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A B S T R A C T

Positron emission tomography (PET) neuroimaging with the Pittsburgh Compound_B (PiB) is widely used to assess amyloid plaque burden. Standard quantification
approaches normalize PiB-PET by mean cerebellar gray matter uptake. Previous studies suggested similar pons and white-matter uptake in Alzheimer's disease (AD)
and healthy controls (HC), but lack exhaustive comparison of normalization across the three regions, with data-driven diagnostic classification.

We aimed to compare the impact of distinct reference regions in normalization, measured by data-driven statistical analysis, and correlation with cerebrospinal
fluid (CSF) amyloid β (Aβ) species concentrations.

243 individuals with clinical diagnosis of AD, HC, mild cognitive impairment (MCI) and other dementias, from the Biomarkers for Alzheimer's/Parkinson's Disease
(BIOMARKAPD) initiative were included. PiB-PET images and CSF concentrations of Aβ38, Aβ40 and Aβ42 were submitted to classification using support vector
machines. Voxel-wise group differences and correlations between normalized PiB-PET images and CSF Aβ concentrations were calculated.

Normalization by cerebellar gray matter and pons yielded identical classification accuracy of AD (accuracy-96%, sensitivity-96%, specificity-95%), and sig-
nificantly higher than Aβ concentrations (best accuracy 91%). Normalization by the white-matter showed decreased extent of statistically significant multivoxel
patterns and was the only method not outperforming CSF biomarkers, suggesting statistical inferiority. Aβ38 and Aβ40 correlated negatively with PiB-PET images
normalized by the white-matter, corroborating previous observations of correlations with non-AD-specific subcortical changes in white-matter. In general, when
using the pons as reference region, higher voxel-wise group differences and stronger correlation with Aβ42, the Aβ42/Aβ40 or Aβ42/Aβ38 ratios were found compared
to normalization based on cerebellar gray matter.
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1. Introduction

Positron emission tomography (PET) imaging with the 11C-
Pittsburgh Compound B (PiB) tracer is currently used in many nuclear
medicine imaging centers to visualize in vivo amyloid plaques in the
brain, which represent a core molecular feature of Alzheimer's disease
(AD) (Hardy & Selkoe, 2002).

The binary assessment of PiB-PET images, abnormal (amyloid-po-
sitive) versus normal (amyloid-negative), can be done by examining
tracer uptake in cortical regions of interest. While the most commonly
used approach, from a clinical standpoint, is the visual assessment of
summated concentration images, quantitative approaches can also be
applied; the most common of these is the standardized uptake value
ratio (SUVR), which consists in normalizing uptake within target re-
gions to that within a reference region. A global cut-off can then be
applied to determine whether the PiB image is positive or negative.
Quantitative assessment increases the accuracy and confidence of the
visual readings and is also useful for longitudinal studies and clinical
trials. The cerebellar gray matter has been widely used as reference
region since its amyloid accumulation has been demonstrated to bear
no significant differences between healthy controls (HC) and AD pa-
tients (Price et al., 2005; Klunk et al., 2004). Other biomarker ex-
tensively used in the clinical diagnosis of AD is the cerebrospinal fluid
(CSF) concentration of amyloid-β (Blennow et al., 2012; Rosén et al.,
2013). It is well known that, in AD patients, the concentration of
amyloid-β42 (Aβ42) in the CSF is generally decreased (Olsson et al.,
2016) concurrently with elevated brain retention of amyloid tracers,
such as PiB or 18F-florbetapir (Leuzy et al., 2016; Johnson et al., 2013;
Mattsson et al., 2014).

Mild cognitive impairment (MCI) may often represent a prodromal
stage of AD, with a conversion rate to dementia due to AD of about 10%
to 25% per year while healthy elderly progress at a rate of approxi-
mately 1% to 2% per year (Grand et al., 2011). MCI patients who are
PiB amyloid-positive are very likely cases of prodromal AD, while pa-
tients with MCI who are PiB amyloid-negative are less likely to re-
present a prodromal stage and to undergo conversion to AD (Wolk
et al., 2009; Okello et al., 2009; Jack et al., 2010).

Our main goal was to assess, using multivariate approaches, if the
cerebellar gray matter is the best choice, from a clinical point of view,
to be used as reference region when compared with the pons or sub-
cortical white matter, since these two areas were also found to have
similar PiB retentions in AD patients and HC subjects (Klunk et al.,
2004). To decide which approach that would be the best option, we
here investigated: 1) the ability to discriminate clinically diagnosed
patients using voxel-wise statistical analysis, 2) the voxel-wise corre-
lation with the CSF Aβ concentrations (providing both clinical and
biological agreement), and 3) the accuracy in data-driven classification
between clinically defined AD patients and HC or patients with other
non AD dementias.

A secondary goal was to compare, using data driven classification
methods, the classification accuracy of PiB using the SUVR against the
accuracy achieved using the CSF concentrations of Aβ38, Aβ40 and Aβ42
and their normalized values as assessed by the Aβ42/Aβ38 and Aβ42/
Aβ40 ratios determined in the same central laboratory.

2. Methods

2.1. Dataset

The dataset used in this study has been described elsewhere (Leuzy
et al., 2016) and is summarized in Table 1. It consists of 243 subjects
from seven European academic centers belonging to the Biomarkers for
Alzheimer's and Parkinson's Disease (BIOMARKAPD) initiative. It con-
tains five groups of subjects: HC, patients with AD, patients with MCI,
patients with frontotemporal dementia (FTD) and patients with vas-
cular dementia (VaD). PiB-PET acquisitions protocols varied across

sites. In all cases a late summation was considered, being the post in-
jection intervals: 40 to 60min (n=101), 40 to 70min (n=31), 50 to
70min (n=24) and 60 to 90min (n=87). PiB-PET images were
classified locally by a nuclear medicine physician as either positive
(abnormal) if there was high binding in cortical regions, or negative
(normal) if there was a predominantly white matter binding. All PiB-
PET images had a isotropic voxel size of 2mm. Local Aβ42 values were
classified as positive (abnormal) or negative (normal) using an optimal
cut-off of 557 pg/ml (Zwan et al., 2016). Local Aβ42 concentrations
were measured using commercially available sandwich ELISA (INNO-
TEST, Fujirebio-Europe) and with similar protocol. Concerning central
harmonization of measures (used in this study), see below.

Patients were assessed according to standard local clinical routines,
and all diagnoses were made by a multidisciplinary team using a con-
sensus-based approach. Patients with AD fulfilled the 1984 National
Institute of Neurological and Communicative Disorders and Stroke and
the Alzheimer's Disease and Related Disorders Association (NINCDS-
ADRDA) criteria for probable AD dementia (McKhann et al., 1984), MCI
patients were diagnosed according to the Petersen et al. (Petersen et al.,
1999) criteria, FTD patients were diagnosed according to the Neary
et al. (Neary et al., 1998) criteria, and finally, the VaD patients were
diagnosed according to the National Institute of Neurological Disorders
and Stroke - Association Internationale pour la Recherche et l'En-
seignement en Neurosciences (NINDS-AIREN) criteria for vascular de-
mentia (Román et al., 1993).

The HC subjects were recruited from relatives and caregivers of
patients. Inclusion criteria were absence of memory or other cognitive
complaints; independence in basic and instrumental daily life activities;
and no discernible neurological or psychiatric disease.

All participants, or caregivers, when appropriate, gave written in-
formed consent to participate in the research, which was conducted
according to the Declaration of Helsinki and subsequent revisions.
Ethical approval was obtained from local regional ethics committees.

CSF concentration values used in this study were centrally obtained.
Aβ42 concentrations were obtained using the reference measurement
procedure (RMP) by liquid chromatography (LC) tandem mass spec-
trometry (MS) (MS-RMP) while Aβ38 and Aβ40 concentrations were
obtained by a fully validated LC-MS method (Leinenbach et al., 2014).
Aβ38, Aβ40 and Aβ42 were also analyzed using the MSD V-PLEX Aβ
Peptide Panel 1 (4G8) kit (Meso Scale Diagnostics, Rockland, MD,
USA), following the manufacturer's protocol. Samples from the local
centers were sent for analysis to Clinical Neurochemistry Laboratory,
Gothenburg University, Mölndal, Sweden. Technical measurement
protocols are described elsewhere (Leuzy et al., 2016).

Table 1
Summary of demographics, clinical and locally measured biomarkers according
to the diagnostic group.

AD (n=122) MCI
(n=81)

FTD
(n=20)

VaD
(n=7)

HC (n=13)

Age, years 65 (59, 72) 64 (58,
71)

64 (59,
73)

61 (52,
74)

67 (58, 71)

Sex, M:F 50:72 37:44 9:11 3:4 6:7
MMSE,

points
23 (20, 26) 27 (26,

28)
23 (20,
27)

26 (20,
29)

29 (28, 30)

PiB visual,
positive

113 50 3 0 1

Ab42,
positive

96 46 8 5 1

CSF-PiB,
months

2.4 (0.7, 5.2) 4.0 (1.8,
8.4)

2.0 (1.1,
4.0)

3.5 (2.8,
6.1)

1.8 (1.3, 7.4)

Age, MMSE and CSF-PiB are reported as median (quartile 1, quartile 3), CSF-PiB
is the time between the CSF collection and the PiB-PET exam.
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2.2. PiB-PET image pre-processing

Before further processing, all images were non-linearly spatially
normalized to the Montreal Neurological Institute (MNI) T1 MRI tem-
plate using Statistical Parametric Mapping 8 (SPM8), as described
elsewhere (Leuzy et al., 2016). The spatial normalization was made
uniquely based on the PiB-PET images. All spatially normalized images
were visually inspected and consequently the registration was fine
tuned when necessary.

The SUVR was computed at the voxel level for all images, using
three different reference regions: cerebellar gray matter, pons and
subcortical white matter; which we defined as SUVRCER, SUVRPONS and
SUVRWM, respectively. All three masks were defined on the T1 MRI
template ICBM152 and then shrunk at least 4 mm all around to di-
minish the influence of the partial volume effects and imperfections of
the image registration process. The cerebellar gray matter is essentially
the cerebellum without the cerebellar peduncles. Fig. 1 illustrates the
masks used as reference region. Note that, since the PiB-PET images
were spatially normalized to the MNI space then the pons, cerebellum
and white matter are also in the MNI space and the masks defined in the
T1 MRI template can be directly applied to the spatially normalized
PiB-PET images.

2.3. Voxel-wise assessment of the SUVR differences

Voxel-wise group differences were evaluated using analysis of var-
iance (ANOVA) using Statistical Parametric Mapping 12 (SPM12) fol-
lowing smoothing with a Gaussian kernel with a full width at half
maximum (FWHM) of 12mm. Post hoc pairwise comparisons were
made using the Student t-test. To address the multiple comparisons
issue, significance was only ascribed to regions with voxel-level
p < .001.

2.4. Voxel-wise correlation between SUVR and CSF Aβ concentrations

Correlations between CSF Aβ38, Aβ40, Aβ42, Aβ42/Aβ38, Aβ42/Aβ40
concentrations (measured with MSD and MS-RMP)and voxel-wise
SUVRCER, SUVRPONS and SUVRWM were computed after smoothing the
SUVR images with a Gaussian kernel with a FWHM of 12mm.
Parametric correlation maps (positive and negative) were computed on
the full cohort of subjects together. Correction for multiple comparisons
was assessed as in the previous section.

2.5. Comparison of the automatic classification accuracies

Regarding the assessment of the ability to differentiate between
clinically defined AD (given that a postmortem neuropathological
golden standard was not available across sites) and HC or other

dementias OD, five sets of features were extracted from the data: (1)
Aβ38, Aβ40, Aβ42, Aβ42/Aβ38, Aβ42/Aβ40 based on MSD; (2) Aβ38, Aβ40,
Aβ42, Aβ42/Aβ38, Aβ42/Aβ40 based on MS-RMP; (3) voxel-wise
SUVRCER; (4) voxel-wise SUVRPONS; and (5) voxel-wise SUVRWM. The
goal was to set up an automatic classification approach to decide if a
subject data belongs to the AD group or not.

Since the HC, FTD and VaD groups included a small number of in-
dividuals comparatively to the AD group and accumulation of amyloid
plaques in the brain is not a feature of these three groups of individuals,
we opted to join them together in just one dataset referred to as HC/OD.
Thus, the binary classification is AD versus HC/OD.

We used support vector machines (SVM) (Chang & Lin, 2011) as a
classification technique. This technique can be divided in two steps: in
the first (learning/training step) a mathematical model, i.e. a decision
function, that best separates the training dataset is built using optimi-
zation techniques; in the second step (test) the model built in the first
step is used to classify new data. Based on the patient's features, the
decision function gives a score to the patient.

The leave one out cross-validation (LOOCV) technique was used to
assess the performance of the classifiers. The LOOCV technique is a
cross validation method that is used to estimate the performance of a
classifier. In this case, it uses the data of a subject to be classified, while
the remaining subjects' data are used to train the classifier. This pro-
cedure is repeated until all subjects' data have been classified once
based on the classifier built with the remaining subjects' data. Then,
based on the results obtained on the successive classification tests, the
accuracy, sensitivity and specificity are computed.

Since the two groups of subjects are unbalanced, in the optimization
process is given more weight to the HC/OD than to the AD cases. The
weight of the HC/OD is 122/40 times the weight of the AD. Thus, the
optimizer instead to converge to the maximal accuracy tends to con-
verge to the maximal balanced accuracy.

Since there is a high correlation among neighboring voxels, before
use the voxel-wise SUVR in the classifier, the SUVR images were re-
sampled into 8mm isotropic voxels. For classification, we considered
only the uptake of PiB in the brain cortex, defining an anatomical mask
to select only the voxels that belong to this region. The resampled
voxels were then used as features (voxel-as-feature approach) (Oliveira
& Castelo-Branco, 2015).

Statistical comparison of classifiers accuracy was done using
Cochran's Q test followed by the McNemar test as a post-hoc procedure
(IBM SPSS Statistics 20).

3. Results

3.1. Voxel-wise differences of the PiB SUVR among groups

Voxel-wise ANOVA showed a statistically significant difference

Fig. 1. Illustration of the reference regions used. Subcortical white matter is painted red, cerebellar gray is painted green and pons is painted blue.
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(voxel-level p < .001) in the PiB uptake in all cortical areas among the
defined four groups of subjects using the SUVRCER and SUVRPONS and in
most of the cortical mantle using the SUVRWM. Some regions, however,
were not being detected by this method. Post hoc t-tests showed that,
using any of the three reference regions, there was a statistically sig-
nificant difference between the AD and HC groups, and between AD and
OD across almost all cortical voxels. In the comparison AD vs MCI, the
differences were slightly higher using SUVRCER and SUVRPONS, com-
pared to SUVRWM. In the comparison of MCI and HC, statistically sig-
nificant differences were observed in a larger cluster of areas in the
statistical maps using the SUVRPONS than using the SUVRCER and
SUVRWM, which failed to capture occipitoparietal regions (Fig. 2). Al-
though the brain areas with significant differences are smaller using the
SUVRWM than using the SUVRPONS, there are clusters with higher t-
value using the SUVRWM. Also in Fig. 2, a small cluster can be observed
in the pons using the SUVRPONS for group comparison. Since it is in the
border between regions with very different uptake and the t-values are
not very high, this cluster is very likely a false positive, representing a
typical border effect.

Images for the other comparisons are available as supplementary
figures.

3.2. Voxel-wise correlation between CSF Aβ concentrations and PiB SUVR

We performed a voxel-wise correlation analysis between the SUVR
images of all subjects and the CSF Aβ concentrations and their ratios.
Table 2 presents a summary of the observed patterns of correlation. In
general, the correlations were slightly stronger using the concentrations
measured by the MSD than measured by the MS-RMP methods.

When comparing the whole brain correlations as function of the
reference region used for normalization of the PiB-PET images, we
found a weak positive correlation between the CSF Aβ concentration
and the SUVRCER and SUVRWM in the ventricles and/or brainstem but
not with the SUVRPONS. Aβ42, the Aβ42/Aβ38 and Aβ42/Aβ40 ratios
showed a moderate to strong negative (as expected) correlation with
SUVRCER and SUVRPONS in all cortical regions, and in most but not all
the cortical mantle with the SUVRWM, suggesting that the latter is in-
deed less sensitive. Aβ38 and Aβ40 correlated significantly and nega-
tively (albeit with a small effect size) with the SUVRWM in part of the
parietal lobe, while they did not significantly correlate with the
SUVRCER and SUVRPONS.

Fig. 3 shows a comparison of the voxel-wise statistically significant
correlation between Aβ42/Aβ40 measured by the MSD and the SUVR for
all three reference regions. Images for the other correlations are
available as supplementary figures.

3.3. Classification accuracy

Results from the assessment of the classification accuracies (taking
into account the limitation that it is not possible to use a neuropatho-
logical gold standard, but just the clinical diagnosis) using the LOOCV
are depicted in Table 3 and Fig. 4. Cochran's Q test showed that there
was a statistically significant difference (p < .001) among the ac-
curacies achieved on the differentiation of clinical AD from HC/OD
using the all sets of features. Post hoc tests were made using the
McNemar test. P-value results are shown in Table 4. It can be observed
that the classification accuracies obtained using the SUVRCER or SUV-
RPONS are significantly higher than the accuracies obtained using the
CSF concentration features. The classification accuracy obtained using
the SUVRWM was inferior only at a trend level to the classification ac-
curacies obtained using the SUVRPONS or SUVRCER.

SUVRPONS and SUVRCER provided exactly the same accuracies,
correctly classifying 155 out of 162 cases (95.7%) (Fig. 4). Regarding
the seven misclassified cases, four were clinically diagnosed as AD but
all five classifiers indicate they are not AD patients, suggesting that
future work should focus on neuropathological validation. In two cases,
the patients were diagnosed as FTD but all five classifiers indicated that
they are more likely to have AD, again suggesting that gold standard
and clinical discrimination issues remain to be solved. Finally, the last
case was clinically diagnosed as AD and as AD by the classifiers based
on the CSF concentrations but classified as non-AD by the classifiers
based on SUVR. This was the only case where the classifiers based on
CSF concentrations classified accordingly as the clinical diagnosis while
the classifiers based on the SUVR did not, suggesting that the latter is
usually more consistent with clinical assessment.

On this dataset of AD and HC/OD, 113 of the 122 AD were visually
classified as PiB positive and 36 of the 40 HC/OD were visually clas-
sified as PiB negative (Table 1). This represents a sensitivity of 92.6%, a
specificity of 90% and accuracy of 92.0%, which is inferior to the ac-
curacy found using the cerebellar gray matter or pons as reference re-
gion (one-tailed McNemar test, p= .035).

3.4. Comparison of amyloid burden and CSF data in MCI patients

The five classifiers built were applied to the data from the MCI
patients with the goal to assess if each patient data is more close to AD
than to HC/OD. The rate of MCI patients classified as AD-like was si-
milar for all classifiers and varied between 63% and 65%. The better
agreement was between the classifiers based on SUVRCER and SUVRP-

ONS (agreement 80/81, Cohen's Kappa .973), and the worst agreement
between the classifier based on CSF concentrations computed with the
MS-RMP and the classifier based on SUVRPONS (agreement 75/81,
Cohen's Kappa 0.839).

Fig. 2. Regions where the SUVR of the MCI patients is significantly higher than the SUVR of the HC subjects. From the left to the right, voxel-wise t-value obtained
using the SUVRCER, SUVRPONS and SUVRWM. Note that the latter misses large clusters of cortical regions, in particular in occipitoparietal and temporal regions, with a
similar pattern for SUVRCER. Only the SUVRPONS captures the whole cortical mantle.
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Now, comparing the classification made by the classifier based on
SUVRPONS with the classifications based on the PiB visual assessment
and locally measured Aβ42 using the optimal cut-off (Zwan et al., 2016),
an agreement of 75/81 and 61/81 was obtained, respectively. Similar
results were obtained comparing with the SUVRCER based classifier.

4. Discussion

In this data-driven multivariate study we investigated the impact of
PiB SUVR normalization (cerebellar gray matter, pons or white matter)
on overall statistical classification of clinical diagnostic categories, and
a comparison with CSF Aβ measures. To test the relative value of these
options to differentiate patient groups we used an automatic data
classification framework based on a dataset acquired in multiple
European Centers. Importantly, we also tested which of the Aβ38, Aβ40
and Aβ42 individual values or ratios correlated best with PiB-PET SUVR
images.

The results showed that the classification accuracy of clinically
defined AD versus HC or OD based on the SUVRCER and SUVRPONS

images are equal and significantly higher than the accuracies obtained
using the CSF concentrations. Thus, this allows us to conclude that the
PiB-PET SUVR seems to be a promising solution to be used in multi-
variate classification when compared the CSF concentrations of mul-
tiple Aβ species, although this needs future confirmation with the

neuropathological gold standard. It is however possible that adding Tau
levels might increase CSF performance. In fact, only in one case the
classifiers based on CSF concentrations classified accordingly to the
clinical diagnosis while the classifiers based on SUVRCER or SUVRPONS

did not. This means that in clinical practice the use of the CSF con-
centrations needs reappraisal when compared to the classification using
the SUVRCER or SUVRPONS alone. Our finding does not mean the CSF
concentrations should not be measured, we only conclude that to per-
form just the differential diagnosis of AD, the CSF concentrations may

Table 2
Summary of the statistically significant correlation patterns found between the CSF Aβ concentrations and the PiB SUVR normalized by the three reference regions.
NS - not significant correlation or just in small cluster (less than 100 voxels), WC - weak correlation (0.2 < |r| ≤ 0.4), MD - moderate correlation (0.4 < |r| ≤ 0.7),
SC - strong correlation (0.7 < |r| ≤ 0.9), (+) - positive correlation and (−) - negative correlation.

SUVRcer SUVRpons SUVRwm

MSD Aβ38 (+)WC: ventricles and brainstem (+)WC: ventricles (+)WC: ventricles
(−)NS (−)NS (−)WC: parietal lobe

Aβ40 (+)WC: ventricles and brainstem (+)WC: part of ventricles (+)WC: part of ventricles
(−)NS (−)NS (−)WC: part of parietal lobe

Aβ42 (+)WC-MC: brainstem (+)NS (+)WC-MC: brainstem
(−)WC: all brain cortex (−)MC: all brain cortex (−)WC-MC: all brain cortex

Aβ42/Aβ38 (+)WC: brainstem NS (+)MC: brainstem
(−)MC: all brain cortex (−)MC-SC: all brain cortex (−)MC: all brain cortex

Aβ42/Aβ40 (+)WC: brainstem (+)NS (+)MC: brainstem
(−)MC: all brain cortex (−)MC-SC: all brain cortex (−)MC-SC: all brain cortex

MS-RMP Aβ38 (+)WC: ventricles and brainstem (+)WC: ventricles (+)WC: part of ventricles
(−)NS (−)NS (−)WC: part of parietal lobe

Aβ40 (+)WC: ventricles and brainstem (+)NS (+)NS
(−)NS (−)NS (−)WC: part of parietal lobe

Aβ42 (+)WC: brainstem (+)NS (+)WC: brainstem
(−)WC: all brain cortex (−)MC: all brain cortex (−)WC-MC: all brain cortex

Aβ42/Aβ38 (+)WC: brainstem (+)NS (+)MC: brainstem
(−)MC: all brain cortex (−)MC: all brain cortex (−)WC-MC: all brain cortex

Aβ42/Aβ40 (+)WC: brainstem (+)NS (+)MC: brainstem
(−)MC: all brain cortex (−)MC-SC: all brain cortex (−)WC-MC: all brain cortex

Fig. 3. Voxel-wise statistically significant correlation between MSD Aβ42/Aβ40 and SUVRCER, SUVRPONS and SUVRWM, respectively. Correlation was computed for the
entire dataset. Note that parts of the SUVRWM maps lack a correlation pattern.

Table 3
Cross-validation classification results from the differentiation between clini-
cally defined AD and HC/OD using the SVM classifiers. Values of accuracy,
sensitivities, specificities and balanced accuracy are given in percentage. Please
note that all CSF measures were taken into account as classification features.

Accuracy Sensitivity Specificity Balanced
accuracy

CSF measured with MS-
RMP

88.3 91.8 77.5 84.7

CSF measured with MSD 90.7 93.4 82.5 88.0
SUVRWM 93.8 95.1 90.0 92.5
SUVRCER 95.7 95.9 95.0 95.5
SUVRPONS 95.7 95.9 95.0 95.5
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be possibly redundant if a PiB-PET acquisition is available; however the
CSF concentrations contain complementary biological information, for
instance Tau biomarkers, that may be relevant to the physician (Rosén
et al., 2013). This tenet will however remain controversial without
neuropathological validation.

Although the qualitative PiB-PET visual evaluation is often used to
help the physicians in the diagnosis of the patients, the accuracies found
using the cerebellar gray matter or pons as reference regions are higher
than the accuracy found using the PiB-PET visual evaluation.

It is important to stress out that the PiB-PET images were acquired
using different platforms and scanning windows, which we view as a
strength, given the positive results identified in this study. On the other
hand, while the CSF Aβ concentrations were measured centrally with

the same assay procedures, the samples were collected at seven dif-
ferent clinical centers, which may have introduced variability due to
differences in pre-analytical protocols (Bjerke, et al., 2010). This shows
the robustness of both PiB-PET imaging and CSF biomarkers also in the
multicenter setting.

Our finding partially contradicts the results of Mattsson et al.
(Mattsson et al., 2014), where the authors found that CSF Aβ42 and
florbetapir-PET did not differ in terms of area under the curve (AUC) in
the classification of the AD versus HC. In this study we have used more
than one thousand of features (the resampled SUVR voxels) to represent
the PiB-PET image, which contains more information than a single
value (global or regional PiB), as used in Mattsson et al. (Mattsson et al.,
2014). Moreover, we have used a set of CSF biomarkers as features,
which allows increasing the classification accuracy comparatively if just
one Aβ feature was used at a time. Previous studies (Leuzy et al., 2016;
Janelidze et al., 2016) have shown the ratios Aβ42/Aβ40 and Aβ42/Aβ38
originate higher classification accuracy than using only the Aβ42. When
we compared the classification results obtained using the CSF bio-
markers from the MSD and MS-RMP methods, we found no significant
difference.

When the classifiers were applied to the MCI patients, a good
agreement among all classifiers was found. In the worst case (CSF MS-
RMP based classifier versus SUVRPONS based classifier) there was a
disagreement in 6 out of 81 patients. Depending on the classifier, 63%
to 65% of the MCI patients were classified as AD-like, which may lead
to different diagnosis/prognostic for these patients in comparison with

Fig. 4. Values of the decision functions obtained from the SVM classifiers. Values were obtained during the accuracy assessment using the LOOCV strategy. In all
these cases, a positive value means that the case is more compatible with the AD patients then the other conditions. A negative value means the opposite.

Table 4
P-values for the post hoc pairwise accuracies comparison using the McNemar
test. Please note that all CSF measures were taken into account as classification
features.

CSF measured with
MSD

SUVRWM SUVRCER SUVRPONS

CSF measured with MS-
RMP

0.289 0.035 0.002 0.002

CSF measured with
MSD

0.227 0.021 0.021

SUVRWM 0.250 0.250
SUVRCER 1
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the other who are classified as non AD-like. Which is the best classifier
to predict the conversion from MCI to AD is a question that only a
subsequent follow-up study can answer. It is important to stress out that
the classification based on the SUVRPONS and locally measured Aβ42
disagree in 20 out of 81 cases, which is a very substantial difference.

The Aβ42/Aβ38 and Aβ42/Aβ40 ratios gave higher (negative) voxel-
wise correlation with PiB-PET SUVR than the Aβ42 concentration alone.
These higher correlations with PiB-PET SUVR may explain why the
Aβ42 ratios provided better classification results than the Aβ42 con-
centration (Leuzy et al., 2016; Janelidze et al., 2016). Our findings
suggest that the voxel-wise correlation of the SUVR with the Aβ42/Aβ38
and Aβ42/Aβ40 ratios is slightly stronger if the pons is used to normalize
the uptake than if one uses the cerebellar gray matter or the brain white
matter (Fig. 3). This provides a strong biological argument in favor of
this reference region.

We found that Aβ38 and Aβ40 correlate weakly and negatively with
the SUVRWM in part of the parietal lobe, while they do not significantly
correlate with the SUVRCER and SUVRPONS. These findings may be of
particular biological significance in terms of specificity. Future studies
should examine how they relate with the observations of Janelidze
et al. (Janelidze et al., 2016) who found that Aβ38, Aβ40 (as well as
Aβ42) correlate with non-AD-specific subcortical changes such as larger
lateral ventricles and white matter lesions.

We also found that, in general, the voxel-wise SUVR differences
between groups of patients are higher (greater F value and larger areas)
using the cerebellar gray matter and pons as reference region than using
the white matter. This suggests that the latter has less power in de-
tecting the cortical extent of early damage. Also, the difference between
MCI and HC is higher (larger areas) using SUVRPONS than using the
other two SUVR.

The results we obtained are consistent with the ones obtained using
other amyloid ligands. For instance, using 18F-Florbetapir, Habert et al.
(Habert et al., 2017) found that when they used an association of the
whole cerebellum and pons as reference region they obtained the best
discrimination between HC and AD. Unfortunately they did not com-
pare the pons against cerebellum, which precludes direct comparisons.
Using the amyloid ligand 18F-flutemetamol, Thurfjell et al. (Thurfjell
et al., 2014) found the best discrimination accuracy using the pons as
reference region, comparatively to the whole cerebellum or only the
cerebellar gray matter, on a dataset of autopsy confirmed AD. This
slight superiority of the pons against the cerebellum or cerebellar gray
matter are also in agreement with the results of Klunk et al. (Klunk
et al., 2004) where the authors found that the relative difference of the
PiB uptake between AD and HC is smaller in the pons than in the cer-
ebellum, which means the PiB uptake is more stable in the pons than in
the cerebellum.

The main limitation of this study is the lack of an anatomical brain
image per patient. Thus, the image registration process, i.e. normal-
ization to the MNI space, was done based on the PiB-PET image only.
Consequently, the accuracy of the registration process is inferior to
what could be achieved if a structural image like MRI was available. For
this reason, we reduced the size of the masks used to ensure as much as
possible that, for each patient, each mask contains only voxels of the
target brain area. Other consequence was our option to exclude the
striatal region from the mask used to extract the SUVR values used in
the automated classification process. Note that in elderly patients where
a dilatation of the ventricle is common, if the striatal region was in-
cluded in the mask used for classification it may happen that in some
patients we would collect the values of the SUVR from the ventricles
rather than from the striatal region.

We have used a linear SVM as classifier model due to its simplicity,
wide acceptance and proved good ability for many common classifi-
cation problems using multivariate medical data (Oliveira & Castelo-
Branco, 2015; Oliveira et al., 2018; Duarte et al., 2014; Moradi et al.,
2015).

As final remarks, both PiB SUVRPONS and SUVRCER are well suitable

to be used in the differential diagnosis of AD, even if further studies also
with postmortem neuropathological gold standard will be important for
final validation of diagnostic accuracy. Although SUVRPONS and
SUVRCER led to similar classifications accuracies, the SUVRPONS gen-
erally showed a higher t-value and larger extent of voxel-wise differ-
ences between patient groups. This suggests that the normalization of
the PiB-PET uptake images by the pons may be a better option than the
normalization by the cerebellar gray mater, as corroborated by studies
using other ligands.
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