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Beyond Eleven Color Names for Image Understanding

Lu Yu - Lichao Zhang - Joost van de Weijer -
Cheng - Alejandro Parraga

Abstract Color description is one of the fundamental prob-
lems of image understanding. One of the popular ways to
represent colors is by means of color names. Most existing
work on color names focuses on only the eleven basic color
terms of the English language. This could be limiting the
discriminative power of these representations, and represen-
tations based on more color names are expected to perform
better. However, there exists no clear strategy to choose ad-
ditional color names.

We collect a dataset of 28 additional color names. To
ensure that the resulting color representation has high dis-
criminative power we propose a method to order the ad-
ditional color names according to their complementary na-
ture with the basic color names. This allows us to compute
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color name representations with high discriminative power
of arbitrary length. In the experiments we show that these
new color name descriptors outperform the existing color
name descriptor on the task of visual tracking, person re-
identification and image classification.
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1 Introduction

The description of color is important for many computer vi-
sion applications. The description of color is difficult be-
cause of the many factors that influence the color value, such
as shadows, specularities, image compression, image blur,
etc. One approach to address this problem is by means of
photometric invariants [[13} [11} [10] which are derived from
reflectance models. These are invariant with respect to scene
accidental events such as shadows, illuminant changes etc.
However, these color descriptors are based on assumptions
which are often unrealistic in computer vision applications,
such as known gamma compression, and absence of image
compression. In addition, they suffer from a drop in discrim-
inative power [42]].

Color names are linguistic labels which humans use to
communicate the colors in the world. Examples of color
names are ‘red’, ’olive’ and ’beige’. Computational color
names provide a mapping from color values to correspond-
ing color names [31 |1} 43]]. Because of their high discrim-
inative power and robustness to photometric variations they
were found to be an excellent color representation. In com-
parison to other color descriptors, including descriptors based
on photometric invariance theory, the color name descriptors
were found to obtain superior results in many application,
especially for image classification [21]], image retrieval [29],
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object recognition [20], person reidentification [49]], and vi-
sual tracking [7].

Berlin and Kay [4]] in an influential linguistic study de-
fined the term ’basic color term’ as being (among other char-
acteristics) a color name which is not subsumable under one
of the other basic color terms. They then identified eleven
such terms in English language, namely: black, blue, brown,
green, gray, orange, pink, purple, red, white, and yellow.
Most work on computational color names follow this con-
vention and compute mappings for the eleven basic color
terms (1} 43]]. Studies on other color representations found
that extending the set to more than eleven dimensions might
be beneficial [24]. That resulted in the research questions
which is addressed in this paper, how do we extend the color
name set and does image understanding benefit from a larger
color name set.

There are many possible color names which could be
added to the eleven basic color terms [33]. However the
problem is how to augment the color name set and what is
the ordering for new color terms to be included. Inspired by
[43L 24} 133]], we propose a method which can augment the
basic color terms with additional color names. Given a set of
color names, we add color name which is less represented by
the color names in the set. This procedure is iterated to pro-
duce a ranking of color names to add to the initial basic color
terms. As a result we can compute new color name descrip-
tors of arbitrary length (limited only by the size of our color
name set). In the experiments we will evaluate color name
sets of 15 and 25 and show that they outperform the color
representations based on 11 color names. In conclusion the
contributions of this paper are:

— We collect a new dataset of images to train an extended
set of color names. The set contains a total of 39 color
name categories.

— We propose a method which allows us to rank the ad-
ditional color names, and therefore construct discrimi-
native color name descriptors of arbitrary size. We also
show that a naive extension of the color name descriptor
leads to unsatisfying mapping of colors to color names,
whereas our approach to extend the color name descrip-
tors obtains much more acceptable mappings.

— We evaluate the new color name descriptor on visual
tracking, person re-identification and image classifica-
tion and show that the performance improves over the
standard eleven dimensional color name descriptor. In
addition, we design a psychophysical experiment which
shows that our approach improves agreement to human
users when labeling color patches with color names.

Upon publication we will publish the dataset and the newly
computed color name mappings.

In the next section we will explain the database collec-
tion, and show our approach to ranking the color names. In

Section ] we introduce our approach to extending the color
name set beyond eleven color names. In Section [5|we evalu-
ate the color name descriptor and we conclude in Section [6]

2 Related work

Here we briefly summarize the related work on methods for
color description in computer vision.

We distinguish between two main methodologies to the
color description problem. The first methodology is based
on reflection models which describe the interaction of light,
material and sensors [13} [L1}, 10} [17]]. From these reflec-
tion models photometric invariant descriptions of the ma-
terial color can be derived. Given certain assumptions these
descriptors can overcome the dependence of the color de-
scription on scene accidental events. Examples are color de-
scriptions which are invariant to illuminant color, shadow-
shading and specularities[9, [10, 40]. The main advantage
of these methods is that they do not need training data and
therefore do not require a laborious and costly labeling phase.
The main drawback of these methods is that the assumptions
on which they are based (for example white illumination,
known acquisition device, etc) limit their application. Typi-
cally they require high-quality images without compression
artifacts, and are not very effective for the medium quality
images which are currently used in the many large scale data
sets which have been collected from the internet.

The second methodology to color description is based on
color names. Humans use color names routinely and seem-
ingly without effort. They have been primarily studied in
the fields of visual psychology, anthropology and linguistics
[12]. Basic color terms have been studied in the influential
work of Berlin and Kay [4]. They are defined as those color
names in a language which are applied to diverse classes
of objects, whose meaning is not subsumable under one of
the other basic color terms, and which are used consistently
and with consensus by most speakers of the language. Ba-
sic color names were found to be shared between languages.
The number of basic terms varies from two in some indige-
nous languages to twelve in for example Russian.

Computational color naming [31} 2 144] aims to learn
a mapping from pixel values to color name labels. A clear
example in computer vision where color names are desired
is within the context of image retrieval, where a user might
want to query for images with “’blue sofas”. The system rec-
ognizes the color name “blue”, and orders the retrieved re-
sults on ”sofa” based on their resemblance to the human us-
age of ”blue’. Later research showed that color names actu-
ally also constitute an excellent color descriptor. They were
found to be robust to photometric variations, while having
in general higher discriminative power than the photometric
invariants.
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Fig. 1 Example images for the color ochre from the augmented color
name dataset.

In recent years, these two approaches to color descrip-
tion, namely, the physics-based and the color name methods,
have been compared on a wide variety of computer vision
applications. In an earlier conference work, we provided an
overview of applications where color names and photomet-
ric invariants were compared [41]]. Constantly, color names
were found to outperform the photometric invariance ap-
proaches by a significant margin. Color names have been
extensively tested in image classification tasks [19] 21]], ob-
ject recognition [23]], person re-identification [48] and ac-
tion recognition [22]. The main reason for the success of
color names is the high discriminative power which they
possess, while being robust to photometric variations in im-
ages. It motivates us to investigate extending the color name
set, with the aim to further improve the performance.

There have also been several attempts to divide the color
space into categories using psychophysics, either by focus-
ing on the regions of consensus [39] [3] or the categorical
boundaries [33], 36]]. All these models are based on a small
subset of agreed focal colors.

3 The augmented color name dataset

In this section we explain the collection of the augmented
color name dataset. The English language has hundreds of
color names apart from the eleven basic color terms. To se-
lect a limited set we make use of two recent studies of color
names in the English language [33| [32]]. These studies in-
vestigated which color name words were widely used, had
a shared meaning among the speaker population, be salient
and therefore identifiable in an array of colors, and can be
reliably distinguished in color space. They investigated a to-
tal of 28 candidates including beige, burgundy, cyan, fuch-
sia, lavender, lilac, magenta, maroon, mauve, ochre, olive,
peach, plum, rose, salmon, tan, teal, turquoise, violet, bur-
gundy, lilac, lime green, light green, dark green, dark purple,
light blue, mustard, olive green, pale yellow and mint green.

The choice of training data to infer the mapping from
RGB values to color names should be dictated by its ap-

plication objective. In this paper we are interested in color
name mappings which can be used for image understand-
ing applications which in general are uncalibrated. We there-
fore also resort to learning the mapping from uncallibrated
data crawled from Google similar as [43]. We collect im-
ages from Google by using the search query ’colorname +
objects’, e.g. 'mauve objects’. An example of six images for
“ochre objects’ is provided in Fig. [T} The term "objects’ has
been added to diversify the query results. A direct query for
only the color term leads to color patches which do not rep-
resent colors in real-world situations. In total we collect 250
Google image per color name.

All images are considered to be in SRGB and they are
gamma corrected accordingly. Even though these images
come from a wide range of cameras, the lighting settings
are unknown, and image compression is most likely applied.
It has been shown that color names learned from such im-
ages provide better results in computer vision applications.
This is caused by the fact that in computer vision appli-
cations also often the lighting is unknown, image or video
compression has been applied, etc. For a further discussion
on the differences on learning color names from calibrated
and uncalibrated images we refer to [3]]. To infer the color
name from this dataset we transfer the images to histograms
in L*a*b space. Pixels are represented by assigning their
L*a*b space values into a finite vocabulary by assigning
each value to a regular 10 x 20 x 20 grid. El

4 Computation and Ranking of Additional Color Names

In this section we outline our approach to estimating the
color name distribution from this data. We start by explain-
ing the method from Van de Weijer et al. for color name
estimation and then we propose our approach to use corre-
lation to rank color names.

4.1 Computation of color name mappings

The objective of computational color naming is to find p (c|w)
which is the probability of a color name ¢, given a color
value w, to which we also refer as a color name mapping.
For the computation of p (c|w) we will use the algorithm
proposed in [43]. However it requires some adaptation to
be used for color name sets which include non basic color
names.

We apply probabilistic latent semantic analysis (PLSA)
[15]] to estimate the probability of color values when given a
color name. PLSA is a generative model, in this case on how

! Because the Lab-space is perceptually uniform we discretize it into
equal volume bins. Different quantization levels per channel are chosen
because of the different ranges: the intensity axis ranges from 0 to 100,
and the chromatic axes range from -100 to 100.
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Fig. 2 Comparisons of the top 36 retrieved Munsell patches given a color name. We compare results of our method and the naive method to extend
the color name set. Results clearly show that the naive approach fails to retrieve all relevant Munsell patches.

images are generated: the model assumes that images con-
sist of a number of topics (in our case color names) which
generate words (in our case RGB values). This model allows
us to learn from noisy data such as the data set we collected
from Google.

We model the distribution of RGB values w in an im-
age i to be a mixture of color name topics c. In PLSA the
conditioned distribution p (w|i) is modeled by

= Y p(wle) plcli. M

ceC

where C is the set of color names. Here p (w]i) is the collec-
tion of color histograms of the images and is known. Both
p(w|c) and p(c|i) are unknown and need to be estimated.
This can be done by minimizing the following loss

L:ZZn(i,w)logp(i,w) Q)

with the EM algorithm. Here the joint distribution p (i,w) =
p (i) p(w|i) where p (i) is considered uniform; n (i, w) is the
term frequency and can be directly computed from the train-
ing set.

Similar as [43]] we introduce an additional term which
enforces the color name mappings to be unimodal in LAB
space. It enforces the distribution p (w|c) to have a single
mode and to decrease monotonically. Enforcing this is ap-
propriate since we consider this to be a property of real color
names. It can be obtained by adding a regularization term to
the log likelihood:

L= ZZH i,w)logp (i,w) pe (wW))?

3

YZZ (c[w) —

here p. is computed from the estimated distribution p (c|w)
with a grey scale reconstruction (for more details on this pro-
cedure we refer to [43])). The second term which is weighted
according to ¥ enforces the estimated distribution to be close
to the unimodal distribution by penalizing their difference.
As a second change to standard PLSA, an adjustment
was proposed to allow for the usage of the weak label of
the image (the labelling identifying the color name of the
image) [43]. This can be done by assuming that p(cli) is

drawn from a Dirichlet distribution of parameter oy,. Here
oy, (¢) =t > 1for ¢ =1;, and oy, (c) = 1 otherwise. Here /; is
the label of image i. This leads to the following equation

p(cli) e (0, — 1)+ Y n(i,w) p(clw,i) @)

The computation of the distributions p (w|c) and p (c|i) is
done by iteratively applying an EM-like algorithm, where
we iterate between

— minimize Eq.[3|as a function of p (w|c) with a conjugate
gradient method,
— compute p (cli) according to Eq.[4]

until convergence. This provides us with the color name map-
pings p (w|c) which we were aiming for. We use 7 = 2 and
Y = 200 in our experiments.

4.2 Extending the color names set

One of the hurdles to extending the basic color term set with
other color names is that the resulting color name set can
no longer be interpreted as a probability distribution, i.e. for

C larger than eleven the Y. p(c|w) > 1. For example there
ceC
are colors which can be described as being clearly ’violet’,

‘plum’, “purple’ at the same time. This does not happen with
the eleven basic color terms, because one of their main char-
acteristics is that they are not subsumable under one of the
other basic color terms. As a consequence the PLSA algo-
rithm cannot be applied to color name sets which are larger
than eleven because it is only valid when Y, p(c|lw) = 1.
The violation of this equality increases Witl’cletfle number of
additional color names.

To stress the fact that we are no longer working with
probabilities we write g (c|w) to be the membership of the

color name c to the color word w. We allow Y, g(c|w) > 1
ceC
and enforce 0 < ¢ (c|w) < 1. For example a color could have

a membership of 1 to ’green’, and 0.8 to ’lime’.

As mentioned above the violation is smallest in case we
only add a single color name to the color name set. We
therefore propose the following procedure for the estimation
of g(wlc): (1) for the eleven basic color terms we use the
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(2) for additional color names we compute ¢ w\c{um”}
by adding a single color name at the time to the basic color
terms and apply the PLSA algorithm. E.g. we add color
name 7 to the basic color name set (yielding a total of 12
color names), estimate p (w|c{1’_._,117n}) and set g (w|c{n}) =
p (w\c{n}), and repeat this procedure for all color names not
in the basic color name set. As a result of this procedure we
have the g (w|c) for the 11 basic color terms and the 28 ad-
ditional color names. Finally, we obtain ¢ (c|w) by applying
the Bayes theorem:

aleshw) = -2es) )

La (wlei)

where we assume a uniform prior over the color names.

In Fig. 2] we illustrate the importance of the iterative con-
struction of the ¢ (c|w) which we propose here. If we would
apply a naive extension of the method proposed in [43] the
additional color names will compete with the basic color
names, and we enforce Y, p(c|w) =1 to be true. As a result
the borders of color na;relgs will move around when adding
additional color names. This can be considered an undesired
effect since colors which would previously considered to be
‘red’ with a high probability would suddenly be only con-
sidered "burgundy’. In Fig. 2] we show the top 36 retrieved
Munsell [18] patches given three color names (we consider
a total of 329 Munsell patches). The retrieval shows the
patches with the highest probability given the color name.
Similar results were obtained for the other color names. We
never observed the naive results to obtain a better selection
of color names. Whereas our iterative scheme to compute
q (c|w) provides a relevant set of color patches, the naive ap-
proach only manages to return part of the relevant Munsell
patches. As a consequence, in a retrieval application where
a user looks for *fuchsia’ shoes she would only retrieval part
of the relevant shoes from the dataset when based on the
naive approach.

4.3 Ranking additional color names

In the previous section we have proposed to add 28 new
color names to the basic color name set. In this section, we
address the question how to rank these new color names.
The ranking is of importance for the construction of com-
pact color name representations. For example, if we would
like a 15 dimensional color descriptor we would add the first
four color names from the ranking to the eleven basic color
terms.

When adding color names we would like them to be as
different as possible to the ones which have already been
selected. A color name which is significantly different from

. . & l . e

sl Olive 3 dark " pale
dark it light

. o . . . - -

Fig. 3 (top row) The eleven basic color terms. (second and third row)
proposed order in which to add 28 additional color names to the basic
color term set.

the existing set would increase the discriminative power of
the combined color name set, and therefore improve its ap-
plication to image understanding.

Consider you would like to select the best color name
from a color name set C, to add to a set of color names
C). For brevity we will use the notation B = ¢ (w|c) (a ma-
trix of 4000 x 39) where we use b; = g (w|c;) and hence
B = [by,...b3g). We write B = [by,...h39| to indicate the L2
normalized column vectors, and BC to be the matrix B which
contains the columns of the indexes included in set C. Given
a color name set C; we will add the color name j* from C,
according to

j* =argmin (max ((écl)TBj)) (6)
jeC
This equation considers for each of the potential color names
the correlation with all the color names in set Cy. It then
selects the color name which has the lowest maximum cor-
relation and could therefore be considered the most differ-
ent from the existing onesﬂ We initialize the process with
C; ={1,....11} containing the basic color terms and C; all
other color names. Next Eq. [] is applied N times, at each
step increasing the color name set C; with j* and removing
it from C,.

In Fig. [3 the results are shown when applying Eq. [f] un-
til all color names have been selected. For example, as a set
of 15 color names we would add ’turquoise’,’ olive green’,
"mint green’ and "burgundy’ to the basic eleven color terms.
Note that our approach selects ’turquoise’ to be the 12th
color name, which is interesting since there are some lin-
guistic studies which suggest that ’turquoise’ could be con-
sidered as a twelfth basic color term [50].

To illustrate the learned mappings we apply them to the
challenging synthetic image with 11, 15 and 25 color names.
The results are shown in Fig. 4] Here we only show the color
name with the maximum probability for each pixel. Espe-
cially on the green-blue border and in the purple-pink-red
region new color names are introduced to allow for more
precise color descriptions.

2 We also experimented with selecting the color name with the low-
est mean correlation but results were inferior.
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(a) (b)
©) ()

Fig. 4 (a) the original image and the assignment based on (b) the 11
color names mapping; (c) the 15 ranked color name mapping; and the
(d) the 25 ranked color name mapping.

5 Experimental results

The eleven basic color names are popular color descriptors
and have been shown to obtain excellent results on a large
variety of image understanding fields, including image clas-
sification [21]], action recognition [22]], image retrieval [29],
person re-identification [49]], and visual tracking [7]. In these
papers, which compared the color name descriptor against a
large variety of color presentations, the color name descrip-
tor came out with superior results. Therefore, in these exper-
iments we will compare our new extended color name de-
scriptor against the standard color name descriptor based on
the eleven basic color terms. We will evaluate the descrip-
tor on three relevant computer vision applications namely
visual tracking, person re-identification and image classifi-
cation and we perform an additional user preference experi-
ment.

5.1 Color Naming

In a first experiment we compare the PLSA pipeline we use
for color naming against two baselines, namely SVM and k-
nearest neighbors. To do so we perform the color name ex-
periment from [44]] where the task is to classify pixels from
Ebay dataset images into the eleven basic color terms. The
dataset contains a total of 440 images, consisting of ten im-

(a) (b)

Fig. 5 (a) example image from EBAY labeled with the color name
“green’ and (b) the ground truth mask of the image identifying the pix-
els which are related with the color name. The results in Table[I] show
the percentage of pixels on the mask which are labeled in agreement
with the ground truth label.

Table 1 Percentage of correctly classified pixels in the Ebay dataset
for various classifiers.

PLSA
72.2%

SVM
69.30%

KNN
67.66%

Accuracy

ages for the eleven color names for four different categories
(cars, shoes, dresses, and pottery). All images come with a
mask image which identifies the pixels which belong to the
named object. Evaluation is only performed for the pixels
in the mask. One example of an image and its ground truth
mask is given in Fig.

All three methods are trained on the L*a*b-histograms
of Google images. For the PLSA we use the setup as ex-
plained in Section |3| For SVM we use linear kernelElwhere
we cross validate for optimal ¢ value. For k-nearest neighbor
we optimize for k on the validation set and found 25 to be
optimal.

The results of this experiment are provided in Table [I]
We can see that the PLSA algorithm obtains superior results
compared to both SVM and k-nearest neighbors. In addi-
tion we have applied the three methods to a synthetic image
and results are provided in Fig. |6 We can see that PLSA
manages to obtain smoother edges than k-nearest neighbor
and SVM, and that SVM makes many errors for the highly
saturated colors (along the borders of the image). These are
colors which are less frequent in real images, and therefore
have fewer training examples. In conclusion, PLSA based
color naming outperforms other popular classifiers for the
task of color naming and we will perform the remaining
experiments based on the color names which are computed
with PLSA.

3 We found that more complex kernels such as for example intersec-
tion did not improve results.
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Fig. 6 (a) the original image and the assignment based on (b) PLSA;
(c) SVM; and the (d) k-nearest neighbors on the 11 color name map-

ping.

5.2 Image classification

For image classification we perform experiments on the Ox-
ford Flower102 dataset [34] which contains 8189 images of
102 different kinds of flower (see Fig.[7). It has been selected
because of the importance of color for flower classification
and the real-world challenges such as significant scale and
illumination changes. We follow the standard bag-of-words
(BOW) [6] approach. In BOW an image is firstly represented
by a collection of local image features, and then each local
feature is discretized into a visual vocabulary from the rep-
resented cues such as color and shape. Then images are rep-
resented as a histogram over visual words. For classification
we apply an SVM with intersection kernel.

In a first experiment we compare our proposed method
for ranking color names (see Section f.3) to two baseline
methods:

— RANDOM: a color name set with more than eleven color
names is constructed by choosing the eleven basic color
terms and randomly adding additional color names until
the desired number is reached.

— LABCN: this method is derived from the mean LAB val-
ues of the color names. Following the notation of Sec-
tion 4 the mean of each color name is computed accord-
ing to:

= ZLAB (wi) p(wilc)) @

Table 2 Classification accuracy on Oxford Flower102 with different
methods.

Accuracy  Ours LABCN Random
11 37.23%  37.23%  37.23%
15 37.73% 37.58%  37.60%
25 39.34% 38.61%  38.84%

which is a weighted mean which is computed by multi-
ply the LAB value of the color value w given by LAB (w;)
with the probability of the color value w belonging to the
color name c;. The ranking is then obtained by replacing
the selection of Eq. [6|by:

J* = argmaxdist (Cl,/.tj-“AB) ©))
JEC

where the distance between the set of color names Cj

B ) is defined

to be equal to the minimum distance of color name j
to any of the member of C;. Thus, the algorithm com-
putes the LAB color name centers, and starting from
the eleven color names, adds iteratively that color name
which is furthers away from any of the already selected
color names.

and the color name j given by dist (C1 , ujLA

We test the three different rankings with 15 and 25 color
names on flower classification application. Results are shown
in Table.[2] As can be seen increasing the set of color names
increases the performance, and results improve with 2.1%
for our method. A larger number of color terms can enhance
the discriminative power but also weaken the photometric
invariance. We found that increasing color names beyond
25 color terms did not further improve results.

Next we compare to the two other baselines for ranking
the color names. For eleven color names the methods are
equal because they all consider the same eleven basic color
names. The results show that our method is slightly better
than the RANDOM and LABCN baselines when using 15
color names. The difference gets larger when considering 25
color names. When considering the performance gain with
respect to eleven color names our method obtains a gain of
2.1% whereas the baseline methods only improve by around
1.4%. The fact the LABCN does not outperform the RAN-
DOM method could be caused by the fact that even though it
is selecting color names which describe colors currently not
well described by the color name set, it does not take into
account the frequency of these colors occurring.

In a second experiment on the Oxford Flower102 dataset
we compare the color name descriptor to the discrimina-
tive color descriptors (DD) proposed in [24]. These descrip-
tors are not semantic, which are not linked to human color
names, but were found to obtain state-of-the-art results. They
proposed two sorts of discriminative descriptors: database
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Fig. 7 Example images from Flower102 dataset

W uiniversal_DD
B CN
‘specific_DD

Classification Accuracy

11 color tems

25 color terms

Flower102

Fig. 8 Classification accuracy on Oxford Flower102 comparing color
names with discriminative color descriptors.

specific color name descriptors which are optimized for a
specific classification problem and need to be learned from
labeled training data, and universal color name descriptors
which are learned from several databases and can then be
applied without adapting them to the specific dataset. The
color names which we propose in this paper are universal
color descriptors since they do need to be relearned for new
datasets.

The results of classification are provided in Fig. |8} The
results show that the descriptor based on the 25 color name
set outperforms the universal discriminative descriptor with
the same dimension. The dataset specific color descriptor
only slightly outperforms this results. Given that the differ-
ence is very small, for many applications it might be prefer-
able to apply the 25 color name descriptor which does not
require dataset specific training.

5.3 Color naming for tracking

Visual tracking is a challenging problem in computer vision.
Recent work has shown that color names provide superior
performance when compared to other color representations
for visual tracking [7]. Their tracker is based on the CSK
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Fig. 9 Success plots for (top) various different color name mappings,
and (bottom) various compressed color name mappings.

tracker which is a correlation filter based tracker which
only considers the luminance channel. In [[7] they show that
extending the tracker with color names provides a significant
performance improvement. We will apply the same tracker
in our experiments, but we will replace the eleven color
name mapping with the mappings we have derived here. Re-
sults are provided for color name representations with 15
and 25 color names, where the selection is performed with
Eq.@ An additional weighting term A was introduced to bal-
ance the luminance and color channeld¥] Since the introduc-
tion of color names in tracking [[7]], they have been applied
in several state-of-the-art trackers [8] showing that
color names are among the preferred color representations.
The experiments are performed on an Intel(R) Xeon(R)
CPU E5-1620 v3 @ 3.50GHz CPU with 32 GB RAM with a
native Matlab implementation. In our approach, we use the
same parameter values as suggested by Danelljan et al. [7]
for the ACT tracker. We also employ the same dataset, in-
cluding 35 color sequences used in the evaluation of tracking
methods [47]] and 6 other color sequences namely: Kitesurf,
Shirt, Surfer, Board, Stone and Panda. The sequences used
in our experiments pose challenging situations such as mo-
tion blur, illumination changes, heavy occlusions, low reso-
lution, fast motion, in-plane and out-of-plane rotations, scale

4 We found for optimal results were obtained with a A = 1 for 11
color names, a A = 0.9 for 15 color, and a A = 0.8 for 25 color.
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Fig. 10 Comparison of 3 different color name representations for
trackers in challenging situations such as illumination variation, occlu-
sion, motion blur and in-plane rotation. The example frames are from
the Jogging, Soccer and Shaking sequences respectively. The results
of 11D, 15D, and 25D are represented by blue, green and red boxes
respectively.

variation, out of view and background clutter. To validate the
performance of our approach, we follow the protocol used in
[47).

In the first experiment we compare the tracker using three
different color name mappings: with the original 11 and with
the two new color mappings of 15 and 25. Fig. [9(top) shows
the success plots. The success plot contains the overlap pre-
cision (OP) over a range of thresholds. OP is defined as the
percentage of frames where the bounding box overlap ex-
ceeds a threshold th € [0,1]. The trackers are ranked us-
ing the area under the curve (AUC). As the channels of
the color name mappings increase, the performance of the
color tracker improves. The 25 dimensional color mapping
obtains a 28% relative gain over the original CSK tracker
which obtains 35% OPE score.

Danelljan et al. [7] pointed out that the speed of the
tracker decreases with the number of channels and there-
fore the color name based trackers are significantly slower.
However, they proposed to dynamically map the color repre-
sentation to a lower dimensional representation (they show
that 2 dimensions is enough). When we apply the same dy-
namic dimensionality reduction to our trackers we obtain
the results which are presented in Fig. [0[bottom). The results
slightly deteriorate with respect to the full representation but
the speed increases from 89 to 128 fps for 15 dimensions
and from 66 to 110 fps for 25 dimensions. In Fig. [I0] we
illustrate the results of the trackers on three sequences. Note
for example, in the Jogging sequence, occlusion appears in
frame #81, and the traditional low dimensional color name
representation used in ACT [[7] fails to track the woman, but
the tracker using high dimensional color names can re-detect
the position of the woman after occlusion.

Finally, we show the performance of the three trackers
for several attributes as proposed by Wu et al. [47]. The 25

dimensional color name mapping improves over the stan-
dard 11 dimensional color mapping for all the eleven at-
tributes. In Fig. [TT] the results for four of them are shown. It
can be seen that with increasing dimensionality of the color
name mapping the performance for illumination variation,
low resolution, motion blur and occlusion improves. Espe-
cially the performance gains for low resolution (relative gain
of 21%) and illumination variation (relative gain of 12%) are
noteworthy.

5.4 Color naming for re-identification

In several recent studies [49], [48| 28]], color names have been
extensively used to encode color information for person re-
identification. To validate our approach, we perform the ex-
periments on the challenging Market-1501 dataset for
the person re-identification task. The dataset comprises of
32668 annotated bounding boxes of 1501 identities. We fol-
low the bag-of-words pipeline as described in [49]. A visual
vocabulary is constructed using the standard K-means algo-
rithm on the training bounding boxes. For fair comparison,
we fixed the size of visual vocabulary to 350 words for all
color descriptors. For each local color feature, a Multiple
Assignment (MA) strategy is employed to locate its near-
est neighbor under Euclidean distance. The MA parameter
is fixed to 10 visual word indices. The performance is mea-
sured by using a cumulative matching characteristic (CMC)
curve which plots the probability of correct identification
compared to the candidates returned by the method. A rank-
1 score is then computed which denotes the expectation of
the correct match.

Table [3|shows the performance comparison using differ-
ent color descriptors on the Market-1501 dataset. The color
descriptor with 11 dimensions achieves the mAP score of
12.02% and rank-1 score of 31.80%. The performance im-
proves by increasing the number of color names bins. The
best results are obtained using 25 color names with a mAP
score of 13.45% and rank-1 score of 34.65%. We have also
run the same experiment with the 16 dimensional color name
representation proposed in [48]] for the task of person re-
identification. We found the results to be inferior to ours. In
Fig. [12] an example of queries with 11 and 25 color names
are provided. The 11 color name representation fails to dis-
tinguish between several color tones which are better de-
scribed in the 25 dimensional representation.

5.5 User preference experiment

In Fig.2]we illustrated the importance of our proposed method
for the computation of extended color name sets when com-
pared to a naive approach, which directly applies PLSA to
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Fig. 11 Success plots for several attributes, including illumination variation, low resolution, motion blur and occlusion. The increased color name
representation outperforms the original color name representation for these attributes.
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Fig. 12 Examples for top 3 ranking with 11 and 25 color terms. Note
that some of the errors which occur when using 11 color names are
resolved when using 25 color names.

Table 3 Re-id performance comparison of different color descriptors
on the Mart-1501 dataset. The best results are obtained using 25 color
names.

11 15 1] 25
mAP  12.02 1285 1093 13.45
r=1 3180 3346 3034 34.65

¢ yangyang’s 16-d color features for re_identification with our ex-
periment settings [48].

the extended color name set. We have designed a psychophys-
ical experiment to quantify the difference between our method
and the naive approach. In the experiment we focus on the
color names where the two methods do not agree.

We performed a forced choice psychophysical experi-
ment where observers had to decide whether a given color
patch was described by a given color name (shown in writing
at the top) or not. The stimuli were presented on a calibrated
CRT monitor (Sony GDM F500-R) run by a Visage Mkl
stimulus generator. The screen boundary consisted of a Scm
wide frame that acted as reference white (D56, 64 Cd/m?).
The experimental setup was as follows: after 2 minutes of

Fig. 13 Setup for our psychophysical experiment. Color patches and
color names were presented on a calibrated CRT monitor and the ob-
server pressed buttons on a gamepad to decide whether the color patch
was well described by the name or not. The background was mid-grey
and a reference white was provided by a D65-colored frame

dark adaptation, observers were presented with an image
patch centered on a mid-gray screen, and a color name writ-
ten on top. Their task was to press the left or right buttons of
a gamepad to decide whether the name described the color
of the patch correctly (yes-no choice). Once observers made
their choices (there were no time constraints), the screen was
refreshed, the next patch and color name appeared and the
trial was repeated. Setup for our psychophysical experiment
is shown in Fig. [[3] The patches were randomly selected
from a list of 162 samples where there was disagreement
between the two methods. The color names were obtained
from each of the two methods tested, ours and naive method.
There were 10 subjects (university students, eight male and
two female) and they all had normal color vision tested by
the Ishihara color-blindness test. We also made sure all of
them were familiarized to the same color terms before the
experiment by showing them a series of cards with images
of objects (obtained from Google images) categorized un-
der the same color name. We did two runs of the experiment
per subject. The first run was considered “training” and was
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Table 4 User communication results on Munsell patches.

naive

45.5%

Ours
55.5%

Accuracy

discarded. The results of the second run are presented in ta-
ble (] which shows the percentage of times subjects pre-
ferred each method’s categorization. Our method’s solution
was preferred 10% more than that of naive method.

6 Discussion and Conclusions

Color description is an important part of image understand-
ing. It is a difficult problem because colors vary due to acci-
dental events such as shadow, shading, specularities, view-
ing angle, image compression, etc. The most popular ap-
proach to address this problem is by means of photometric
invariants derived from reflectance models. However, it was
found that descriptors based on color names often obtained
better results for computer vision applications. Color names
are therefore applied in many applications such as image
classification, object detection, action recognition, texture
recognition, object tracking, and person re-identification.

Traditionally color name mappings are restricted to the
eleven basic color name terms. In this paper, we proposed a
method to compute the color name mappings for large color
name sets. For this purpose we collected a new data set of 28
additional color names. We have shown that a naive exten-
sion of the color name descriptor leads to unsatisfying map-
ping of colors to color names. To solve this problem we pro-
pose an iterative scheme to extend the color name descrip-
tor. In addition, we propose a method to rank the additional
color names. Using the ranking we can compute color name
representations of arbitrary length. In our experiments we
evaluate the impact of increasing the number of color names
to visual tracking, person re-identification, and image clas-
sification. In all cases adding color names was found to im-
prove the results significantly. In addition, a psychophysical
experiments shows that our approach has a larger agreement
to human users of labeling patches with color names.

The recent advances of Deep Learning have influenced
computer vision research greatly. Driven by the availabil-
ity of large datasets and improved hardware (GPU compu-
tation) these algorithms can jointly learn feature represen-
tations and classifiers [25} [26]]. They have been shown to
be successful on many computer vision application [38]] and
outperform hand crafted features. They have also been shown
to effectively learn attributes of objects, including color, and
texture attributes [30} 37, |45]]. However, due to the absence
of large color name datasets color naming with deep net-
works has been limited to the eleven basic color names [46].

The dataset proposed in this paper could be used to train net-
works for larger color name sets. In that case the discussion
on the difficulties of extending the color name set beyond
the basic color terms (see Section [4.3)) should be taken into
account when designing the loss function of the network.
A simple softmax loss would enforce the probabilities over
the color names to sum to one, and would most probably
demonstrate some of the shortcomings we have shown in
this paper that "naive’ approaches have.
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