
This is the accepted version of the journal article:

Akbarinia, Arash; Parraga, Carlos Alejandro. «Feedback and surround modu-
lated boundary detection». International Journal of Computer Vision, Vol. 126,
Issue 12 (December 2018), p. 1367-1380. DOI 10.1007/s11263-017-1035-5

This version is available at https://ddd.uab.cat/record/275061

under the terms of the license

https://ddd.uab.cat/record/275061


Feedback and Surround Modulated Boundary Detection

Arash Akbarinia · C. Alejandro Parraga

Received: 09/01/2017 / Accepted: date

Abstract Edges are key components of any visual scene
to the extent that we can recognise objects merely by

their silhouettes. The human visual system captures
edge information through neurons in the visual cor-
tex that are sensitive to both intensity discontinuities

and particular orientations. The “classical approach”
assumes that these cells are only responsive to the stim-
ulus present within their receptive fields, however, re-
cent studies demonstrate that surrounding regions and

inter-areal feedback connections influence their responses
significantly. In this work we propose a biologically-
inspired edge detection model in which orientation se-

lective neurons are represented through the first deriva-
tive of a Gaussian function resembling double-opponent
cells in the primary visual cortex (V1). In our model we

account for four kinds of receptive field surround, i.e.
full, far, iso- and orthogonal-orientation, whose con-
tributions are contrast-dependant. The output signal
from V1 is pooled in its perpendicular direction by

larger V2 neurons employing a contrast-variant centre-
surround kernel. We further introduce a feedback con-
nection from higher-level visual areas to the lower ones.
The results of our model on three benchmark datasets
show a big improvement compared to the current non-
learning and biologically-inspired state-of-the-art algo-
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rithms while being competitive to the learning-based
methods.
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1 Introduction

Our ability to recognise objects is completely entangled
with our ability to perceive contours (Walther et al,
2011; Papari and Petkov, 2011). The primary and sec-

ondary visual cortices – i.e. V1 and V2 – play a crucial
role in the process of detecting lines, edges, contours,
and boundaries (Loffler, 2008), to such extent that an

injury to these areas can impair a person’s ability to
recognise objects (Zeki, 1993). Furthermore, edges (a
form of image gradient sometimes also referred to as

“boundaries” or “contours”) are indispensable compo-
nents of computer vision algorithms in a wide range of
applications, such as colour constancy (Van De Weijer
et al, 2007), image segmentation (Arbelaez et al, 2011),

document recognition (LeCun et al, 1998) and human
detection (Dalal and Triggs, 2005).

Given their importance, many computational mod-
els have been proposed to detect edges – for a compre-
hensive review refer to (Papari and Petkov, 2011). In its
earliest form a convolutional-based image gradient was
proposed to capture local changes (Prewitt, 1970). Oth-
ers attributed edges to zero-crossing points, therefore
suggesting the Laplacian-of-Gaussian as a suitable op-
erator (Marr and Hildreth, 1980). Previous algorithms
were improved by incorporating non-maximum suppres-
sion and hysteresis thresholding (Canny, 1986). The
greatest challenge faced by these classical methods is

the distinction between authentic boundaries and un-
desired background textures. This issue was partially
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addressed by local smoothing techniques, such as bilat-
eral filtering (Tomasi and Manduchi, 1998) and mean
shift (Comaniciu and Meer, 2002). Thereafter, graph-
based models emerged, e.g. (Felzenszwalb and Hutten-
locher, 2004; Cour et al, 2005), allowing for closure to be
taken into account. More recent frameworks extract rel-
evant cues (e.g. brightness, colour, and texture) feeding
them to machine learning, such as probabilistic boost-
ing tree (Dollar et al, 2006), gradient descent (Arbelaez
et al, 2011) and structured forest (Dollár and Zitnick,
2015). Currently, state-of-the-art algorithms (Kivinen
et al, 2014; Bertasius et al, 2015a; Shen et al, 2015;
Bertasius et al, 2015b; Xie and Tu, 2015) rely heavily
on deep-learning techniques.

Despite their success, learning methods have their
own set of challenges and drawbacks (Domingos, 2012)
(a) their performance might be dataset dependant; (b)
they are computationally demanding since for every sin-
gle pixel a decision must be made (in both training and

testing stages) on whether it corresponds to an edge or
not; and (c) they require extremely large amounts of
data for an effective training procedure. In addition to

these, there is no biological or behavioural evidence that
edge detection is the result of such a laboriously super-
vised learning process. On the contrary, biological sys-
tems compute edges in an unsupervised manner, start-

ing from low-level features that are modulated by feed-
back from higher-level visual areas, e.g. those respon-
sible for global shape (Loffler, 2008). In line with this,

a number of biologically-inspired edge detection algo-
rithms have been recently proposed with promising re-
sults. A predictive coding and biased competition mech-
anism was proposed by (Spratling, 2013) to model the
sparsity coding of neurons in V1. Importance of non-
classical receptive fields was presented by (Wei et al,
2013) in a butterfly-shaped inhibition model operating

at multiple spatial scales. Further improvement came
from (Yang et al, 2013) who explored imbalanced colour
opponency to detect luminance boundaries. The same
authors demonstrated employing the spatial sparseness
constraint, typical to V1 neurons, helps to reserve de-
sired fine boundaries while suppressing unwanted tex-
tures (Yang et al, 2015). Another improvement in con-

tour detection originated from introducing multiple fea-
tures to the classical centre-surround inhibition com-
mon to most cortical neurons (Yang et al, 2014). Ac-
counting for feedback connections has also been ben-
eficial, e.g. (Dı́az-Pernas et al, 2014) extracted edges
through oriented Gabor filters accompanied with top-
down and region enhancement feedback layers.

In this article we extend our previous work (Ak-
barinia and Parraga, 2016) to propose a biologically-
inspired edge detection model that incorporates recent

knowledge of the physiological and psychophysical prop-
erties of our visual system. The proposed model is novel
compared to other biologically-inspired methods in four
main aspects: (i) we incorporate a more sophisticated
set of cortical interactions which includes four types of
surround, i.e. full, far, iso- and orthogonal-orientation;
(ii) we account for contrast variation of surround mod-
ulation; (iii) we model V2 neurons that pool signals
from V1 responses over a larger region corresponding
to the centre and neighbouring spatial locations; and
(iv) we consider a fast-conducting feedback connection
from higher visual areas to the lower ones.

Fig. 1 illustrates the flowchart of our framework,
which follows the functional structure of the human
ventral pathway. Our processing starts in the retina,
where the input image is convolved by single oppo-
nent cells and sent though the lateral geniculate nucleus
(LGN) in the form of colour opponent channels (Shap-
ley and Hawken, 2011). These channels are processed by
double-opponent cells in V1 – known to be responsive

to colour edges (Shapley and Hawken, 2011) – whose re-
ceptive field (RF) are modelled through the first deriva-
tive of a Gaussian function (Canny, 1986). To con-

sider the RF surround: we define a short range circular
(isotropic) region corresponding to full surround (Lof-
fler, 2008), long range iso- and orthogonal-orientation

surrounds along the primary and secondary axes of the
RF (Field et al, 2014), and we model far surround
via feedback connections to enhance the saliency of
edge features. All these interactions are inversely de-

pendant on the contrast of the RF centre (Shushruth
et al, 2009). The output signal from V1 is pooled at V2
by a contrast-variant centre-surround mechanism ap-

plied orthogonally to the preferred direction of the V1
RF (Poirier and Wilson, 2006). Finally, to account for
the impact of global shapes on local contours (Loffler,
2008), we feed the output of V2 layer back into V1.

2 Surround Modulation Edge Detection

2.1 Retina and lateral geniculate nucleus (LGN)

The retina is the starting point of visual processing in
humans. Cone photoreceptor cells located at the back
of the retina absorb photons at every spatial location.
Their output is processed in an antagonistic manner by
further layers of single-opponent cells (ganglion cells)
and sent to the cortex through the LGN in the form
of a luminance and two chromatically-opponent chan-
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Fig. 1 The flowchart of our model. Balanced and imbalanced colour opponent channels are created in the retina and sent
through the LGN. Orientation information is obtained in V1 by convolving the signal with a derivative of Gaussian at twelve
different angles. We model four types of orientation-specific surround: full, far, iso- and orthogonal-orientation. In V2 the signal
is further modified by input from surrounding areas in a directional orthogonal to that of the original RF. Shape feedback is
sent to V1 as an extra channel.

nels (Shapley and Hawken, 2011), usually modelled as

SOlu(x, y) = Sr(x, y) + Sg(x, y) + Sb(x, y),

SOrg(x, y) = κrSr(x, y)− κgSg(x, y), (1)

SOyb(x, y) = κbSb(x, y)− κrg
(
Sr(x, y) + Sg(x, y)

2

)
,

where SO represents the response of single-opponent

cells, {lu, rg, yb} denotes the luminance, red-green and

yellow-blue opponent-channels, (x, y) are the spatial co-

ordinates, and {r, g, b} are the original red, green and

blue cone signals. S is the spectral response function of

each cone and can be approximated by a two dimen-

sional Gaussian function as follows

Sh(x, y) = Ih(x, y) ∗G(x, y, σ), (2)

where I is the input image, h ∈ {r, g, b} is the index

of colour channels, ∗ denotes the convolution operator

and G is the circular two-dimensional Gaussian kernel,

defined as

G(x, y, σ) =
1

2πσ2
e
−
(
x2+y2

2σ2

)
, (3)

with variance σ (set to 0.5 in this study as cells in LGN

are substantially smaller than those of V1). This Gaus-

sian convolution is equivalent of a smoothing prepro-

cessing stage in computer vision which has been demon-

strated to play an important role in the successive edge

detection (Papari and Petkov, 2011).

When the chromatically-opponent input to single-

opponent cells in Eq. 1 is in equilibrium, parameter κ

is equal to one for all channels. However, there is phys-

iological evidence showing that some types of single-

opponent cells combine chromatic information in an

imbalanced fashion (Shapley and Hawken, 2011). The
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significance of these cells has also been shown practi-

cally in many computer vision algorithms, e.g. edge de-

tection (Yang et al, 2013, 2015) and colour constancy

(Gao et al, 2013; Parraga and Akbarinia, 2016). Follow-

ing this insight, we included two imbalanced chromatic

opponent-channels: SOrg′ with κg = 0.7 and SOyb′

with κrg = 0.7.

2.2 Primary visual cortex (V1)

Once the visual signal is preprocessed in the retina and

the LGN, it is sent for further processing into the visual

cortex. Early neurophysiological evidence established

that the feedforward arrays coming from the LGN in-

teract dynamically in the visual cortex, creating various

gain control pools across all spatial orientations which

can be modelled as “divisive normalisation” (Heeger,

1992). In this configuration, each cortical neuron com-

putes a rectified combination of its inputs, followed by

a normalisation where the neuron’s response is divided

by the pooled activity of its neighbours. The overall ef-

fect of this gain normalisation is to both alter the con-

trast response of neural units, making them more re-

sponsive to boundaries, and to narrow their orientation

bandwidths. Another mechanism contributing to ori-

entation tuning stems from the long-range connections

between neurons with similar orientation “collinear fa-

cilitation” (Malach et al, 1993). Both mechanisms are

thought to enhance contour continuity, altering the ef-

fective orientation tuning of cells (Hansen and Neu-

mann, 2008).

Although divisive normalisation and collinear facil-
itation are powerful mechanisms, recent studies have

shown that they are likely to be oversimplifications,

since stimuli outside of the classical receptive field of

a cortical neuron can also modulate that neuron’s ac-

tivity in various ways. The origin of this modulation is

feedforward, feedback and lateral, stemming from pre-

vious connections, later connections and from neigh-

bouring neurons in the visual pathway. However, it was

not until the mid-1980s that the concept of non-classical

(surround-modulated) receptive field became established

and characterised using circular or annular gratings of

varying characteristics.

Now we understand that SO channels arriving at

the cortex are processed by a number of double-opponent

cells in V1 that are responsive to boundaries (Shapley

and Hawken, 2011), but also modulated by regions be-

yond their RF centres, with facilitation predominantly

at low contrast and inhibition at high contrast (Kapa-

dia et al, 1999; Shushruth et al, 2009; Angelucci and

Shushruth, 2014).

As a consequence of the above, we defined the re-

ceptive field of our orientation-tuned double-opponent

cells DO as

DOc(x, y, θ) = CRc(x, y, θ) + ζ−1c (x, y)SRc(x, y, θ) (4)

where c is the index of SO channels, θ is the preferred

orientation of the RF (set to twelve evenly distributed

angles in the range of [0, 2π) radians), CR and SR are

the centre and surround responses respectively, and ζ is

the contrast of the RF centre approximated by the lo-

cal standard deviation of its constituent pixels. Double-

opponent cells are typically modelled in biologically-

inspired algorithms by Gabor filters, (Spratling, 2013;

Yang et al, 2014; Dı́az-Pernas et al, 2014), or the first

derivative of a Gaussian function, (Yang et al, 2013,

2015). We settled for the later one originally proposed

by (Canny, 1986), therefore, we defined the DO centre

response, CR, as

CR(x, y, θ) = SO ∗
∣∣∣∣ϑG(x, y, σ)

ϑθ

∣∣∣∣, (5)

where σ is the RF size (set to 1.5 in our model corre-

sponding to the typical RF size of foveally-connected

neurons in V1 (Angelucci and Shushruth, 2014), i.e.

0.25◦ of visual angle that is equivalent to approximately

13 pixels when viewed from 100cm in a standard mon-

itor).

2.2.1 Surround modulation

We defined the surround response, SR, as follows

SR(x, y, θ) = LS(x, y, θ) + IS(x, y, θ)+

OS(x, y, θ) + FS(x, y, θ),
(6)

where LS is full surround referring to the isotropic re-

gion around the RF; IS denotes iso-orientation sur-

round along the RF preferred axis; OS is orthogonal-

orientation surround in the direction perpendicular to

the RF preferred axis; and FS denotes far surround.

The full surround is an isotropic region, i.e. stimu-

lus occupying the entire surrounding region rather than

isolated flanking lines (Loffler, 2008). Due to this, the

full surround can be modelled as the average response

of a circular window around the cell’s RF centre. This

surround is inhibitory when it shares the same orienta-

tion as the centre and strongly facilitatory when its ori-

entation is perpendicular to the centre (Loffler, 2008).

Thus, we defined the full surround LS as

LS(x, y, θ) = λζ−1(x, y)
(
CR(x, y, θ⊥) ∗ µ

)
−

ζ(x, y)
(
CR(x, y, θ) ∗ µ

)
,

(7)
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where θ⊥ = θ + π
2 , µ is the circular average kernel and

λ determines the strength of orthogonal facilitation in

comparison to the iso inhibition. The former facilitation

is reported to be stronger than the later inhibition (Lof-

fler, 2008), therefore λ must be larger than one.

The iso-orientation surround, IS, extends to a dis-

tance two to four times larger than the RF size (Field

et al, 2014). Within this region elements parallel to the

RF preferred orientation are facilitatory while orthogo-

nal ones are inhibitory (Loffler, 2008; Field et al, 2014),

therefore, we modelled IS as

IS(x, y, θ) = ζ−1(x, y)
(
CR(x, y, θ) ∗ E(σx, θ)

)
−

ζ(x, y)
(
CR(x, y, θ⊥) ∗ E(σx, θ)

)
,

(8)

where E is an elliptical Gaussian function elongated in

the direction θ, defined as

E(x, y, σx, σy, θ) = e−(ax2−2bxy+cy2), with

a =
cos2 θ

2σ2
x

+
sin2 θ

2σ2
y

, b = − sin 2θ

4σ2
x

+
sin 2θ

4σ2
y

,

c =
sin θ2

2σ2
x

cos θ2

2σ2
y

.

We set σy = 0.1σx and σx = 3σ corresponding to phys-

iological measurements (Field et al, 2014).

The orthogonal-orientation surround, OS, projects

to a distance half of the iso-orientation surround (Field

et al, 2014). In the orthogonal-surround elements paral-

lel to the RF preferred orientation are inhibitory while

perpendicular ones are facilitatory (Loffler, 2008; Field

et al, 2014), thus, we modelled OS as

OS(x, y, θ) = ζ−1(x, y)
(
CR(x, y, θ⊥) ∗ E(σx, θ⊥)

)
−

ζ(x, y)
(
CR(x, y, θ) ∗ E(σx, θ⊥)

)
. (9)

The far surround could extend to regions up to 12.5◦

of visual angle (Shushruth et al, 2009) which is ap-

proximately equivalent to 673 pixels when viewed from

100cm in a standard monitor. Consequently the feed-

forward and horizontal connections in V1 that mediate

interactions between the RF and its near surround are

too slow to account for the fast onset of far surround.

Due to this, it has been suggested that far surround is

operated through a different mechanism via inter-areal

feedback connections (Shushruth et al, 2013; Angelucci

and Shushruth, 2014). We speculate that parts of these

inter-areal connections come from spatial scale layers

in V1 (Hess, 2014), and assume their influence to be

facilitatory when image elements in this region share

the same orientation as the centre (Ichida et al, 2007).

Therefore, we defined FS as

FS(x, y, θ) = ζ−1(x, y)

4∑
s=2

CRs(x, y, θ)

s
(10)

where s is the index of the corresponding spatial fre-

quency scale. This processing is analogous to the multi-

scale processing common to both visual sciences and

computer vision, with the distinction that we account

for both contrast and distance, since surround modula-

tion has been reported to be stronger in the near than

in the far regions (Angelucci and Shushruth, 2014).

2.3 Visual area two (V2)

Visual processing becomes more global along the brain’s

ventral pathway, where neurons in each consecutive area

seem to pool information from increasingly larger spa-

tial regions (i.e. exponentially larger receptive fields).

This allow them to process increasingly complex image

features, such as curved arcs, angles, and line inter-

sections and eventually shapes and objects. The next

interconnected adjacent area to V1 is V2, where many

neurons have been reported to respond to curvatures

and extended arcs (Wilson and Wilkinson, 2014). It has

been proposed that RFs in area V2 extract curvature

information by pooling signals from V1 using a centre-

surround mechanism in the direction orthogonal to the

V1 orientations (Wilson and Wilkinson, 2014; Poirier

and Wilson, 2006). In order to model this, first, we de-

fined the V1 response, V 1R, as the most activated DO

orientation. This operation is assumed to be realised

by complex cells pooling the maximum value of DO

cells (Thériault et al, 2015), modelled as

V 1Rc(x, y) = arg max
θ∈[0,2π)

(DOc(x, y, θ)) . (11)

The V2 RFs show similar contrast-variant surround

modulation as those of V1 (Shushruth et al, 2009).

Therefore, we modelled the V2 response, V 2R, through

a Difference-of-Gaussians (DoG) as

V 2Rc(x, y) =V 1Rc,θ(x, y) ∗ E(σx, θ⊥)−
υc(x, y)V 1Rc,θ(x, y) ∗ E(5σx, θ⊥)

(12)

where υ is the contrast of V 1R computed by its lo-

cal standard deviation, the index θ at V 1Rθ shows the

preferred orientation of that RF. Cortical RFs increase

their diameters systematically by approximately a fac-

tor of three from lower to higher areas (Wilson and

Wilkinson, 2014). Therefore, we set the size of V2 RF,

σx, to three times the size of a V1 RF. In Eq. 12 sur-

round is five times larger than the centre according to

physiological findings (Shushruth et al, 2009).
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2.4 Feedback connections

In the primate visual system there are generally massive

feedback connections from higher visual areas into lower

ones (Angelucci and Shushruth, 2014). For instance, the

majority of the LGN inputs are feedback connections

from other areas of the brain, in particular the visual

cortex. The functional role of this cortical feedback in

visual processing is still poorly understood, although

new evidence shows that these projections are organ-

ised into parallel streams and their effects include tune-

sharpening, gain-modulation and various adjustments

to behavioural demands (Briggs and Martin, 2014).

In our model we accounted for only a fraction of

the feedback from V2 to V1 corresponding to the well

established fact that global shape influences local con-

tours (Loffler, 2008). We simulated this global shape by

averaging the V2 outputs of all channels and sending

it as feedback to V1. This feedback is processed as all

other inputs to V1. The final edge map is created as a

sum of all V2 output channels

edge(x, y) =
∑
c

V 2Rc(x, y), with

c ∈ {lu, rg, yb, rg′, yb′, feedback}.
(13)

3 Experiments and results

We tested our model – termed Surround-modulation

Edge Detection (SED) – on three datasets1: (i) the

Berkeley Segmentation Dataset and Benchmark (BSDS)

(Martin et al, 2001; Arbelaez et al, 2011), (ii) the Multi-

cue Boundary Detection Dataset (MBDD) (Mély et al,

2016), and (iii) the Contour Image Database (CID) (Grig-

orescu et al, 2003). Each image of all three datasets is

supplemented with a ground truth that is created from

manually-drawn edges by number of human subjects.

We evaluated our algorithm in the standard precision-

recall curve based on its harmonic mean (referred to

as F-measure) on three criteria: optimal scale for the

entire dataset (ODS) or per image (OIS) and average

precision (AP). Naturally, ODS is the most representa-

tive of all to measure the performance since it uses a

fixed threshold for all images in the dataset (Arbelaez

et al, 2011). The results we report in this paper were

obtained with a fixed set of parameters (see details in

Section 2) for all datasets much in the same way as the

human visual system.

1 The source code and all the experimental materi-
als are available at https://github.com/ArashAkbarinia/

BoundaryDetection.

3.1 Berkeley Segmentation Dataset and Benchmark

(BSDS)

The BSDS (Martin et al, 2001; Arbelaez et al, 2011)

contains two sets of colour images BSDS300 (100 test

images and 200 training images) and BSDS500 (200 test

images). This dataset contains a wide range of natural

and man-made objects. Size of each image is 481× 321

pixels. Arguably BSDS is considered as the benchmark

dataset for boundary detection in the field of computer

vision.

Table 1 compares the results of our model to sev-

eral other state-of-the-art algorithms that have also re-

ported theirs results on the BSDS dataset. From this ta-

ble we can observe that in BSDS500 our model improves

the ODS of methods driven by low-level and biological

features by 4%. This improvement is 3% in BSDS300.

It must be noted that deep-learning methods often use

BSDS300 as the training set and therefore they do not

report their results on this fragment of BSDS.

In order to study the robustness of different algo-

rithms to achromatic images, we conducted a further

experiment on the grey-scale version of BSDS images.

The results of this experiment for our model along with

five other algorithms driven by low-level features and

one learning method (whose source code were publicly

available) are presented in Table 2. We can observe sim-

ilar patterns as chromatic images: 3% ODS enhance-

ment in both BSDS300 and BSDS500. It is worth high-

lighting that the learning-based gPb performs signif-

icantly worse than the proposed model in grey-scale

images.

3.2 Multi-cue Boundary Detection Dataset (MBDD)

The MBDD (Mély et al, 2016) composed of short binoc-

ular video sequences of natural scenes. This dataset

contains challenging scenes for boundary detection by

framing a few dominant objects in each shot under a

variety of appearances. Size of each image is 1280×720

pixels. The dataset contains 100 scenes and offers two

sets of hand-annotations: one for object boundaries and

another for lower-level edges.

Original Image Object Boundaries Low-level Edges

Fig. 2 Comparison of object boundaries and low-level edges
annotations of MBDD (Mély et al, 2016).
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BSDS300 BSDS500

Method ODS OIS AP ODS OIS AP

Human 0.79 0.79 – 0.80 0.80 –

L
o
w

-l
ev

el
fe

a
tu

re
s

Canny (Canny, 1986) 0.58 0.62 0.58 0.60 0.63 0.58

Mean Shift (Comaniciu and Meer, 2002) 0.63 0.66 0.54 0.64 0.68 0.56

Felz-Hutt (Felzenszwalb and Huttenlocher, 2004) 0.58 0.62 0.53 0.61 0.64 0.56

Normalised Cuts (Cour et al, 2005) 0.62 0.66 0.43 0.64 0.68 0.45

B
io

lo
g
ic

a
l PC/BC (Spratling, 2013) 0.61 – – – – –

CO (Yang et al, 2013) 0.64 0.66 0.65 0.64 0.68 0.64

MCI (Yang et al, 2014) 0.62 – – 0.64 – –

dPREEN (Dı́az-Pernas et al, 2014) 0.65 – – – – –

SCO (Yang et al, 2015) 0.66 0.68 0.70 0.67 0.71 0.71

M
a
ch

in
e-

le
a
rn

in
g BEL (Dollar et al, 2006) 0.65 – – 0.61 – –

gPb (Arbelaez et al, 2011) 0.70 0.72 0.66 0.71 0.74 0.65

D
ee

p
-l

ea
rn

in
g DeepNets (Kivinen et al, 2014) – – – 0.74 0.76 0.76

DeepEdge (Bertasius et al, 2015a) – – – 0.75 0.75 0.80

DeepContour (Shen et al, 2015) – – – 0.76 0.77 0.80

HFL (Bertasius et al, 2015b) – – – 0.77 0.79 0.80

HED (Xie and Tu, 2015) – – – 0.78 0.80 0.83

SED (Proposed) 0.69 0.71 0.71 0.71 0.74 0.74

Table 1 Results of several edge detection algorithms on the BSDS300 and BSDS500 (Martin et al, 2001; Arbelaez et al, 2011).

BSDS300 BSDS500

Method ODS OIS AP ODS OIS AP

Canny (Canny, 1986) 0.58 0.62 0.53 0.60 0.63 0.54

PC/BC (Spratling, 2013) 0.61 0.63 0.40 0.64 0.65 0.41

CO (Yang et al, 2013) 0.60 0.63 0.60 0.61 0.64 0.61

MCI (Yang et al, 2014) 0.62 0.64 0.55 0.64 0.66 0.56

SCO (Yang et al, 2015) 0.62 0.64 0.64 0.63 0.67 0.66

gPb (Arbelaez et al, 2011) 0.61 0.64 0.60 0.63 0.66 0.62

SED (Proposed) 0.65 0.67 0.68 0.67 0.70 0.70

Table 2 Results of several edge detection algorithms on the grey-scale images of BSDS300 and BSDS500 (Martin et al, 2001;
Arbelaez et al, 2011).

We have reported the results of our model along

with five algorithms driven by low-level features and

one learning method for both types of annotations in

Table 3. In comparison to the non-learning methods,

we can observe 3% ODS improvement in case of object

boundaries and 2% for lower-level edges. Our results

are also slightly better than the learning-based gPb.

We believe that the object boundaries is more relevant

for the problem we are addressing in this paper since

the low-level edges annotation contains many uninfor-

mative line segments from small objects (e.g. leaves and

grass) as it can be observed from an exemplary sample

illustrated in Fig. 2.

Similar to BSDS, in order to study the role of colour

on each algorithm, we performed an experiment on the

grey-scale images of MBDD. Table 4 shows the results

of this experiment. SED still performs better that other

algorithms driven by low level features (1% ODS im-

provement in both types of annotations). In comparison

to the learning-based gPb we obtain the same ODS in

object boundaries, however SED performs slightly bet-

ter in low-level edges. A surprising detail emerges when

the results of CO or SCO for colour images is com-

pared to the grey-scale ones; both algorithms perform

slightly better in absence of colour (see Tables 3 and

4). This suggests unbalanced colour opponency require

more careful implementation. We speculate this might

also be the reason that our improvement in the grey-

scale images of MBDD falls to minimal. This issue can

be addressed in future studies.

3.3 Contour Image Database (CID)

The CID (Grigorescu et al, 2003) contains 40 grey-scale

images of natural scenes and animal wildlife. Size of

each image is 512 × 512 pixels. Table 5 compares the

results of SED to five algorithms driven by low-level

features and one learning method on this dataset. We

can observe that SED exceeds other methods by 5%
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Object Boundaries Low-level Edges

Method ODS OIS AP ODS OIS AP

Canny (Canny, 1986) 0.61 0.65 0.54 0.75 0.78 0.76

PC/BC (Spratling, 2013) 0.69 0.70 0.43 0.80 0.81 0.70

CO (Yang et al, 2013) 0.64 0.67 0.66 0.77 0.80 0.83

MCI (Yang et al, 2014) 0.69 0.70 0.70 0.77 0.77 0.66

SCO (Yang et al, 2015) 0.68 0.71 0.72 0.79 0.82 0.86

gPb (Arbelaez et al, 2011) 0.71 0.72 0.70 0.78 0.81 0.82

SED (Proposed) 0.72 0.74 0.77 0.81 0.83 0.86

Table 3 Results of several edge detection algorithms on the MBDD (Mély et al, 2016), for two ground truth annotations of
object boundaries and low level edges.

Object Boundaries Low-level Edges

Method ODS OIS AP ODS OIS AP

Canny (Canny, 1986) 0.60 0.65 0.53 0.74 0.78 0.76

PC/BC (Spratling, 2013) 0.68 0.69 0.43 0.79 0.82 0.69

CO (Yang et al, 2013) 0.65 0.67 0.67 0.77 0.80 0.83

MCI (Yang et al, 2014) 0.69 0.70 0.67 0.73 0.73 0.59

SCO (Yang et al, 2015) 0.69 0.71 0.73 0.79 0.82 0.83

gPb (Arbelaez et al, 2011) 0.70 0.71 0.71 0.78 0.81 0.82

SED (Proposed) 0.70 0.71 0.74 0.80 0.82 0.86

Table 4 Results of several edge detection algorithms on the grey-scale images of MBDD (Mély et al, 2016), for two ground
truth annotations of object boundaries and low level edges.

ODS improvement. It is worth highlighting that the

learning-based gPb scores 7% lower than the proposed

model.

CID

Method ODS OIS AP

Canny (Canny, 1986) 0.56 0.64 0.57

PC/BC (Spratling, 2013) 0.58 0.62 0.42

CO (Yang et al, 2013) 0.55 0.63 0.57

MCI (Yang et al, 2014) 0.60 0.63 0.53

SCO (Yang et al, 2015) 0.58 0.64 0.61

gPb (Arbelaez et al, 2011) 0.57 0.61 0.54

SED (Proposed) 0.65 0.69 0.68

Table 5 Results of seven edge detection algorithms on the
CID dataset (Grigorescu et al, 2003).

3.4 Component analysis

In our algorithm we have modelled different areas and

aspects of the visual cortex. In order to investigate

the contribution of each component of our model, we

conducted four additional experiments on the BSDS

dataset:

– Gaussian Derivative – In this scenario, we ac-

counted neither for the surround modulation in V1,

nor for the V2 pooling and feedback. Essentially

only convolving the single-opponent cells with the

first derivative of Gaussian function similar to CO

(Yang et al, 2013).

– Only V1 Surround – In this case, we excluded V2

pooling and feedback. We only included full, far, iso-

and orthogonal-orientation surround modulation for

V1 RFs.

– No V2 Feedback – In this scenario, we excluded

the shape feedback sent from area V2 to V1, i.e.

c ∈ {lu, rg, yb, rg′, yb′} in Eq. 13.

– No Far surround – In this case, we did not account

for far surround modulation, i.e. FS = 0 in Eq. 6.

The precision-recall curves of these experiments for

BSDS300 and BSDS500 are shown in Fig. 3. Edge out-

puts of different components of our algorithm along

with the full model on a few exemplary images are il-

lustrated in Fig. 4.

4 Discussion

Results of our experiments on three benchmark datasets,

i.e. BSDS, MBDD and CID, demonstrate a systematic

quantitative improvement (about 4%) over state-of-the-

art. Our proposed model outperforms other methods

driven by low-level features and biologically-inspired al-

gorithms in all three criteria of ODS, OIS and AP (see

Tables 1, 3 and 5). This improvement is also qualita-

tively pronounced in Figure 5; on the one hand, our

model shows greater robustness in textural areas in

comparison to CO (Yang et al, 2013), on the other
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0.64 0.72 0.76 0.74 0.76

Original Image Gaussian Derivative Only V1 Surround No V2 Feedback No Far Surround Full Model

Fig. 4 Evaluation of the different components of SED. The images show the result of our full model on one exemplary image
along with the four experiments we conducted. F-measures are on the right bottom corner of images.

hand, thanks to its surround modulation, SED per-
forms better at detecting continuous lines, compared
to SCO (Yang et al, 2015). For instance in the first row

of the Figure 5, it is evident that CO is strongly trou-
bled with the textural information originating from the
background vegetation, however SED successfully sup-
presses a large amount of those. At the same time, it is
apparent that SCO blends the contours of the present
bird with the straws, however SED correctly extracts
the boundaries of the bird from the grassland. We can
observe similar patterns in the rest of the pictures of
the Figure 5.

Our improvements over state-of-the-art originates
from the combination of different components of pro-
posed model. The precision-recall curves in Fig. 3 shows
that excluding surround modulation and the V2 mod-
ule all together drops the ODS F-measure to 0.63 (black
curves in both BSDS300 and BSDS500). This is in line
with the results of CO (Yang et al, 2013) which is

essentially the same as our model in the absence of
both V1 surround modulation and the V2 module. In-
cluding surround modulation (i.e. full, far, iso- and
orthogonal-orientation regions) contributes to a signifi-
cant enhancement of results by boosting the F-measure
to 0.66 and 0.67 in BSDS300 and BSDS500 respectively
(pink curves). This clearly shows that surrounding re-
gions play a crucial role in the process of edge detec-
tion in agreement with previous psychophysical find-
ings (Loffler, 2008). Importance of surround modulation
has been even shown in convolutional neural networks,
for example in detecting occluded boundaries of ob-
jects (Fu et al, 2016). Qualitative comparison of the sec-

ond and third columns of Fig. 4 suggests that although
V1 surround modulation does not contribute to texture
suppression, it strengthens continues contours (we have
marked a few examples by the red and blue ovals, for
instance the exterior borders of bricks in the last row
are more continuous in the “Only V1 Surround” col-
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Fig. 3 Precision-recall curves of difference components of our
model on the BSDS300 (top) and BSD500 (bottom). In the
legends the ODS F-measures are indicated.

umn in comparison to the “Gaussian Derivative” one,
at the same time the intermedial borders are correctly
suppressed in “Only V1 Surround” as a result of ac-

counting for iso- and orthogonal-orientation surround
modulation).

Comparison of “Only V1 Surround” and “No V2
Feedback” pictures in Fig. 4 reveals that the V2 module
strongly assist the process of eliminating textural and
noisy patches. This is consistent with physiological find-

ings that suggest texture statistics might be encoded in
V2 (Landy, 2014; Freeman et al, 2013). The robustness
of our model to noisy scenes and undesired background
textures could be explained by the fact that V2 RFs are
large and therefore suppress small discontinuities across
neighbouring pixels. Although V2 centre-surround sup-
pression is beneficial in general with 1% (BSDS300) and
2% (BSDS500) improvements in F-measures (the red
curves versus the pink ones in Fig. 3), it causes occa-

sional over-smoothing and consequently in high recalls
the precisions of the pink curves are higher than the red
ones. We postulate that this problem can partially be
addressed by accounting for a mechanism similar to the
visual cortex where suppression can turn to facilitation
at low contrast levels (Angelucci and Shushruth, 2014).
Modelling this phenomenon is onerous since the thresh-
old between suppression and facilitation is cell specific
and there is no universal contrast level or surround
stimulus size that triggers facilitation across the entire
cell population (Angelucci and Shushruth, 2014). Fur-
thermore, neural recordings of macaque demonstrates
that the activation level of V2 neurons are higher when
exposed to naturalistic texture in comparison to spec-
trally matched noise (Freeman et al, 2013). This fea-
ture was not present among V1 neurons. This indicates
a more complex V2 model is required to treat noise and
texture distinctively. We propose this as a line of future
work.

Excluding the global shape feedback from our model
lowers the ODS F-measure by 2% (compare the green
and red curves in Fig. 3). It is difficult to appreciate
the influence of this feedback connection qualitatively

in Fig. 4, however a close comparison of the green ovals
in the “No V2 Feedback” and “Full Model” columns
suggests that shape feedback re-enforce the true edges

(the intensity of pixels along edges are higher in “Full
Model” in comparison to their corresponding pairs in
“No V2 Feedback”). This is in line with previously sta-
bilised neurophysiological findings that show one of the

functional roles of feedback connections is amplification
and focus of neuronal activities in subsequent lower ar-
eas (Hupe et al, 1998). Correspondingly, in computer vi-
sion, iterative subroutines that are analogous to the role
of feedback connections have been shown beneficial in
recovering occluded boundaries by employing regional
cues as criteria to eliminate weak edges while forming
larger areas iteratively (Hoiem et al, 2007).

The precision-recall curves in Fig. 3 shows that ex-
cluding far surround modulation reduces the ODS F-
measure to 0.66 and 0.69 in BSDS300 and BSDS500 re-

spectively (blue curves), which still is better than other
non-learning state-of-the-art algorithms. A qualitative
comparison of “No Far Surround” and “Full Model” re-
sults in Fig. 4 reveals that far surround appears to con-
tribute in enhancing continuous edges while suppressing
broken ones (e.g. the contours marked with green ovals
in “No Far Surround” contain more abrupt alternate
right and left turns in comparison to the “Full Model”,
at the same time “No Far Surround” contains larger
number of line fragments). Quantitatively, we observe

a similar issue in far surround modulation to the V2 sur-
round modulation: in high recalls “No Far Surround”
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has a higher precision than “Full Model” (blue versus
green curves in Fig. 3). Resolving this is a subject for
further investigation.

Computational Complexity

In principle, our model ought to be computationally
very low cost since its building blocks are simple Gaus-
sian convolutions. With this in mind, we reported the
average computational time of six algorithms on the
BSDS500 in Table 6 and to our surprise, the Matlab
implementation of SED is rather slow. After a careful
analysis of the different components of our model, we
discovered that the imfilter function of Matlab is sub-
stantially slower when an image is convolved with an
oriented elliptical Gaussian kernel across right angles.
This is presumably due to the fact that imfilter is op-
timised for separable two-dimensional kernels and be-
haves significantly slower for non-separable ones. This
turned out to be an important issue for our V2 RF sur-

round modulation which uses a kernel of size 157× 157
pixels computed for twelve orientations. Since OpenCV
filter2D does not suffer from this problem, the C++ im-
plementation of our model offers real-time processing.

It is worth mentioning that we did not take advantage
of any GPU programming in the C++ implementation.
We believe our model can greatly benefit from the GPU

parallel architecture due to the fact that its basic units
are matrix operations.

5 Conclusion

In this paper, we present a biologically-inspired edge de-
tection model grounded on physiological findings of the
visual cortex and psychophysical knowledge of visual
perception. Our main contributions can be summarised
as follows: (i) modelling a contrast-dependant surround

modulation of V1 receptive fields by accounting for full,
far, iso- and orthogonal-orientation surround; (ii) in-
troducing a V2 centre-surround mechanism to pool V1
signals in their perpendicular orientations; and (iii) ac-
counting for shape feedback connections from V2 to
V1. We quantitatively compared the proposed model to
current state-of-the-art algorithms on three benchmark

datasets (on both colour and grey scale images) and
our results show a significant improvement compared to
the other non-learning and biologically-inspired mod-
els while being competitive to the learning ones. De-
tailed analysis of different components of our model
suggest that V1 surround modulation strengthen edges
and continues lines while V2 module contributes to the
suppression of undesired textural elements.

It must be acknowledged that within the proposed
framework we have managed to only model a portion
of what is known about surround modulation. The en-
tire mechanism is considerably more complex. For in-
stance, in our formulation, we simplified the interaction
between surrounding regions by treating them as indi-
vidual entities. However, from psychophysical studies
it is evident that the non-linear interactions between
surround and central regions are part of a multiplex
mechanism determined by a number of factors (Spill-
mann et al, 2015), such as, (a) the configurations of
both inducers and targets (Loffler, 2008), and (b) the
spatial gap between target and surround (Tzvetanov
and Dresp, 2002). Consequently, in a more comprehen-
sive model these short and long interactions must be
unified under one regime. Furthermore, it is recognised
that the interaction across different areas of the cortex
is a of dynamic nature and higher-level inputs can facili-
tate lower-level routines (Spillmann et al, 2015). There-
fore, our model can benefit from a more entangled for-
mulation of bottom-up and top-down processes. For in-

stance, it is well established that perception of shape is
significantly influenced by points where multiple edges
meet, e.g. corners (Koenderink and Van Doorn, 1982).

A solution to this border ownership dilemma can be
sought by persisting the initial responses of neurons
and utilising them in the later figure-ground discrim-

ination (O’Herron and von der Heydt, 2011). At the
same time, in future works, we should model the com-
plex shape processing occurring in V4 (e.g. by concen-
tric summation of V2 signals (Wilson and Wilkinson,

2014)), and consider its feedback connections to V1 and
V2 with respect to phenomena such as filling-in surfaces
and grouping.

Biologically-inspired solutions such as the one pre-
sented here make two contributions, one technological
(advancing the state-of-the-art) and the other scientific

(understanding the relationship between the human vi-
sual system and the visual environment). The more we
learn about the properties of the human visual system
the better we can explain visual behaviour. Within cur-
rent limitations (both in knowledge and resources) we
have tried to keep our modelling decisions as close as
possible to what we know about the physiology, in three
main respects: (a) our architecture reflects the low-level
features that are common to mammalian cortical ar-
chitecture and emerged after millions of years of evo-
lution (i.e. are not ad-hoc or dataset-dependant); (b)
our model parameters are the same in all experiments,
which is a feature of how the human visual system oper-
ates; and (c) our paradigm does not include supervised

learning from large datasets, which is also a feature of
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0.61 0.72 0.79

0.77 0.80 0.86
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Original Ground Truth CO (Yang et al, 2013) SCO (Yang et al, 2015) SED

Fig. 5 Qualitative results of three biologically-inspired methods. The F-measure is indicated on the right bottom corner. The
first two rows belong to BSDS300, the third and forth to BSDS500, the sixth and seventh to MBDD, and the last row to CID.

how biological systems operate (their low-level features

learning tends to be largely unsupervised).
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