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ABSTRACT 1 

BACKGROUND: Autosomal dominant hypercholesterolemia (ADH) is associated with 2 

mutations in LDL receptor (LDLR), apolipoprotein B (APOB), and proprotein convertase 3 

subtilisin/kexin 9 (PCSK9) genes and is estimated to be greatly underdiagnosed. The 4 

most cost-effective strategy to increase ADH diagnosis is a cascade screening from 5 

mutation-positive probands. 6 

OBJECTIVE: To evaluate the results of ADH genetic analysis in our clinical laboratory 7 

between 2008 and 2016, giving service to most lipid units of Catalonia, an autonomous 8 

region of Spain with approximately 7.5 millions of inhabitants. 9 

METHODS: After the application of the Dutch Lipid Clinic Network (DLCN) clinical 10 

diagnostic score for ADH, this information together with blood or saliva was referred to 11 

our laboratory from 23 different Lipids Clinic Units. DNA were screened for mutations in 12 

LDLR, APOB and PCSK9, by the DNA-array Lipochip®, the next-generation 13 

sequencing SEQPRO LIPO RS® platform, and multiplex ligation-dependent probe 14 

amplification (MLPA). Simon Broome FH (SBRG) criteria was calculated in our 15 

laboratory and also analyzed for comparative purposes. 16 

RESULTS: A total of 967 unrelated samples with biochemical and/or clinical traits of 17 

ADH were analyzed. One hundred fifty-eight potential pathogenic variants were 18 

detected in 356 patients. The main components of the DLCN criteria associated with 19 

the presence of mutation were plasma LDLc, age and the presence of tendinous 20 

xanthomata. The contribution of family history to diagnosis was lower than in other 21 

studies. DLCN and SBRG were similarly useful for predicting the presence of mutation, 22 

CONCLUSION: In a real clinical practice, multicentric setting in Catalonia, the 23 

percentage of positive genetic diagnosis in patients potentially affected by ADH was 24 

38.6%. The DLCN showed a relatively low capacity to predict mutation detection but a 25 

higher one for mutation rule out. 26 

 27 
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INTRODUCTION 1 

 2 

Autosomal dominant hypercholesterolemia (ADH) is one common cause of 3 

dyslipidemia, i.e., classical hyperlipoproteinemia type 2A phenotype (HLP2A) 1. It is 4 

characterized by elevated plasma low-density lipoprotein cholesterol (LDLc) mainly due 5 

to defective cellular LDL receptor (LDLR) function, referred to as familial 6 

hypercholesterolemia (FH, OMIM # 143890). In a recent exome sequencing study of 7 

9,793 cases with early myocardial infarction, LDLR rare variants were identified as the 8 

most common genetic defect 2.ADH includes variants in other genes encoding proteins 9 

that interact with LDLR, such as the LDLR ligand, apolipoprotein B-100 (APOB) gene 1, 10 

referred to as familial ligand-defective hypercholesterolemia (OMIM #144010), and the 11 

LDLR catabolic regulator, proprotein convertase subtilisin/kexin type 9 (PCSK9) gene, 12 

referred to as FH3 (OMIM #603776). A mutation in the APOE gene has also been 13 

found to be associated with ADH 3. There are also recessive forms of HLP2A, mainly 14 

due to variants in the low-density lipoprotein receptor adaptor-protein 1 gene 15 

(LDLRAP1) and referred to as autosomal recessive hypercholesterolemia (ARH, OMIM 16 

#603813). 17 

 18 

Heterozygous ADH was generally believed to affect 1 in 500 individuals, although it 19 

was found to affect 1 in 250 in Denmark 4 and Catalonia 5, data that could actually 20 

reflect the actual worldwide ADH prevalence 6. Cholesterol-lowering treatment with 21 

statins has been shown to dramatically reduce CHD risk in patients with ADH 7 . 22 

Therefore, early detection of subjects carrying pathogenic variants in LDLR, APOB 23 

and/or PCSK9, combined with a cholesterol-lowering therapy, which is also cost-24 

effective from a socioeconomic point of view, should be used to decrease CHD at a 25 

population level 1. A recent study showed that patients with FH and confirmed 26 

mutations in LDLR had an increased risk of premature CHD compared with women 27 

with genetically unexplained FH 8. Thus, the genetic confirmation of ADH may be 28 
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important to identify patients at higher risk of CHD 9. Characterizing LDLR pathogenic 1 

variants is thus a key point to provide an accurate diagnosis of ADH. In addition, it 2 

could help to predict patients’ statin response, depending on the LDLR class mutation 3 

10, and be of help to estimate their cardiovascular disease risk 11 In general, patients 4 

homozygous or compound heterozygous for LDLR variants, or double heterozygous for 5 

LDLR and APOB variants present a more severe phenotype than simple heterozygous 6 

12. 7 

 8 

The clinical diagnosis of ADH includes an increase in plasma LDL cholesterol (>4.9 9 

mmol/L or 190 mg/dl), a family history of hypercholesterolemia, a personal and/or first-10 

degree family history of premature CHD, the presence of tendinous xanthomata (TX), 11 

and/or premature arcus cornealis (prior to 45 years). These symptoms are often scored 12 

clinically by applying the Dutch Lipid Clinic Network (DLCN) modification of the Make 13 

Early Diagnosis to Prevent Early Death (MedPed) criteria 1, 13. Other countries, such as 14 

the U.K., use the Simon Broome Register Group (SBRG) criteria for this purpose 14. 15 

 16 

A major—if not the main—reason for the genetic analysis of ADH is to perform a direct 17 

genetic cascade with the aim of detecting the greatest number of affected individuals. 18 

This is particularly relevant since ADH is underdiagnosed and undertreated 1. Our 19 

study is an example of a targeting approach in a clinical, multicentric setting, prior to 20 

developing a thorough cascade screening based on the genetic analysis of first-degree 21 

relatives of mutation-positive ADH probands.  22 

 23 

MATERIALS AND METHODS 24 

Patients 25 

A total of 967 citrate blood or saliva samples from unrelated patients with biochemical 26 

and/or clinical traits of ADH referred to our laboratory (Biochemistry Service, Hospital 27 

Santa Creu i Sant Pau, Barcelona) from 23 lipid clinic units around Catalonia, from July 28 
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2008 to December 2016, were studied. Catalonia is an autonomous region of Spain 1 

with approximately 7.5 millions inhabitants. In our country, lipid clinic are located in 2 

hospitals and include one or more specialists of Internal Medicine, Endocrinology, 3 

Cardiology, Pediatrics or Clinical Laboratory. Most Catalan lipidologists belong to and 4 

participate in the Catalan Network of Lipids and Atherosclerosis, XULA, a non-profit 5 

organization created to improve the assistance and clinical research in preventive 6 

cardiovascular medicine. A concrete XULA mission is to coordinate efforts in 7 

preventive cardiovascular medicine with specialists in Family Medicine. The clinical 8 

diagnosis of ADH was assessed after the application of the DLCN criteria 1, 13, which 9 

are based on the presence of the typical physical symptoms of xanthomas, 10 

xanthelasmas and arcus cornealis; a family and personal history of cardiovascular 11 

disease; and LDL-cholesterol levels (in all cases, obtained before treatment). Although 12 

genetic analysis of ADH index cases was recommended only when DLNC ≥ 6, all 13 

samples that arrived at our clinical laboratory were processed, since in some specific 14 

cases the suspicion of ADH was not based only on the DLCN score. Only 80 of the 15 

patients studied were followed at our hospital. Thus, clinical and/or biochemical data 16 

were provided, in a summarized DLNC score form, by the medical center of origin, 17 

dispersed throughout the Catalonia territory. The SBRG criteria was calculated in our 18 

laboratory in case of a detailed DLCN score was provided. The Ethics Committee of 19 

the Hospital de la Santa Creu i Sant Pau reviewed and approved the study protocol. 20 

Only individuals who provided their written informed consent were included in this 21 

study. 22 

 23 

DNA analysis 24 

Genomic DNA was extracted from the leukocytes of peripheral whole blood samples, 25 

obtained after 12 hours of fasting, or saliva collected in Oragene® DNA sample 26 

collection kit (DNAGenotek) using a QIAamp DNA Blood Mini Kit (Qiagen) according to 27 

the manufacturer’s instructions. From July 2008 to June 2012, 515 DNA samples were 28 
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analyzed using a DNA-array (LIPOchip®, Progenika Biopharma, Derio, Spain) 1 

following a procedure described elsewhere 15, 16. We used versions 7 to 9 of this 2 

microarray, which detect the presence of the approximately 250 most frequent Spanish 3 

point mutations in the LDLR, the APOB exon 26, and the PCSK9 p.Ser127Arg, 4 

p.Phe216Leu, p.Arg218Ser, and p.Asp374Tyr variants, as well as the copy number 5 

variations (CNV) of the LDLR. From July 2012 to December 2016, 452 samples were 6 

analyzed using the next-generation sequencing (NGS) kit SEQPRO LIPO RS® 7 

(Progenika Biopharma Grifols, Derio, Spain)17. This kit detected mutations in LDLR, 8 

APOB, PCSK9, and LDLR adapter protein 1 (LDLRAP1) genes, and CNV in LDLR. To 9 

correct discrepancies between the two methodologies, samples negative by Lipochip® 10 

and with DLCN ≥ 8 (n=181) were sequenced by NGS using an Ion AmpliSeq custom 11 

panel (Thermofisher, Waltham, MA, USA) and also tested for CNV in the LDLR by the 12 

multiplex ligation-dependent probe amplification (MLPA) method, using the SALSA 13 

MLPA P062 LDLR probe mix kit (MRC-Holland, Amsterdam, Nederland) according to 14 

the manufacturer’s instructions. 15 

 16 

Variant characterization and bioinformatics analysis 17 

The nomenclature of the allelic variants follows the recommendations of the Human 18 

Genome Variation Society (http://www.hgvs.org). Point mutations causing premature 19 

stop codons, small insertions or deletions, causing a frameshift and a premature stop 20 

codon, large rearrangements, and mutations affecting intron donor or acceptor splice 21 

sites (positions +1, +2, -2 or -1) were considered directly as pathogenic. The rest of the 22 

variants (synonymous, missense, in frame small insertions and deletions, mutations 23 

affecting promoter, 5’UTR or 3’UTR, and intronic variants) were considered pathogenic 24 

depending on the existence of functional analysis previously reported in the literature, 25 

the justification as pathogenic or likely pathogenic in databases, like Exome 26 

Aggregation Consortium (exac.broadinstitute.org), 1000 Genomes Project 27 

(browser.1000genomes.org), Exome Variant Server (evs.gs.washington.edu/EVS), 28 
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ClinVar (www.ncbi.nlm.nih.gov/clinvar), UCL-LDLR (www.ucl.ac.uk/ldlr/LOVDv.1.1.0/), 1 

and Human Gene Mutation Database (www.hgmd.org). In the absence of the previous 2 

information, a variant was considered pathogenic, or likely pathogenic, when most of 3 

the programs used for bioinformatics analysis concluded a probable alteration in gene 4 

regulation, protein function, or protein expression. 5 

For bioinformatic analysis, the impact of point mutations on the protein structure and 6 

function were assessed with SIFT (sift.bii.a-star.edu.sg)18, PolyPhen2 7 

(genetics.bwh.harvard.edu/pph2/index.shtml)19, Panther (www.pantherdb.org)20, 8 

Provean (provean.jcvi.org)21, i-Mutant (gpcr.biocomp.unibo.it/cgi/predictors/I-9 

Mutant3.0)22, SNPs3D (www.snps3d.org)23, PMut (mmb.pcb.ub.es/pmut2017)24 10 

Mutation Taster (www.mutationtaster.org)25, and Mutation Assessor software 11 

(mutationassessor.org)26. Variants affecting introns were analyzed using Human 12 

Splicing Finder v.3.0 software (www.umd.be/HSF3/HSF.html)27. 13 

 14 

Statistical analyses 15 

Data are presented as means (standard deviation) for continuous variables, and 16 

frequencies for categorical variables. The plasma LDLc cholesterol of patients without 17 

treatment was used in logistic regression in categorized form, according to DLCN 18 

criteria 1, i.e. 1) <155 mg/dL, 2) 155–189 md/dL, 3) 190–249 mg/dL, 4) 250–329 mg/dL, 19 

and 5) >330 mg/dL. Differences in the mean values between groups were assessed by 20 

Student’s t-test, and categorical variables were compared using the chi-square test. 21 

Statistical calculations were performed using SPSS v13.0 for Windows (SPSS Inc). A 22 

value of P<0.05 was considered statistically significant. 23 

 24 

RESULTS 25 

 26 

Nine hundred sixty-seven unrelated samples from independent patients were included 27 

in this study, 46.2% males and 53.8% females, with a mean (SD) age and DLCN score 28 
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of 44 (14.3) years, and 7.82 (3.4), respectively (Table 1). A total of 23 hospitals around 1 

Catalonia participated in the study and provided clinical and/or biochemical (DLCN) 2 

data. However, the clinical and biochemical information provided was sometimes 3 

incomplete: 30 of the samples were sent without a DLCN score and 89 were sent 4 

without a detailed DLCN score.  5 

 6 

A putative pathogenic variant was detected in 386 (39.9%) subjects. Of them, 361 7 

(93.5%) were heterozygous, 23 (6%) compound heterozygous, one (0.26%) double 8 

heterozygous LDLR-PCSK9 and one (0.26%) homozygous. 9 

 10 

A total of 176 putative pathogenic variants were identified (Supplementary Table 1): 11 

172 (97.7%) in LDLR, two (1.14%) in APOB and two (1.14%) in PCSK9. Ninety-five 12 

(55.2%) of the LDLR variants were missense or in-frame mutations, nine (5.2%) affect 13 

promoter or 5’UTR, 35 (20.3%) were nonsense or frameshift mutations, 18 (10.5%) 14 

were splicing mutations, 12 (7.0%) were large rearrangements and three (1.7%) were 15 

synonymous variants with a potential functional effect. The two variants in APOB were 16 

missense mutations affecting the same residue (p.Arg3527Trp and p.Arg3527Gln) in 17 

exon 26. One of the PCSK9 variants was a missense mutation (p.Arg496Trp) and the 18 

other was an in-frame insertion (p.Leu22_leu23dup). Twenty-one of the variants were 19 

novel, all in the LDLR gene.  20 

 21 

A database search and bioinformatic analysis of the variants resulted in 152 (86.4%) 22 

probably pathogenic, six (3.4%) possibly pathogenic, three (1.7%) conflicting 23 

interpretation and 15 (8.5%) probably benign variants.  24 

 25 

It is noteworthy  that not all patients with two LDLR variant alleles present with a severe 26 

homozygous phenotype28. Four of the variants were always associated with another 27 

one: c.1690A>C (p.Asn564His) with c.2397_2405del (p.Lys799_Phe801del) in eight 28 
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subjects, and c.313+1G>C with c.274C>G (p.Gln92Glu) in five subjects. In the first 1 

case, each of these isolated variants had little effect on receptor function, but together 2 

reduced the receptor function by 80% 29, 30. In the second case, only one of the variants 3 

(c.313+1G>C) was likely pathogenic; therefore, patients were considered single 4 

heterozygotes. Of the remaining 10 compound heterozygotes, only one presented a 5 

combination of pathogenic variants (p.Gly335Ser and p.Ala540Thr), two a combination 6 

of probably benign variants, and the rest, likely a pathogenic/benign combination. 7 

 8 

Of the three synonymous variants, c.48C>A (p.Leu16Leu) was identified once, in one 9 

patient carrying the nonsense variant c.2001T>A (p.Cys667*), a three-year-old girl, 10 

with no reported DLCN. The in silico analysis shown the potential deleterious effect of 11 

this variant on splicing, but it was considered a silent variant in ClinVar and LOVD-12 

LDLR databases31. An in vitro analysis of another synonymous variant, c.621C>G (p-13 

Gly207Gly), supports an alteration of splicing leading to an in-frame deletion of 75 bp 14 

32. The third synonymous variant, c.1503G>A, lacks functional studies that demonstrate 15 

splicing impairment; our in silico analysis was inconclusive, so we considered it 16 

probably nonpathogenic, in accordance with UCL-LDLR database 31. 17 

 18 

The most frequent pathogenic variant was the missense APOB c.10580G>A (22 19 

patients), followed by the frameshift c.1045del (13 patients), the nonsense c.1342C>T 20 

(11 patients) and the splicing c.1845+1G>C (11 patients) variants, all in the LDLR 21 

(Supplementary Table 1). 22 

 23 

Regarding the type of mutation in LDLR, large rearrangements presented the highest 24 

DCLN score (Supplementary Table 2), followed by nonsense + frameshift, missense 25 

+ inframe, splicing + intronic and promoter + 5’UTR, in descending order, although the 26 

differences were not statistically significant (p = 0.482). The DCLN score, however, 27 
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was significantly different between missense + frameshift LDLR (mean 9.64) and 1 

APOB variants (mean 7.09) (p = 0.024). 2 

 3 

The patients with a positive genetic diagnosis were younger than those without genetic 4 

defects (p =1.5E-06) and presented a higher DLCN score (9.1) than negative patients 5 

(7.1) (p = 7.95E-16; Table 1). These differences were mainly due to the LDLc levels: 6 

patients with a positive genetic diagnosis presented a family history with a higher 7 

frequency of hypercholesterolemic relatives, both adults and children, and a personal 8 

history of higher LDLc (Table 1). As shown in Figure 1, the distribution profile of LDLc 9 

classes was significantly different between patients with or without a pathogenic variant 10 

(p = 1.36E-16). In addition, the personal history of TX was more frequent in mutation-11 

positive than in mutation-negative patients (Table 1). It is noteworthy that there were 12 

no differences between groups between family and personal histories of premature 13 

coronary, cerebral or peripheral disease (Table 1).  14 

 15 

The variables independently associated with genetic diagnosis were plasma LDLc, a 16 

family history of hypercholesterolemia, both adult and children, a personal and family 17 

history of TX and a personal history of premature CAD, while age was inversely 18 

associated with the presence of a mutation (Table 2). Together, these variables 19 

explained up to 27% of the genetic diagnosis variation, and age alone accounted for 20 

7.3% of the variation. Nevertheless, it is of note that only 37%, 50% and 48% of 21 

patients with a first-degree family history of hypercholesterolemia, children (aged <18 22 

years) with hypercholesterolemia, and patients with first-degree relatives with TX, were 23 

positive for genetic diagnosis, respectively. The frequency of mutation carriers in the 24 

group with a personal history of TX and premature CAD were 45% and 39%, 25 

respectively. In fact, of the factors that contribute to the DLCN score calculation, only 26 

subjects with plasma LDLc above 330 mg/dL exceeded 50% of positives, reaching up 27 

to 75%.  28 
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 1 

As some of the most frequently used clinical diagnostic criteria, DLNC and SBRG give 2 

priority to positive genetic testing, in this study we considered the presence of a 3 

pathogenic variant as the reference diagnostic method. The proportion of mutation 4 

positives increases as the DLCN score increases (Figure 2), reaching a value of 5 

50.7% when the clinic diagnosis was definite (DLCN > 8). Therefore, it is noteworthy 6 

that distribution of groups reflects degrees of diagnostic suspicion of FH rather than 7 

representing a population-based sampling. The predictive values of the presence of a 8 

mutation were determined for the DLCN and SBRG criteria (Table 3). The “probable + 9 

definite” (DLCN ≥ 6) diagnosis of FH showed a good diagnostic sensitivity (89.4%) but 10 

low diagnostic specificity (24.5%), while the “definite” diagnosis of ADH showed limited 11 

sensitivity (45.5%) and moderate specificity (74.4%). In our sample, the cutoff DLCN 12 

score that maximized the AUC was DLCN ≥ 8 (60.1% sensitivity, 62.3% specificity). 13 

With respect to the predictive values, positive predictive values (PPVs) were lower than 14 

negative predictive values (NPVs) in all DLCN classes. Moreover, for DLCN  6 the 15 

accuracy, defined as the probability of a correct diagnosis, i.e. the number of correctly 16 

diagnosed divided by all subjects, was 48.6 %, increasing to a moderate 63.3% for 17 

DLCN > 8 (Table 3).  18 

 19 

The SBRG criteria showed PPV, NPV and accuracy values slightly lower than DLCN. 20 

In case of “definite” SBRG clinical diagnosis, the sensitivity was lower than DLCN, only 21 

26.4%, but specificity was higher, 82.4%. The level of agreement between DLCN and 22 

SBRG diagnostic criteria, measured by kappa test, were k = 0.31, meaning a fair 23 

agreement between both methods. 24 

 25 

The predictive values for the different diagnostic components from Table 1 were also 26 

calculated (Supplementary Table 3). The cutoff point for LDLc with the best balance 27 

of sensitivity and specificity was LDLc ≥ 250 mg/dL (6.5 mmol/L, Youden index 0.22) 28 
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Except for an extreme LDLc (> 330 mg/dL), PPV were lower than NPV, as DLCN and 1 

SBRG. Nevertheless, the accuracy was, in general, better for the different components 2 

than for DLCN ≥ 6 or “possible + definite” SBRG criteria, and similar for “definite” 3 

diagnostic of both criteria.  4 

 5 

DISCUSSION 6 

 7 

We report here our nine-year experience in the molecular diagnosis of ADH in a clinical 8 

setting, as a reference laboratory for a region of 7.5 million inhabitants. This study is 9 

the first part of a project aimed at increasing the detection of ADH patients by a genetic 10 

cascade screening in relatives of mutation-positive probands. Since 2005, the Catalan 11 

Health Department (SCS) has prioritized the genetic screening of ADH at a selected 12 

network of lipid and atherosclerosis units, which is currently composed of 23 nodes. 13 

However, and despite this approach, it is noteworthy that current recommendations 14 

advice the use of the clinical/biochemical FH diagnosis for cascade screening in 15 

addition to the genetic one33. 16 

 17 

 We achieved a genetic confirmation in 36.8% of subjects, a percentage of positives 18 

slightly lower than 41.4% and 41.5% reported in Spanish 15 and Portuguese 34 19 

populations, respectively, but similar to other European 35-38 and non-European 39, 40 20 

populations. Since these studies used similar genetic diagnostic methods, mainly 21 

sequencing and MLPA analysis, potential explanations of the low number of mutation-22 

positive probands in our sample could be differences in the recruitment of patients. 23 

Regarding this, and considering only lipid units that sent more than 30 patients, the 24 

differences among centers in the percentage of mutation-positive patients were 25 

statistically significant (p < 0.0001), ranging from 18.1% to 56.1%.  26 

 27 



 15 

Considering the price of each ADH genetic case index study, 1,358 euros were needed 1 

for each positive genetic diagnosis. It is noteworthy that, in our hands, a much lower 2 

expense is needed for the molecular diagnosis of first-degree relatives of genetically-3 

positive index cases. This is explained by a 6-fold lower price of the Sanger mutation-4 

specific sequencing used and, also, to the higher percentage of genetically-positives 5 

obtained in these familial studies (data not shown). Therefore, we are currently trying to 6 

fully implement this genetic ADH cascade approach. 7 

 8 

In our sample the contribution of family history is low compared with another study in a 9 

Spanish population 41, where 98% of subjects reported a family history of 10 

hipercholesterolemia, 75% children aged <18 years hypercholesterolemia, and 50.4% 11 

first-degree relatives TX and/or arcus cornealis, versus 59.1%, 26.1%, and 6.5% in our 12 

sample, respectively. It is possible that, at least in part, this means that our study 13 

included fewer patients from registries with a previous and extensive follow up, and 14 

more relatively new patients with a clinical suspicion of ADH. Indeed, in our case, the 15 

reported DLCN score was based mainly on personal history and, to a lesser extent, on 16 

family history. This is also facilitated by social factors, like increased divorces, and 17 

geographical mobility, which makes it difficult to keep in contact with other family 18 

members and to recall health information, such as TX in relatives or young members 19 

with hypercholesterolemia. 20 

 21 

With respect to clinical diagnostic methods, DLCN and SBRG seemed to be equally 22 

useful for predicting the presence of mutation, presenting a fair agreement between 23 

methods . Nevertheless, the predictive values obtained indicate that DLCN and SBRG 24 

were better at predicting a negative value than a positive one, with slightly better values 25 

for DLCN than SBRG, as in other similar studies41-43. In our case, including DLCN 26 

scores equal to 8 in the definite DLCN diagnostic gave the best balance of sensitivity 27 

and specificity. In the case of “probable + definite” (DLCN ≥ 6), only 41.1% were 28 
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mutation positive, while close to 80% of DLCN < 6 were mutation negative. It is well 1 

known that the predictive values are influenced by the proportion of mutation positives 2 

in the sample, i.e., the prevalence of genetically confirmed ADH, so this result could be 3 

due to a low number of mutation positives with DLCN in our sample (36.8%). However, 4 

in another study with a similar number of positives (38.4%), and similar sensitivity 5 

(89.1%), PPV and NPV for DLCN ≥ 6 were higher than ours: 53.5% and 88.4%, 6 

respectively 39. In this context, it is noteworthy that the difference in DLCN scores 7 

between mutation-positive and mutation-negative patients was similar to scores 8 

obtained in studies from a Spanish population 15. One possible explanation could be 9 

errors in the application of the diagnostic criteria or because genetic analysis was used 10 

in cases that were unlikely to have the disease (such as to try to exclude ADH when 11 

DLNC was low, or to try to diagnose the patient as affected by ADH so he or she could 12 

qualify for lower prices in statins and/or ezetimibe, as would have been the case of 13 

Catalan patients with genetically confirmed ADH). On the other hand, potential 14 

limitations of the conducted genetic diagnostic analyses, NGS and DNA-array based 15 

techniques, include the lack of consistent detection of large rearrangements. However, 16 

in our case, the analysis of a subsample of 181 mutation-negative probands by MLPA 17 

showed only two carriers (1.1%) of a previously undetected large deletion. Further, the 18 

percentage of large rearrangement carriers in the total sample (8.4%) was similar to 19 

other studies in a Spanish population 15, 44.  20 

 21 

In our sample, the main component of the DLCN associated with positive genetic 22 

diagnosis was the plasma LDLc level, which explains up to 10.6% of variation in 23 

genetic diagnosis. Approximately 50% of the interindividual variation in the LDLc 24 

plasma level is attributable to genetic variation 45, mainly due to the cumulative effects 25 

of multiple sequence variants in an individual. The overlap in the LDLc plasma level 26 

between heterozygous carriers and non-carriers is to a large extent due to the high 27 

prevalence of modestly severe LDLR mutations, at least in The Netherlands 46. Only 28 
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very high plasma levels correspond to monogenic forms of hypercholesterolemia, i.e., 1 

functional variants in LDLR, APOB or PCSK9 genes. Other very rare gene mutations 2 

causing recessive hypercholesterolemia are also known, including the LDL receptor 3 

adaptor protein 1 (LDLRAP1) and cholesterol 7α-hydroxylase deficiency 47. 4 

Sitosterolemia can also be confounded with FH 48, 49. However, these alternative 5 

possibilities are expected to explain only a very minor part of the mutation-negative 6 

ADH patients, and it is unlikely that pathogenic variations in other genes affecting LDL 7 

metabolism could explain a significant number of cases. These observations raise the 8 

possibility of polygenic hypercholesterolemia in patients until now considered to have 9 

monogenic ADH. Further, a recent study proposed the diagnosis of polygenic 10 

hypercholesterolemia in three out of every four ADH mutation-negative patients by 11 

analyzing six SNPs of the following five genes: CELSR2, APOB, ABCG5/G8, LDLR, 12 

and APOE 50. The potential existence of a polygenic hypercholesterolemia in patients 13 

who, until now, were considered to have monogenic ADH has initiated a debate on 14 

whether the cascade is suitable in mutation-negative, potentially polygenic ADH 50, 51. In 15 

any case, our ADH diagnosed patients, in which no monogenic causes were found, 16 

present with an increased burden of common risk variants that increase LDL 17 

cholesterol, compared to the control population 52. Polygenic forms of disease are 18 

usually characterized by a late-onset expression. As in most published studies, 19 

mutation carriers were younger than non-carriers39, 53-58, and in fact the number of 20 

positive genetic diagnoses decreased with age (Supplementary Figure 1). As the 21 

logistic regression analysis indicates (Table 2), age was inversely related to the 22 

presence of a mutation and explains the 7.3% of genetic diagnosis variability. Some 23 

studies exclude patients under age 18 years, but in our sample, in the age range of 0-24 

21 years (74 subjects), we obtained 51.4% mutation positives (Supplementary Figure 25 

1). Moreover, the mean DLCN score increases with age in mutation carriers, but not in 26 

non-carriers (Supplementary Figure 2). Some authors have suggested that different 27 

clinical criteria score thresholds depending on age should be considered 57. Efforts to 28 
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further differentiate monogenic and polygenic forms of hypercholesterolemia with 1 

clinical, biochemical, and familial data could help to improve mutation detection, which 2 

is a critical step from which to develop genetic cascade screening. In a recent study, 3 

close to 30% of mutation-negative hypercholesterolemic patients presented an extreme 4 

LDL weighted genetic risk score (wGRS), compared with 11.8% in the 1000 Genomes 5 

Project 59. However, the difference between patients with extreme wGRS and those 6 

without, did not seem to be reflected in the LDLc plasma level. Therefore, other 7 

phenotypic traits must be studied. 8 

 9 

Possible explanations for the relatively low number of genetic confirmation could relate 10 

to limitations of the molecular detection methods employed, and the possibility of 11 

polygenic forms of FH. With the recent introduction into the clinic of high-throughput 12 

sequencing and CNV detection methods, the possibility of undetected mutations in 13 

candidate genes has been reduced. Also, pathologic variants in unidentified genes are 14 

expected to explain only a minor part of mutation-negative patients. Given the 15 

complexity of FH genetics, clinical and biochemical diagnosis will certainly still be the 16 

major diagnostic tool in many patients. In our case, as in other studies with patients 17 

referred to lipid clinics 40-42, 60, DLCN and SBRG were both useful tools, with slightly 18 

better results for DLCN > 5 (definite + probable). The best balance between sensibility 19 

and specificity were obtained including DLCN = 8 in the definite category, and including 20 

possible (DLCN 3-5) identified most mutation carriers (37.3 %), However, as a 21 

difference with other studies 42, this was obtained with low specificity (24.5 %). The 22 

presence of xanthomata was not as predictive of the presence of mutation as LDLC, as 23 

a difference with other studies 40, 41, 60. In some cases, the difference could be related 24 

with the severity of the clinical phenotype of the studied population 41. Some authors 25 

proposed the use of plasma pre-treatment LDLc as an alternative clinical diagnostic 26 

criteria 40, 41, 57. In our case LDLc was the best parameter related to the presence of 27 

mutation, and LDLc ≥ 250 mg/dL showed a Youden index of 0.22, equal to DLCN > 8, 28 
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so in the case of difficulties in obtain personal and family history data, LDLc cutoff 1 

value of 250 mg/dL could be a good alternative. Finally, the presence of mutation-2 

positive cases in patients with “possible” and “unlikely” categories was 20.2 and 23.1%, 3 

respectively, with a decreasing positive rate as the age increases, thus supporting the 4 

convenience of the screening for FH at a young age 61. 5 

 6 

Limitations 7 

Our study has several limitations. The DLCN score was calculated in the lipid unit of 8 

origin by different physicians, and we did not have access to raw data like personal and 9 

family histories or the lipid profile, or serum or plasma samples before pharmacological 10 

treatment. Therefore, we can neither test the uniformity in the application of DLCN 11 

criteria nor perform genotype-phenotype association studies. As pointed out before, our 12 

sample consists mainly of recently diagnosed patients, not of a cohort with an 13 

extensive follow-up. Finally, a small percentage of mutations could have been 14 

undetected in 206 patients with DLNC < 8 studied between 2008 and 2012 and 15 

mutation negative with LIPOchip®, which detected the 250 most frequent mutations in 16 

Spain, as these patients (unlike those with DLNC ≥ 8) were not subjected to NGS and 17 

MLPA. 18 

 19 

Conclusions 20 

 21 

In a real clinical practice setting in Catalonia, and in our hands, the percentage of 22 

pathogenic variants detected in patients who were considered likely to have FH is 23 

38.6%. The relatively low number of mutation-positive probands in our sample could be 24 

due to differences in patient recruitment which would –at least in part- explain up to a 25 

3.1-fold difference in the ratio of mutation detection from different centers. In this 26 

context, DLNC scores of ≥ 6 are expected to yield only around 40% of potential 27 
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pathogenic variants, with only 50.7% in DLNC >8, whereas about 80% of DLNC scores 1 

< 6 are expected to be mutation negative.  2 

 3 

This study has comprehensively evaluated the results of the effort performed so far to 4 

genetically diagnose FH in our region. The effort should be continued with an emphasis 5 

in familial-cascade diagnosis of the disease, which should include not only genetic 6 

diagnosis but also the clinical and biochemical diagnosis, which will be especially 7 

needed in cases in which no mutations are identified.  8 

 9 
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Total FHM- FHM+ p-value
1

N (%) 967 611 (63.2%) 356 (36.8%)

Method

LIPOchip
®
, n (%) 515 (53.3%) 330 (64.1%) 185 (35.9%)

SEQPRO LIPO RS
®
, n (%) 452 (46.7%) 281 (62.2%) 171 (37.8%) ns

Sex

Males (%) 46.2% 46.2% 46.0%

Females (%) 53.8% 53.8% 54.0% ns

Age (yrs)
2

44.0 (14.3) 45.8 (13.6) 41.0 (14.9) 1.51E-06

DLCN
2

7.82 (3.4) 7.08 (2.8) 9.07 (4.1) 7.95E-16

Family history

1a. first degree realtive with premature
3
 coronary 

and/or vascular disease 42.4% 44.8% 38.3% ns

1b. first degree realtive with LDL-c > 210mg/dL 59.1% 54.1% 67.5% 3.50E-04

1a and/or 1b 80.3% 78.9% 82.7% ns

2a. first degree realtive with tendinous xanthomata 

and/or arcus cornealis 6.5% 5.3% 8.6% ns

2b. children aged <18 yrs with LDL-c >150 mg/dL 26.1% 20.6% 35.6% 3.27E-06

2a and/or 2b 34.4% 28.1% 45.0% 5.70E-07

Clinical history

3a. patients with premature
3
 coronary artery disease 10.3% 10.0% 10.7% ns

3b. patients with premature
3
 cerebral or peripheral 

vascular disease 5.1% 5.5% 4.4% ns

Physical examination

4a. tendinous xanthomata 17.7% 15.5% 21.4% 0.029

4b. arcus cornealis before 45 years of age 18.2% 17.5% 19.2% ns

LDL-cholesterol

5a. LDL-c > 330 mg/dL 11.1% 4.5% 22.0% 4.10E-15

5b. LDL-c 250-329 mg/dL 42.5% 40.8% 45.3% ns

5c. LDL-c 190-249 mg/dL 40.8% 47.5% 29.6% 2.50E-07

5d. LDL-c 155-189 mg/dL 3.3% 4.0% 2.2% ns

2
. mean (standard deviation)

3
. premature: men aged <55 years, women aged <60 years.

Table 1: Characteristics of the population studied according to the absence (FHM-) or presence (FHM+) of a mutation.

1
. Chi-square testing for frequency comparison, or indepenednt-samples T-test for age and DLCN score. ns = not significant.

 1 
 2 
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Variable B p Value Odds Ratio (95% C.I.) Adjusted R
2

LDLc (mg/dL) 1.085 9.7E-18 2.959 (2.31-3.792) 0.106

Age (yrs) -0.043 1.9E-09 0.958 (0.945-0.972) 0.179

Children aged <18 and LDLc>150 mg/dL 0.903 4.3E-06 2.467 (1.679-3.625) 0.218

Tendinous xanthomata 0.847 0.00016 2.332 (1.503-3.62) 0.233

First degree relative with LDLc>210 mg/dL 0.607 0.0014 1.835 (1.265-2.661) 0.251

First degree relative with tendinous xanthomata 

and/or arcus cornealis
0.854 0.012 2.349 (1.21-4.56) 0.260

Personal history of premature CAD 0.716 0.017 2.045 (1.134-3.689) 0.269

Constant -3.514 2.1E-11 0.030

Table 2: Variables independently associated with the presence of a pathogenic mutation in probands by logistic 

regression analysis.
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Total FHM- FHM+ DLCN cutoff Sensitivity Specificity PPV NPV Accuracy

n (%) % % %(CI) %(CI) %(CI) %(CI) %(CI)

DLCN

<3 13 (1.4%) 1.7% 0.9%

3-5 (possible) 168 (17.9%) 22.8% 9.8% 3 99.1 (97.3 - 99.9) 1.7 (0.9 - 3.2) 37.3 (34.2 - 40.6) 76.9 (46.0 - 95.6) 37.9 (34.8 - 41.1)

6-8 (probable) 450 (48.0%) 49.9% 44.8% 6 89.4 (85.5 - 92.4) 24.5 (21.1 - 28.2) 41.1 (37.6 - 44.8) 79.6 (72.8 - 85.0) 48.6 (45.3 - 51.8)

8 (definite) 306 (32.7%) 25.6% 44.5% >8 44.5 (39.3 - 49.9) 74.4 (70.6 - 77.8) 50.7 (44.9 - 56.4) 69.4 (65.6 - 73.0) 63.3 (60.1 - 66.4)

SBRG

unlikely 126 (14.9%) 18.1% 9.4%

Possible 544 (64.2%) 64.3% 64.2%

Definite + possible 721 (85.1%) 81.9% 90.6% 90.6 (86.7 - 93.5) 18.1 (15.0 - 21.7) 39.9 (36.4 - 43.6) 76.2 (67.6 - 83.2) 45.3 (42 - 48.8)

Definite 177 (20.9%) 17.6% 26.4% 26.4 (21.7 - 31.7) 82.4 (78.8 - 85.5) 47.5 (40.0 - 55.1) 65.1 (61.3 - 68.7) 61.4 (58 - 64.7)

Table 3: Distribution of the Duch Lipid Clinic Network (DCLN) and Simon Broome Research Group (SBRG) categories, according to the absence (FHM-) or presence (FHM+) of 

pathological variant, and predictive values of a genetic defect for DCLN and SBRG.
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FIGURE 1 
Distribution of LDL-c classes, as defined in the DLCN score, in patients carrying a 
pathogenic mutation (positives) and non-carriers (negatives). 
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FIGURE 2 
Percentage of probands where a mutation was found (positives), classified by the 
DLCN score. 
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Supplementary Table 2: DLCN scores for different mutation types

 n mean (SD) CI (95%)

LDLR

promoter + 5'UTR 16 8.00 (3.16) [6.31 - 9.69]

missense + in frame 157 9.10 (4.08) [8.46 - 9.75]

nonsense + frameshift 76 9.64 (4.03) [8.72 - 10.57]

splicing + intronic 47 8.87 (3.76) [7.77 - 9.98]

large rearrangements 28 9.82 (4.13) [8.22 - 11.42]

Total 324 9.20 (3.99) [8.77 - 9.64]

APOB

missense + in frame 23 7.09 (3.10) [5.76 - 8.42]
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Supplementary Table 3: Predictive values for different components of the diagnostic criteria.

Sensitivity Specificity PPV NPV Accuracy

Component %(CI) %(CI) %(CI) %(CI) %(CI)

Family history

1a First degree relative with premature
1
 CVD 38.3 (32.6 - 44.4) 55.2 (50.5 - 59.8) 34.0 (28.8 - 39.6) 59.8 (54.9 - 64.5) 48.8 (45.2 - 52.5)

1b First degree relative with LDLc>210 mg/dL 67.5 (61.6 - 73.0) 45.9 (41.3 - 50.6) 42.9 (38.2 - 47.8) 70.1 (64.5 - 75.2) 54.0 (50.3 - 57.7)

1a and/or 1b 82.7 (78.0 - 86.6) 21.1 (17.8 - 24.9) 38.6 (35.0 - 42.4) 67.1 (59.3 - 74.0) 44.2 (40.9 - 47.6)

2a First degree xanthoma and/or arcus cornealis 8.6 (5.7 - 12.5) 94.7 (92.2 - 96.4) 48.1 (34.2 - 62.2) 64.2 (60.6 - 67.6) 63.1 (59.6 - 66.5)

2b Child <18 years with LDLc>150 mg/dL 35.6 (30.2 - 41.4) 79.4 (75.6 - 82.8) 50.0 (43.0 - 57.0) 68.1 (64.1 - 71.8) 63.4 (59.9 - 66.7)

2a and/or 2b 45.0 (39.4 - 50.6) 71.9 (67.8 - 75.6) 49.0 (43.1 - 54.9) 68.5 (64.5 - 72.3) 61.8 (58.4 - 65.1)

Clinical history

3a Personal history premature
1
 CAD 10.7 (7.6 - 14.7) 90.0 (87.0 - 92.4) 39.1 (29.0 - 50.1) 62.7 (59.1 - 66.1) 60.3 (56.9 - 63.6)

3b Personal history of premature
1
 PVD 4.4 (2.5 - 7.4) 94.5 (92.1 - 96.3) 32.6 (19.5 - 48.4) 62.2 (58.8 - 65.6) 60.7 (57.3 - 64.0)

Physical examination

4a Tendinous xanthomata 21.4 (17.1 - 26.4) 84.5 (81.1 - 87.5) 45.3 (37.3 - 53.6) 64.2 (60.5 - 67.7) 60.8 (57.5 - 64.1)

4b Arcus cornealis before 45 years 19.2 (15.1 - 24.0) 82.5 (78.9 - 85.6) 39.6 (31.9 - 47.8) 63.0 (59.2 - 66.6) 58.7 (55.3 - 62.1)

Family with tendinous xanthomata (2a + 4a) 28.0 (23.2 - 33.3) 79.6 (75.9 - 82.9) 45.2 (38.1 - 52.4) 64.8 (61.0 - 68.5) 60.3 (56.9 - 63.6)

LDL-cholesterol

> 330 mg/dL 22.0 (17.7 - 27.0) 95.5 (93.2 - 97.0) 74.5 (64.2 - 82.8) 67.1 (63.6 - 70.4) 67.9 (64.6 - 71.0)

= 250 mg/dL 67.3 (61.8 - 72.4) 54.7 (50.4 - 59.0) 47.1 (42.5 - 51.8) 73.6 (68.9 - 77.8) 59.4 (56.0 - 62.7)

= 190 mg/dL 96.9 (94.1 - 98.5) 7.2 (5.2 - 9.8) 38.5 (35.1 - 42.0) 79.2 (64.6 - 89.4) 40.8 (37.5 - 44.2)

= 155 mg/dL 99.1 (97.0 - 99.9) 3.2 (1.9 - 5.1) 38.0 (34.7 - 41.5) 85.0 (61.1 - 97.6) 39.2 (35.9 - 42.5)

1
. premature: men aged <55 years, women aged <60 years.
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Supplementary Figure 1: percentage of positives in genetic diagnostic test 

across age categories.
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Supplementary Figure 2: mean DLCN score in different age categories.
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