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Abstract
INTRODUCTION: The coexpression of pIGF-1R and MMP-7 (double-positive phenotype, DP) correlates with poor
overall survival (OS) in KRAS wild-type (WT) (exon 2) metastatic colorectal cancer (mCRC) patients treated with
irinotecan-cetuximab in second/third line. METHODS: We analyzed two prospective biomarker design trials of
newly diagnosed RAS-WT mCRC patients treated with panitumumab-FOLFOX6 (PULSE trial; NCT01288339) or
2018 The Authors. Published by Elsevier Inc. on behalf of Neoplasia Press, Inc. This is an
en access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/
-nc-nd/4.0/).
76-5586
tps://doi.org/10.1016/j.neo.2018.05.004

http://crossmark.crossref.org/dialog/?doi=10.1016/j.neo.2018.05.004&domain=pdf
alonord@gmail.com
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1016/j.neo.2018.05.004


In
T
pa
w
[1
E
th

tr
cy
1R
ce
tr
tr
ca
A
bl
in
m

ef
an
de
ro
gr
w
in
in
do
co
tr

an
pr
ce
fin
(e
FO
FO
ob
po

Neoplasia Vol. 20, No. 7, 2018 Coexpression of p-IGF-1R and MMP-7 in CRC Alonso et al. 679
cetuximab plus either FOLFOX6/FOLFIRI (POSIBA trial; NCT01276379). The main exposure was DP phenotype
(DP/non-DP), as assessed by two independent pathologists. DP cases were defined by immunohistochemistry as
N70% expression of moderate or strong intensity for both MMP-7 and pIGF-1R. Primary endpoint: progression-free
survival (PFS); secondary endpoints: OS and response rate. PFS and OS were adjusted by baseline characteristics
using multivariate Cox models. RESULTS: We analyzed 67 patients (30 non-DP, 37 DP) in the PULSE trial and 181
patients in the POSIBA trial (158 non-DP, 23 DP). Response rates and PFS were similar between groups in both
studies. DP was associated with prolonged OS in PULSE (adjusted HR: 0.23; 95%CI: 0.11-0.52; P=.0004) and
with shorter OS in POSIBA (adjusted HR: 1.67; 95%CI: 0.96-2.90; P=.07). CONCLUSION: A differential effect of
anti-EGFRs on survival by DP phenotype was observed. Panitumumab might be more beneficial for RAS-WTmCRC
patients with DP phenotype, whereas cetuximab might improve OS in non-DP.

Neoplasia (2018) 20, 678–686
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he doublets of FOLFIRI or FOLFOX plus cetuximab or
nitumumab are effective as first-line therapies for patients
ith RAS wild-type (WT) metastatic colorectal cancer (mCRC)
–3]. However, certain patients do not fully benefit from these
GFR-targeted antibodies, requiring additional biomarkers to tailor
eir use.
The type 1 insulin-like growth factor receptor (IGF-1R) is a
ansmembrane glycoprotein composed of two extracellular and two
toplasmic subunits acting as a receptor-tyrosine kinase [4–7]. IGF-
is activated in colorectal cancer, mediating key processes such as

ll proliferation, apoptosis resistance, and epithelial-to-mesenchymal
ansition (EMT) [8]. The signal transducer and activator of
anscription 3 (STAT3) is also constitutively activated in colorectal
ncer [9] by growth factor receptors (EGFR and IGF-1R) through
KT/mTORC/RAC1 [10], or induced by cancer-associated fibro-
asts (CAFs) through IL-6-JAK1/2 [11,12]. Regardless of this
trinsic or extrinsic activation, STAT3 signaling enforces matrix
etalloproteinase-7 (MMP-7) expression [13].
Recently, IGF-II was shown to activate IGF-1R and STAT3 more
fectively than IGF-I and to induce SLUG transcriptional activity
d EMT in CRC [14]. Feedback activation has been also
monstrated between MMP-7 and IGF-1R. MMP-7 plays a crucial
le in IGF-I and IGF-II bioavailability through the insulin-like
owth factor-binding protein 3 (IGFBP-3) degradation [15–17],
hich in turn mediates IGF-1R–dependent [18] but also IGF-1R–
dependent NF-kB activation [19]. The blockade of IGF-1R is also
volved in the suppression of cancer cell invasion through
wnregulation of MMP-7 [20]. Therefore, IGF-1R and MMP-7
ntribute by multiple pathways to activate the two more critical
anscription factors: STAT3 and NF-kB.
Our group has previously shown that coexpression of p-IGF-1R
d MMP-7 (double positivity phenotype, DP) correlates with poor
ognosis in KRASWT (exon 2) patients treated with irinotecan plus
tuximab as second-/third-line therapy [21]. To validate these
dings, we designed two prospective, translational trials in K-RAS
xon-2) WT mCRC patients treated with panitumumab plus
LFOX6 (PULSE trial) or cetuximab plus either FOLFOX6 or
LFIRI (POSIBA trial) as a first line of therapy, with the shared
jective of evaluating the prognostic role of DP in this patient
pulation.
ethods

rials Design
Patients were eligible in both studies if they were ≥18 years old; had
stologically confirmed KRAS WT (exon 2) mCRC with ≥1
diologically measurable lesion; an Eastern Cooperative Oncology
roup Performance Status (ECOG-PS) of 0-1; and adequate hepatic,
nal, and bone marrow functions. Patients were ineligible if they
ere pregnant, had a history of treatment with anti-EGFR or
emotherapy (with the exception of adjuvant therapy), or had
dergone surgery of metastatic disease.
The PULSE (GEMCAD 09-03, clinicaltrials.gov id:
CT01288339) and POSIBA (GEMCAD 10-02, clinicaltrials.gov
: NCT01276379) were both single-arm prospective biomarker
sign trials. Patients were recruited into the PULSE trial from
ovember 2010 to April 2013 in 24 Spanish centers and treated with
LFOX6 plus panitumumab (6 mg/kg). Patients were recruited

to the POSIBA trial from July 2011 to May 2015 in 28
anish centers and treated with FOLFOX6 or FOLFIRI (at
vestigator’s choice) plus biweekly cetuximab (500 mg/m2). In
th trials, cytotoxic drugs were administered for 6 months, followed
anti-EGFR monotherapy until progressive disease or unacceptable
xicity.
Patients were classified as DP if their tumor presented moderate or
rong intensity (++/+++) and N70% expression for both MMP-7 and
GF-1R by immunohistochemistry staining (see below). The
imary endpoint for both studies was progression-free survival
FS), defined as time from enrollment to disease progression, death,
end of follow-up, whichever came first. Secondary objectives

cluded response rate, toxicity profile, and overall survival (OS),
fined as time from enrollment to death or end of follow-up. Disease
atus was evaluated with abdominopelvic CT scan every 2 months in
e PULSE trial and every 3 months in the POSIBA trial until
ogressive disease. Patients without a second CT evaluation were not
sessable for response rate. Patients who underwent liver resection
ere not censored at the time of surgical resection and were followed
til progressive disease.
The safety population comprised all patients who received
least one dose of study treatment. Adverse events (AEs) were
corded according to the National Cancer Institute Common
oxicity Criteria version 2.0. The PULSE and POSIBA trials
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ere approved by local institutional review boards and ethics
mmittees in accordance with national and international
idelines; all patients signed a written informed consent before
udy entry.
gure 1. Patients’ disposition in the (A) PULSE and (B) POSIBA trials.*R
utations (exons 3 and 4) and NRAS mutations (exons 2, 3, and 4) (N=1
RASmutations (exons 2, 3, and 4).***The expression of p-IGF-1R and M
cetuximumab and three with FOLFIRI+cetuximab
AS and BRAF Mutational Analysis
Mutational analysis of genomic DNA of KRAS (exon 2) was
rformed by direct sequencing. In the PULSE trial, it was evaluated
ntrally at the Hospital Clínic (Barcelona, Spain), although analysis
AS mutant includes mutations in KRAS (exon 2) (N=60), and KRAS
1).**RAS mutant includes mutations in KRAS (exons 3 and 4) and
MP-7 was not evaluable in five patients: two treated with FOLFOX

Image of Figure 1


at
ev
(i
PU
am
by
(A

Im

an
th
in
re
D
M
cy
K
ev
an

of
pe
th

St

ha
be
0.
w
an
ex
PO
am
80
m
pa
po

cu

Ta

BR
Fe
Ag
Pr

Sta

Su
EC

Nu

Li

No
Lu
Pe
Ad

Le
H
Pla
AL
LD
CE

AL
de

Neoplasia Vol. 20, No. 7, 2018 Coexpression of p-IGF-1R and MMP-7 in CRC Alonso et al. 681
the referring Center was also allowed. In the POSIBA trial, it was
aluated at the referring center. Extended RAS mutational analysis
ncluding KRAS/NRAS exons 2, 3 and 4) started on 10/2013 in the
LSE trial and on 10/2015 in the POSIBA trial after protocol
endments. The BRAF V600E mutation (exon 15) was genotyped
allelic discrimination in genomic DNA using TaqMan technology
pplied Biosystems, Foster City, CA).

munohistochemistry
We used hematoxylin and eosin staining to evaluate the presence
d classification of the tumor specimens. Consecutive 2- to 3-μm–
ick sections were used for IHC. Removal of paraffin and heat
cubation in citrate (pH=6.0) were performed to achieve antigen
trieval. The primary p-IGF-1R antibody (anti-pY1316, provided by
r. Rubini) was used at 1:100 dilution. MMP-7 (R&D System,
inneapolis, MN) was used at 1:1500 dilution. The expression was
toplasmatic. Detection was performed using the Dako EnVision
4011 (Agilent, Santa Clara, CA). In the PULSE trial, IHC
aluation was done centrally in Hospital Clínic (Barcelona, Spain),
d results were given before patient inclusion to balance the number
ble 1. Baseline Characteristics by Trial and Double Positivity

POSIBA

Non-DP (N=158) DP (N=23)

AF mutated, N (%) 16 (10) 4 (17)
male, N (%) 46 (29) 7 (30)
e, mean (SD) 62 (11) 67 (7)
imary tumor location, N (%)
Ascending colon 28 (18) 4 (17)
Transverse colon 13 (8) 1 (4)
Descending colon 12 (8) 2 (9)
Sigma 65 (41) 11 (48)
Rectum 40 (25) 5 (22)
ge (at diagnosis), N (%)
I 1 (1) 0
II 12 (8) 1 (4)
III 32 (20) 3 (13)
IV 113 (72) 19 (83)
rgery of primary tumor, N (%) 89 (56) 12 (52)
OG-PS, N (%)
0 110 (70) 9 (39)
1 45 (28) 14 (61)
2 3 (2) 0
mber of metastatic organs, N (%)
0 0 0
1 79 (50) 15 (65)
N2 79 (50) 8 (35)
ver metastasis, N (%)
No liver metastasis 35 (22) 5 (22)
b=3, b=5 cm 28 (18) 5 (22)
N3 or N5 cm 95 (60) 13 (57)
de metastasis, N (%) 50 (32) 7 (30)
ng metastasis, N (%) 48 (30) 2 (9)
ritoneal metastasis, N (%) 23 (15) 4 (17)
ministered therapy, N (%)
FOLFOX+cetuximab 89 (56) 9 (39)
FOLFIRI+cetuximab 69 (44) 14 (61)
FOLFOX+panitumumab NA NA
ucocytes, mean (SD) 8.3 (3.3) 8.9 (3.7)
emoglobin, mean (SD) 13.8 (9.2) 11.9 (1.6)
telets, mean (SD) 282 (104) 298 (140)
P, mean (SD) 148 (122) 179 (177)
H, mean (SD) 465 (457) 632 (1246)
A, mean (SD) 267 (732) 708 (1772)

P, alkaline phosphatase; CEA, carcinoembryonic antigen; DP, double positivity; ECOG-PS, Eastern
viation.
Fisher’s exact test
patients in both arms. In the POSIBA trial, IHC evaluation was
rformed after patients’ inclusion. Thus, DP distribution represents
at of the source population.

atistical Analysis
In the PULSE trial, a recruitment of 78 patients was planned to
ve an 80% power to detect a difference in median PFS of 6 months
tween DP and non-DP patients (assuming a bilateral α error of
05 and the occurrence of 56 events). A screening of 270 patients
as planned because only 25% of patients were expected to be DP
d 40% to be KRAS mutant. Recruitment continued until both
posure groups (DP and non-DP) were filled in a 1:1 ratio. In the
SIBA trial, a recruitment of 170 RAS WT patients (after
mendent of all RAS WT analysis) was planned to detect, with a
% of power and a bilateral alpha of 5%, a 20% difference in 12-
onth PFS. We assumed that the 12-month PFS of the non-DP
tiens would be of 60%, and a 25% of DP patients in the source
pulation.
Kaplan-Meier estimates were used to plot unadjusted survival
rves. Cox proportional hazards regression was used to perform
PULSE

P Value Non-DP (N=30) DP (N=37) P Value

.29 2 (7) 5 (14) .45

.99 12 (40) 10 (27) .30

.031 63 (8) 64 (8) .61

.98 .47
2 (7) 3 (8)
1 (3) 5 (14)
3 (10) 3 (8)
15 (50) 12 (32)
9 (30) 14 (38)

.77 .88
0 0
1 (3) 2 (5)
5 (17) 4 (11)
24 (80) 31 (84)

.82 20 (67) 24 (65) .99

.012 .61
16 (53) 22 (59)
13 (43) 15 (41)
1 (3) 0

.30 .33
0 2 (5)
13 (43) 16 (43)
17 (57) 19 (51)

.87 .93
7 (23) 10 (27)
3 (10) 4 (11)
20 (67) 23 (62)

.99 9 (30) 12 (32) .99

.043 11 (37) 14 (38) .99

.75 9 (30.0) 8 (22) .57

.18
NA NA
NA NA
30 (100) 37 (100)

.39 9.8 (7.1) 8.2 (2.5) .23

.023 12.9 (1.7) 12.4 (1.5) .15

.60 298 (144) 296 (120) .96

.44 166 (208) 219 (237) .34

.56 683 (814) 446 (415) .16

.26 502 (1212) 838 (3609) .61

Cooperative Oncology Group performance status; LDH, lactate dehydrogenase; SD, standard
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Figure 2. Kaplan-Meier estimates of progression-free survival and overall survival according to DP status in the (A) PULSE and (B) POSIBA trial.
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justed analyses for PFS and OS. Multivariate analysis was built
ciding a priori the variables to adjust for: age, sex, p-IGF-1R/
MP-7 expression, primary tumor location, stage at diagnosis,
rgery of primary tumor, number of involved organs, type of
volved organ, liver-only extension, ECOG-PS, BRAF mutational
atus, administered therapy, and baseline levels of: leucocytes,
ble 2. Progression-Free Survival; Cox Regression Analysis

POSIBA

Univariate Multivariate

HR (95% CI) P Value HR (95% CI)

P 1.24 (0.79-1.94) .36 1.39 (0.84-2.31)
OG-PS N0 2.02 (1.46-2.79) b.0001 1.77 (1.24-2.54)
e N65 years 1.18 (0.87-1.61) .30 0.99 (0.69-1.42)
AF mutated 2.33 (1.44-3.79) .0006 2.09 (1.16-3.77)
rgery of primary tumor 1.62 (1.19-2.22) .0024 1.60 (1.12-2.28)
ft-sided primary tumor 1.02 (0.74-1.39) .92 0.92 (0.63-1.32)
A (logarithmic term) 0.55 (0.39-0.78) .0008 0.55 (0.37-0.81)
H (logarithmic term) 1.03 (0.96-1.10) .40 1.03 (0.94-1.14)

ver metastasis 1.04 (0.82-1.31) .74 1.02 (0.78-1.33)

3, b=5 cm Ref.
or N5 cm 0.63 (0.38-1.03) .065 0.95 (0.54-1.69)

A, carcinoembryonic antigen; CI, confidence interval; DP, double positivity; ECOG-PS, Eastern Coope
ld-type.
emoglobin, platelets, lactate dehydrogenase (LDH), alkaline
osphatase (ALP), and carcinoembryonic antigen (CEA). Addition-
ly, we performed sensitivity analyses with automated stepwise
lection of variables (P value for variable entry into the model=.2, P
lue to stay in the model=.1) and by entering in the model those
riables with a Pb.1 in the univariate analysis. All the P values are
PULSE

Univariate Multivariate

P Value HR (95% CI) P Value HR (95% CI) P Value

.20 0.68 (0.40-1.14) .14 0.33 (0.17-0.66) .0017

.0017 1.19 (0.70-2.02) .52 1.33 (0.71-2.509) .37

.97 1.43 (1.85-2.41) .18 1.65 (0.79-3.43) .18

.014 1.77 (0.75-4.17) .19 1.77 (0.34-9.03) .49

.0099 0.56 (0.32-0.98) .041 0.45 (0.22-0.94) .034

.64 0.65 (0.33-1.30) .22 0.41 (0.14-1.18) .10

.0029 1.10 (0.97-1.25) .13 1.04 (0.88-1.23) .65

.49 1.14 (0.78-1.67) .49 1.65 (0.98-2.77) .058

.88
Ref.
0.99 (0.38-2.63) .99 0.83 (0.24-2.84) .76

.87 1.11 (0.59-2.09) .74 0.86 (0.35-2.01) .74

rative Oncology Group performance status; HR, hazard ratio; LDH, lactate dehydrogenase;WT,

Image of Figure 2


Table 3. Sensitivity Analyses for Progression-Free Survival; Cox Regression Analysis

POSIBA PULSE

Multivariate S1 Multivariate S2 Multivariate S1 Multivariate S2

HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value

DP 1.13 (0.71-1.81) .61 1.13 (0.71-1.81) .61 0.59 (0.35-1.02) .058 0.35 (0.18-0.67) .0015
ECOG-PS N0 1.75 (1.25-2.45) .0011 1.75 (1.25-2.45) .0011
Age N65 years
BRAF mutated 2.04 (1.24-3.34) .0048 2.04 (1.24-3.34) .0048
Surgery of primary tumor 1.43 (1.04-1.97) .029 1.43 (1.04-1.97) .029 0.50 (0.28-0.88) .017 0.45 (0.22-0.90) .023
Left-sided primary tumor 0.35 (0.15-0.83) .0165
CEA (logarithmic term) 0.58 (0.41-0.84) .0032 0.58 (0.41-0.84) .0032
LDH (logarithmic term) 1.12 (0.99-2.33) .057
Liver metastasis
0
b=3, b=5 cm
N3 or N5 cm

CEA, carcinoembryonic antigen; CI, confidence interval; DP, double positivity; ECOG-PS, Eastern Cooperative Oncology Group performance status; HR, hazard ratio; LDH, lactate dehydrogenase;WT,
wild-type.
S1: multivariate model including only the variables with a P value b.1 in the univariate analysis.
S2: multivariate model adjusted via automated stepwise selection of variables (see text for details).

Table 4. Overall Survival; Cox Regression Analysis

POSIBA PULSE

Univariate Multivariate Univariate Multivariate

HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value

DP 1.73 (1.06-2.85) .029 1.67 (0.96-2.90) .070 0.54 (0.29-0.99) .048 0.23 (0.11-0.52) .0004
ECOG-PS N0 2.95 (2.03-4.29) b.0001 2.48 (1.63-3.77) b.0001 2.20 (1.18-4.08) .013 2.93 (1.30-6.62) .0097
Age N65 years 1.24 (0.85-1.79) .26 1.00 (0.65-1.53) .99 1.37 (0.74-2.53) .32 1.48 (0.64-3.47) .36
BRAF mutated 3.38 (2.00-5.72) b.0001 2.32 (1.23-4.36) .0092 4.23 (1.17-10.48) .0018 10.3 (1.08-58.3) .0086
Surgery of primary tumor 1.60 (1.10-2.32) .013 1.36 (0.90-2.07) .15 0.35 (0.19-0.66) .0010 0.20 (0.08-0.48) .0003
Left-sided primary tumor 1.06 (0.73-1.53) .78 0.82 (0.51-1.31) .40 0.60 (0.28-1.31) .20 0.47 (0.15-1.48) .20
CEA (logarithmic term) 0.42 (0.28-0.62) b.0001 0.47 (0.30-0.74) .0012 1.09 (0.94-1.25) .25 0.91 (0.75-1.10) .32
LDH (logarithmic term) 0.99 (0.91-1.08) .80 1.00 (0.89-1.12) .97 1.30 (0.85-2.01) .23 1.40 (0.79-2.43) .25
Liver metastasis 0.95 (0.72-1.26) .73 0.92 (0.66-1.27) .61
0 Ref. Ref.
b=3, b=5 cm 0.68 (0.39-1.21) .19 1.08 (0.57-2.06) .81 1.72 (0.54-5.46) .35 2.49 (0.56-11.09) .23
N3 or N5 cm 0.70 (0.45-1.10) .12 0.95 (0.51-1.79) .88 1.73 (0.75-3.95) .20 1.64 (0.49-5.50) .42

CEA, carcinoembryonic antigen; CI, confidence interval; DP, double positivity; ECOG-PS, Eastern Cooperative Oncology Group performance status; HR, hazard ratio; LDH, lactate dehydrogenase;WT,
wild-type.

Table 5. Sensitivity Analysis for Overall Survival; Cox Regression Analysis

POSIBA PULSE

Multivariate S1 Multivariate S2 Multivariate S1 Multivariate S2

HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value HR (95% CI) P Value

DP 1.60 (0.96-2.67) .072 1.72 (1.01-2.94) .048 0.36 (0.19-0.69) .0019 0.36 (0.19-0.69) .0019
ECOG-PS N0 2.31 (1.56-3.43) b.0001 2.49 (1.65-3.76) b.0001 2.16 (1.10-4.25) .026 2.16 (1.10-4.25) .026
Age N65 years
BRAF mutated 2.40 (1.38-4.17) .0019 2.57 (1.47-4.49) .0010 3.52 (1.32-9.35) .012 3.52 (1.32-9.35) .012
Surgery of primary tumor 1.29 (0.88-1.90) .19 0.33 (0.17-0.64) .0013 0.33 (0.17-0.64) .0013
Left-sided primary tumor
CEA (logarithmic term) 0.50 (0.33-0.75) .0008 0.50 (0.32-0.76) .0014
LDH (logarithmic term)
Liver metastasis
0
b=3, b=5 cm
N3 or N5 cm

CEA, carcinoembryonic antigen; CI, confidence interval; DP, double positivity; ECOG-PS, Eastern Cooperative Oncology Group performance status; HR, hazard ratio; LDH, lactate dehydrogenase;WT,
wild-type.
S1: multivariate model including only the variables with a P value b.1 in the univariate analysis.
S2: multivariate model adjusted via automated stepwise selection of variables (see text for details).
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Table 6. Response Rates by Trial and Double Positivity

POSIBA PULSE

Non-DP DP P Value Non-DP DP P Value

Complete response 13 (8.2) 4 (17.4) .17 3 (10.0) 2 (5.4) .28
Partial response 101 (63.9) 11 (47.8) 19 (63.3) 25 (67.6)
Stable disease 27 (17.1) 4 (17.4) 1 (3.3) 7 (18.9)
Progressive disease 9 (5.7) 3 (13.0) 1 (3.3) 3 (8.1)
Not evaluable 8 (5.1) 1 (4.4) 6 (20.0) 0

DP, double positivity.
Fisher’s exact test.
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o-sided. Analyses were implemented using SAS V9.3 (SAS
stitute, Cary, NC).

esults
total of 67 (PULSE) and 181 (POSIBA) RAS-WT mCRC patients
ere included in the analysis (Figure 1). In the PULSE trial, 30
tients were non-DP and 37 patients were DP, whereas in the
OSIBA trial, 158 patients were non-DP and 23 patients were DP.
atients were followed for a median of 27 months in the PULSE trial
d for a median of 26 months in the POSIBA trial. DP patients in
e POSIBA trial were less likely to have PS 0 and lung metastasis and
so have lower levels of hemoglobin than non-DP patients. There
ere no relevant differences in the baseline characteritics of both
oups in the PULSE trial (Table 1).

fficacy According to DP Status
Median PFS (95% CI) was 11.2 months (9.2-18.5) for DP
tients and 8.0 months (5.5-14.7) for non-DP patients in the
ULSE trial (P=.14). Median PFS (95% CI) was 9.4 months (7.5-
.1) for DP patients and 10.8 months (9.5-12.2) for non-DP
tients in the POSIBA trial (P=.36, Figure 2). Adjusted HR for PFS
as 0.33 (0.17-0.66) in the PULSE trial and 1.39 (0.84-2.31) in the
OSIBA trial (Table 2). Sensitivity analysis did not change results
bstantially (Table 3).
Median OS (95% CI) was 39.8 months (27.0-not estimable) for
P patients and 18.9 months (11.0-36.6) for non-DP patients in the
ULSE trial (P=.029). Median OS (95% CI) was 26.1 months (12.3-
.6) for DP patients and 31.0 months (26.2-37.5) for non-DP
tients in the POSIBA trial (P=.027, Figure 2). DP was associated
ith prolonged OS in the PULSE trial (adjusted HR: 0.23: 95% CI:
m
di

hy
th
th
w
ce
F
co
ad
A
pa
ef
cy
m
po

ble 7. Summary of Adverse Events in the PULSE Trial

Any Grade Grade 3 Grade 4

No. of Patients (%)

y event 78 (100) 55 (70.5) 10 (12.8)
in toxicity 71 (91.0) 24 (30.8) 0 (0)
tigue 55 (70.5) 12 (15.4) 1 (1.3)
ucositis 52 (66.7) 6 (7.7) 0 (0.0)
iarrhea 48 (61.5) 11 (14.1) 1 (1.3)
eutropenia 44 (56.4) 26 (33.3) 2 (2.6)
auseas/vomiting 30 (38.5) 1 (1.3) 0 (0)
rombocytopenia 28 (35.9) 3 (3.9) 0 (0)
ypomagnesemia 23 (29.5) 1 (1.3) 2 (2.6)
eurologic toxicity 16 (20.5) 1 (1.3) 0 (0)
aemia 10 (12.8) 1 (1.3) 0 (0)
ronychia 8 (10.3) 1 (1.3) 0 (0)
fusion-related reaction 7 (9.0) 0 (0) 0 (0)
ypokalemia 6 (7.7) 2 (2.6) 1 (1.3)
brile neutropenia 3 (3.9) 1 (1.3) 2 (2.6)
11-0.52; P=.0004) and with shorter OS in the POSIBA trial
djusted HR: 1.67; 95% CI: 0.96-2.90; P=.07) (Table 4). Sensitivity
alysis did not change results substantially (Table 5).
Response rates were similar according to DP in both the PULSE
d POSIBA studies (Table 6). There were no major differences in
rms of secondary resection of metastases and second-line therapies
tween PULSE and POSIBA trials and between DP and non-DP
oups (data not shown).

afety
The most common AEs (any grade) in the PULSE trial were skin
xicity (91%), fatigue (70%), and mucositis (67%) (Table 7). The
ost common AE (any grade) in the POSIBA trial were skin toxicity
6%), fatigue (55%), and diarrhea (50%) (Suppl. Table 1). Three
tients died within 30 days of receiving protocol therapy: one patient
PULSE and two patients in POSIBA trial.

iscussion
e present data from two prospective, multicenter, translational,
rst-line trials in WT RAS mCRC patients. Our findings suggests
at there is a survival benefit in the subset of DP patients treated with
front FOLFOX plus panitumumab schedule and in non-DP
tients treated upfront with FOLFOX/FOLFIRI plus cetuximab
erapy. This benefit was observed after adjustment for baseline
aracteristics, secondary surgery of metastases, and second-line
erapies.
Recent evidence shows that RAS WT patients with right-side
imary tumors have shorter overall survival than those with left-sided
mors and that left-sided tumors obtain greater benefit when treated
ith chemotherapy and anti-EGFR combinations [22], although the
ological reasons remain obscure. Consensus molecular subtype
asification (CMS) associates the stromal-enriched mesenchymal
enotype (CMS4) [23] with poor prognosis [24,25] and cetuximab
sistance [26]. Despite data from Medema group suggesting that
RAF mutant CRC patients are enriched with CDX2−/ZEB1+
MS4 phenotype [27], BRAF mutant mCRC patients are equally
stributed between right- and left-sided, and 75% of right-sided
tients treated with anti-EGFR present double WT genotype.
herefore, other CMS4 markers besides CDX2−/ZEB1+ and DP,
ch as CCL2 or CXCL12 (for both BRAF mutant and double WT
notypes), might be probably overrepresented in right-sided tumors.We
uld not rule out that, for currently unknown reasons, CMS4phenotype
ight be induced by chemotherapy and anti-EGFR treatment [28]
fferently in both sides, influencing acquired resistance [29,30].
We designed the PULSE trial based on retrospective data [21]
pothesizing that DP patients treated with panitumumab-based
erapy could have also poor prognosis. It’s important to emphasize
at the PULSE was designed in a different population (naïve) and
ith a different anti-EGFR exposure (panitumumab instead of
tuximab). Despite confirming our previous findings with FOL-
IRI/FOLFOX plus cetuximab in the POSIBA trial, we could not
nfirm these results in the PULSE trial with panitumumab. In
dition to inhibition of EGFR mitogenic pathways (MAPK, PI3K/
KT, and JAK/STAT), monoclonal antibodies (cetuximab and
nitumumab) possess the potential advantage of recruiting immune
fector mechanisms such as antibody-dependent cell mediated-
totoxicity (ADCC) [31], although cetuximab was shown to be
ore effective in this mechanism than panitumumab. Although
tentially cetuximab can activate ADCC also through NK cells,
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ese cells are almost absent in colorectal cancer, and cetuximab in
2 macrophages activates anti-inflammatory IL-10 cytokines and
oangiogenic factors (IL-8 and VEGF) [24]. Taking into account
at: a) DP status could increase over time after chemotherapy
eatment [29] and b) IGF-1R and STAT3 activation induces T-cell
lerance through TGF-B, IL-10 and VEGF [32] and also increases
emokines and cytokines such as IL-6 and CCL2 towards
acrophage M2 polarization [33], we speculate that cetuximab but
t panitumumab could be influenced by DP-CMS4 acquired
sistance through immune evasion.
Our study has several limitations. Firstly, PFS was evaluated
fferentialy (every 2 months in the PULSE trial and every 3 months
the POSIBA trial). Secondly, the percentage of DP positivity

idely differs in both studies (33% in PULSE and 13% in POSIBA).
hirdly, the explanation on a potential biological reason for the
ntradictory results of our biomarker should be clarified.
We believe that our findings would have potential clinical
portance and definitively justify a prospectively enriched-
omarker design in RAS WT patients with an experimental arm
sed on the biomarker (DP-treated with panitumumab and non–
P-treated with cetuximab) and a control arm (without this
formation) treated at investigator criteria (cetuximab or
nitumumab).

onclusions
ur study suggest that panitumumab is more benefitial for those RAS
T mCRC patients with a DP phenotype and cetuximab for those
ithout it in terms of overall survival after adjusting for all clinical and
ological confounder variables in the multivariate analysis.
Supplementary data to this article can be found online at https://
i.org/10.1016/j.neo.2018.05.004.
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