % polysorbate-20 

buffer at different pH values, determined by DLS.  

 

In order to test the functionality of the recombinant ricin in such assembled form, cultured 

CXCR4+ HeLa cells were exposed to different concentrations of ricin-based nanoparticles. 

These materials showed a potent, dose-dependent cytotoxicity that essentially abolished cell 

viability at 100 nM (Figure 2 A). After 72 h of exposure, the IC50 was determined to be 13 ± 

0.5 nM. To confirm if, as expected, T22-mRTA-H6-mediated cell death was dependent on its 

cell binding and internalization of the protein via the cell surface receptor CXCR4 and its 

ligand T22, we tested if a potent CXCR4 antagonist, AMD3100, [33] could be able to recover 

cell viability when used as a competitor of the toxin, at a molar ratio of 10:1. As observed 

(Figure 2 B), AMD3100 dramatically enhanced cell viability in T22-mRTA-H6-treated cells 

proving a specific, receptor-mediated penetration of the nanoparticles into target cells. To 

further confirm such precision cell entry mechanism, we decided to expose non tumoral 

(CXCR4-) 3T3 cells and representative CXCR4- and CXCR4+ tumoral cell lines to T22-

mRTA-H6, and also to a conventional chemical drug used in the treatment of several cancer 

types but specially of acute myeloid leukemia (AML), namely cytosine arabinoside (Ara-C). 
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[34] These cell lines, with different levels of CXCR4 expression (Figure 2 C), supported 

different levels of protein internalization mediated by the specific interaction between T22 

and CXCR4 (Figure 2 D). This was determined through the uptake of T22-GFP-H6, a self-

assembling fluorescent protein closely related to T22-mRTA-H6, that contains the same 

ligand of CXCR4 also accommodated at the amino terminus of the polypeptide. [28] It must be 

noted that as predicted, CXCR4 expression and T22-mediated protein internalization showed 

a parallel behavior (compare Figure 2 C and D). Then, when they were finally comparatively 

tested, , the ricin-based protein nanoparticle promoted specific cell death only in CXCR4+ 

cancer cells but not in normal cells, at a dose (100 nM) at which Ara-C did not show any toxic 

effect on any of these cell lines (Figure 2 E). This observation proved not only the effective 

targeting of the protein drug but also its superior cytotoxicity compared to an equimolar dose 

of the model chemical drug. 

 

Figure 2. Cytotoxicity and CXCR4 specificity of T22-mRTA-H6 nanoparticles. A. 

Viability of cultured CXCR4+ HeLa cells upon 72 h of exposure to T22-mRTA-H6 

nanoparticles at different concentrations, presented as a dose-response curve. B. Inhibition of 
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cell death in HeLa cells exposed to different concentrations of T22-mRTA-H6 nanoparticles 

for 72 h, mediated by the CXCR4 antagonist AMD3100 (always at an excess molar ratio of 

10:1). C. Levels of CXCR4 membrane protein determined by flow cytometry of different cell 

lines (3T3, MV411, THP1 and HeLa), expressed as mean fluorescence intensity ratio ± SE. D. 

Extent of internalization of 100 nM T22-GFP-H6 in the different cell lines at 1 h of exposure. 

Results are expressed as mean fluorescence intensity ratio ± SE. E. Viability of cultured 

CXCR4- 3T3 cells upon 48 h of exposure to T22-mRTA-H6 nanoparticles and the small 

molecular weight antitumoral drug Ara-C, at different concentrations. The commercial 

CXCR4- and CXCR4+ human AML cell lines (MV411 and THP1 respectively) are included as 

controls. Ara-C showed cytotoxicity above 100 nM (not shown). The standard error is 

represented in all bars. The level of significance is indicated by superscripts (*p<0.05, 

**p<0.01).  

 

At this stage, we wanted to confirm that the cytotoxicity promoted by T22-mRTA-H6 was 

linked to the uptake of the nanoparticles inside CXCR4+ cells, and triggered from within. This 

was reached by exposing HeLa cells to ATTO-labelled nanoparticles and monitoring 

internalization. As observed (Figure 3 A), nanoparticles were internalized by cells at least up 

to 24 h. As expected for an active version of ricin, apoptosis was detected though both 

annexin affinity assay and by Hoechst staining (Figure 3 B), and the number of apoptotic cells 

seemed to peak at around 15-24 h post exposure. In addition, mitochondrial damage was 

confirmed by the significant increase in the number of cells with lowered JC-1 red 

fluorescence at 15 and 24 h after treatment with T22-mRTA-H6 (Figure 3 C), indicative of a 

depolarization in the mitochondrial Ψ linked to apoptotic induction. Interestingly, cell 

damage occurred without a detectable increase in reactive oxygen species (ROS, Figure 3 D), 

while the formation of apoptotic bodies in ricin-exposed HeLa cells was clearly caspase–

dependent (Figure 3 E). The combination of these data indicates that T22-mRTA-H6-

mediated cell death occurs by a classical caspase-bddependent apoptosis pathway. 
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Figure 3. Cell penetrability and intracellular toxicity of T22-mRTA-H6 nanoparticles. A. 

Intracellular fluorescence in cultured HeLa cells exposed to 100 nM of ATTO488 stained 

T22-mRTA-H6. Extracellular fluorescence was fully removed by a hash trypsin treatment as 

described [35]. B. Under the same conditions, the externalized phosphatidylserine was 

detected by Annexin V Detection Kit (APC, eBioscience) in cells exposed to non-stained 

T22-mRTA-H6. Dead cells were spotted with propidium iodide (PI). Quadrant Q1 shows 

HeLa cells marked with PI. Q2 shows cells marked with Annexin V and PI. Q3 shows cells 

without PI nor Annexin V. Q4 shows cells marked with Annexin V. Therefore, dead cells are 

shown in Q1 and Q2 while living cells in Q3 and Q4. Apoptotic cells are shown in Q4. At the 

bottom, Hoechst staining of HeLa cell under the above conditions. Images were obtained by 

fluorescence microscopy (x400). C. Loss of JC-1 Red fluorescence in T22-mRTA-H6-treated 

cells as described above, indicative of a change in the mitochondrial Δψ. D. Levels of cellular 

ROS detected with a fluorescence microplate assay. HeLa cells were treated with either buffer, 

T22-mRTA-H6 (100 nM, for 15 or 24 hours) or 100 µM Pyocyanin (1 hour) as a positive 

control. Values are expressed as relative fluorescence units ± SE. E. Inhibition of caspases 

with zVAD-fmk reverses the antitumor activity of T22-mRTA-H6 in HeLa cells. Cells were 

pretreated for 1 hour with 100 µM zVAD-fmk and then exposed to 100 nM T22-mRTA-H6 

for 48 hours. Cell viability is expressed as the percentage of cell survival compared with the 

control. Values are mean ± SE. Vehicle indicates treatment with buffer. The level of 

significance is indicated (*p<0.05, **p<0.01).  
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The suitable cell-targeting of the nanostructured version of ricin conferred by the peptide T22 

(Figure 2), and the fact that most of the T22-mRTA-H6 protein was obtained in insoluble 

form (Figure 1 B), prompted us to evaluate if the insoluble version of ricin might also exhibit 

cell-targeted cytotoxicity. In this context, we have recently described how the presence of T22 

and other cell ligands, in recombinant proteins that form bacterial IBs, [27] allow an efficient 

and specific cell penetration of the whole protein clusters. In the same conceptual line, 

bacterial IBs formed by self-assembling proteins might contain quasi-native forms of 

nanoparticles or assembling precursors. [36] IB proteins retain functionalities of the soluble 

protein version and can be gradually released from the aggregates when exposed to cells [26] 

or when implanted in vivo by local injection. [25] The ultrastructural morphometry of insoluble 

version of T22-mRTA-H6 was observed in a nearly native state by FESEM as conventional 

IBs, namely pseudo-spherical protein clusters with an average diameter size ranging from 400 

to 600 nm (Figure 4 A).  

When exposing HeLa cells to increasing amounts of T22-mRTA-H6 IBs, a mild cytotoxic 

effect was indeed observed (Figure 4 B), although the differences in cell viability, when 

comparing with untreated cell cultures, were in the limits of significance. In addition, the 

insoluble version of T22-GFP-H6 (forming similar IBs, [27]), a self-assembling CXCR4-

targeted protein devoid of any cytotoxic domain, also promoted a transient and mild reduction 

of cell viability. However, in this case, cells showed an immediate recovery at longer time 

exposures that, in contrast, was not found associated to T22-mRTA-H6. Despite previous data 

about the potential of functional protein release from IBs, [25] the biological effect of T22-

mRTA-H6 IBs was, in our hands, only moderate. 
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Figure 4. Properties of T22-mRTA-H6 IBs. A. FESEM images of isolated T22-mRTA-H6 

IBs at different magnifications. Bars indicate 1 μm. B. Viability of cultured CXCR4+ HeLa 

cells upon different times of exposure to T22-mRTA-H6 IBs and to control, non-functional 

IBs formed by the related protein T22-GFP-H6. Exposure time is indicated in hours. The 

standard error is represented by a black line. The level of significance is indicated by 

superscripts (* p<0.05). 

 

The antitumor effect of both T22-mRTA-H6 soluble nanoparticles and T22-mRTA-H6 IBs 

was evaluated in a disseminated AML animal model. NSG mice were injected with THP1-

Luci cells to generate leukemia dissemination in mice. Two days after cell injection through 

the vein tail, we performed a single dose injection in the mice hypodermis (SC) of 1 mg of 

T22-mRTA-H6 IBs in two mice (IB-T22mRTA group). In a different mouse group, we 

started daily intravenous administrations of 10 µg of soluble T22-mRTA-H6 (T22mRTA 

group) to one mouse or buffer alone (VEHICLE group) to three mice, for a total of 10 doses. 

No effects on mice weight were observed during the treatments (data not shown). The 

progression and dissemination of leukemia was assessed by monitoring BLI using the IVIS 

Spectrum. From the day 6 and until the end of the experiment, the mouse treated with soluble 

T22-mRTA-H6 (T22mRTA) showed lower luminescence emission than the VEHICLE group 

(Figure 5A). Thus, as measured by BLI, treatment with soluble T22-mRTA-H6 inhibited the 

dissemination of AML cells in mice, compared to the vehicle group, after the 4th, 6 th, 8 th and 
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10 th doses of T22-mRTA-H6 at 10 µg per dose (which corresponded to day 6, 8, 10 or 13 

after injection of cells, respectively). In contrast, no differences in BLI were found between 

mice treated with T22-mRTA-H6 IBs (IB-T22mRTA) and the control VEHICLE mice 

(Figure 5A).  

In a next step, the antitumor activity of nanoparticles was analyzed in affected organs ex vivo 

14 days after the injection of cells when mice presented signs of advanced disease. The 

analyses with the IVIS Spectrum showed that the treatment with soluble T22-mRTA-H6 

nanoparticles (T22mRTA) decreased BLI in the bone marrow (backbone and hindlimbs), liver 

and spleen, in contrast to the findings in mice treated with buffer alone (VEHICLE) (Figure 

5B). However, the treatment with T22-mRTA-H6 IBs (IB-T22mRTA) did not show changes 

in BLI in the same tissues in comparison to control mice (VEHICLE) (Figure 5B).  

In addition, we evaluated the dissemination of leukemic cells in the affected organs of the 

animal by IHC of CD45, a human leukocyte marker that detects AML THP1 cells. Results 

correlated with BLI analyses showing that treatment with soluble T22-mRTA-H6, differently 

from those registered after T22-mRTA-H6 IBs treatment, reduced the dissemination in the 

infiltrated tissues, by detecting lower number of CD45 positive cells in bone marrow, liver 

and spleen in the mouse treated with soluble T22-mRTA-H6 (Figure 5C). Finally, we 

performed H&E staining of the infiltrated organs and additional organs not affected by 

leukemia cells. We did not observe any sign of toxicity in any of the affected or unaffected 

tissues, neither with the soluble T22-mRTA-H6 nor with the T22-mRTA-H6 IBs treatments 

(Figure 6). As it occurred in vitro, IBs caused, if any, just a mild biological effect. 
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Figure 5. Antitumor activity of T22-mRTA-H6 in a disseminated AML mouse model. A. 

Follow-up of bioluminescence emitted by mice treated with soluble T22-mRTA-H6 

nanoparticles (T22mRTA), T22-mRTA-H6 IBs (IB-T22mRTA) or buffer (VEHICLE) during 

the 14 days of the experiment, analyzed by IVIS Spectrum. B. Levels of luminescence 

detected ex vivo in IVIS Spectrum in the tissues infiltrated with leukemic cells such as 

backbone, hindlimbs, liver and spleen of mice treated with buffer (VEHICLE), T22-mRTA-

H6 IB (IB-T22mRTA) or soluble T22-mRTA-H6 (T22mRTA). C. Detection of CD45 

positive cells by IHQ in spleen, liver and bone marrow of mice treated with buffer 

(VEHICLE), T22-mRTA-H6 IBs (IB-T22mRTA) or soluble T22-mRTA-H6 nanoparticles 

(T22mRTA). T22mRTA, mouse treated with soluble T22-mRTA-H6; IB-T22mRTA, mouse 

group treated with T22-mRTA-H6 IBs; VEHICLE, group treated with vehicle. Bars indicate 

50 µm. 
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Figure 6. Histopathology in the disseminated AML mouse model after a treatment with 

T22-mRTA-H6. Hematoxylin and eosin staining of normal (heart, lung, kidney) and 

leukemia infiltrated organs (bone marrow, liver, spleen). Images were taken in the microscope 

with a 20x objective and an Olympus DP72 digital camera. H&E, Hematoxylin and Eosin; 

T22mRTA, mouse treated with soluble T22-mRTA-H6; IB-T22mRTA, mouse group treated 

with T22-mRTA-H6 IBs; VEHICLE, mouse group treated with buffer. Bars indicate 50 µm. 
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3. Discussion 

Functional recruitment in single chain modular polypeptides is a promising strategy for the 

generation of self-targeted and self-delivered drugs, that are chemically homogenous and 

produced in a single step in recombinant cell factories. [37] Protein drugs represent a big sector 

in the pharmacological market. [5] Their easy industrial biofabrication and scalability 

combined with the intrinsic biocompatibility and functional versatility, approachable by 

genetic engineering, make proteins a very convenient category of tuneable pharmaceuticals. 

[38, 39] In oncology, cytotoxic proteins selected from nature have been engineered and adapted 

to act as anti-tumor agents, by means of different approaches that must necessarily consider 

cell targeting. [3] Immunotoxins are relevant representatives of how protein toxins can be 

targeted by simple fusion technologies in monovalent complexes, with relevant potential for 

precise cell killing. [40-42] However, proper targeting is not regularly achieved in current 

nanomedicine [43] and the amount of cell targeted drugs that reach the intended tumor tissues, 

especially in oncology, is rather limited (usually < 1%). [44] Specifically, immunotoxins have 

not so far fulfilled the requirements regarding a convenient therapeutic index, as side toxicity 

is still relevant. [3] The combination of highly potent toxins with effective targeting is then 

necessary for a highly precise and selective cell killing, that might be still optimized by a 

regular and multivalent display of the targeting agent on the surface of the drug. [45] Also, 

formulating a protein drug within the nanoscale size should favor the enhanced permeability 

and retention effects, [4] minimizing the biological barriers in the drug delivery process. 

Under these premises, we have engineered the highly potent plant toxin ricin as a CXCR4-

targeted, protein-only nanoscale drug with a multivalent presentation of the ligand, the 

peptide T22, reached through the regular self-assembling of ricin as stable 11 nm-

nanoparticles (Figure 1 D, F). A related modular protein, namely T22-GFP-H6, that self-
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assembles as 12 nm-nanoparticles, has been modelled as oligomerizing in approximately 10 

subunits accommodated in a toroid architecture, thus ensuring a sufficient multivalent display 

of the ligand. [29, 30] According to the similarities in the molecular mass of the building block 

and in the final size of the resulting nanoparticles, T22-mRTA-H6 seems to self-arrange in a 

similar pattern (Figure 1). Ricin has been largely considered as a drug component in cancer 

therapies, [46] and previously explored in form of immunotoxins with moderate efficacy. [47-49] 

In the nanoconstruct generated here, ricin is highly active and fully potent on target cells, 

indicative of that oligomerization is not preventing functionality.  

This particular approach highly increases the selectivity of the cytotoxic potential of ricin 

against CXCR4+ cancer cells because of the combination of three main and critical effects. 

Firstly, the specific uptake of the therapeutic protein was achieved because of the multivalent 

display of the CXCR4 ligand, T22, on the nanoparticle and exclusive CXCR4 receptor 

overexpression in the target cancer cell membranes. This fact prevents internalization and 

toxicity on normal cells with low or negligible levels of CXCR4. Secondly, the avoidance of 

the severe side effects that appeared on previous clinical trials testing ricin anticancer effect 

that led to their discontinuation. [13, 46] Specifically, we incorporated the mutant (N132A) ricin 

A chain as functional building block of the nanoparticle, to suppress the potential vascular 

leak syndrome. We also excluded the use of ricin B-chain to block the severe toxicity 

associated with its non-specific binding to glycoproteins or mannose receptors expressed on 

the membrane of non-tumor cells (e.g. Kupffer cells of the liver sinusoids). Finally, the 

enhanced delivery of the biologically active ricin A chain to the cytosol of target cells (Figure 

3 A) was reached because of the addition of the furin cleavage site that releases the active 

domain from the nanoparticle in the endoplasmic reticulum, and a KDEL sequence which 

allows the translocation of the biologically active toxin to the cytosol, avoiding its lysosomal 

degradation. The endosomal delivery of the protein drug would also prevent the development 
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of   multidrug resistance, that mainly relates to drug efflux by cancer cells through the ATP-

binding cassette (ABC) transporters activity, overexpression of ABC transporters associating 

with poor response to therapy. [50] Low molecular weight drugs enter cells by diffusion across 

membranes, which renders them vulnerable to their efflux by ABC transporters. In contrast, 

the nanoscale size of oligomeric ricin is expected to avoid passive diffusion. Entering 

CXCR4+ cells through endocytic vesicles, the protein achieves high intracellular 

concentration in absence of (or reversing) the multidrug resistance phenotype that might have 

been observed for a free small drug. This effect, associated with the entry route, has been 

reported for doxorubicin-loaded polymeric nanoparticles and doxorubicin-polymer conjugates, 

among others. [51-52]  

 The combination of these three crucial effects in basic cellular pathways makes for a 

dramatic increase of ricin A antineoplastic activity. Thus, the previously reported IC50 of 

untargeted ricin A in HeLa cells (IC50 36 µg/ml (1 µM)) [53] is here reduced about 100 fold 

(IC50=13 nM) because of selective CXCR4 cancer cell targeting, KDEL sequence and furin 

site incorporation into the nanoparticle. The reached IC50 (Figure 2) is in the same nM range 

than that described by other highly lethal toxins (such as diphtheria toxin derivatives, [54-56] 

Pesudomonas exotoxin [57] or neurotoxins [58]). However, this engineered version is highly 

promising for the further development of the present prototype as an efficient oncological 

nanostructured drug, since it keeps the full selectivity for the cell surface cytokine receptor 

CXCR4 (Figure 2) while keeping a nanostructured organization with a multivalent 

presentation of the surface receptor (Figure 1). In addition, in a molar basis, T22-mRTA-H6 is 

more cytotoxic on AML CXCR4+ cells than Ara-C (Figure 2 E), a basic chemical drug 

included in most AML treatment protocols. [34] Importantly, the precise cytotoxic activity of 

T22-mRTA-H6 nanoparticles is conserved in vivo after systemic administration, which leads 

to a dramatic blockade of leukemic cell affectation in the clinically relevant organs (bone 
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marrow, liver and spleen) in the CXCR4+ AML model (Figure 5). These findings were 

associated with absence of any detectable systemic (not shown) or histological toxicity in off-

target organs during the experiment time (Figure 6). It could not be fully excluded that in 

longer treatments ricin (as well as other recombinant toxins or therapeutic fusion proteins) 

may induce an immune response, that if involving antigens shared with endogenous protein 

might lead to adverse effects. [59, 60] However, the modified version of ricin used here avoids 

the vascular leak syndrome (VLS), the major concern in the clinical trial of a ricin A-antibody 

(CD19/CD12) immunotoxin (https://clinicaltrials.gov/ct2/show/NCT01408160). In this 

context, further de-immunization might be feasible, if required, to improve the clinical 

performance of T22-mRTA-H6 or derived drugs, ensuring low immunogenicity and 

avoidance of autoimmune diseases. This could be done by an approach similar to that carried 

out for diphtheria and Pseudomonas aeruginosa toxins. These microbial proteins, components 

of most of third generation immunotoxins under clinical evaluation, are successfully 

engineered by the removal of non-essential sequences and by the genetic elimination of 

antigenic T and B cell epitopes, without compromising their antitumor activity. [60] 

Combining the impressive therapeutic effects observed in vivo and the fact that CXCR4 is a 

tumoral marker relevant in more than 20 human neoplasias, [61] its overexpression correlating 

with aggressiveness, [62-66] T22-mRTA-H6 nanoparticles combine selectivity, cytotoxicity, 

nanoscale size and multivalent display in a chemically homogeneous entity devoid of any 

external carrier or vehicle that might impose limitations to the biocompatibility of the whole 

construct. [4] 

  
  

4. Conclusion 

One of the most potent toxins in nature, ricin, has been genetically instructed to self-assemble 

as stable 11 nm-homomeric nanoparticles and to selectively kill CXCR4-overexpressing cells, 

https://clinicaltrials.gov/ct2/show/NCT01408160
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by using a promising protein engineering toolkit. The resulting nanoscale material has been 

shown as highly cytotoxic and highly selective over CXCR4+ cells, resulting in an unusually 

strong and efficient antitumor activity in a mouse model of the difficult-to-treat disseminated 

acute myeloid leukemia, in complete absence of side-toxicity. This analysis opens a plethora 

of possibilities to combine highly toxic proteins with a highly selective tumor-targeting 

platform, that within the nanoscale, would fulfil the emerging concept of self-assembled, self-

targeted vehicle-free recombinant drugs for precision medicines. 

 

5. Materials and methods 

5.1 Genetic design and protein production  

The recombinant protein T22-mRTA-H6 (Figure 1 A) was designed to include the highly 

specific CXCR4 ligand T22 [20] at the amino terminus followed by a mutated version of the 

ricin A chain, and a hexahistidine tail at the carboxy terminus. The mutation N132A was 

introduced to suppress the vascular leak syndrome in potential future in vivo administrations, 

keeping the cytotoxic activity. In addition, a furin cleave site was also incorporated to allow 

the release of the accessory N-terminal region in the endosome and the intracellular activity of 

ricin in a quasi-native sequence format. A KDEL motif was also incorporated to favour 

endosomal escape. [67] The plasmid construct pET22b-T22-mRTA-H6, encoding the protein 

under the control of the bacteriophage T7 promoter, was generated by GeneArt and 

transformed into Escherichia coli Origami B cells.  

 

5.2 Production and purification of soluble protein  

Recombinant bacteria were cultured in lysogeny broth (LB) medium with 100 µg/ml 

ampicillin, 15 µg/ml kanamycin and 12.5 µg/ml of tetracycline, at 37 ºC and 250 rpm. The 

recombinant gene expression was induced by adding 0.1 mM isopropyl-β-

thiogalactopyronaside (IPTG) when the OD of the culture reached a value between 0.5 and 

0.7. Cultures were subsequently incubated overnight at 20 ºC and 250 rpm. Cells were 

harvested and centrifuged (5,000 g, 15 min, 4 ºC). The cell pellet was resuspended in Wash 

Buffer (51 mM sodium phosphate buffer, pH=8, 158.6 mM trehalose dihydrate, 0.01% 
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Polysorbate-20, 15 mM imidazole, 300 mM NaCl) in presence of protease inhibitor cocktail 

Complete EDTA-Free (Roche). Bacterial cells were sonicated twice at 10% amplitude and 

once at 15% of amplitude for 10 min each round, centrifuged (15,000 g, 45 min, 4 ºC) and 

soluble fraction purified by affinity chromatography with a HiTrap Chelating HP column in 

an AKTA purifier FPLC, (GE Healthcare). After the samples were filtered (0.22 µm) and 

injected into the column, the fractions to be collected were eluted at approximately 30% 

Elution Buffer (51 mM sodium phosphate, pH=8, 158.6 mM trehalose dihydrate, 0.01% 

Polysorbate-20, 500 mM imidazole, 300 mM NaCl). The buffer exchange was done in 

Centricon Centrifugal Tubes Ultracel 10,000 NMWL. T22-mRTA-H6 was found to be highly 

stable in 51 mM sodium phosphate pH=6.2, 60 mg/ml α-trehalose dehydrate, 0.01% 

polysorbate-20. Protein purity was analyzed by SDS electrophoresis on TGX Stain-Free gels 

(Bio-Rad), followed by Western blotting using an anti-His monoclonal antibody (Santa Cruz 

Biotechnology). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) on 

TGX Stain-Free Gels (Bio-Rad) was conducted to analyze the protein. Samples were diluted 

in denaturing buffer (0.53 M Tris Base, 5.52 M glycerol, 0.27 M SDS, 2.84 M β-

mercaptoethanol, 7.99 M urea) at a 3:1 molar ratio, boiled at 96ºC for 10 min and loaded into 

the gels lanes. For the Western Blot, an anti-His monoclonal antibody was used (Santa Cruz 

Biotechnology) followed by a goat anti mouse IgG (H+L)-HRP secondary antibody (Ref: 

170-6516) conjugate (Bio-Rad, Ref: 170-6516). Images were observed using ChemiDoc 

Touch Imaging System. Protein production has been partially performed by the ICTS 

“NANBIOSIS”, more specifically by the Protein Production Platform of CIBER-BBN/ IBB 

(http://www.nanbiosis.es/unit/u1-protein-production-platform-ppp/) 

 

5.3 Production and purification of insoluble protein  

Recombinant bacteria were cultured in LB at 37ºC and 250 rpm until the OD reached between 

0.5 and 0.7, and gene expression was induced by 1 mM IPTG. Then, cells were further 

incubated to allow gene expression for 3 h at 37 ºC and 250 rpm. After sedimentation (5,000 g, 

15 min, 4 ºC), the pellet was resuspended in 0.22 µm filtered lysis buffer (Tris 1 M pH=8, 

NaCl 4 M, EDTA 50 mM) in presence of protease inhibitor cocktail Complete EDTA-Free 

(Roche), the protease inhibitor phenylmethane sulfonyl fluoride (PMSF, 100 mM) and 50 µg 

lysozyme/ml, followed by an incubation at 37 ºC and 250 rpm for 2 h. Cells were disrupted in 

a French Press (5 rounds at 1,200 psi) and kept at -80 ºC overnight. Samples were thawed and 

treated 0.2 µl Triton X-100/ml cell culture for 1h at room temperature with agitation. Then, 
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after sedimentation (15,000 g, 15 min, 4 ºC), pellets were resuspended in the same volume of 

filtered lysis buffer. The following reagents were then added to the sample: 1 µl MgSO4 (1 

M)/ml cell culture,1 µg DNAse/ml cell culture The culture was then incubated for 1 h at 37 ºC 

and 250 rpm agitation. As a sterility assay, LB plates were seeded with 100 µl of culture at 37 

ºC, overnight, and the suspension of insoluble protein was frozen at -80 ºC overnight. The 

suspension was frozen and thawed daily until no bacterial colonies appeared in the plates. 

Then, after sedimentation (15,000 g, 15 min, 4 ºC), the supernatant was discarded, and each 

pellet was resuspended in filtered ultrapure water and aliquots were made. Finally, after 

sedimentation of insoluble material (15,000 g, 15 min, 4 ºC), supernatants were discarded and 

pellets were stored at -80 ºC.  

 

5.4 Quantitative protein analysis 

Protein purity was analyzed by sodium dodecyl sulphate polyacrylamide gel electrophoresis 

(SDS-PAGE) on a Chemi Doc Touch Imaging System (Bio-Rad). Briefly, both soluble and 

insoluble samples were mixed with in denaturing buffer (0.53M Tris Base, 5.52 M glycerol, 

0.27 M sodium dodecylsulphate (SDS), 2.84 M β-mercaptoethanol, 7.99 M urea) at a ratio 3:1, 

boiled for 5 or 45 min, respectively, and loaded onto the gels. For the Western Blot, an anti-

His monoclonal antibody was used (Santa Cruz Biotechnology) followed by a goat anti mouse 

IgG (H+L)-HRP secondary antibody conjugate (Bio-Rad). Gels were scanned at high 

resolution and bands were quantified with Quantity One Software (Bio-Rad) using a known 

protein standard of soluble recombinant T22-mRTA-H6. 

 

5.5 Quantitative and qualitative analyses of soluble protein  

Protein molecular weight was verified by mass spectrometry (MALDI-TOF), and 

concentration determined by Bradford Assay (Dye Reagent Concentrate Bio-Rad kit). 

Volume size distribution of protein nanoparticles was determined by Dynamic Light 

Scattering (DLS). For that, a 50 μl aliquot (stored at − 80 °C) was thawed and the volume size 

distribution of nanoparticles was immediately determined at 633 nm (Zetasizer Nano ZS, 

Malvern Instruments Limited). Far-UV circular dichroism (CD) was determined at 25 ºC in a 

Jasco J-715 spectropolarimeter to assess the secondary structure of T22-mRTA-H6, which 

was dissolved at 0.35 mg/ml in 166 mM sodium bicarbonate buffer, pH 8. The CD spectra 

were obtained in a 1 mm path-length cuvette over a wavelength range of 190-260 nm, at a 
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scan rate of 50 nm/min, a response of 1 s and a band-with of 1 nm. Six scans were 

accumulated. The magnitude of secondary structure was analyzed using the JASCO spectra-

manager analysis software. To investigate potential intermolecular β-sheet structure in the 

protein nanoparticles, conventional methods for Thioflavin T (ThT) staining were adapted. 

Briefly, protein aliquots (10 µl) were added to 90 µl of 50 µM (Sigma Aldrich) in phosphate 

buffered saline (PBS), pH 7,4 and stirred for 1 min. The final protein concentration was 0.17 

mg/ml. ThT was excited at 450 nm and the fluorescence emission spectra was recorded in the 

range of 460 to 565 nm with a Varian Cary Eclipse spectrofluorimeter. The cross- β-sheet 

structure was monitored by the enhancement of the free dye fluorescence emission.  

 

5.6 Cell culture and determination of cell viability and apoptosis 

HeLa cells (ATCC-CCL-2) were cultured at 37 ºC in a 5% CO2 humidified atmosphere in 

MEM-Alpha media supplemented with 10% fetal calf serum (Gibco Thermo Fisher Scientific 

(TFS)). They were seeded in an opaque 96-well plate (3x104 cells/well) for 24 h. When 

insoluble T22-mRTA-H6 was assayed, the media was supplemented with 2% penicillin, 

10,000 U/ml streptomycin (Gibco, TFS). The next day soluble T22-mRTA-H6 was added and 

cells were exposed for 24, 48 and 72 h). Cells were also exposed to insoluble protein version 

during 24, 48, 72, 96, 120, and 144 h. Cell viability was determined by CellTiterGlo 

Luminescent Cell Viability Assay (Promega) in a Multilabel Plater Reader Victor3 (Perkin 

Elmer). For the CXCR4 specificity assay, the CXCR4 antagonist AMD3100 [33] was added 

at 10:1 molar ratio 1 h before the incorporation of the protein. Antagonist and protein were 

incubated in a final volume of 10 µl that were mixed with 90 µl of culture media. All soluble 

protein experiments were done in triplicate and insoluble protein with six replicates. 

On the other hand, the AML cell lines THP1 (ACC-16) and MV411 (ACC-102), as well as 

3T3 mouse fibroblasts (ACC-173), were purchased from DSMZ (Leibniz Institute DSMZ-

German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany). THP1 

was cultured in RPMI-1640 medium supplemented with 10% FBS, 10 mmol/l L-glutamine 

100 U/ml penicillin, 10 mg/ml streptomycin and 0.45 µg/ml fungizone. (Gibco, TFS). 3T3 

cells were cultured with DMEM medium adding the same supplements. Cells were kept at 

37°C in a humidified atmosphere of 5% CO2. Cell viability assays with these cell lines were 

performed using the XTT Cell Viability Kit II (Roche Diagnostics) and absorbance was read 

in a spectrophotometer at 490nm (BMG Labtech). The effect of the caspase inhibitor zVAD-

fmk was evaluated pretreating for 1 hour cells seeded on 96-well plates (at 100 µM zVAD-
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fmk) and then exposing them to 100 nM T22-mRTA-H6 for 48 hours. The antitumor drug 

Ara-C (Cytosine β-D-arabinofuranoside hydrochloride) was purchased from Sigma Aldrich. 

To allow the follow-up of AML in mice, THP1 AML cell line was transfected with a plasmid 

encoding the luciferase gene that confers bioluminescence that can be non-invasively imaged 

(BLI) to the cells. Briefly, THP1 cells were harvested in 24-well plates, treated with 0.5 µg of 

DNA plasmid and mixed with Lipofectamine LTX and PLUS reagents (A12621, Invitrogen, 

TFS) in Opti-MEM Reduced Serum Medium (Gibco, TFS) according to the manufacturer's 

instructions. 48 hours later BLI levels were tested incubating cells with luciferin in an IVIS 

Spectrum In Vivo Imaging System (PerkinElmer, Waltham, MA, USA). Finally, transfected 

cells were selected with 1.5 mg/mL geneticin (G418 Sulfate, Gibco, TFS) and BLI was 

analyzed periodically to check the preservation of the plasmid in cells, called THP1-Luci cells. 

Internalization of T22-GFP-H6 [30] in 3T3, MV411, THP1 and HeLa was determined by 

Fluorescence-activated cell sorting (FACS Calibur, BD). Cells were exposed for 1 hour to  

T22-GFP-H6 at 100 nM. Then, cells were washed with PBS and trypsinized (1 mg/ml trypsin, 

Life Technologies) in order to remove nonspecific binding of nanoparticles to the cell 

membrane. Finally, levels of intracellular GFP fluorescence were quantified by flow 

cytometry. Mean fluorescence intensity ratios are given as mean fluorescence intensity of the 

treated samples divided by the mean fluorescence intensity of the vehicles. 

To evaluate cell apoptosis, we performed nuclear staining with the Hoescht 3342 dye (Sigma- 

Aldrich) in HeLa cells exposed to 100 nM T22-mRTA-H6 or buffer for different times. Once 

the incubation was finished, the media was collected and centrifuged to obtain the suspended 

cells. They were rinsed with PBS and centrifuged again. The adhered cells were trypsinized 

and pulled together with those previously obtained. These cells were fixed (3.7 % p-

formaldehyde in PBS, pH 7.4) for 10 min at -20ºC, washed with PBS and resuspended in 10 

µl of PBS. Finally, cells were mounted on a slide with ProLong™ Gold Antifade Mountant 

with DAPI and observed for the appearance of the nuclei under a fluorescence microscope. In 

addition, externalizad phosphatidylserine protein-exposed cells was detected by Annexin 

Annexin V Detection Kit (APC, eBioscience) while dead cells were spotted with propidium 

iodide (PI), according to supplier instructions. Cell internalization was monitored using 

ATTO-labelled protein as described elsewhere. [23]  

 

5.7 Determination of ROS levels and mitochondrial damage 
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On the other hand, levels of cellular ROS were measured with the Cellular ROS Detection 

Assay Kit (Abcam). In brief, HeLa cells were exposed to 100 nM T22-mRTA-H6 (15 or 24 

hours) or buffer. Then, cells were washed and incubated with ROS Detection Solution for 1 

hour at 37ºC, in the dark, adding 100 µM Pyocyanin (1 hour) to the positive controls. 

Afterwards, levels of fluorescence were read with a microplate reader (BMG Labtech) at 

Ex=488nm and Em=520nm. Values were expressed as relative fluorescence units after 

subtracting the background fluorescence of blanks.  Finally, to measure mitochondrial 

membrane potential (∆ψm), we used a mitochondrial potential detection kit (BD MitoScreen, 

BD Biosciences) according to manufacturer’s instructions. Labelled cells were analyzed by 

flow cytometry and the data were expressed as percentage of cells containing depolarized 

mitochondria (loss of JC-1 red fluorescence). 

 

5.8 Flow cytometry 

CXCR4 membrane expression was determined by Fluorescence-activated cell sorting (FACS 

Calibur, BD). Cells were washed with PBS 0.5 % BSA and incubated either with PE-Cy5 

mouse anti-CXCR4 monoclonal antibody (BD Biosciences) or PE-Cy5 Mouse IdG2a isotype 

(BD Biosciences) as control. Results of fluorescence emission were analyzed with software 

Cell Quest Pro and expressed as the ratio between the mean fluorescence intensity of each 

sample and the isotype values. 

 

5.9 Electron microscopy 

The ultrastructure of soluble (in form of nanoparticles) and insoluble (in form of IBs) T22-

mRTA-H6 was observed by field emission scanning electron microscopy (FESEM). Insoluble 

protein was resuspended in PBS and sonicated at 10% amplitude 0.5 s ON/OFF for 1 min. 

Drops of 10 µL of either soluble protein in storage buffer or insoluble protein in PBS were 

deposited during 1 min on silicon wafers (Ted Pella), excess of liquid eliminated, and air 

dried. Samples without coating were observed with an in-lens detector in a FESEM Zeiss 

Merlin (Zeiss) operating at 1kV. Representative images were obtained at a wide range of 

magnifications (from 100,000x to 450,000x). 

 

5.10 Antineoplastic effect in a disseminated acute myeloid leukemia (AML) mouse model 
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NSG (NOD-scid IL2Rgammanull) female mice (5 weeks old) were obtained from Charles 

River Laboratories (Wilmington, MA, USA) and housed in microisolator units with sterile 

food and water ad libitum. After 1 week in quarantine, NSG mice were intravenously (IV) 

injected with luciferase-transfected THP1 cells (THP1-Luci; 1 x 106 cells/ 200 µL) and 

divided randomly into three different experimental groups. One group (VEHICLE; n=3) was 

IV injected with NaCO3H pH=8 buffer, a second group (T22mRTA; n=1) was administered 

with 10 µg of T22-mRTA-H6. Both groups were injected with a daily dose for a total of 10 

doses. A third group (IB-T22mRTA; n=2) was subcutaneously (SC) injected once with 1 mg 

of T22-mRTA-H6 IBs. These treatments started 2 days after the IV injection of THP1-Luci 

cells in mice, which generated the disseminated AML model. Evolution of AML 

dissemination was monitored in IVIS Spectrum three times per week until the day of the 

euthanasia. Weight of the animals was measured the same day of BLI analysis. All mice were 

euthanized the day that the first of them presented relevant signs of disease such as 10% 

weight loss or lack of mobility. Animals were intraperitoneally injected with luciferin, and 

after 5 min mice were killed by cervical dislocation. Tissues were excised and the BLI levels 

of the organs ex vivo analyzed. After that, they were preserved in formaldehyde 3.7% and 

paraffin embedded for further immunohistochemistry analyses. The analysis and detection of 

BLI was performed using radiance photons in Living Image 4.4 Software both in in vivo and 

ex vivo studies. All procedures were conducted in accordance with the guidelines approved by 

the institutional animal Ethics Committee of Hospital Sant Pau. 

 

5.11 Histopathology and immunohistochemical staining 

Sections of paraffin-embedded samples of infiltrated (liver, spleen, hindlimbs and backbone) 

and normal (lung, heart and kidney) organs were hematoxylin and eosin (H&E) stained and 

the presence of toxicity was analyzed. Moreover, in order to detect AML cells in infiltrated 

tissues, immunohistochemical analysis with anti-human CD45 antibody (DAKO) was done in 

paraffin-embedded tissue samples. Staining was performed in a Dako Autostainer Link 48, 

following the manufacturer’s instructions. Two independent observers evaluated all samples, 

using an Olympus BX51 microscope (Olympus). Images were acquired using an Olympus 

DP72 digital camera and processed with CellD Imaging 3.3 software (Olympus). 

 

5.12 Statistical analysis 
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Quantitative data are expressed as mean ± standard error (SE). Previously to perform 

statistical analyses, all variables were tested for normality and homogeneity of variances 

employing the Shapiro-Wilk and the Levene test, respectively. Comparisons of soluble 

protein cytotoxicity effects and competition assays were made with Tukey’s test. Meanwhile 

protein cytotoxicity assays were assessed by Mann-Whitney U tests. Significance was 

accepted at p<0.05. 
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