

This is the accepted version of the article:

Pampaloni N.P., Lottner M., Giugliano M., Matruglio A., D'Amico F., Prato M., Garrido J.A., Ballerini L., Scaini D.. Single-layer graphene modulates neuronal communication and augments membrane ion currents. *Nature Nanotechnology*, (2018). 13. : 755 - . 10.1038/s41565-018-0163-6.

Available at: <https://dx.doi.org/10.1038/s41565-018-0163-6>

1 **Single-layer graphene modulates neuronal communication and**
2 **augments membrane ion currents**

3 Niccolò Paolo Pampaloni^{1a}, Martin Lottner^{2a}, Michele Giugliano^{3,4,5}, Alessia Matruglio^{6b}, Francesco
4 D'Amico⁷, Maurizio Prato^{8,9,10}, Josè Antonio Garrido^{11,12*}, Laura Ballerini^{1*}, Denis Scaini^{1,7*}

5

6 ¹ International School for Advanced Studies (SISSA), Trieste, Italy

7 ² Walter Schottky Institut and Physik-Department, Technische Universität München, Am Coulombwall,
8 Garching, Germany

9 ³ Theoretical Neurobiology & Neuroengineering Laboratory, Department of Biomedical Sciences,
10 Universiteit Antwerpen, Antwerpen, Belgium

11 ⁴ Department of Computer Science, University of Sheffield, S1 4DP Sheffield, UK;

12 ⁵ Lab of Neural Microcircuitry, Brain Mind Institute, EPFL, CH-1015 Lausanne, Switzerland

13 ⁶ CNR-IOM - Istituto Officina dei Materiali, Area Science Park – Basovizza, S.S. 14 km 163,5 Trieste -
14 Italy

15 ⁷ Elettra Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5 in Area Science Park, I-34149 Trieste, Italy

16 ⁸ Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, Italy

17 ⁹ Nanobiotechnology Laboratory, CIC biomaGUNE, -San Sebastià, Spain

18 ¹⁰ Ikerbasque, Basque Foundation for Science, Bilbao, Spain

19 ¹¹ Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of
20 Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain

21 ¹² ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain

22

23

24

25 ^a these authors equally contributed to the work

26 ^b Present address: CERIC-ERIC (Central European Research Infrastructure Consortium), Area
27 Science Park, Basovizza, S.S. 14 km 163,5 Trieste, Italy

28

29 **Abstract**
3031 The use of graphene-based materials to engineer sophisticated bio-sensing
32 interfaces adaptable to the central nervous system, requires a detailed
33 comprehension of the behavior of such materials in a biological context. Graphene
34 peculiar properties may cause various cellular changes, but the underlying
35 mechanisms remain unclear. Here, we show that single-layer graphene increases
36 neuronal firing *via* altering membrane-associated functions in cultured cells.37 Graphene tunes the extracellular ions distribution at the interface with neurons, a key
38 regulator of neuronal excitability. The resulting membrane biophysical changes
39 include stronger potassium ion currents, with a significant shift in the fraction of
40 neuronal firing phenotypes from *adapting* to *tonically firing*. By experimental and
41 theoretical approaches we hypothesize that crucial to these effects are the
42 graphene-ion interactions that are maximized when single layer graphene is
43 deposited on electrically insulating substrates.

44

45

46 Graphene is a highly versatile two-dimensional nanomaterial widely adopted in many
47 domains of science and technology, including advanced biomedical applications, due
48 to its important electrical, optical and mechanical properties [1,2,3]. Graphene high
49 carrier mobility and excellent optical transparency enabled, for example, the design
50 of transparent electrodes in novel optoelectronic devices [4]. The combination of
51 these features and, in particular, its remarkable electro-conductivity, makes
52 graphene extremely appealing in neuroengineering, with reference to invasive
53 implant technologies for brain biosensors and electrodes [5,6,7]. Despite the great
54 interest and hopes raised by late development in graphene applications, the

55 understanding of the functional interactions between graphene and brain tissue is
56 still limited, particularly concerning the close proximity of a single plain layer of
57 carbon atoms and the nervous cells' membrane ion fluxes in a biological milieu. So
58 far, reports have shown that graphene-based materials can be safely interfaced with
59 active neuronal cells [8,9,10], however an in-depth study focused on the influence of
60 single-layer graphene (SLG) on the biophysics of neurons and *ex vivo* neuronal
61 microcircuits upon is missing. In numerous electroceuticals applications [11,12],
62 graphene is in contact with the extracellular environment that surrounds the excitable
63 cell membranes. We thus asked: can SLG directly or indirectly alter neuronal
64 activity? Which manipulations of graphene might be adopted to regulate *ad hoc*
65 these interactions? The answers to these questions appear pivotal in designing
66 future research in bio-hybrid electronic devices and, more in general, will provide
67 important insights on the deep interactions of technology with nature. Here, SLG
68 obtained by chemical vapor deposition (CVD) was used to interface mammalian
69 neurons, dissociated from the rat hippocampi, as a culture substrate. We employed
70 different architectures of a single atomic layer graphene: (i) suspended or (ii) in
71 contact with electrically insulating or conductive substrates. By these arrangements,
72 we studied the collective electrical activity of neuronal networks coupled on
73 graphene and demonstrated that, when isolated, SLG increased neuronal excitability
74 via inducing specific changes in membrane biophysics. These consist in a significant
75 shift of the fraction of neuronal firing phenotypes in the network from *adapting* to
76 *tonically* firing. We then propose that graphene selectively modifies membrane-
77 associated neuronal functions and we hypothesize a specific interaction between
78 graphene and cations, in particular potassium, in the extracellular solution crucially
79 regulating cell excitability.

80

81 **Single and multi-layer graphene and gold substrates**

82 Glass supported films of SLG and multi-layer graphene (MLG) were tested as
83 substrates interfacing neuronal growth. SLG and MLG were characterized by atomic
84 force microscopy (AFM) and compared to glass pristine (Control) and gold (Au)
85 metalized glass samples (Fig. 1a). AFM topographies documented a surface
86 roughness of the materials that varied from 0.23 ± 0.02 nm in Control, 1.5 ± 0.5 nm
87 in SLG, 20 ± 10 nm for MLG and 0.47 ± 0.1 nm for Au. These values describe the
88 surface topography, and indicate that the variations introduced by large SLG and
89 MLG synthesis [13] results in variable patterns of low roughness, depending on the
90 preparation method. The quality of CVD grown SLG and MLG samples was
91 assessed by Raman and X-Ray photo-electron analysis. The recorded Raman
92 spectra (Fig. 1b) supported the high quality of the SLG and MLG by showing low
93 I_D/I_G ratios, indicating a low amount of sp^3 hybridized carbon atoms at grain
94 boundaries or binding surface moieties [14]. The full width at half maximum (FWHM)
95 of the 2D peak, as well as the I_{2D}/I_G ratio are indicative of a low bilayer content in the
96 case of SLG [15] and turbostratic graphite in the case of MLG [16] (Fig. 1b). A
97 graphitic Raman signature is to be expected as the MLG samples have a typical
98 thickness of a few hundreds of layers (data not shown). The higher noise in the SLG
99 Raman spectrum is typical for the lower Raman back scattering intensity of SLG in
100 comparison with MLG. X-Ray photo-electron spectroscopy (XPS) analysis of SLG
101 and MLG on Si_3N_4 reveals that both SLG and MLG samples contain a low degree of
102 process related metal contamination (Fig. 1c).

103

104 **SLG potentiates cell signaling in neuronal networks**

105 Large films of SLG, MLG and Au were fabricated and transferred onto bare glass
106 coverslips. To probe the electrical behavior of excitable biological cells, we used
107 hippocampal neurons, which were dissociated from the rat hippocampi and plated
108 directly on graphene- and Au-coated coverslips. As in our previous work with
109 different carbon-based nanomaterial (e.g. carbon nanotubes, CNTs) [17,18,19], we
110 did not pre-treat the culture substrates with any additional adhesion molecules,
111 which might mask the effects of graphene. Recently, several reports described the
112 successful growth of different cell types on graphene and graphene-based materials
113 [9,20,21], but the *ex vivo* development and functional analysis of primary mammalian
114 cells and neuronal microcircuits on uncoated monolayer of graphene, is rarely
115 investigated. Neurons plated on glass coverslips were instead used as Control
116 cultures [17,18,19]. The interface between neurons and SLG, MLG and Au, could be
117 then directly examined, and it was found to allow the growth of cells whose mature
118 morphology was comparable to Control ones (Fig. 2a). We further probed neuronal
119 networks viability by quantifying network size and the ratio between neuronal and
120 glial cells after 8-10 days *in vitro* (DIV), using immunofluorescence markers for
121 neurons (class III β -tubulin) and astrocytes (GFAP; Fig. 2b). The histograms in Fig.
122 2b (right) show the surface density of cells (top) and the neuron/glia ratio (bottom)
123 across all four conditions, which did not significantly differ (culture series used in all
124 conditions n = 3, see Methods). In Fig. 2b, low magnification micrographs of class III
125 β -tubulin-positive neurons also show the even distribution of cells on all growth
126 substrates. In addition, SLG or MLG topography did not influence neuronal fibers'
127 orientation in respect to Control or Au (see Methods). These observations, combined
128 to the similarity of membrane passive electrical properties (see Methods) measured
129 by single-cell intracellular electrophysiology, indicated the homogeneous growth of

130 healthy neurons [18] across substrates, with comparable levels of cellular
131 composition and maturation.
132 When cultured, neurons develop *ex vivo* functional synaptic connections and
133 organize their collective electrical activity as a result of recurrently interconnected
134 networks. To assess the possible changes caused by SLG, MLG or Au on neuronal
135 network functions, we focused on synaptic signaling and recorded spontaneous
136 synaptic activity after 8-10 DIV. This is indirectly informative of the combined effect of
137 existence, number, transfer gain of neuronal connections, and intensity of collective
138 interactions between neurons. Heterogeneous post-synaptic currents (PSC) were
139 indeed detected intracellularly as inward currents of variable amplitudes [17] in all
140 conditions, as shown by the sample traces in Figure 2c. While the amplitude of PSCs
141 recorded from neurons growing on SLG ($n = 45$), MLG ($n = 20$) and Au ($n = 20$) were
142 similar to control conditions ($n = 40$) (top histogram in Fig. 2c), the PSCs frequency
143 (bottom histogram) was significantly higher in SLG than in other conditions (i.e.,
144 Control 1.53 ± 0.22 Hz; SLG 3.21 ± 0.41 Hz; $p=0.0010$). Instead, both MLG,
145 (chemically similar to SLG), and Au, (chemically different but characterized by high
146 electrical conductivity), did not affect the frequency of synaptic events. This suggests
147 the mechanistic involvement of specific properties of the plain sheet of carbon
148 atoms, in the modulation of neuronal PSCs frequency, but only when assembled as
149 a monolayer.

150 SLG and MLG samples were prepared by film transfer, either through
151 polystyrene (PS) or polymethyl methacrylate (PMMA) supporting polymer (see
152 Methods). PSCs measured in neurons showed however similar behavior when
153 carbon based films were transferred through PMMA or PS (Supplementary Fig. 1a).

154 This indicates that the observed effect on PSCs is independent of the carbon film
155 transfer method.

156 Under our recording conditions (see Methods), spontaneous PSCs were
157 composed of mixed events: inhibitory (GABA_A -receptor mediated) and excitatory
158 (AMPA -glutamate receptor mediated), all recorded as inward synaptic currents.
159 These currents are characterized by different kinetics [19, 22] and were analyzed
160 offline to gain insights into the SLG regulation of synaptic activity. In particular, the
161 decay time constant (τ) of those currents was quantified in a subset of Control ($n = 4$)
162 and SLG ($n = 4$) neurons. We identified slow decaying PSCs ($\tau = 22.4 \pm 1$ ms in
163 Control; $\tau = 21.2 \pm 1.2$ ms in SLG) attributed to GABA_A receptor-mediated events,
164 and fast decaying PSCs ($\tau = 3.2 \pm 0.2$ ms in Control; $\tau = 3.4 \pm 0.3$ ms in SLG;
165 Supplementary Fig. 1b) attributed to AMPA -receptor mediated events [22]. Fast and
166 slow PSCs were comparably up-regulated in their frequency by SLG (Plot in
167 Supplementary Fig. 1b).

168 **SLG changes intrinsic neuronal firing pattern**

169 Miniature synaptic currents (mPSCs; Fig. 3a) were then recorded in a subset of
170 Control ($n = 11$) and SLG ($n = 11$) neurons by further application of the fast-
171 inactivating voltage-gated sodium channel blocker, tetrodotoxin (TTX, 1 μM). As this
172 treatment impairs the generation of action potentials (APs) and thus blocks overall
173 network activity, recording mPSCs allows disambiguating dynamical from structural
174 components of the emerging network activity. In particular, mPSCs reflect the
175 stochastic release of vesicles from the presynaptic terminals at individual synapses
176 impinging onto the recorded neuron: their frequency depends on the pre-synaptic
177 release probability and on the number of synaptic contacts, while their amplitude
178 depends on postsynaptic receptor sensitivity [23]. As pointed out by the box plots in

179 Figure 3a, we found significant difference neither in the frequency nor the amplitude
180 of mPSCs, when recorded in Control or SLG conditions. This suggests that the
181 increased PSCs activity described earlier in SLG does not involve structural changes
182 in the number or in the properties of synaptic connections. This is further supported
183 by immune-labeling experiments performed on neurons grown in Control and SLG
184 conditions. Figure 3b shows that the number of VGlut1-positive *puncta*, used to label
185 and identify glutamatergic presynaptic terminals [22], was not altered by the
186 presence of SLG.

187 To rule out that SLG could interfere with the network composition or the maturation
188 of inhibitory neurons, we carefully considered these two alternative hypotheses. In
189 the first one, the fraction of excitatory to inhibitory neurons is altered by SLG (e.g. in
190 favor of the former), thus biasing the spontaneous network electrical activity detected
191 as PSCs. We thus performed co-immunostaining with antibodies anti-class III β -
192 tubulin and anti-GABA (Fig. 3c) and quantified the percentage of double-positive
193 cells in Control and SLG under confocal microscopy: a double-positive cell indicates
194 exclusively an inhibitory neuron. In Control and SLG, we detected a comparable
195 probability ($33 \pm 2.7\%$ in Control and $30 \pm 2.5\%$ in SLG; $n= 20$ fields each) of
196 finding β -tubulin-positive cells also positive for GABA ($P = 0.21$; plot in Fig. 3c), thus
197 ruling out SLG-induced alterations in the excitatory/inhibitory balance.

198 In the second alternative hypothesis, SLG slows down the maturation of chloride ion
199 fluxes through GABA_A receptors. In neurons, the intracellular chloride concentration
200 determines the amplitude of the inhibitory currents and, across successive
201 developmental stages, shifts from higher to lower values, compared to the
202 extracellular milieu [for recent review see 24]. Correspondingly, the activation of
203 GABA_A receptors results in a depolarizing (hyperpolarizing) drive of immature

204 (mature) neurons [25]. To rule out that SLG could interfere with the maturation of the
205 GABA_A-mediated current drive, we performed chloride imaging in living cells, using a
206 quinoline-based Cl⁻ indicator dye: MQAE (N-[6-methoxyquinolyl] acetoethyl ester)
207 [26]. As reported in Supplementary Fig. 2a, MQAE provides high-quality labeling of
208 neuronal cells and their processes, in both Control and SLG (left panels). When long
209 pulses (500 ms) of pressure applications of GABA (10 mM) are delivered, efflux or
210 influx of Cl⁻ are induced in the neurons, depending on their maturation, resulting in
211 opposite changes in the Cl⁻-sensitive MQAE fluorescence (Supplementary Fig. 2a,
212 middle tracings). Such changes were not detected when extracellular saline solution
213 was pressure applied *via* the same pulses (Supplementary Fig. 2a, middle tracings).
214 In all imaged fields (n = 20), cells displaying opposite directions of GABA-evoked Cl⁻
215 fluxes were detected, thus indicating that immature and mature neuronal phenotypes
216 coexist within the same network. However, when these responses were quantified
217 (plots in Supplementary Fig. 2a, right panels) no difference in their distributions was
218 observed in Control and SLG cultures. This suggests no impact of SLG in the
219 GABAergic system maturation *in vitro*. This was further supported by the additional
220 quantification of the expression of NKCC1, the most abundant co-transporter
221 membrane protein determining intracellular chloride levels, [24]: Control and SLG
222 class III β-tubulin -positive neurons showed comparable NKCC1 expression
223 (quantified in Supplementary Fig. 2b histograms; P= 0.37).
224 Thus, the SLG-mediated increase in neuronal signaling does not involve major
225 network synaptic rearrangements, such as an increased synaptogenesis or a
226 (de)potentiation of synaptic efficacy, nor alterations in network composition or
227 maturation of network inhibition.

228 To ultimately clarify the biophysical mechanisms leading to the boost in
229 activity exhibited only by SLG neuronal circuits, we examined directly single cell
230 excitability by current-clamp intracellular recordings. Control and SLG neurons
231 displayed similar resting membrane potentials (-52 ± 10 mV in SLG; -50 ± 7 mV in
232 Control). When both classes of neurons were hold at -60 mV upon intracellular
233 injection of hyperpolarizing current, an unbiased comparison of the basal AP
234 frequency (Fig. 4a) could be obtained, recording in standard extracellular solution
235 Control ($n = 19$) and SLG ($n = 21$) neurons. Consistent with the PSC observations,
236 we detected a significantly higher AP frequency in SLG neurons than in Control ones
237 (2.60 ± 0.36 Hz in SLG; 1.37 ± 0.26 Hz in control; $P = 0.0054$).
238 The subsequent bath addition of antagonists, selective for excitatory and inhibitory
239 synaptic receptors, such as gabazine ($5 \mu\text{M}$), CNQX ($20 \mu\text{M}$) and APV ($50 \mu\text{M}$), was
240 employed to functionally decouple the recorded neurons from the synaptic network.
241 Under these conditions, intrinsic neuronal active membrane properties were
242 evaluated evoking AP responses by stimulating cells by positive current pulses (see
243 Methods) from the same resting membrane potential (-60 mV), [27,28]. When
244 comparing the AP overshoot amplitude, half-amplitude AP width, threshold and AP
245 maximal rising slope [28,29,30] in Control and SLG conditions no significant
246 difference was found in the two groups (amplitude: 56.4 ± 3.5 mV for Controls and 59
247 ± 3.1 mV in SLG, $P = 0.57$; width: 3.5 ± 0.25 ms for Controls and 3.7 ± 0.38 ms for
248 SLG, $P = 0.59$; threshold: -34.2 ± 1.5 mV Control and -35.5 ± 1.2 mV in SLG,
249 $P = 0.34$; maximal rise slope: 61.6 ± 7.5 mV/ms Control and 57.3 ± 5.8 mV/ms in
250 SLG, $P = 0.32$). All these considerations taken together suggest no major
251 involvement of voltage-gated fast-inactivating Na^+ channel [30, 31, 32] in explaining
252 the observed SLG-induced effects.

253 In addition, at -60 mV resting potential, under the cocktail of synaptic
254 blockers, brief and sufficiently strong depolarizing current pulses (2-4 ms; 1 nA)
255 easily evoked single APs in SLG ($n = 25$) and Control ($n = 20$). However, the
256 membrane voltage trajectory of evoked single APs was followed by a transient after-
257 hyperpolarizing (AHP) in SLG neurons while only by a small after depolarization
258 (ADP) in control (Fig. 4b). When quantified in terms of the area below such
259 trajectories referred to the resting potential as baseline (see the histogram in Fig.
260 4b), the AHP in SLG neurons was significantly different than the ADP detected in
261 control neurons (-86.96 ± 23.60 pA·ms in SLG; $+107.12 \pm 21.85$ pA·ms in control; P
262 $= 0.0010$). Interestingly, the AHP was reduced (by 88%) by bath applying Ba^{++}
263 (BaCl_2 , 2 mM; $n = 3$), which is known to block K_{ir} and K_{Ca} membrane channels [33,
264 34, 35, 36]. The AHP was also reduced (by 58%) by bath applying tetra-
265 ethylammonium (TEA, 1 mM; $n = 9$) a non-selective blocker of the large majority of
266 voltage gated K^+ membrane channels (Kv) [37], including BK_{Ca} channels [38].
267 Finally, Apamin (200 μM ; $n = 5$), a specific inhibitor of SK_{Ca} membrane channels
268 [39], also strongly affected (47% reduction) the AHP (Fig. 4b, K^+ channel blockade).
269 All these observations demonstrate that the AHP detected in SLG neurons was likely
270 mediated by mixed K^+ conductances, including those activated by intracellular
271 accumulation of free Ca^{++} ions [37,40]. The expression of these membrane ion
272 channels is functionally related to the phenomenon of spike-frequency adaptation,
273 where sustained APs discharge is progressively reduced in time. We then further
274 examined the sustained discharge patterns of Control ($n = 13$) and SLG ($n = 15$)
275 neurons, by injecting longer (1 s; 200 pA) depolarizing current pulses (Fig. 4c). In
276 the majority (81.8%) of Control neurons, sustained AP firing was dominated by spike
277 frequency adaptation, which we named *adapting* discharge phenotype and which

278 often even resulted in an early burst of closely spaced APs followed by a progressive
279 decay of the spike amplitudes, leading to adaptation. On the contrary, SLG neurons
280 (83.3%) showed no APs adaptation, which we named *tonic* discharge phenotype,
281 where cells continuously and more regularly fired APs without apparent
282 accommodation [41, 42]. To compare the AHP in SLG neurons upon firing of a single
283 AP (Fig. 4b) and that elicited by multiple APs when 1 s long-stimulation was
284 delivered (Fig. 4c), we quantified the AHP area in both conditions (Fig. 4e; -352 ± 70
285 pA·ms upon long depolarizing steps). Taken together, all these data hint at a
286 complex homeostasis in the potassium membrane currents expressed by neurons
287 when coupled to SLG substrates. This hypothesis was reinforced by results obtained
288 under voltage-clamp from control ($n = 13$) and SLG ($n = 15$) neurons, where
289 depolarizing voltage pulses starting from a -60 mV holding potential baseline
290 evoked an outward current (Fig. 4d), presumably due to the activation of a mixed
291 population of K^+ channels. When examined under these conditions, SLG neurons
292 were characterized by a significantly larger outward current at positive potentials,
293 shown in the steady-state current/voltage (I/V) plot of Figure 4d, likely consequence
294 of an up-regulation of mixed K^+ currents. All these pieces of evidence taken together
295 strongly indicate that SLG substrates induce active changes in the electrical
296 properties of growing neurons, presumably related to altered homeostasis of K^+
297 membrane currents and leading to a modulation of the single-cell firing phenotypes
298 and ultimately to an increased network activity. Importantly, SLG neurons generated
299 more APs when compared to Controls, even in response to milder and shorter
300 stimuli (Supplementary Fig. 3 a and b).

301

302 **Modeling the impact of firing phenotypes on network activity**

303 The observed correlations between single-cell properties, resulting phenotype, and
304 network effects were further investigated by mathematical modeling and computer
305 simulations. We specifically addressed the causality between neuronal firing patterns
306 and network activity, and we studied an established spike-rate mathematical model
307 of the electrical activity emerging in populations of cultured neurons with recurrent
308 synaptic connections (Fig. 5a). This model [43, 44, 45] reproduces *in silico* the
309 spontaneous periodic occurrence of “bursts” of APs (Fig. 5b and 5c), synchronized
310 across the network [45]. These spontaneous events are the network-level correlates
311 of the PSCs, as well as of the spontaneous AP firing, observed in single-cell
312 experiments. In the model, the ignition of each episode of spontaneous firing is a
313 direct consequence of recurrent glutamatergic synaptic transmission (i.e. acting as a
314 positive feedback) and of random spontaneous release events at synaptic terminals
315 (i.e. as in mPSCs). The termination of each spontaneous firing episode is instead
316 determined in the model by the combined effect (i.e. acting as a negative feedback)
317 of inhibitory synaptic connections, transient synaptic pool exhaustion underlying
318 communication between neurons, and spike-frequency adaptation in excitatory
319 neurons. The last mechanism does in fact slow down the repetitive (spontaneous)
320 firing and thus decrease the synaptic net currents to downstream neurons.
321 We simulated a network of 1600 model neurons with a fraction of excitatory to
322 inhibitory neurons equal to 80/20, reminiscent of the neuronal composition *in vitro*
323 (Fig. 3c) [46]. As most of inhibitory neurons are known from the literature to display
324 only a tonic electrical phenotype, we hypothesized that the change in the ratio
325 between adapting and tonically firing neurons observed in our experiments, occurred
326 in excitatory neurons only. We therefore included in the model two subpopulations of

327 excitatory neurons: one displaying *adapting* phenotype and one displaying *tonic*
328 phenotype. We then found that the higher the relative fraction of *tonic* firing neurons,
329 the higher the rate of occurrence of synchronized bursts (Fig. 5b and 5c). This
330 supports the conclusion that the experimentally observed increase in the frequency
331 of spontaneous (PSCs/APs) activity (Fig. 2c, SLG) is caused by the different ratio of
332 cells with adapting/non-adapting neuronal electrical phenotypes.

333

334 **The potassium ions hypothesis**

335 By a more biophysically-detailed modeling approach, we then asked at the single-
336 neuron level whether an increase in the total outward ionic conductance or,
337 alternatively, a small reduction in the extracellular concentration of K^+ ions were
338 responsible for the observed changes in single-cell firing activity. To that aim we
339 studied *in silico* the effects on excitability of (i) an increased total outward potassium
340 conductance or of (ii) a modest depletion of extracellular potassium. The rationale
341 behind these computer simulations is that either SLG induced a chronic increase in
342 ion current involved in firing activity regulation, or SLG acutely altered cell firing by
343 changing ion mobility. The two hypotheses are not mutually exclusive.

344 As a proof of concept, we considered the simplest possible model of AP generation,
345 as proposed by Hodgkin and Huxley (HH) [47]. This model describes the generation
346 of a (train of) AP(s) in terms of the known interplay between *fast-inactivating* (~ 1 ms)
347 inward Na^+ currents and *delayed rectifier* outward K^+ potassium currents (Fig. 5d). Of
348 course, by no means these are the only membrane currents underlying the
349 electrophysiological behavior of rat hippocampal neurons [48]. Nonetheless, by
350 stripping down excitability to its bare essential we could explore whether stronger
351 outward potassium currents may favor excitability and not always oppose to it, as

352 intuitively expected. We found that the progressive sodium current inactivation (Fig.
353 5d, lower left, green traces) – occurring in the HH model only over *fast* and not slow
354 time scales – could be counterbalanced and reversed by strong K^+ currents (Fig. 5d,
355 lower right, red traces). This results in a sustained, tonic, response to an external
356 current stimulus (i.e. compare Fig. 5d to Fig. 4c), instead of a progressive
357 inactivation of the firing. While this effect is reversed by simulating an overexpression
358 of Na^+ channels (e.g. at the axon initial segment – not shown), it serves us here only
359 as a proof of concept of a counter-intuitive phenomenon: increasing outward currents
360 increases cellular excitability (i.e. by removing sodium current inactivation). Of
361 course, an *ad hoc* increase in the maximal conductance of sodium ion channels also
362 increases excitability, although – in the mathematical model – with distinct features in
363 the type of transition associated to the *limit cycle* to sustained AP firing
364 (Supplementary Fig. 4). The role of sodium inactivation has been investigated in
365 previous experiments in the cortex and spinal cord [49,50] and proposed to
366 contribute to spike adaptation. While we cannot rule out a role for impaired Na^+
367 inactivation in SLG neurons, we believe that the strongly enhanced AHP prevents
368 the membrane potential to reach levels at which inactivation is fully expressed to limit
369 firing.

370 Figure 5e further illustrates this phenomenon, across distinct stimulus current
371 amplitudes and over three levels of K^+ conductances. Therefore, in the model the
372 more K^+ channels (i.e. same type or distinct type) the higher the excitability, in those
373 regimes where progressive sodium inactivation affects neuronal firing.
374 However, as outward K^+ currents also depend on the ionic driving force beyond on
375 the maximal conductance (i.e. in our model, $I_K \sim G_K (E_K - V)$ - see Methods),
376 theoretically a change in the local ionic composition might reverse sodium

377 inactivation too. In fact, the Nernst equilibrium potential E_K is determined by the K^+
 378 concentration gradients outside and inside the neuronal membranes and it assumes
 379 negative values under physiological condition [51]. Should SLG interfere
 380 extracellularly with K^+ bulk diffusion in its proximity (see below) then a depletion of K^+
 381 (e.g. 10-20%, as $[K^+]_{EX} \rightarrow \delta \cdot [K^+]_{EX}$, $\delta = 0.8 - 0.9$), would lead to an increase in the
 382 ionic driving force, because E_K would then decrease accordingly (i.e. $\sim 2-5$ mV). By
 383 definition

$$E_K = \frac{RT}{zF} \cdot \ln \left(\frac{\delta \cdot [K^+]_{EX}}{[K^+]_{IN}} \right) = E_{K \text{ control}} + \Delta$$

384
 385 where T is the absolute temperature, R the universal gas constant, F the Faraday
 386 constant, and $z = 1$ K^+ valence (i.e. $RT/zF \sim 25$ mV at room temperature), and
 387 $\Delta = RT/zF \cdot \ln(\delta)$ is a negative quantity measured in mV. By numerical simulations
 388 (Fig. 5f), we found that a modest decrease in E_K in the model (e.g. from -75 to -77.6
 389 mV) could indeed counterbalance sodium inactivation, at least for an intermediate
 390 external current stimulus intensity and without altering significantly the resting
 391 membrane potential.

392 All in all, this last part of our modeling effort suggests a specific involvement of the
 393 extracellular concentration of K^+ in neuronal excitability: the less extracellular K^+ the
 394 higher the excitability, at least in those regimes where progressive sodium
 395 inactivation affects neuronal firing disfavoring sustained *tonic* response.
 396 It is therefore tempting to speculate that changes in excitability of cells coupled to
 397 SLG might be caused by an extracellular reduced mobility of K^+ at the interface
 398 between the nanomaterial and the extracellular solution, leading to a K^+ depletion at
 399 the neuronal membranes. *Per se*, this would explain directly the change in neuronal

400 phenotype, but indirectly could account for a homeostatic re-arrangement of
401 neuronal excitability by up-regulating number or conductance of K^+ channels.

402

403 **Localized potassium ions depletion in cell-substrate cleft**

404 We hypothesize that at the core of SLG ability to alter neuronal excitability is the ion
405 adsorption on graphene surfaces. This may result in a modification of ion mobility, in
406 particular K^+ , at the neuronal/graphene interface.

407 Within this proposed mechanism, it is still unclear how SLG might actually modify K^+
408 ion mobility while MLG (or Au) do not. It is well known that carbon-based π electron-
409 rich surfaces in ionic solutions show a significant surface enrichment of cations due
410 to specific cation- π interactions [52, 53, 54, 55]. Because of its size, in solution, K^+
411 ions are more weakly solvated by water, when compared to other species (e.g. Li^+ or
412 Na^+ ions), but are still good π binders. This feature makes K^+ the best alkali metal
413 binder to carbon-based surfaces in aqueous solutions [54, 55]. This implies that, in
414 nanoscale-confined systems, cation trapping occurring at the carbon surface level
415 may lead to a significant local depletion of ions, in particular potassium, at the
416 neuronal membrane surface level.

417 In order to address this point Raman spectroscopy (sketched in Supplementary Fig.
418 5a) was performed on supported SLG and MLG samples in liquid condition without
419 and in the presence of KCl and NaCl at physiological concentrations (4 mM and 150
420 mM, respectively) into the solution. Graphene-related G vibrational peak [15] was
421 evaluated in wave number position for both SLG (Fig. 6a, left) and MLG substrates
422 (Fig. 6a, right) with samples totally immersed in pure deuterium oxide (D_2O), in D_2O
423 solution containing 4 mM KCl, and in D_2O solution containing 150 mM NaCl (see
424 Supplementary Methods for technical details). The wavenumber maximum position

relative to the G-peak Raman shift for control SLG sample was collocated at $1599 \pm 0.5 \text{ cm}^{-1}$. It exhibited a change in shape associated to a G-peak position shift to $1600 \pm 0.5 \text{ cm}^{-1}$ and to $1602 \pm 0.5 \text{ cm}^{-1}$ in the presence of NaCl and KCl D₂O solutions, respectively (Fig. 6a, left, inset). Conversely, in MLG samples G peak maximum position did not change (Fig. 6a, right, inset). The mechanisms responsible for the observed shift in the G Raman band of graphene with, more importantly, the narrowing of the G band (FWHM) detected in SLG when samples are immersed in a KCl solution could result from charge doping [56] or internal strain [57]. More specifically, the shifts in G band position exhibited by SLG samples in the presence of salt solutions could be indicative of a specific cation interaction, not measurable in the case of MLG. Notably, the larger G band Raman shift in KCl treated samples ($3 \pm 0.5 \text{ cm}^{-1}$) than in the presence of NaCl ($1 \pm 0.5 \text{ cm}^{-1}$) correlates well with a larger SLG affinity for K⁺ when compared to Na⁺. This result, observed here for the first time, is in agreement with theoretical studies on cation- π interaction in solvated conditions [54,55]. This specific graphene-K⁺ interaction taking place in aqueous phase is supported by Raman analysis of SLG substrates in dry (air) condition (see Supplementary Fig. 5b). In fact, as predicted by gas-phase simulations [54, 55], in this case a stronger graphene-Na⁺ interaction (G peak shift of about $4 \pm 1 \text{ cm}^{-1}$ than control SLG) is detected than graphene-K⁺, confirming the role of cations and the specificity of potassium in the aqueous environment and further sustaining theoretical studies [54, 55].

In our experimental settings, cultured neurons are characterized by a cell body displaying a “disk-like” shape with average diameters of about 10 μm (Fig. 2a and 2b and Fig. 3b). Studies of cell/electrode interfaces in culture showed typical cleft thicknesses between 40-100 nm [58,59,60], corresponding to a cell-substrate

450 cleft volume of about $3\text{-}8 \mu\text{m}^3$. Similar dimensions were found in our samples by
451 SEM images of cell cross sections at membrane-substrate interface obtained by
452 focused ion beam (FIB; Supplementary Fig. 6). At an extracellular KCl concentration
453 of 4 mM (see Methods), $\sim 7\text{-}20 \cdot 10^6 \text{ K}^+$ ions would occupy such a volume in the bulk.
454 Under these conditions, the specific cation- π interaction at surface level could result
455 in partial K^+ depletion from the extracellular solution facing the cell membrane.
456 Taking into account, in first approximation, a 40:1 ratio between Na^+/K^+ cations in
457 solution, and considering the contribution of both inner and outer hydration shells
458 [61] to evaluate a reasonable cross-section of interaction between K^+ and graphene,
459 we can assume that at least $2 \cdot 10^6 \text{ K}^+$ will be strongly adsorbed on the surface. This
460 could be translated in a theoretical local depletion of potassium ions of about 10-20%
461 (Fig. 6b), this value is in accordance with what examined by our single-cell neuron
462 model (Fig. 5e and 5f). Such a depletion profile has been inferred mesoscopically by
463 the steady-state diffusion equation with *ad hoc* boundary conditions.

464

465 **Substrate modulation of graphene cation- π interaction**

466 Our experiments have shown that SLG behaves differently from MLG in respect to
467 the K^+ homeostasis of neurons and subsequent improved excitability. The two
468 nanomaterials culturing platforms, SLG and MLG, differ only in the conductive
469 properties of the supporting structure immediately below the first mono atomic
470 carbon layer exposed to the biological milieu (i.e., on one hand glass and on the
471 other multiple layers of graphene/graphite). MLG can be regarded, from the point of
472 view of a neuron growing on its top, as a SLG film layered on the underlying,
473 electrically conductive, MLG. In our hypothesis, graphene efficiency in trapping K^+

474 ions is tuned or influenced by the electrical properties of the supporting structure [62,
475 63].

476 In this framework, we investigated if the electrical properties of the supporting
477 material might *per se* tune SLG ability to affect neurons. We compared PSCs in
478 neurons directly grown on glass (Control), on free-standing SLG (Suspended SLG,
479 see Methods) and on SLG transferred on an insulating substrate (SLG on glass) and
480 on a conductive substrate of indium tin-oxide (SLG on ITO). The last is an optically
481 transparent and smooth film with well-defined electrically conductive properties and
482 topography [19]. In Figure 6c the results of such experiments are summarized and
483 are in full accordance to our hypothesis: the PSCs frequency was boosted by SLG
484 on glass (3.11 ± 0.35 Hz vs. 1.72 ± 0.21 Hz, $P = 0.031$) and even more by
485 suspended SLG (4.22 ± 0.35 Hz vs. controls, $P = 0.001$), while no effects were
486 detected when SLG was layered on ITO. Notably, in suspended SLG, PSCs
487 amplitude is also significantly increased (59.2 ± 5.8 pA vs. 35.9 ± 4.9 pA, $P = 0.017$)
488 when compared to control cultures.

489 It is not trivial to understand the exact mechanism underlying this phenomenon but,
490 in the absence of any theoretical model describing the dependency of graphene π -
491 cation interaction on supporting surface properties, we speculate that surface
492 conductivity is playing a key role. In particular, in suspended SLG, environmental
493 disturbances are minimized allowing access to the intrinsic properties of graphene
494 close to the unperturbed Dirac point. Superficial charge inhomogeneity is reduced in
495 this case compared to supported samples giving rise to a “close-to-theory” system
496 [1,64] (Fig. 6d, left) that will fit better to cation- π simulations’ results [42,43,44]. SLG
497 laying on metal surfaces usually undergo electron-doping resulting in a down-shift of
498 graphene Dirac point [65] (Fig. 6d, middle). This will induce a homogeneous charge-

499 distribution [66] that could result in a reduction of graphene cation- π interaction
500 force. On the other hand, in SLG transferred on insulating substrates as, for
501 example, glass or SiO_2 , there are significant local fluctuations in surface potential
502 [67,68], thus inducing an inhomogeneous charge distribution on graphene surface
503 where neutral areas, where SLG band structure is basically unperturbed as in the
504 case of suspended graphene, and p-doped areas, coexist [69,70]. In the latter case,
505 the interaction of graphene with potassium will be still present even if its net effect is
506 less pronounced than on suspended SLG.

507 In this picture, MLG behavior can be described as that of SLG when laying on a
508 (semi)-metallic graphite substrate [71] falling, in this case, in the second case we
509 previously discussed [72].

510 Our preliminary Raman results can explain the different behavior of SLG towards K^+
511 or Na^+ and the difference between SLG and MLG behavior in ion solution. However,
512 do not directly demonstrate differences between SLG and MLG in ion absorbance. In
513 fact, the adsorption of ions on SLG, when on insulating substrates, may induce non
514 homogeneous densities of charge carriers in the monolayer that are measured by
515 Raman spectroscopy, while such interactions are prevented, and thus not measured
516 by Raman, when carriers are distributed in the bulk conductive substrates (the
517 multiple graphene layers in MLG) and not confined to the SLG layer.

518 We conclude that SLG modifies neuronal excitability and we propose a
519 provocative hypothesis: that this effect is mediated by graphene ability to restrict K^+
520 ions mobility in close proximity to the material surface, but only when the monolayer
521 is deposited on electrically insulating substrates. Indeed, we cannot exclude
522 additional mechanisms related to non-uniform charge carrier densities, affecting

523 surface concentrations of ions [73]. Alternatively, restricted ion mobility might affect
524 the way astrocytes regulate the extracellular *milieu* between graphene and neurons.
525 Ultimately, we provided multiple lines of evidence to demonstrate that SLG, when
526 engineered on an insulating glass substrate, is able to tune neuronal excitability. Our
527 physiological experiments demonstrate that the detected increase in neuronal
528 synaptic activity is caused by increased cell firing, rather than to changes in network
529 size, synaptic density [74,75,76], inhibition/excitation ratio or inhibition maturation.
530 We also demonstrated that neurons, when exposed to SLG, up-regulate outward
531 currents, in particular potassium ones and switch to functionally-tonic firing
532 phenotypes. Our computer simulations support the notion that changes in the ratio of
533 adapting/firing neurons will impact the global network activity [77,78] and suggest the
534 key contribution of up-regulated potassium currents in driving this change. All these
535 effects are not mimicked by MLG or other conductive substrates such as Au. We
536 propose that, due to the cation- π interactions of graphene, cations, and K^+ in
537 particular [53,54,55], will be trapped at the graphene surface, resulting in a graded
538 depletion of such ions at a distance from the material compatible with the nanometer
539 scale characterizing cell adhesion mechanisms [79,80]. This hypothesis is grounded
540 in earlier molecular dynamics simulations at the equilibrium [53], where ionic
541 enrichment occurs at the interface. As in a random-walk with a “sticky/viscous” wall,
542 free potassium ions at the interface would be largely depleted, while their
543 concentration would be unaffected in the bulk, i.e. far from the graphene surface.
544 Therefore, at the nanoscale, at a distance compatible with realistic cell membrane
545 proximity, a vertical K^+ spatial gradient may not be compensated entirely, as it is
546 likely to be restricted at the interface with graphene by the tortuosity of the
547 extracellular microenvironment, densely packed with macromolecules for cell

548 adhesion as well as cell membranes of neighboring cells [81]. This will translate in a
549 slight but effective reduction of free extracellular potassium in the sub-micrometrical
550 extracellular space confined between graphene and the overlying neuronal
551 membrane. The effectiveness of such a K^+ depletion in altering cell excitability is
552 grounded by our mathematical single-cell biophysical model.

553 We cannot rule out that the up-regulation of K^+ outward currents and the switch in
554 firing patterns could be induced by other chemical or physical features of SLG
555 Intriguingly, in our previous studies, when interfacing neurons with CNTs (basically
556 rolled up graphene sheets) randomly piled in dense mashes, we never observed
557 increases in AHP, supporting the suggested mechanisms dependent on the intrinsic
558 properties of SLG. Differently from SLG, CNTs boosted synaptogenesis and molded
559 the integrative abilities of cultured hippocampal neurons, probably due to their
560 shape, conductivity and roughness, mimicking extracellular matrix and promoting
561 tight nano-contacts between neuronal membranes and CNTs supporting a direct
562 electrical coupling between CNTs and neuronal membranes [18,19]. In more
563 complex systems, CNTs scaffolds were reported also to increase and guide axonal
564 re-growth and orientation [9,82].

565 The precise mechanisms for the observed effects of SLG substrates in this
566 study are still elusive. We put forward a novel hypothesis based on the specific
567 properties of the materials characterized by π electron-rich one plain layer of carbon
568 atoms and we focused in particular on the specific cation- π interactions [48].
569 We further postulate that in the case of SLG, the more unperturbed its band structure
570 is, the larger is its ability to deplete potassium ions at the interface with neuronal
571 membrane. Naturally, we cannot exclude alternative possibilities, but our results with
572 suspended and ITO-supported SLG are consistent with our hypothesis. Despite

573 these considerations on hypothetical mechanisms, the results reported here indicate
574 that graphene properties might affect neuronal information processing *in virtue* of the
575 physical interactions of such a nanomaterial with the biological environment. Novel
576 and outstanding materials might then represent, in general, unconventional and
577 exciting tools to gain insights into genuine biological processes.

578

579 **METHODS**

580 **Substrate fabrication**

581 SLG was CVD grown on ultraflat Cu surfaces and transferred, as previously
582 described [83], onto SiO₂ and Si₃N₄ substrates for subsequent Raman and XPS
583 characterization. Briefly, after annealing the Cu foil in a 400 sccm :100 sccm argon
584 and hydrogen atmosphere at 100 mbar and 1015 °C, a SLG layer is nucleated at 15
585 mbar with 0.2 sccm methane, and closed by successively increasing the methane
586 content to 0.5 sccm. The graphene is transferred using PMMA (PMMA 950K A2,
587 MicroChem, USA) or PS (Polystyrene MW ~192k, Sigma-Aldrich, USA). For
588 neuronal culturing, SLG was transferred to glass coverslips or indium tin oxide (ITO).
589 Before the transfer procedure, hosting substrates were ultrasonicated in acetone and
590 isopropanol to assure the required cleanliness. Glass and ITO coverslips followed an
591 additionally cleaning step in concentrated HCl overnight. MLG sheets were CVD
592 grown on Ni ultraflat surfaces as described previously [84] and transferred on hosting
593 substrates following the same procedure adopted for SLG. Briefly, the Ni foil was
594 annealed as described before, at a temperature of 900 °C. After annealing, a
595 methane flow of 10 sccm at 50 mbar enabled to the diffusion of carbon into the foil,
596 which then, during the following slow cooling step, precipitated to a layer of MLG on
597 the surface.

598 Gold samples have been prepared starting from glass rectangular slides (24 mm x
599 12 mm, 0.2 mm thick), cleaned previously in Piranha solution ($\text{H}_2\text{SO}_4:\text{H}_2\text{O}_2$, 5:5 ratio
600 in volume) in order to remove eventually present organic contaminants.

601 Subsequently, 15 nm of Au were thermally evaporated at a rate of 0.5 Å/s. A thin
602 adhesion layer of 5 nm of Cr was used in order to improve Au/glass adhesion. A
603 quartz crystal microbalance was used as thickness control.

604 To obtain suspended graphene structures, graphene is transferred on patterned
605 substrates obtained using OrmoComp® (micro resist technology, GmbH), a flexible
606 and biocompatible inorganic-organic material. The OrmoComp® substrates have
607 been prepared on circular glasses (5 mm of diameter, 0.12 mm-thick), previously
608 cleaned in Piranha solution ($\text{H}_2\text{SO}_4:\text{H}_2\text{O}_2$ 5:5 % v/v) in order to remove organic
609 contaminants. Subsequently, a poly-dimethylsiloxane (PDMS) master is prepared
610 with replica molding process starting from a silicon stamp which is patterned with an
611 array of parallel lines of width and periodicity of 10 µm and 20 µm, respectively. The
612 OrmoComp® master is used to press a drop of OrmoComp® on the circular glass in
613 order to transfer the micropattern. Finally, the OrmoComp® is cured with UV light
614 and the PDMS master is released. Commercially available single-layer CVD
615 graphene on copper (Cu; GRAPHENEAE – San Sebastián, Spain) is wet-transferred
616 on the OrmoComp® substrates following the protocol described by Matruglio *et al.*
617 [85]. Briefly, a layer of 250 nm of mr-I 7020 (a thermoplastic polymer of Micro Resist
618 technology GmbH) is used as sacrificial layer and spin coated on the graphene/Cu.
619 The polymer/graphene/Cu membrane is placed in a copper etching solution
620 ($\text{FeCl}_3:\text{H}_2\text{O}$ 3:7 % v/v), etched overnight and finally washed in DI water in order to
621 remove any residual due to the etching solution. The transfer of graphene is
622 performed fishing the polymer/graphene/Cu membrane into the water directly on the

623 OrmoComp® substrate. The water is left to evaporate at room temperature for 2 h,
624 and mr-I 7020 is dissolved in cold acetone for 5 minutes. Critical point drying process
625 is performed in order to avoid the collapse of the suspended structures.

626

627 **Cell culture and electrophysiology**

628 Isolation of primary brain tissue was carried out in accordance with the
629 recommendations in the Guide for the Care and Use of Laboratory Animals of the
630 National Institutes of Health and the appropriate international and institutional
631 standards for the care and use of animals in research (Italian Ministry of Health, in
632 agreement with the EU Recommendation 2007/526/CE). The protocols in this study
633 and all performed experiments are approved by the local veterinary service and the
634 institutional (SISSA) ethical committee, in accordance with the EU guidelines
635 (2010/63/UE) and Italian law (decree 26/14).

636 Dissociated hippocampal cultures were obtained from neonatal rats (P0–2) as
637 previously described [17,18,19], and were plated on poly-L-Ornithine coated
638 (SIGMA; Control), SLG-, MLG- or Au-covered glass coverslips. Cultured cells were
639 incubated at 37 °C, 5% CO₂ in culture medium composed of Neurobasal-A (Thermo
640 Fischer) containing B27 2% (Gibco) Glutamax 10 mM and Gentamycin 0.5 µM
641 (Gibco), and used for experiments at 8–10 days *in vitro* (DIV).

642 Somatic whole-cell patch clamp recordings were performed at room temperature
643 (20–22 °C) with pipettes (4–7 MΩ) containing: 105 mM K gluconate, 20 mM KCl, 10
644 mM HEPES, 4 mM MgATP, 0.3 mM GTP, pH 7.35. The external saline solution
645 contained: 150 mM NaCl, 4 mM KCl, 1 mM MgCl₂, 2 mM CaCl₂, 10 mM HEPES, 10
646 mM Glucose, pH 7.4. Under voltage-clamp mode we measured the neuronal passive
647 membrane properties: input resistance and cell capacitance did not significantly

648 differ between the four groups (in control 592 ± 51 M Ω , 74 ± 5 pF, n = 47; in SLG
649 664 ± 57 M Ω , 83 ± 4 pF, n = 54; in MLG 614 ± 74 M Ω , 85 ± 5 pF, n = 18; in Au $656 \pm$
650 65 M Ω , 80 ± 6 pF, n = 17). In voltage clamp experiments, the holding potential (V_h)
651 was -56 mV, not corrected for liquid junction potential, that was calculated to be -14
652 mV in our experimental conditions; the uncompensated value for series resistance
653 (R_s) was $< 8-11$ M Ω .

654 Single spontaneous synaptic events (PSCs) and miniature PSCs (mPSCs) were
655 detected by the use of the Axograph X (Axograph Scientific) event detection
656 program [86] and by the Clampfit 10 software (pClamp suite, Axon Instruments). On
657 average, ≥ 400 events were analyzed from each cell in order to obtain mean
658 frequency and amplitude parameters. Glutamate AMPA-receptor and GABA_A-
659 receptor mediated PSCs were isolated offline by building two templates with different
660 kinetic parameters: respectively 0.1 ms rise-time; 3 and 30 ms decay time constant
661 (τ); 10 and 100 ms template length. Previous work [19,22] indicated that in our
662 experimental conditions, the vast majority of fast-decaying ($\tau < 5$ ms) PSCs are
663 mediated by the glutamate AMPA-receptor type; while the slow-decaying ($\tau > 20$ ms)
664 PSCs are mediated by the GABA_A-receptor type.

665 Current-voltage relations (I/V plots) were obtained by applying hyperpolarizing or
666 depolarizing voltage steps (15 steps of $\Delta V = 10$ mV; 500 ms duration) from -110 mV
667 to $+ 30$ mV (values corrected for liquid junction potential) in the presence of 1 μ M
668 Tetrodotoxin (TTX; Latoxan). A least square routine was fitted to the linear part of the
669 I/V curve, the slope of which was used to calculate leak conductance. Assuming that
670 a leak conductance is time and voltage independent, the I/V plot were corrected for
671 leak currents by subtracting the observed currents from the extrapolated leak

672 currents at the same level of test potential and the current values were then
673 normalized to the cell capacitance [87].

674 In current clamp recordings, bridge balancing was continuously monitored and
675 adjusted. Action potentials (APs) were isolated off line by setting an appropriate
676 threshold voltage (10 mV). The fast voltage transients that crossed this value were
677 identified as APs and the spontaneous firing frequency for each neuron was
678 calculated on a sample of at least 5 min of continuous recording keeping (by
679 negative current injection) at -60 mV the resting membrane potential.

680 At -60 mV resting membrane potential, the AP properties were experimentally
681 determined by depolarizing (0-200 pA, in 20 pA increments) current steps (500 ms).

682 The first AP produced by the current-clamp series was used for single AP
683 measurements, including amplitude, threshold, duration at half-amplitude and
684 maximal rising slope [27,28,30]. The threshold for firing was determined by
685 measuring the voltage at the upward deflection of the trace, maximal AP amplitude
686 was measured from threshold to the peak of the spike, the duration was measured at
687 half-amplitude from threshold to peak and the maximal rising slope was measured as
688 max dV/dt in the selected area of the voltage tracings (all measures performed by
689 Clampfit; pClamp suite, 10.2 version; Axon Instruments). In evoked APs, the AHP
690 was quantified over a window of 100 ms by calculating the area below or above the
691 voltage curve, starting 20 ms after the beginning of the AP.

692 AP discharge patterns were investigated by delivering depolarizing current steps (1
693 s) of 200 pA while keeping the cells at -60 mV resting potential with steady
694 intracellular current injection. "Adapting" and "tonic" responses were identified as
695 previously described [42]. In some experiments, depolarizing current pulses ranging

696 from 150 to 250 pA were used to investigate the dependence of the firing pattern on
697 the stimulus intensity, that did not change across these values.

698 Beside the monitoring of the spontaneous firing frequency, all the current clamp
699 experiments were carried out in presence of the synaptic blockers (all from Sigma)
700 CNQX (10 μ M), Gabazine (5 μ M) and APV (50 μ M) added to the external solution.
701 Current and voltage clamp responses were digitized at 20 kHz with the pCLAMP 10
702 software (Molecular Devices) and stored for further analysis.

703 **Immunohistochemistry**

704 Hippocampal neurons were fixed with 4% formaldehyde (prepared from fresh
705 paraformaldehyde) in PBS for 20 min, permeabilized with 0.3% Triton-X-100 for 10
706 min and subsequently incubated with primary antibodies for 30 min at RT. After
707 washing in PBS cultures were then incubated with secondary antibodies for 45 min
708 and then mounted in *Vectashield* (Vector Laboratories) on 1 mm thick microscope
709 glass slides. As primary antibodies were used rabbit polyclonal anti- β -tubulin III
710 (Sigma T2200, 1:250 dilution), mouse monoclonal anti-GFAP (Sigma-Aldrich,
711 1:200 dilution), and guinea pig anti-vesicular glutamate transporter 1 (VGLUT1;
712 Millipore, 1:2000). As secondary antibodies were used Alexa 594 goat anti rabbit
713 (Invitrogen, dilution 1:500), Alexa 488 goat anti mouse (Invitrogen, dilution 1:500),
714 and Alexa 488 goat anti guinea-pig (Invitrogen, 1:500). To stain cells nuclei, we
715 used DAPI (Invitrogen, 1:200 dilution). To quantify cell density, images were
716 acquired with an Epifluorescence Microscope (DM 6000, Leica; 10 \times objective). We
717 collected 10 fields (1000 μ m \times 500 μ m) per coverslip (n = 30, 3 culture series for
718 control, MLG and Au) and analyzed fluorescence signals using ImageJ software
719 (<http://rsb.info.nih.gov/ij/>).

720 To evaluate the orientation of the re-growing axons on the various substrates, we
721 quantified their relative orientation based on the directionality analysis [82,88].
722 Briefly, the mean fiber's relative dispersion was computed from $n = 5$ randomly
723 sampled images per condition (Control, SLG, MLG and Au) where neuronal
724 processes were visualized by class III β -tubulin immunofluorescence (Fig. 2a). The
725 analysis was carried out using the Directionality plugin of Fiji software inferring the
726 preferred orientation of "structures" present in the input image. Fiber orientation was
727 calculated via a Fourier component analysis [88]. We found no significant differences
728 in the direction of the mean fiber's dispersion among different conditions (Control =
729 $30 \pm 9^\circ$; SLG = $29 \pm 7^\circ$; MLG = $38 \pm 8^\circ$; Au = $35 \pm 9^\circ$) indicating a negligible impact
730 of the substrate on the orientation of the neuronal processes.

731

732 To quantify VGlut1 puncta, $n = 20 \pm 10$ z-stacks (acquired every $0.4 \mu\text{m}$) were taken
733 from $n = 10$ randomly selected fields ($160 \mu\text{m} \times 80 \mu\text{m}$) per coverslip ($n = 30, 3$
734 culture series in Control and SLG) using an inverted confocal Microscope (Nikon
735 Eclipse Ti-E; 40x oil immersion objective, 1.3 NA). To quantify VGlut1 puncta, we
736 selected only VGlut1-positive puncta ($< 2 \mu\text{m}^3$) touching the β -tubulin III positive
737 signal; for each image VGlut1 puncta were normalized to the β -tubulin III positive
738 volume. Images were analyzed using the Volocity software (Perkin Elmer).
739 To highlight GABAergic neurons, cultures were stained with anti-GABA polyclonal
740 primary antibody produced in rabbit (SIGMA, A2052: 1:500). To label the NKCC1
741 co-transporter, we used anti NKCC1 rabbit polyclonal primary antibody (Abcam;
742 AB59791; $5 \mu\text{g/ml}$). Cultures were then stained with class III β -tubulin primary
743 antibody produced in mouse (SIGMA; T5076; 1:500). As secondary antibody, we

744 used AlexaFluor 488 goat anti rabbit (ThermoFisher A11034; 1:500), and
745 AlexaFluor 594 goat anti mouse (ThermoFisher, A11032; 1:500).
746 To quantify the percentage of GABA-positive neurons, 10 ± 5 confocal z-stack
747 (Nikon PlanFluor 40 \times / 1.3 NA) were acquired from randomly selected fields (n =
748 20 for Control and n = 20 for SLG) and GABA-positive neurons were counted. This
749 value was then normalized to the overall number of neurons (class III β -tubulin -
750 positive cells) for each field. To quantify NKCC1 puncta, n = 10 z-stacks (acquired
751 every 0.25 μ m) were taken from n = 20 randomly selected fields (106 μ m \times 106
752 μ m) each group, using an inverted confocal Microscope (Nikon Eclipse Ti-E; Nikon
753 Plan Apo Lambda 60x oil immersion objective, 1.4 NA). To quantify the amount of
754 neuron-related NKCC1, only NKCC1-positive puncta in contact with the β -tubulin
755 III signal were selected.

756

757 **Imaging**

758 For Cl⁻ imaging experiments, primary hippocampal cultures (DIV 8-10) were
759 loaded with the fluorescent Chloride indicator MQAE (Abcam; ab145418) diluted in
760 the standard extracellular solution at a final concentration of 1 mM for 10 min at 37
761 °C in the cell culture incubator. Samples were then washed in the extracellular
762 solution for 10 min at 37 °C. Samples were placed in a recording chamber
763 mounted on an inverted microscope (Nikon Eclipse Ti-U) and observed with a 60 \times
764 objective (0.7 NA, PlanFluor, Nikon). Images (1024 \times 1024 pixels) from fields
765 containing 7 ± 4 neurons were acquired for 2 minutes (at 5 frame s⁻¹) by a
766 Hamamatsu Orca-Flash 4.0 digital camera, exciting the MQAE dye with a 330-380
767 nm wavelength light generated by a mercury lamp. Excitation light was separated
768 from the light emitted from the sample using a 400 nm dichroic mirror (Nikon UV-

769 2A) and ND filter (ND 16). Images of emitted fluorescence >420 nm were
770 displayed on a color monitor controlled by an integrating imaging software
771 package (HC Image, Hamamatsu) using a personal computer. Recorded images
772 were analyzed offline with the Clampfit software (pClamp suite, 10.2 version; Axon
773 Instruments). Intracellular Cl⁻ transients were expressed as fractional amplitude
774 variations ($\Delta F/F_0$, where F_0 is the baseline fluorescence level and ΔF is the
775 change over baseline); the onset time of neuronal activation determined by
776 detecting those events in the fluorescence signal that exceed at least five times
777 the standard deviation of the noise. To elicit chloride influx/efflux through the
778 membrane, an injection pipette (patch pipette with resistance of 1–4 M Ω , filled with
779 10 mM GABA diluted in the extracellular solution) was positioned at 20-50 μ m
780 from the cell soma and connected to a pico-spritzer (PDES-02DX, npi Electronics)
781 with 0.5/1 psi in-line pressure, 500 ms. GABA puffs were delivered at fixed times.
782 At the beginning of each experiment, a pipette containing pure saline was used to
783 exclude artifacts due to the pressure injection (Supplemental Fig. S2). Individual
784 images were analyzed to measure the intensity of MQAE in selected region of
785 interest (ROI). We found an overall percentage of 37 ± 6.5 % Control neurons and
786 35.6 ± 9.3 % SLG neurons that did not respond to the stimulation, and were
787 excluded from further analysis.

788 **Electron microscopy (EM)**

789 Scanning EM imaging was conducted using collecting secondary electrons on a
790 Gemini SUPRA 40 SEM (Carl Zeiss NTS GmbH, Oberkochen). Before SEM
791 imaging, neuronal cells grown on the different substrates were fixed in 3%
792 Glutaraldehyde in 0.1 M Sodium Cacodylate Buffer (pH 7.4), then dehydrated
793 sequentially in ethanol solutions of 50, 75, 95, 99 and 100% (vol/vol in H₂O, 3

794 minutes each, 4 °C). After overnight drying in the fridge, and before imaging samples
795 were metalized with a 5 nm thick layer of platinum-iridium allowing using a metal
796 sputter coater (Polaron SC7620). In order to prevent electron induced surface
797 charging, low accelerating voltages (0.8-1.5 keV) were used for brain slices
798 visualization.

799 SEM images of cells cross sections at membrane-substrate interface were obtained
800 by focused ion beam (FIB) using a LEO-ZEISS Cross-Beam 1540 XB system.
801 Gallium ion beam milling was performed with a current beam of 30 mA while SEM
802 images were collected at 3 kV. Samples were prepared following the same
803 procedure described in the previous paragraph.

804

805 **Substrate characterization**

806 AFM topography data (MFP-3D, Asylum Research, Santa Barbara, California, USA)
807 was acquired in tapping mode, using silicon cantilevers in ambient conditions. The
808 roughness estimates were calculated using the standard deviation of elevation in
809 mapped surface areas with sizes of 10 µm x 10 µm. XPS spectra were recorded in
810 ultra-high vacuum conditions using a monochromatic SPECS XR-50 Mg K α X-Ray
811 source ($E_{K\alpha} = 1253.6$ eV) and a hemispherical energy analyzer (Phoibos 100/150,
812 Specs, Berlin, Germany). μ -Raman spectra were recorded with an in-house built
813 system using an Ar-ion laser at 514.5 nm and operating with a spectral resolution of
814 0.75 cm $^{-1}$.

815 Raman measurements in aqueous conditions have been carried out at on the IUVS
816 beamline at Elettra synchrotron radiation facility (Trieste, Italy). A complete
817 description of the experimental apparatus can be found elsewhere
818 [10.1016/j.nima.2012.11.037]. A 532 nm laser source, with a beam power near 5

819 mW, has been employed as excitation source. The scattered radiation was collected
820 in a backscattering geometrical configuration. Slight modifications on the standard
821 backscattering set-up have been introduced to allow measurements in liquid
822 conditions (see Supplementary Methods). A 750 mm focal length Czerny-Turner
823 spectrometer, equipped with an holographic reflection grating of 1800 g/mm and
824 coupled with a Peltier-cooled back-thinned CCD, has been used to get the final
825 Raman spectra.

826

827 **Data Analysis**

828 All values from samples subjected to the same experimental protocols were pooled
829 together and expressed as histograms (mean \pm SEM with n = number of cells,
830 unless otherwise indicated) or through box-plot representation when one or more
831 data set were found to follow a non Gaussian distribution. In box-plots, the thick
832 horizontal bar indicates the median value, the boxed area extends from the 25th to
833 75th percentiles while whiskers from the 5th to the 95th percentiles. The homogeneity
834 of variances was assessed through the Levene's test.

835 Statistically significant difference between two data sets was assessed by Student's t
836 test for parametric data and by Mann-Whitney for non-parametric ones. Differences
837 between the logarithmic values of the analyzed variables were assessed using one-
838 way ANOVA [89] and multiple comparisons were adjusted by Bonferroni correction.
839 Statistical significance was determined at P < 0.05, unless otherwise indicated.

840

841 **Mathematical model of the neuronal network**

842 A Wilson-Cowan-like model, accounting for the spontaneous electrical activity
843 observed in cultured neuronal networks, was defined and computer-simulated. It

844 aimed at supporting the interpretation of the *in vitro* recordings and at linking
 845 (phenomenologically) single-cell properties to spontaneously emerging network
 846 activity. The model describes at the population level, the instantaneous firing rates
 847 $v_{E1}(t)$, $v_{E2}(t)$ and $v_I(t)$ of a heterogeneous ensemble of excitatory (E) and inhibitory (I)
 848 neurons, respectively. Three populations were in fact considered (i.e. two excitatory
 849 and one inhibitory), each defined by a characteristic time scale (i.e. τ_E and τ_I), by
 850 single-cell *f*-*I* curve (i.e. $\phi(I_{syn})$) and by the specific recurrent connectivity
 851 [43,44,45,90].

$$\begin{aligned} \tau_E \frac{dv_{E1}}{dt} &= -v_{E1} + \phi_{E1}(\mu_{E1}, \sigma_{E1}) \\ \tau_E \frac{dv_{E2}}{dt} &= -v_{E2} + \phi_{E2}(\mu_{E1} - g_{SFA} x_{SFA} v_{E2}, \sigma_{E2}) \\ \tau_I \frac{dv_I}{dt} &= -v_I + \phi_I(\mu_I, \sigma_I) \end{aligned} \quad (1)$$

852 The *f*-*I* curves were described by an identical transfer function of a *leaky Integrate-*
 853 *and-Fire* model neuron, expressed – under the hypotheses of the diffusion
 854 approximation [91] – by an analytical formula (see Supplemental Method). Here only
 855 the (infinitesimal) mean μ and variance σ^2 of the incoming average synaptic inputs
 856 are considered. These statistical parameters reflected the recurrent synaptic
 857 connectivity and of external inputs, as sketched in Fig. 5a, through the size of
 858 presynaptic populations (i.e. N_{ext} , N_{E1} , N_{E2} , N_I), the probability of recurrent
 859 connectivity (i.e. c), and the average of synaptic couplings (i.e. the charge
 860 associated to each postsynaptic potential; Δ_{EE} , Δ_{EI} , Δ_{IE} , Δ_{II}) and their standard
 861 deviations (i.e. $s\Delta_{EE}$, $s\Delta_{EI}$, $s\Delta_{IE}$, $s\Delta_{II}$)

$$\mu_{E1} = N_{ext} \Delta_{ext} v_{ext} + c N_{E1} \Delta_{EE} r_{E1} v_{E1} + c N_{E2} \Delta_{EE} r_{E2} v_{E2} + c N_I \Delta_{EI} v_I \quad (2)$$

$$\mu_{E2} = N_{ext} \Delta_{ext} v_{ext} + c N_{E1} \Delta_{EE} r_{E1} v_{E1} + c N_{E2} \Delta_{EE} r_{E2} v_{E2} + c N_I \Delta_{EI} v_I$$

$$\mu_I = N_{ext} \Delta_{ext} \nu_{ext} + c N_{E1} \Delta_{IE} r_{E1} \nu_{E1} + c N_{E2} \Delta_{IE} r_{E2} \nu_{E2} + c N_I \Delta_{II} \nu_I$$

862

$$\sigma^2_{E1} = N_{ext} (\Delta_{ext}^2 + s \Delta_{ext}^2) \nu_{ext} + c N_{E1} (\Delta_{EE}^2 + s \Delta_{EE}^2) r_{E1}^2 \nu_{E1} + c N_{E2} (\Delta_{EE}^2 \quad (3)$$

$$+ s \Delta_{EE}^2) r_{E2}^2 \nu_{E2} + c N_I (\Delta_{EI}^2 + s \Delta_{EI}^2) \nu_I$$

$$\sigma^2_{E2} = N_{ext} (\Delta_{ext}^2 + s \Delta_{ext}^2) \nu_{ext} + c N_{E1} (\Delta_{EE}^2 + s \Delta_{EE}^2) r_{E1}^2 \nu_{E1} + c N_{E2} (\Delta_{EE}^2$$

$$+ s \Delta_{EE}^2) r_{E2}^2 \nu_{E2} + c N_I (\Delta_{EI}^2 + s \Delta_{EI}^2) \nu_I$$

$$\sigma^2_I = N_{ext} (\Delta_{ext}^2 + s \Delta_{ext}^2) \nu_{ext} + c N_{E1} (\Delta_{IE}^2 + s \Delta_{IE}^2) r_{E1}^2 \nu_{E1} + c N_{E2} (\Delta_{IE}^2$$

$$+ s \Delta_{IE}^2) r_{E2}^2 \nu_{E2} + c N_I (\Delta_{II}^2 + s \Delta_{II}^2) \nu_I$$

863 Following closely [42], to approximately capture the dynamical filtering effects of

864 AMPAr- and GABA_A-mediated synapses, each presynaptic mean firing rate ν in865 equations 4-5 was replaced by its low-passed version $\hat{\nu}$ which also included the

866 finite-size fluctuations [43]:

$$\begin{aligned} \tau_{AMPA} \frac{d\hat{\nu}_{E1}}{dt} &= -\hat{\nu}_{E1} + \text{Poisson}[N_{E1} \nu_{E1} \Delta t] / (N_{E1} \Delta t) \\ \tau_{AMPA} \frac{d\hat{\nu}_{E2}}{dt} &= -\hat{\nu}_{E2} + \text{Poisson}[N_{E1} \nu_{E1} \Delta t] / (N_{E1} \Delta t) \\ \tau_{GABA} \frac{d\hat{\nu}_I}{dt} &= -\hat{\nu}_I + \text{Poisson}[N_{E1} \nu_{E1} \Delta t] / (N_{E1} \Delta t) \end{aligned} \quad (4)$$

867 where, for each time t , $\text{Poisson}[x]$ indicates a new realization of a pseudo-random868 number, drawn from a Poisson distribution with mean x , and where Δt is the

869 numerical integration step.

870 The effects of homosynaptic short-term depression at excitatory synapses and spike

871 frequency adaptation in just one of the two excitatory populations, were finally

872 described by three additional equations

$$\begin{aligned}
 \tau_{SFA} \frac{dx_{SFA}}{dt} &= -x_{SFA} + \text{Poisson}[N_{E1}v_{E1}\Delta t]/(N_{E1}\Delta t) \\
 \tau_{STD} \frac{dr_{E1}}{dt} &= 1 - r_{E1} - U r_{E1} \tau_{STD} \hat{v}_{E1} \\
 \tau_{STD} \frac{dr_{E2}}{dt} &= 1 - r_{E2} - U r_{E2} \tau_{STD} \hat{v}_{E2}
 \end{aligned} \tag{5}$$

873 and by replacing including short-term synaptic depression, intrinsic spike frequency
 874 adaptation, and the effects to the finite size of the network [43].

Model parameter	Value
$N_{E1} + N_{E2}$	1280
N_I	400
τ_E	20 ms
τ_I	20 ms
τ_{AMPA}	10 ms
τ_{GABA}	2 ms
τ_{STD}	800 ms
τ_{SFA}	1500 ms
g_{SFA}	10 a.u.
U	0.2
$\Delta_{ext} \pm s\Delta_{ext}$	$(0.416 \pm 0.104) / C_m$ mV
$\Delta_{EE} \pm s\Delta_{EE}$	$(0.809 \pm 0.202) / C_m$ mV
$\Delta_{EI} \pm s\Delta_{EI}$	$(-0.34 \pm 0.085) / C_m$ mV
$\Delta_{IE} \pm s\Delta_{IE}$	$(1.23 \pm 0.307) / C_m$ mV
$\Delta_{II} \pm s\Delta_{II}$	$(-0.358 \pm 0.0894) / C_m$ mV
$N_{ext}v_{ext}$	1.25 kHz
c	0.25
C_m	20 pF
R_m	1 k Ω
E_m	-70 mV
V_θ	-55 mV
V_H	-70 mV
τ_{arp}	2 ms

875

876 **Table 1:** Numerical values employed in the simulations of Figure 5.
 877 Additional details are provided in Supplemental materials and full model details and
 878 the source code are provided as a ModelDB entry [92].

879 (<https://senselab.med.yale.edu/ModelDB>; accession number 230930, temporary
 880 password 1234).

881 **Conductance based model**

882 A minimal model of neuronal excitability was considered by studying the classic
 883 single-compartmental conductance-based description proposed by Hodgkin and
 884 Huxley (1952). Therein, the electrical potential V across the cell membrane, satisfies
 885 the conservation of charge

886 $C_m \frac{dV}{dt} = I_{Na} + I_K + I_{leak} + I_{stim}$

887 where the sum of externally applied currents (I_{stim}), capacitive displacement currents
 888 ($C_m dV/dt$), and ionic transport currents across the membrane (I_{Na}, I_K, I_{leak}) are
 889 always balanced. The model is completely described by additional three state
 890 variables (i.e. m, h, n), expressing the voltage- and time-dependent fractions of
 891 inward and outward ionic currents, $I_{Na} = G_{Na}m^3h(E_{Na} - V)$, $I_K = G_Kn^4(E_K - V)$,
 892 $I_{leak} = G_{leak}(E_{leak} - V)$ as a first-order kinetic process:

893 $\frac{dx}{dt} = \alpha_x(1 - x) - \beta_x x$, with $x \in \{m, h, n\}$

894 Model parameters are indicated in Table 1, unless noted otherwise.

Parameter	Description	Value
C_m	Specific cell capacitance	0.01 $\mu\text{F}/\text{mm}^2$
E_{Na}	Nernst potential for Na^+ ions	30 mV
E_K	Nernst potential for K^+ ions	-75 mV
E_{leak}	Nernst potential for "leak" ionic currents	-80 mV
G_{Na}	Maximal conductance for Na^+ ions	0.333 mS/mm^2
G_K	Maximal conductance for K^+ ions	0.012 mS/mm^2
G_{leak}	Maximal conductance for "leak" currents	0.003 mS/mm^2
I_{stim}	External DC current stimulus amplitude	15 nA/mm^2
$\alpha_m(V)$	Kinetic rate of Na^+ current activation	$0.1 F(0.1, V+35)$
$\beta_m(V)$	Kinetic rate of Na^+ current activation	$4 \exp(-(V+60)/18)$ ms
$\alpha_h(V)$	Kinetic rate of Na^+ current inactivation	$0.07 \exp(-(V+60)/20)$ ms
$\beta_h(V)$	Kinetic rate of Na^+ current inactivation	$[\exp(-(V+30)/10)+1]^{-1}$ ms
$\alpha_n(V)$	Kinetic rate of K^+ current activation	$0.01 F(0.1, V+50)$ ms
$\beta_n(V)$	Kinetic rate of K^+ current activation	$0.125 \exp(-(V+60)/80)$ ms

$F(x,y)$	<i>Boltzman sigmoid function</i>	$y / [1 - \exp(x * y)]$ ms
Δt	Numerical solution time-step	0.001 ms

895

896 **Table 2 – Parameters employed in the simulations of the Hodgkin-Huxley (HH)**
 897 **model.** The standard HH mathematical model was numerically simulated as a
 898 minimal description of neuronal excitability to gain insight on current-clamp
 899 experimental recordings.

900

901 **FIGURE LEGENDS**

902

903 **Figure 1 | Characterization of the substrates.** **a**, AFM topography reconstructions
 904 of glass control, SLG, MLG and gold plated glass surfaces. Scale bar: 5 μ m. **b**,
 905 Spatial maps of the 2D/G and D/G peak amplitude ratio maps. Scale bar: 10 μ m.
 906 The single punctual Raman spectra of SLG (in red) and MLG (in blue) represent
 907 mapping data points with the corresponding average peak amplitude ratios. To the
 908 right, relative spatial 2D/G and D/G ratio maps. **c**, XPS spectrum (X-Ray source: Mg
 909 K α) of SLG (in red) and MLG (in blue). Dotted lines highlight the relevant elements,
 910 while the unlabeled features around 750 eV and 980 eV correspond to the oxygen
 911 K L_1 and the carbon K VV Auger lines respectively.

912

913 **Figure 2 | Single-Layer graphene increase neuronal network activity.** **a**,
 914 Representative SEM micrographs depicting hippocampal neuron morphology after
 915 10 DIV-growth supported by the different substrates. Scale bar: 10 μ m. **b**,
 916 Representative fluorescent microscopy images showing dissociated hippocampal
 917 networks labeled with class III β -tubulin (for neurons) in red and GFAP (for
 918 astrocytes) in green. Scale bar: 100 μ m. Cultures grown on the different materials

919 displayed a comparable number of cells, quantified as DAPI-positive nuclei (upper
920 right histograms) and a similar fraction of glial and neuronal cells (lower right
921 histograms). **c**, Representative traces of the spontaneous network activity of neurons
922 grown on the different substrates are shown (left), the corresponding isolated PSCs
923 are shown superimposed (middle; in black the average values). Box plots summarize
924 the PSC amplitude values (right, top) and the PSC frequency ones (right, bottom) in
925 all experimental conditions. Note the significant increase in PSC frequency in SLG
926 when compared to all the other substrates.

927

928 **Figure 3 | Single-layer graphene does not increase the number of synapses**
929 **and the network composition. a**, Exemplificative spontaneous traces of synaptic
930 activity recorded in the presence of TTX are shown together with their superimposed
931 mPSCs (right, in black the average values); Control and SLG mPSC frequency and
932 amplitude are summarized in the box plots, note that no differences were detected in
933 these parameters. **b**, Confocal images of neuronal cultures (10 DIV) in Control and
934 SLG identifying the presynaptic VGlut1 (in green) in III β -tubulin positive cells
935 (orange). Scale bar: 20 μ m. Higher magnifications of the region highlighted by white
936 boxes are displayed for clarification. Scale bar: 5 μ m. The histograms summarize
937 VGlut1 puncta densities in the two conditions (right). **c**, Confocal images of neuronal
938 cultures (10 DIV) in Control and SLG identifying positive cells for class III β -tubulin
939 and GABA. Scale bar: 10 μ m. The histograms summarize the percentage of double-
940 positive cells in the two conditions (right).

941

942 **Figure 4 | SLG triggers changes in single cell intrinsic excitability. a**, Current-
943 clamp recordings of hippocampal neurons in culture (10 DIV) in Control and SLG.

944 The spontaneous occurrence of APs is summarized in the histograms (right). Note
945 the significant increase of AP frequency in SLG. **b**, Evoked single AP in Control (top)
946 and SLG (bottom). Note the pronounced AHP in SLG neurons, that was partially
947 abolished by each of the treatments shown, BaCl, TEA or Apamin (right,
948 superimposed tracings). The histogram quantifies the area below the Control and
949 SLG post-AP voltage trajectories with respect to the resting membrane potential. **c**,
950 Current-clamp recordings from hippocampal neurons in control and SLG induced
951 different discharge patterns that identified two cell categories: *Adapting or Tonic*. **d**,
952 Bar charts illustrate probability distributions (expressed as percentage of sampled
953 population) of each cell type in control and SLG cultures. **e**, Scatter plot of after-
954 potential area vs. the number of action potentials (APs) in SLG neurons when a
955 single AP is elicited (as in b; open circle) or when multiple APs are evoked (as in c,
956 filled circle) by 1 s long depolarizing step **f**, Representative records of voltage-
957 activated outward currents evoked by depolarizing current steps in control and SLG
958 (capacitive transients were not removed). Plot summarizes the I/V relation in control
959 and SLG neurons obtained upon subtraction of leak currents. Note that SLG outward
960 currents were significantly larger than control ones.

961

962 **Figure 5 | Spike-rate “extended mean-field” model.** The model, describing
963 mathematically the electrical activity of excitatory and inhibitory recurrently
964 interacting neurons, was defined and computer simulated (see Supplemental
965 Methods). **a**, The increase in the fraction of non-adapting neurons, observed *in vitro*
966 on graphene substrates, predicts *in silico* a higher rate of occurrence for
967 spontaneous synchronized “bursts” of spikes across the entire network. These bursts
968 are presynaptic correlates of the spontaneous compound synaptic potentials,

969 observed experimentally by voltage-clamp. **b** and **c**, Samples of the simulated time
970 series, analysed in **a**, are shown for two values of the fraction of non-adapting
971 neurons, *i.e.* 20% and 80%, out of the total of excitatory neurons. **d**, A counter-
972 intuitive effects of outward potassium currents on cell excitability are explored in a
973 minimal mathematical model. The Hodgkin-Huxley model was numerically integrated
974 (parameters as in Table 2) to simulate membrane potential responses (black traces)
975 to an external step current comparable to experiments (see Methods). **d** and **e**, Plots
976 within each panel exemplify how an increase (from left subpanels to right subpanels)
977 of the maximal K^+ conductance or, in **f**, its driving force, through a depletion of
978 extracellular K^+ ions, may to some extent reverse the progressive inactivation of
979 inward Na^+ currents (green traces in **d**). Then, inactivating neuronal responses may
980 turn into sustained firing thereby increasing cell excitability (as in **c**). Parameters: in
981 **d**, G_K in {0.012; 0.0216} mS/mm²; in **e**, G_K in {0.012, 0.04, 0.06} mS/mm² from left to
982 right, I_{stim} 5 nA/mm²; in **f**, I_{stim} as in **e**, while E_K in {-75, -77.6, -80.5} mV from left to
983 right, corresponding to a {0%, 10%, 20%} depletion of extracellular K^+ ions.
984

985 **Figure 6 | Graphene deplete potassium at the cell/substrate cleft.** **a**, The Raman
986 spectra of graphene G band in wet condition are shown for SLG (left) and MLG
987 (right). Control condition (D_2O , in black) is compared with spectra of graphene
988 immersed in 4 mM D_2O solution (in red) of KCl and 150 mM solution of NaCl (in
989 green). Note that high concentrated NaCl induce in SLG a smaller shift in G-Peak
990 position than KCl while no shifts are detectable in MLG as outlined in the insets. **b**,
991 Sketch of the local amount of K^+ depletion in the membrane/surface cleft due to
992 graphene trapping as function of cleft thickness. In light green the extrapolated
993 values of such a distance (40-100 nm) [46]. **c**, Box plots summarize the average

994 PSC frequency values (left) and the average PSC amplitudes ones (right) for
995 neurons developed on glass control (in grey), on glass supported SLG (in red), on
996 free-standing SLG (in green) and on SLG deposited on ITO (in blue). Note the
997 significant increase in PSC frequency in SLG laying on insulating glass or, even
998 more, when grown on suspended SLG. SLG on conductive ITO does not change
999 neuronal activity. **d**, Hypothesis of Dirac point and Fermi level rearrangement as
1000 function of SLG supporting material (bottom), and an exemplification of the possible
1001 charge distribution in graphene layer as function of electrical characteristics of the
1002 underlying surface (top). Blue areas represent more positive regions (e.g. depletion
1003 of electrons), red areas represent more negative ones (e.g. persistency of electrons).

1004

1005 REFERENCES

1006 [1] Novoselov, K. S. et al. Electric Field Effect in Atomically Thin Carbon Films.
1007 Science 306, 666-669 (2004).

1008 [2] Geim, A. K. & Novoselov, K. S. The rise of graphene. Nat Mater. 6, 183-191
1009 (2007).

1010 [3] Yang, Y. et al. Graphene based materials for biomedical applications. Mat
1011 Today 16, 365-373 (2013).

1012 [4] Li, X., et al. Transfer of large-area graphene films for high-performance
1013 transparent conductive electrodes. Nano Letters 9, 4359-4363 (2009)

1014 [5] Shin, S. R. et al. Graphene-based materials for tissue engineering. Adv Drug
1015 Deliv Rev. 105, 255-274 (2016).

1016 [6] Lu, Y. et al. Flexible Neural Electrode Array Based-on Porous Graphene for
1017 Cortical Microstimulation and Sensing. Sci Rep. 6, 33526 (2016).

1018 [7] Herbert, C. et al. Flexible graphene solution-gated field effect transistors,
1019 efficient transducers for micro-electrocorticography *Adv. Funct. Mater.* 1703976
1020 (2017).

1021 [8] Kim, J. et al. Monolayer Graphene-Directed Growth and Neuronal
1022 Differentiation of Mesenchymal Stem Cells. *J Biomed Nanotechnol.* 11, 2024-
1023 2033 (2015).

1024 [9] Fabbro, A. et al. Graphene-Based Interfaces Do Not Alter Target Nerve Cells.
1025 *ACS Nano* 10, 615-623 (2016).

1026 [10] Rauti, R. et al. Graphene Oxide Nanosheets Reshape Synaptic Function in
1027 Cultured Brain Networks. *ACS Nano* 10, 4459-4471 (2016).

1028 [11] Famm, K. et al. Drug discovery: a jump-start for electroceuticals. *Nature*
1029 496, 159-161 (2013).

1030 [12] Rivnay, J. et al. Next-generation probes, particles, and proteins for neural
1031 interfacing. *Sci Advances* 3, e1601649 (2017).

1032 [13] Li, X. et al. Large-area synthesis of high-quality and uniform graphene films
1033 on copper foils. *Science*. 324, 1312-4 (2009).

1034 [14] Cançado, L.G. et al. Quantifying defects in graphene via Raman
1035 spectroscopy at different excitation energies. *Nano lett.* 11, 3190-3196 (2011).

1036 [15] Ferrari A. C. et al. Raman spectrum of graphene and graphene layers. *Phys.*
1037 *Rev. Lett.* 97, 187401 (2006).

1038 [16] Cançado, L. G. et al. Measuring the degree of stacking order in graphite by
1039 Raman spectroscopy. *Carbon* 46, 272-275 (2008).

1040 [17] Lovat, V. et al. Carbon nanotube substrates boost neuronal electrical
1041 signaling. *Nano lett.* 5, 1107-1110 (2005).

1042 [18] Cellot, G. et al. Carbon nanotubes might improve neuronal performance by
1043 favouring electrical shortcuts. *Nat. Nanotechnol.* 4, 126-133 (2009).

1044 [19] Cellot, G. et al, Carbon nanotube scaffolds tune synaptic strength in cultured
1045 neural circuits: novel frontiers in nanomaterial-tissue interactions. *J. Neurosci.*
1046 31, 12945-12953 (2011).

1047 [20] Kim, J. et al, Monolayer Graphene-Directed Growth and Neuronal
1048 Differentiation of Mesenchymal Stem Cells. *J Biomed. Nanotechnol.* 11, 2024-
1049 2033 (2015).

1050 [21] Baldrihi, M. et al, Carbon Nanomaterials Interfacing with Neurons: An In
1051 vivo Perspective. *Front. Neurosci.* 10, 260 (2016).

1052 [22] Pampaloni, NP. et al. Sculpting neurotransmission during synaptic
1053 development by 2D nanostructured interfaces. *Nanomedicine.* doi:
1054 10.1016/j.nano.2017.01.020.

1055 [23] Raastad, M. et al. Putative Single Quantum and Single Fibre Excitatory
1056 Postsynaptic Currents Show Similar Amplitude Range and Variability in Rat
1057 Hippocampal Slices. *Eur J Neurosci.* 4, 113-117 (1992).

1058 [24] Arosio, D. & Ratto, GM. Twenty years of fluorescence imaging of
1059 intracellular chloride. *Front Cell Neurosci.* 8, 258 (2014).

1060 [25] Cherubini, E. GABA mediated excitation in immature rat CA3 hippocampal
1061 neurons. *Int J Dev Neurosci.* 8, 481-90 (1990).

1062 [26] Marandi, N., Konnerth, A. & Garaschuk O. Two-photon chloride imaging in
1063 neurons of brain slices. *Pflugers Arch.* 445, 357-65 (2002).

1064 [27] Ruscheweyh, R. & Sandkuhler, J. Lamina-specific membrane and discharge
1065 properties of rat spinal dorsal horn neurones in vitro. *J Physiol.* 541, 231-244
1066 (2002).

1067 [28] Chang, YM. & Luebke, JI. Electrophysiological diversity of layer 5 pyramidal
1068 cells in the prefrontal cortex of the rhesus monkey: in vitro slice studies. *J
1069 Neurophysiol.* 98, 2622-32. (2007)[29] Routh, B. N. et al. Anatomical and
1070 Electrophysiological Comparison of CA1 Pyramidal Neurons of the Rat and
1071 Mouse. *J Neurophysiol.* 102, 2288–2302 (2009).

1072 [30] Renganathan, M., Cummins, TR. & Waxman, SG. Contribution of $Na(v)1.8$
1073 sodium channels to action potential electrogenesis in DRG neurons. *J
1074 Neurophysiol.* 86, 629-40 (2001).

1075 [31] Platkiewicz, J. & Brette, R. Impact of Fast Sodium Channel Inactivation on
1076 Spike Threshold Dynamics and Synaptic Integration. *PLoS Comput Biol.* 7,
1077 e1001129 (2011).

1078 [32] Kress, G. J. et al. Axonal sodium channel distribution shapes the
1079 depolarized action potential threshold of dentate granule neurons. *Hippocampus*
1080 20, 558-571 (2016).

1081 [33] Alagam, N. et al, Mechanism of $Ba(2+)$ block of a mouse inwardly rectifying
1082 K^+ channel: differential contribution by two discrete residues. *J Physiol.* 534,
1083 381-393 (2001).

1084 [34] Alger, B. E. & Nicoll, R. A. Epileptiform burst afterhyperpolarization: calcium-
1085 dependent potassium potential in hippocampal CA1 pyramidal cells. *Science*
1086 210, 1122-1124 (1980).

1087 [35] Jiang, Y. & MacKinnon, R. The barium site in a potassium channel by x-ray
1088 crystallography. *J Gen Physiol.* 115, 269-272 (2000).

1089 [36] Nisenbaum, E. S. & Wilson, C. J. Potassium currents responsible for
1090 inward and outward rectification in rat neostriatal spiny projection neurons. *J
1091 Neurosci.* 15, 4449-4463 (1995).

1092 [37] Storm, J. F. Action potential repolarization and a fast after-hyperpolarization
1093 in rat hippocampal pyramidal cells. *J Physiol.* 385, 733-759 (1987).

1094 [38] Pisirowski, R. & Aldrich, R. W. Calcium activation of BK(Ca) potassium
1095 channels lacking the calcium bowl and RCK domains. *Nature* 420, 499-502
1096 (2002).

1097 [39] Stocker, M. et al, An apamin-sensitive Ca²⁺-activated K⁺ current in
1098 hippocampal pyramidal neurons. *Prot Nat Acad Sci.* 96, 4662-4667(1999).

1099 [40] Sah, P. & Faber, E. S. Channels underlying neuronal calcium-activated
1100 potassium currents. *Prog Neurobiol.* 66, 345-353 (2002).

1101 [41] Dégenètais, E. et al. Electrophysiological properties of pyramidal neurons in
1102 the rat prefrontal cortex: an in vivo intracellular recording study. *Cereb Cortex* 12,
1103 1-16 (2002).

1104 [42] Furlan, F. et al. ERG conductance expression modulates the excitability of
1105 ventral horn GABAergic interneurons that control rhythmic oscillations in the
1106 developing mouse spinal cord. *J. Neurosci.* 27, 919-928 (2007).

1107 [43] Gigante, G. et al. Network Events on Multiple Space and Time Scales in
1108 Cultured Neural Networks and in a Stochastic Rate Model. *PLoS Comput Biol.*
1109 11, e1004547 (2015).

1110 [44] Gambazzi, L. et al. Diminished activity-dependent brain-derived neurotrophic
1111 factor expression underlies cortical neuron microcircuit hypoconnectivity resulting
1112 from exposure to mutant huntingtin fragments. *J. Pharmacol Exp Ther.* 335, 13-
1113 22 (2010).

1114 [45] Giugliano, M. et al. Single-neuron discharge properties and network activity
1115 in dissociated cultures of neocortex. *J Neurophysiol.* 92, 977-996 (2004).

1116 [46] Marom, S. & Shahaf, G. Development, learning and memory in large random
1117 networks of cortical neurons: lessons beyond anatomy. *Q Rev Biophys.* 35, 63-
1118 87 (2002).

1119 [47] Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane
1120 current and its application to conduction and excitation in nerve. *J Physiol.* 117,
1121 500-544 (1952).

1122 [48] French, C. R. et al. Properties of an intermediate-duration inactivation
1123 process of the voltage-gated sodium conductance in rat hippocampal CA1
1124 neurons. *J Neurophysiol.* 115, 790-802 (2016).

1125 [49] Fleidervish, IA & Gutnick, MJ. Kinetics of slow inactivation of persistent
1126 sodium current in layer V neurons of mouse neocortical slices. *J Neurophysiol.*
1127 76, 2125-30 (1996).

1128 [50] Miles, GB., Dai, Y. & Brownstone, RM. Mechanisms underlying the early
1129 phase of spike frequency adaptation in mouse spinal motoneurones. *J Physiol.*
1130 566, 519–532 (2005).

1131 [51] Sterratt, D. *Principles of computational modelling in neuroscience.*
1132 Cambridge University Press(2011).

1133 [52] Kumpf R A, & Dougherty D A. A mechanism for ion selectivity in potassium
1134 channels: computational studies of cation- π interactions. *Science.* 261, 1708-10
1135 (1993).

1136 [53] Shi, G,et al. Ion enrichment on the hydrophobic carbon-based surface in
1137 aqueous salt solutions due to cation- π interactions. *Sci Rep.*, 3, 3436 (2013).

1138 [54] Pham T A, et al. Salt Solutions in Carbon Nanotubes: The Role of Cation- π
1139 Interactions *J. Phys. Chem. C*, 120,7332–7338 (2016).

1140 [55] Williams, C D, et al. Effective Polarization in Pairwise Potentials at the
1141 Graphene–Electrolyte Interface *J. Phys. Chem. Lett.*, 8,703–708 (2017)

1142 [56] Dong, X et al. Doping single-layer graphene with aromatic molecules. *Small*.
1143 5, 1422-6 (2009)

1144 [57] Chacón-Torres, JC, Wirtz, L, Pichler, T. Manifestation of charged and
1145 strainedgraphene layers in the Raman response of graphite intercalation
1146 compounds. *ACS*

1147 *Nano*. 7, 9249-59 (2013).

1148 [58] Spira ME, Hai A. Multi-electrode array technologies for neuroscience and
1149 cardiology. *Nat Nanotechnol*. 8,83-94 (2013).

1150 [59] Son, IH., et al. Graphene balls for lithium rechargeable batteries with fast
1151 charging and high volumetric energy densities. *Nat comm*. 8, 1561 (2017).

1152 [60] Baronsky, T., et al. Cell-Substrate Dynamics of the Epithelial-To-
1153 Mesenchymal Transition. *Nano Lett*. 17, 3320-3326 (2017).[61] Pestova, O.N.et
1154 al. X-ray Phase Analysis of Structure of Water-Salt Systems: NaCl-H₂O and KCl-
1155 H₂O. *Russian J of Appl Chem*. 77,1066-1069 (2004)

1156 [62] Novák M, et al. Solvent effects on ion-receptor interactions in the presence
1157 of an external electric field. *Phys Chem Chem Phys*. 18,30754-30760 (2016).

1158 [63] Chen, K. et al, Electronic Properties of Graphene Altered by Substrate
1159 Surface Chemistry and Externally Applied Electric Field. *J. Phys. Chem. C*,
1160 116,6259–6267 (2012)

1161 [64] Novoselov, K. et al., Two-dimensional gas of massless Dirac fermions in
1162 graphene. *Nature*.438, 197-200 (2005).

1163 [65] González-Herrero, H et al. Graphene Tunable Transparency to Tunneling
1164 Electrons: A Direct Tool To Measure the Local Coupling. *ACS Nano*. 10,5131-44
1165 (2016).

1166 [66] Praveen, C. S. et al., Adsorption of alkali adatoms on graphene supported
1167 by the Au/Ni(111) surface, *Phys Rev. B* 92, 075403 (2015).

1168 [67] Kang, Y-J. et al. Electronic structure of graphene and doping effect on SiO₂
1169 Phys Rev. B 78, 115404 (2008).

1170 [68] Miwa, R. H. et al. Doping of graphene adsorbed on the a-SiO₂ surface. Appl
1171 Phys Lett 99, 163108 (2011).

1172 [69] Ao, Z. et al. Density functional theory calculations on graphene/α-
1173 SiO₂(0001) interface. Nanoscale Res Lett. 7, 158 (2012).

1174 [70] Fan, X. F. et al. Interaction between graphene and the surface of SiO₂. J
1175 Phys Condens Matter. 24:305004 (2012).

1176 [71] Terrones, M., et al. Graphene and graphite nanoribbons: Morphology,
1177 properties, synthesis, defects and applications. Nano Today, 5, 351-372 (2010).

1178 [72] Nezich, D. et al. Electrical characterization of graphene synthesized by
1179 chemical vapor deposition using Ni substrate. Nanotechnology 23, 015701
1180 (2012).

1181 [73] Hille, B. Ion channels of excitable membranes. Sunderland, Mass: Sinauer,
1182 (2001).

1183 [74] Slomowitz, E. et al. Interplay between population firing stability and single
1184 neuron dynamics in hippocampal networks. eLife 4: e04378 (2015).

1185 [75] Bogaard, A. et al. Interaction of cellular and network mechanisms in
1186 spatiotemporal pattern formation in neuronal networks. J Neurosci. 29, 1677-
1187 1687 (2009).

1188 [76] Sahasranamam, A. et al. Dynamical state of the network determines the
1189 efficacy of single neuron properties in shaping the network activity. Sci Rep. 6,
1190 26029 (2016).

1191 [77] Radulescu, R.A. Mechanisms Explaining Transitions between Tonic and
1192 Phasic Firing in Neuronal Populations as Predicted by a Low Dimensional Firing
1193 Rate Model. PLoS One 5:e12695 (2010).

1194 [78] Naud, R. et al. Firing patterns in the adaptive exponential integrate-and-fire
1195 model. Biol Cybern. 99, 335-347 (2008).

1196 [79] Wrobel G, Höller M, Ingebrandt S, Dieluweit S, Sommerhage F, Bochem HP,
1197 Offenhäusser A. Transmission electron microscopy study of the cell-sensor
1198 interface. J R Soc Interface. 5, 213-222. (2008).

1199 [80] Braun, D. & Fromherz, P. Fluorescence interference-contrast microscopy of
1200 cell adhesion on oxidized silicon. Appl Phys A 65: 341-348 (1997).

1201 [81] Nicholson, C, Phillips, J. M. Ion diffusion modified by tortuosity and volume
1202 fraction in the extracellular microenvironment of the rat cerebellum. J Physiol.
1203 321, 225-57 (1981).

1204 [82] Usmani S, et al. 3D meshes of carbon nanotubes guide functional
1205 reconnection of segregated spinal explants. Sci Adv. e1600087 (2016).

1206 [83] Drieschner, S. et al. Frequency response of electrolyte-gated graphene
1207 electrodes and transistors. Journal of Physics D: Applied Physics 50, 095304
1208 (2017).

1209 [84] Drieschner, S. et al. High surface area graphene foams by chemical vapor
1210 deposition. 2D Materials 3, 045013 (2016).

1211 [85] Matruglio, A. et al. Contamination-free suspended graphene structures by a
1212 Ti-based transfer method Carbon, 103, 305-310 (2016).

1213 [86] Clements, J. D. & Bekkers, J. M. Detection of spontaneous synaptic events
1214 with an optimally scaled template. Biophys J. 73, 220-229 (1997).

1215 [87] Sontheimer, H. & Ransom, C. Whole-Cell Patch-Clamp Recordings.
1216 Neuromethods 35, 35-67 Humana Press Inc., (2007).
1217 [90] La Camera G, et al The response of cortical neurons to in vivo-like input
1218 current: theory and experiment: I. Noisy inputs with stationary statistics. Biol
1219 Cybern 99:279–301(2008).
1220 [91] Ricciardi, L. M. Diffusion Processes and Related Topics in Biology. Lecture
1221 notes in Biomathematics. Springer-Verlag (1977).
1222 [92] Hines, M. L. et al. Model DB: A Database to Support Computational
1223 Neuroscience. J Comput Neurosci. 17, 7-11 (2004).

1224
1225 [93] Gertler, T. S., Chan, C.S., Surmeier, D.J. Dichotomous anatomical
1226 properties of adult striatal medium spiny neurons. J Neurosci. 28, 10814-10824
1227 (2008).

1228

1229 **Acknowledgement**

1230 We are grateful to M. Lazzarino and S. Dal Zilio for experimental assistance in
1231 the fabrication of suspended SLG and FIB analysis; N. Secomandi and R. Rauti
1232 for assistance in imaging. We thank A. Laio, G. Scoles, A. Nistri and B. Cortés-
1233 Llanos for helpful discussion. This paper is based on work supported by the
1234 European Union Seventh Framework Program under grant agreement no.
1235 696656 Graphene Flagship and by the Flanders Research Foundation (grant no.
1236 G0F1517N). MP, as the recipient of the AXA Chair, is grateful to the AXA
1237 Research Fund for financial support. MP was also supported by the Spanish
1238 Ministry of Economy and Competitiveness MINECO (project CTQ2016-76721-R),

1239 by the University of Trieste and by Diputación Foral de Gipuzkoa program Red
1240 (101).

1241

1242 **Contributions**

1243 N.P.P. performed electrophysiological experiments, imaging, immunochemistry,
1244 confocal microscopy and all the related analysis; M.L. fabricated supported SLG
1245 and MLG and performed all material characterization; M.G. performed
1246 mathematical simulations and analysis and contributed to the writing of the
1247 manuscript; A.M. fabricate suspended SLG and gold plated samples; F.D.A. and
1248 A.M. performed Raman experiments and data analysis on SLG and MLG in wet
1249 and dried conditions; M. P., D.S. and L.B. conceived the study; D.S., L.B., and
1250 J.A.G. designed the experimental strategy, interpreted the results and wrote the
1251 manuscript.

1252

1253 **Additional information**

1254 Supplementary information is available in the online version of the paper.
1255 Correspondence and requests for materials should be addressed to Denis Scaini
1256 dscaini@sissa.it; Josè Antonio Garrido joseantonio.garrido@icn2.cat; Laura
1257 Ballerini laura.ballerini@sissa.it

1258

1259 **Competing financial interests**

1260 The authors declare no competing financial interests.

1261

1262 **Data availability**

1263 All the data that support the findings of this study are available within the article
1264 and in its Supplementary Information, and these data are available from the
1265 corresponding author on request.

1266

1267 **SUPPLEMENTARY INFORMATION**1268 **Supplemental methods in neuronal network simulation**

1269 In our numerical simulations of a networks of interacting excitatory and inhibitory
 1270 neurons, the electrical response properties of each cell are approximated by those of
 1271 a *leaky* Integrate-and-Fire unit. In this model, characterized by a lumped membrane
 1272 capacitance C_m and R_m , the membrane potential of the neuron $V(t)$ passively
 1273 integrates incoming synaptic input currents I_{syn} , around a resting membrane
 1274 potential E_m and while below the excitability threshold V_θ :

$$C_m \frac{dV}{dt} = \frac{(E_m - V)}{R_m} + I_{syn} \quad V < V_\theta \quad (S1)$$

1275 As V reaches V_θ , the unit is said to *fire* a spike and V is reset and hold to a
 1276 hyperpolarized voltage V_H , for the entire duration of an absolute refractory period
 1277 τ_{arp} :

$$V(t^*) = V_\theta \quad V(t) \rightarrow V_H \quad t \in (t^*; t^* + \tau_{arp}] \quad (S2)$$

1278 Synaptic interactions are described as current-driven impulsive inputs, where a (train
 1279 of) presynaptic spike occurring at time t_k is received postsynaptically as a (train of)
 1280 Dirac's Delta function with a net charge of Δ :

$$I_{syn} = \sum_k \Delta \delta(t - t_k) \quad (S3)$$

1281 When the occurrence times $\{t_k\}$ are statistically independent and occurring as
 1282 stochastic Poisson-distributed events with mean frequency λ , the mean spiking rate
 1283 ν of a generic unit of the network can be approximated by an analytical expression
 1284 (90) that is valid as long as λ is very large and Δ is very small (i.e. while the product
 1285 $\lambda\Delta$ remains finite):

$$\nu = \phi(\mu, \sigma) = [\tau_{arp} + R_m C_m \int_A^B \sqrt{\pi} e^{x^2} (1 + \text{erf}(x)) dx]^{-1} \quad (\text{S4})$$

1286 where $A = \frac{V_\theta - E_m - R_m \mu}{\sigma \sqrt{R_m / C_m}}$ and $B = \frac{V_H - E_m - R_m \mu}{\sigma \sqrt{R_m / C_m}}$, with $\mu = \Delta \lambda$ and $\sigma = \Delta \sqrt{\lambda}$.

1287 This expression can be included in a rate-based model, where the activity of
 1288 individual units is however accounted for implicitly: if synaptic inputs can be
 1289 considered as statistically identical, then only one equation can be used for
 1290 describing the evolution in time of the

$$\tau \frac{d\nu}{dt} = -\nu + \phi(\mu, \sigma) \quad (\text{S5})$$

1291

1292 **Supplemental technical details about the Raman set-up**

1293 In order to compare cation/graphene interaction in SLG and MLG in an environment
 1294 close to the one where neurons were investigated, we decided to acquire the Raman
 1295 spectra from samples maintained under liquid conditions. To that aim, samples were
 1296 kept in a liquid cell and were covered by a thin layer of liquid solution (0.5-1 mm in
 1297 thickness; Supplementary Fig. 5a) during the whole measurement process. The
 1298 experiments were performed using a Raman scattering set-up that required keeping
 1299 the sample surface perpendicular to the ground. Since this procedure would not
 1300 allow measuring the samples while immersed in liquids, a technical modification of
 1301 the set-up has been employed. More specifically (Supplementary Fig. 5a), a 45°
 1302 mirror has been included in the set-up that allowed placing the sample horizontally
 1303 inside a liquid cell, enabling ease liquid exchange during experiments. Thus, SLG
 1304 and MLG samples were fully cover by liquid during the entire measurements,
 1305 providing more representative conditions. The use of a macro-spot (about 100 μm in

1306 diameter) in the Raman set-up limits the occurrence of molecular fluctuations –due
1307 to a thermal effect induced by laser focusing– that may alter the measurements.

1308

1309 **Supplementary Figure 1 a**, Box plots summarizing the average PSC frequency
1310 values (left) and the average PSC amplitudes ones (right) for neurons developed on
1311 supported SLG transferred using PMMA (in grey), or PS (in red). SLG induce in
1312 neurons' PSCs similar effects when the carbon film is transferred through PMMA or
1313 PS. **b**, Offline differential analysis of PSC decays (τ) identifies fast and slow events
1314 (inset, average tracings from a representative SLG neuron). Bar plot summarizes the
1315 frequency of fast and slow PSCs in Controls and SLG.

1316

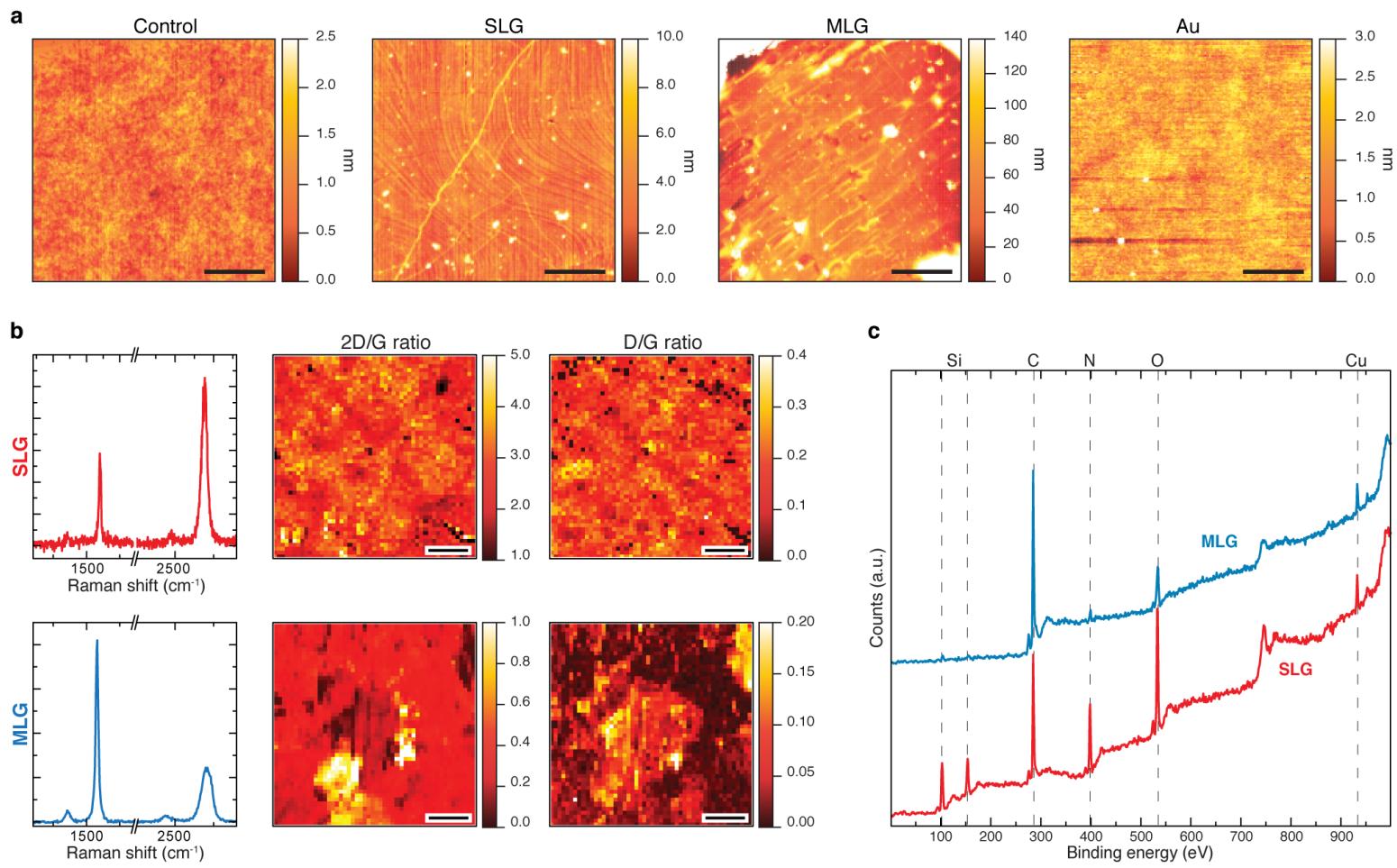
1317 **Supplementary Figure 2 a**, Snapshot of MQAE-loaded hippocampal neurons (9
1318 DIV) in Control and SLG. Scale bars 15 μ m. Changes in fluorescence represent
1319 opposite directions of GABA evoked Cl^- fluxes caused by 500 ms long pressure
1320 applications of GABA (middle tracings, 2 different cells). Note the absence of
1321 fluorescence changes when 500 ms long pressure standard saline solution (Saline)
1322 were applied. Bar plot summarizes the percentage of cells responding with a Cl^-
1323 influx (in blue) or efflux (in red) in Control and SLG. **b**, NKCC1 is expressed on
1324 hippocampal neurons in Control and SLG. Confocal images of neuronal cultures (9
1325 DIV) in Control and SLG demonstrate NKCC1 (in green) in class III β -tubulin positive
1326 cells (in red). Scale bar: 30 μ m. Merged images are displayed for clarification. Scale
1327 bar: 30 μ m. The histograms summarize NKCC1 volume normalized to class III β -
1328 tubulin volume in the two conditions (right; n= 20 each).

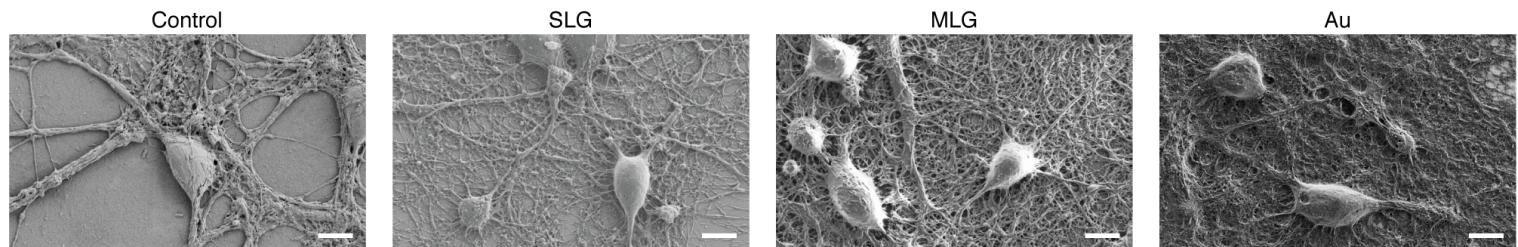
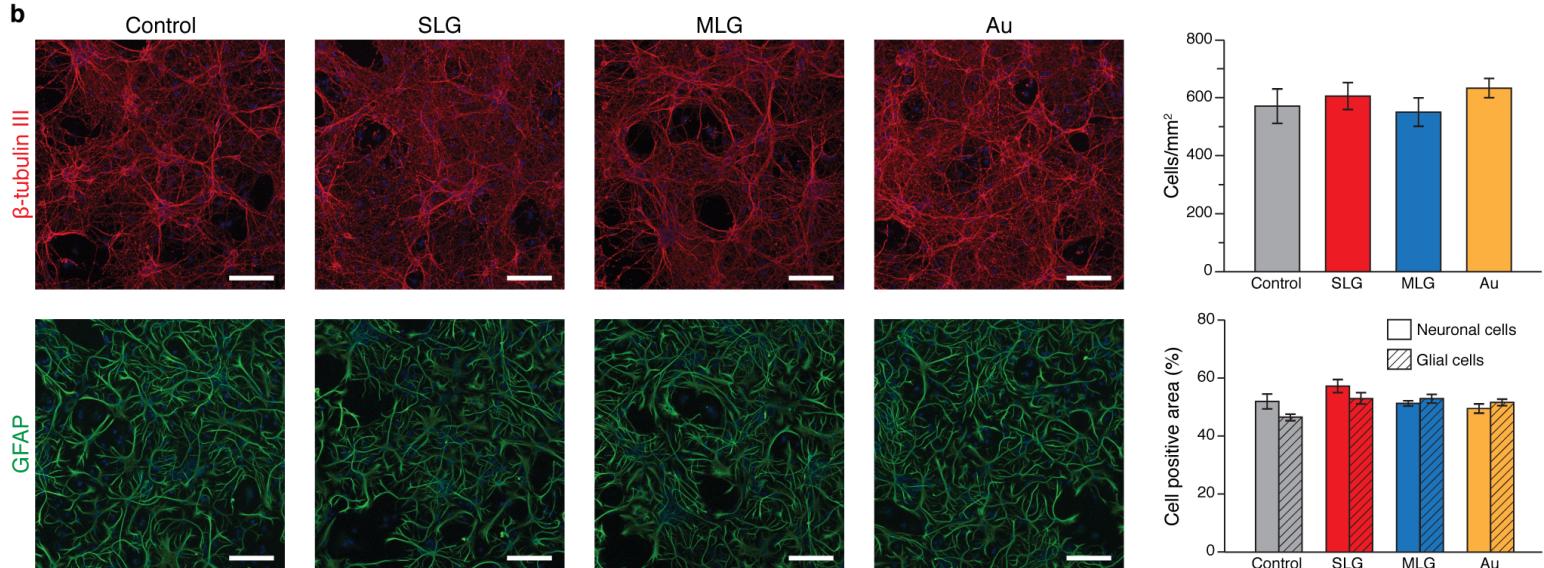
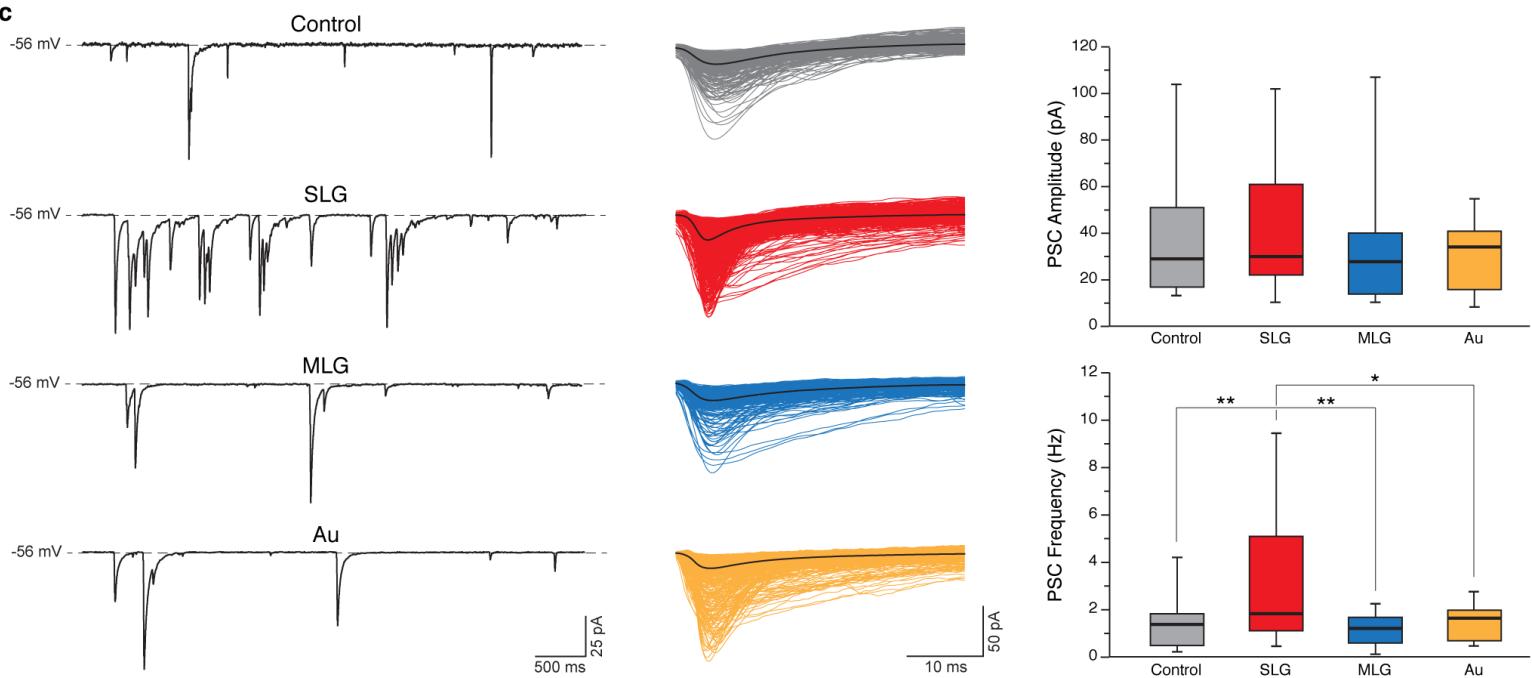
1329

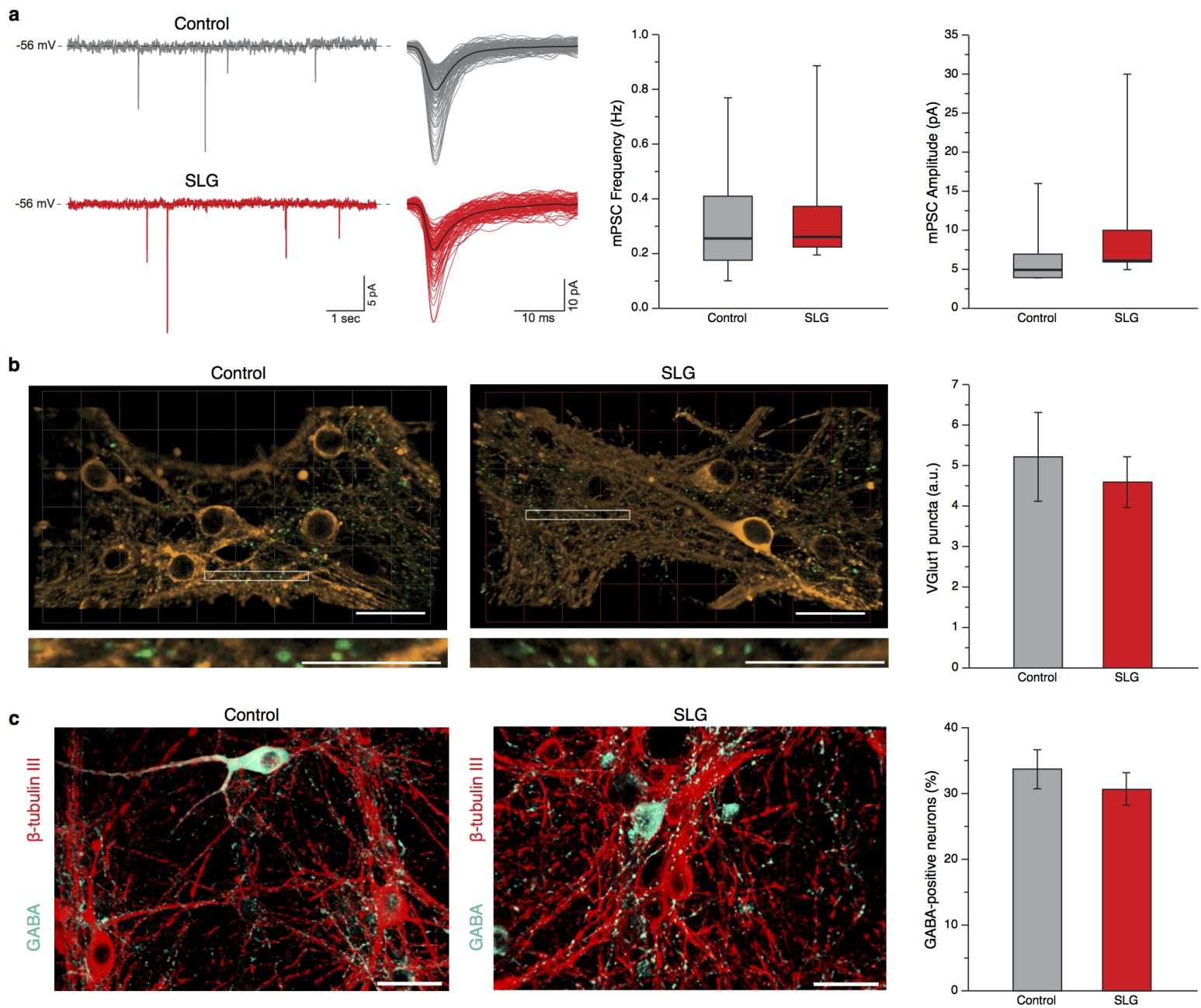
1330 **Supplementary Figure 3** Firing patterns evoked in Control and SLG neurons by
1331 near-threshold current steps. **a.** APs were elicited by 200 ms current steps of 40 pA
1332 (blue traces) and 60 pA (orange traces) amplitudes in control ($n = 5$) and SLG ($n = 5$)
1333 neurons kept at -60 mV membrane potential. Plot in **b.** shows that SLG neurons
1334 usually fire more APs at near-threshold (60 pA) current injections with respect to
1335 Controls. The estimated rheobase current values [93] did not differ in these two
1336 groups of neurons (56.5 ± 12.9 pA and 60.5 ± 12.8 pA, control and SLG neurons
1337 respectively).

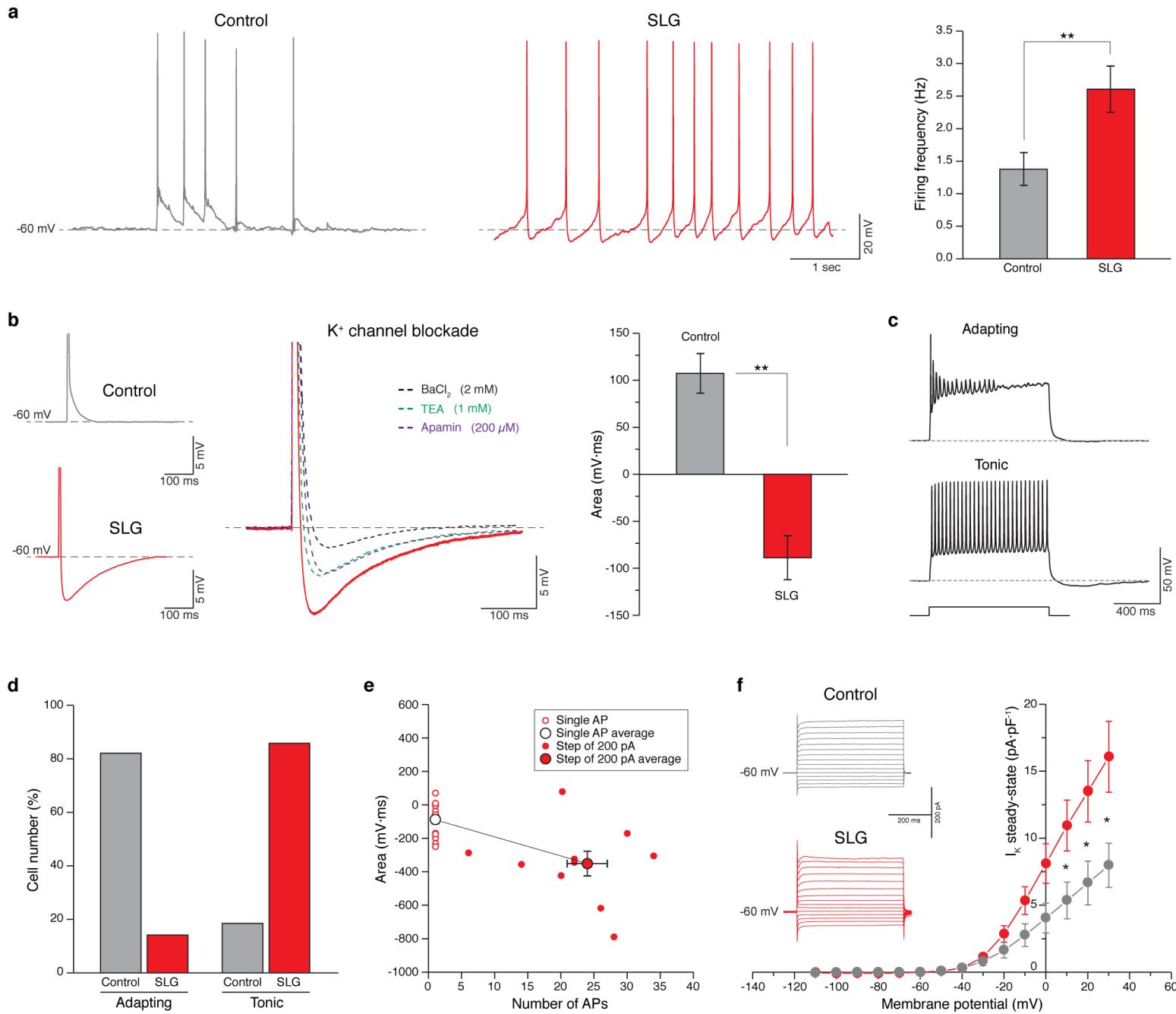
1338

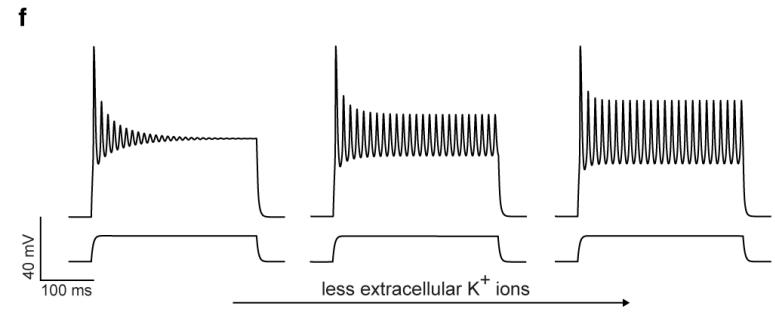
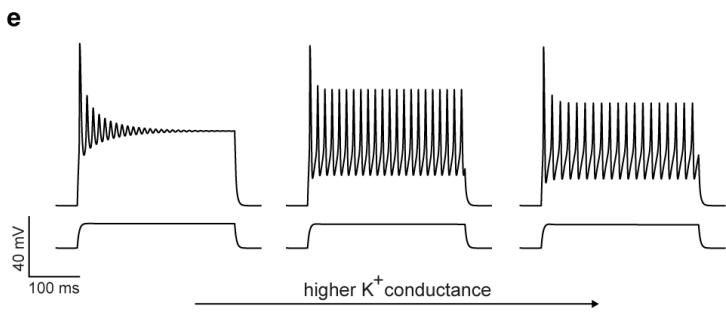
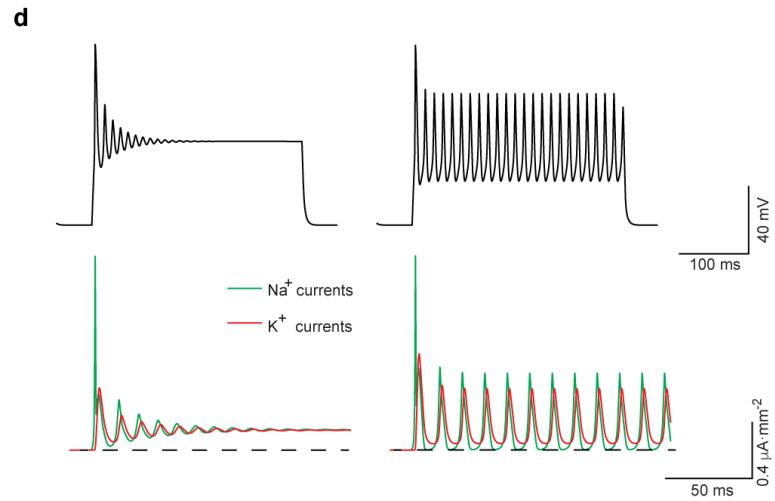
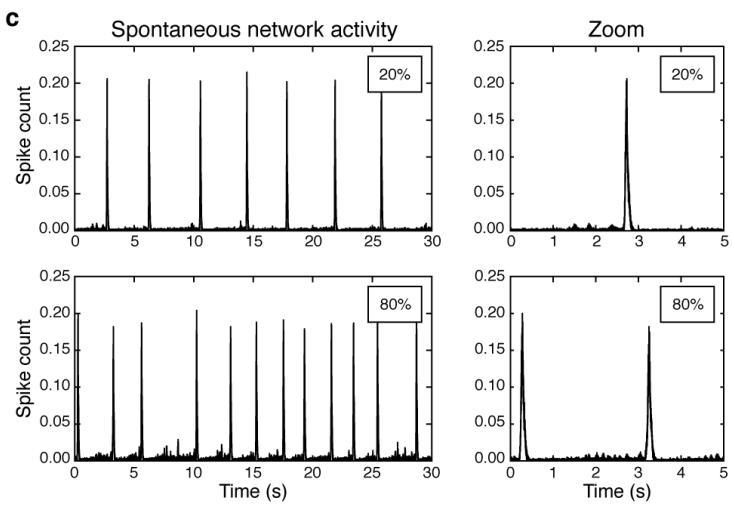
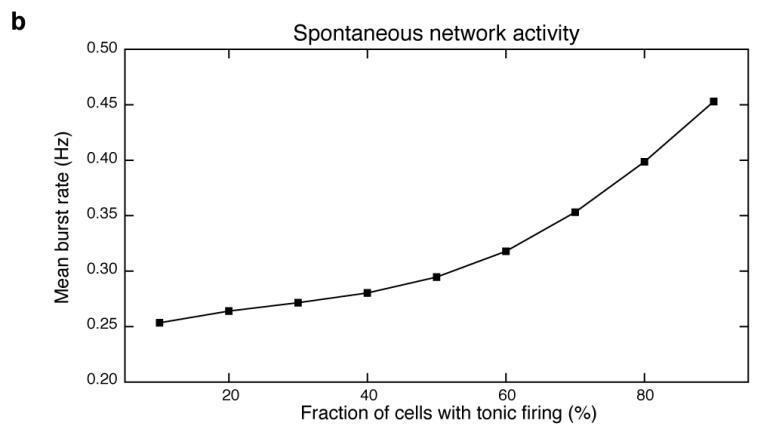
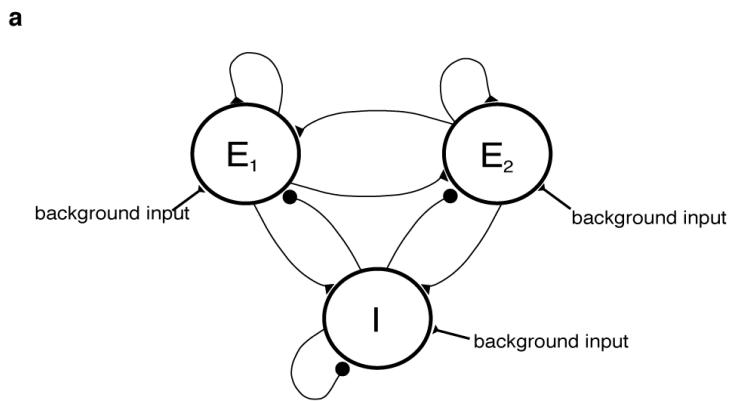
1339 **Supplementary Figure 4** The mathematical model of neuronal excitability
1340 considered in the paper was systematically explored testing the robustness of our
1341 conclusions. The space of parameters, represented by the ionic maximal
1342 conductances for sodium and potassium channels, was considered and subdivided
1343 in regions with transient (black) and sustained (white) firing responses. Increasing
1344 inward currents by the value of sodium maximal conductances obviously increases
1345 excitability: i.e. moving *from left to right while in the dark brings to the white*
1346 *peninsula*. However, there is a wide portion of the plane where increasing outward
1347 currents by the value of potassium maximal conductances also increases excitability:
1348 i.e. moving *from bottom to top while in the dark brings to the peninsula*. The
1349 transition of neuronal phenotype, observed comparing control and SLG conditions
1350 (Fig. 4c), resembles more the latter than the former case. Parameters: G_K in $[0.02$,
1351 $0.11]$ mS/mm 2 , G_{Na} in $[0.01; 0.91]$ mS/mm 2 , I_{stim} 20 nA/mm 2 .

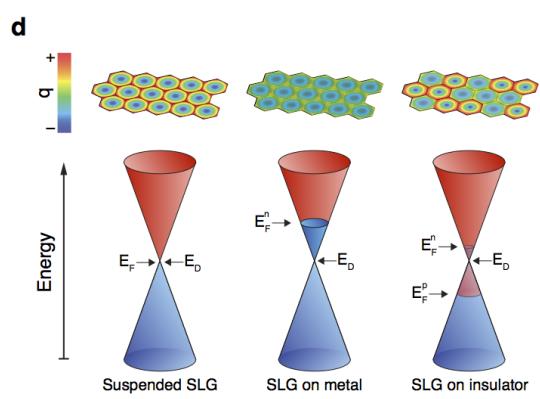
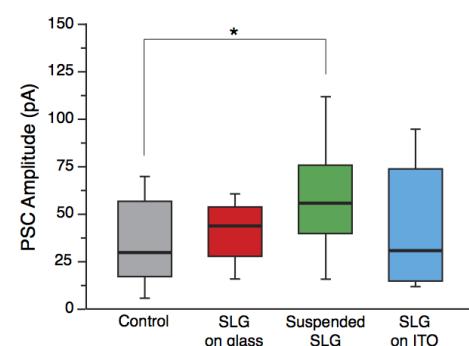
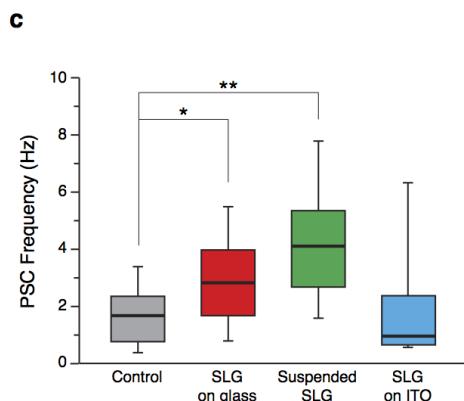
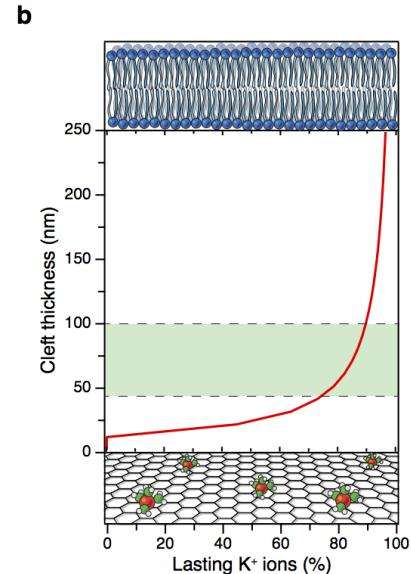
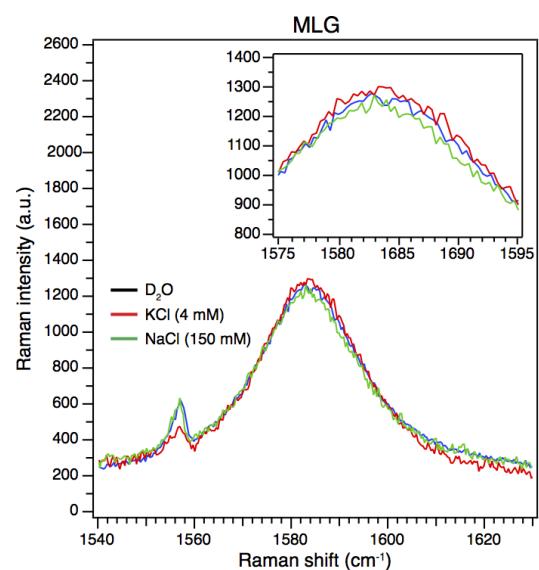
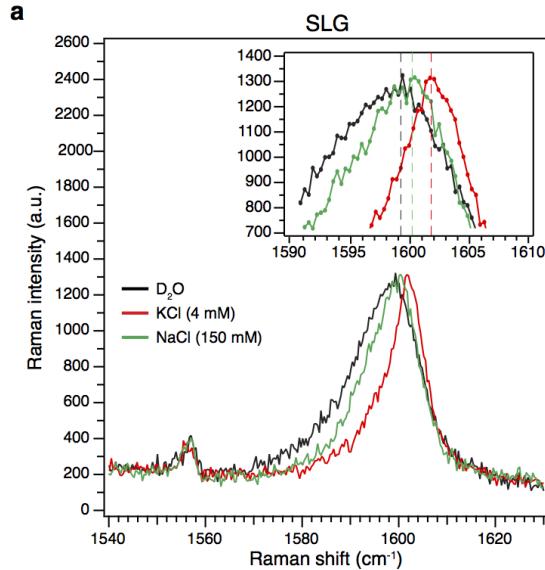

1352




1353 **Supplementary Figure 5 a**, Schematic representation of the technical modifications
1354 adopted in the standard backscattering Raman set-up to allow measurements taking


1355 advantage of a liquid cells to obtain graphene Raman spectra in genuine liquid
1356 conditions. **b**, SLG Raman spectra of G band in dry condition (e.g. after samples
1357 were carefully rinsed with D₂O and let dry in a N₂ box for 1 hour). Control condition
1358 (air, in black) is compared with spectra of graphene previously immersed in 4 mM
1359 D₂O of KCl (in red) and 150 mM solution of NaCl (in green). Note that, differently
1360 from the wet experiments depicted in Figure 6a, NaCl induce now in SLG a larger
1361 shift in G-Peak position than KCl (see inset).


1362







1363 **Supplementary Figure 6 a**, SEM image of a neuronal cell developed above a glass
1364 substrate. The white arrow indicates the cell region where focused ion beam (FIB)
1365 was used to obtain a cell cross section. **b**, SEM magnification of the milled cell
1366 portion. The image points out the presence of a gap between the cell process and
1367 the glass substrate (brighter region of electron accumulation) of about hundreds of
1368 nm, presumably filled with extracellular matrix and solution. **c**, A cartoon pointing out
1369 the different components visible in the cross section. Interestingly, the gap appears
1370 variable in its extent: larger centrally and smaller at the edges. **d**, SEM image of a
1371 neuronal cell developed above SLG. The arrow indicates the milled cell region. **e**,
1372 SEM image pointing out the presence of a similar gap between the cell process and
1373 the substrate of nearly one hundred of nm. The thin single layer of graphene, a
1374 fraction of nm in thickness, is not detectable but the underneath supporting glass is
1375 clearly visible (brighter region of electron accumulation). The cell/substrate distance
1376 appears smaller than on control glass. **f**, A cartoon pointing out the different
1377 components visible in the cross section. Lateral cellular or extracellular patches
1378 seem partially closing the gap. Scale bars are 5 μ m in a and d; 200 nm in b and e.

a**b****c**

