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Extended follow-up and impact of high-risk prognostic factors
from the phase 3 RESONATE study in patients with
previously treated CLL/SLL
JR Brown1,23, P Hillmen2,23, S O’Brien3, JC Barrientos4, NM Reddy5, SE Coutre6, CS Tam7, SP Mulligan8, U Jaeger9, PM Barr10,
RR Furman11, TJ Kipps12, F Cymbalista13, P Thornton14, F Caligaris-Cappio15, J Delgado16, M Montillo17, S DeVos18, C Moreno19,
JM Pagel20, T Munir2, JA Burger3, D Chung21, J Lin21, L Gau21, B Chang21, G Cole21, E Hsu21, DF James21 and JC Byrd22

In the phase 3 RESONATE study, ibrutinib demonstrated superior progression-free survival (PFS), overall survival (OS) and overall
response rate (ORR) compared with ofatumumab in relapsed/refractory CLL patients with high-risk prognostic factors. We report
updated results from RESONATE in these traditionally chemotherapy resistant high-risk genomic subgroups at a median follow-up
of 19 months. Mutations were detected by Foundation One Heme Panel. Baseline mutations in the ibrutinib arm included TP53
(51%), SF3B1 (31%), NOTCH1 (28%), ATM (19%) and BIRC3 (14%). Median PFS was not reached, with 74% of patients randomized to
ibrutinib alive and progression-free at 24 months. The improved efficacy of ibrutinib vs ofatumumab continues in all prognostic
subgroups including del17p and del11q. No significant difference within the ibrutinib arm was observed for PFS across most
genomic subtypes, although a subset carrying both TP53 mutation and del17p had reduced PFS compared with patients with
neither abnormality. Reduced PFS or OS was not evident in patients with only del17p. PFS was significantly better for ibrutinib-
treated patients in second-line vs later lines of therapy. The robust clinical activity of ibrutinib continues to show ongoing efficacy
and acceptable safety consistent with prior reports, independent of various known high-risk mutations.
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INTRODUCTION
The last decade has seen remarkable advances in therapy of
chronic lymphocytic leukemia (CLL) with the advent of combina-
tion chemotherapy (fludarabine and cyclophosphamide (FC))1,2

and then chemoimmunotherapy with rituximab (FCR).3,4 Indeed, a
subset of low-risk patients with IGHV-mutated disease may be
essentially cured by FCR, but still may suffer the toxic effects of
chemotherapy. However, patients with higher-risk genetic
abnormalities (IGHV unmutated) experience inferior outcomes
with a median progression-free survival (PFS) of 4.2 years,5 while
those with the highest-risk factor, del(17)(p13.1) [del17p], have a
median PFS of ∼ 1 year.3 Shorter remissions particularly in high-risk
subgroups, and poor survival with conventional salvage regimens
after FCR relapse,6,7 present a need for novel therapies for CLL.
Bruton’s tyrosine kinase (BTK) has emerged as an attractive

target with the observation that the genetic disease, X-linked
agammaglobulinemia, in which BTK is inactivated, results in the
failure of B cells to develop, with few other complications outside
of infectious morbidity that is clinically manageable.8 Ibrutinib is a
once-daily, first-in-class, covalent inhibitor of BTK, which binds
irreversibly to Cys481 in BTK with an IC50 of 0.5 nM9 allowing for

once-daily, oral administration with sustained enzyme inhibition.
RESONATE was a randomized comparison of ibrutinib to
ofatumumab in previously treated CLL patients, many with high-
risk prognostic factors. The first report of this trial demonstrated
that ibrutinib significantly improved PFS, overall survival (OS), and
overall response rates (ORR) compared with ofatumumab, and was
acceptably tolerated,10 leading to ibrutinib’s approval for pre-
viously treated CLL and del17p CLL.
Ibrutinib shows marked efficacy in genetically high-risk CLL,

particularly del17p,11 known to confer a very poor prognosis in
addition to TP53 mutation.12 Whole exome sequencing studies
have identified recurrent mutations particularly in NOTCH1,13 ATM,
SF3B114,15 and BIRC3.16 These mutations, enriched in previously
treated CLL, are associated with poor prognosis in retrospective
studies.17 In the CLL8 study, both TP53 and SF3B1 mutations were
risk factors for reduced PFS, but only TP53 for reduced OS,18 and
NOTCH1 mutation was associated with lack of benefit from the
addition of CD20 monoclonal antibody in two studies.18,19 In
retrospective studies, NOTCH1 mutation has also been associated
with increased risk of Richter transformation (RT).20,21 Here, we
report updated results with up to 2-year follow-up from the
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RESONATE trial, including subgroup analysis for baseline high-risk
genetic features. We find that the marked benefit of ibrutinib
continues and is preserved in all evaluable genetic subgroups.

MATERIALS AND METHODS
Study design
RESONATE is a multicenter, international, open-label, randomized, phase 3
study that compares the efficacy and safety of ibrutinib to ofatumumab, as
previously described (NCT01578707).10 At the time of this update, 123
patients randomized to ofatumumab received ibrutinib in crossover. See
Supplementary Appendix for details.

Patients
All patients provided written informed consent. The study was approved
by the institutional review board or ethics committee at each participating
institution and conducted in accordance with the Declaration of Helsinki
and the International Conference on Harmonization Guidelines for Good
Clinical Practice.

Procedures
Updated efficacy data from this analysis, including PFS and ORR, were by
investigator assessment. Procedural details have been described
previously10 and can be found in Supplementary Appendix.

Mutation Identification
In order to make our results applicable to general practice, all mutation
analyses were performed by a clinically available, FDA-approved targeted
next generation sequencing panel that is being increasingly used in clinical
practice, the Foundation One Heme Panel. This panel has a median
sequencing depth 500X and reports variant allele frequencies of
approximately 1% or higher22 (see Supplementary Appendix for details).
As is typical in clinical practice, matched germline testing was not
performed; known common polymorphisms were removed based on
those identified in the 1000 Genomes Project (dbSNP135). Putative
mutations were evaluated based on COSMIC v62; all candidate mutations
of any detected allele frequency, classified as known, likely, or unknown,
were counted as a mutation. Of note, 138 of 140 TP53 mutations identified
were classified as known or likely to have a functional effect.

Statistical analysis
Please see Supplementary Appendix for additional details on outcomes
measures.10

RESULTS
Baseline patient characteristics
Patients in the ibrutinib (n= 195) and ofatumumab (n= 196) arms
had a median of three and two prior therapies, respectively, with
53 vs 46% of patients receiving study therapy in the fourth line of
therapy or beyond; 18% of ibrutinib- and 27% of ofatumumab-
treated patients had received only one prior therapy (Table 1);
approximately 32% of ibrutinib patients had del17p, and 32% had
del(11)(q22.3) [del11q].
Consistent with this relapsed higher-risk population, the

frequencies of TP53, NOTCH1, SF3B1 and BIRC3 mutations were
high compared with other studies.16,18,23 Most notably, 51% of
ibrutinib and 46% of ofatumumab patients carried mutations in
TP53. Of 195 ibrutinib patients, 154 had TP53 samples available. Of
45 ibrutinib patients with del17p and a sample available for
analysis, 84% (n= 38) had coexistent TP53 mutation, consistent
with prior reports;24 of 79 ibrutinib patients with mutated TP53,
52% (n= 41) carried this mutation in the absence of del17p. In the
ibrutinib arm, 39 of 153 (25%) evaluable patients had complex
karyotype (CK); of 47 del17p patients in the ibrutinib arm with
karyotype data reported, 20 (43%) had CK.

Patient disposition
With a median 19-month follow-up (maximum 26 months on
study), 145 (74%) patients on the ibrutinib arm continue ibrutinib
on study. Fifty (26%) patients discontinued ibrutinib (19 (10%) due
to progressive disease (PD), 13 (7%) due to adverse events (AE)
and 10 (5%) due to death; Supplementary Table 1).

Efficacy
Ibrutinib showed significant improvement in PFS compared with
ofatumumab (median not reached (NR) vs 8.1 months; HR 0.106;
Figure 1a) with the benefit of ibrutinib apparent for all clinical and
genetic subgroups (Supplementary Figure 1). Median PFS was NR
on the ibrutinib arm in any prognostic subgroup including del17p
(Figure 1b) and del11q. Second-line ibrutinib PFS outcomes were
significantly improved compared with those in later lines of
therapy (P = 0.0348) (Figure 1c). Supplementary Figure 2 shows
PFS for ibrutinib by one, two, three and ⩾ four prior therapies.

Table 1. Baseline characteristics

Characteristic Ibrutinib
(n= 195)

Ofatumumab
(n= 196)

Median age, years (range) 67 (30–86) 67 (37–88)
⩾ 70 years, n (%) 40% 41%
Male, n (%) 66% 70%
Rai stage III/IV, n (%) 56% 58%
Median number of prior therapies
(range), n (%)

3 (1–12) 2 (1–13)

1 18% 27%
2 29% 27%
⩾ 3 53% 46%

Del17p, n/N (%) 63/195 (32%) 64/196 (33%)
Del11q, n/N (%) 63/190 (33%) 59/191 (31%)
Trisomy 12, n/N (%) 22/138 (16%) 27/145 (19%)
Complex karyotype, n/N (%) 39/153 (25%) 33/147 (22%)
CD38 (⩾ 30%), n/N (%) 69/160 (43%) 69/155 (45%)

IGHV, n/N (%)
Unmutated 98/134 (73%) 83/132 (63%)
Mutated 36/134 (27%) 49/132 (37%)

Gene mutations, n (%) Ibrutinib
(n= 154)a

Ofatumumab
(n=149)a

ATM
Mutated 30 (19%) 33 (22%)
Not mutated 124 (81%) 116 (78%)

NOTCH1
Mutated 43 (28%) 45 (30%)
Not mutated 111 (72%) 104 (70%)

SF3B1
Mutated 47 (31%) 44 (30%)
Not mutated 107 (69%) 105 (70%)

TP53
Mutated 79 (51%) 68 (46%)
Not mutated 75 (49%) 81 (54%)

MYD88
Mutated 3 (2%) 3 (2%)
Not mutated 151 (98%) 146 (98%)

BIRC3
Mutated 21 (14%) 15 (10%)
Not mutated 133 (86%) 134 (90%)

aNumber of samples assessed.
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The 24-month PFS rate was 74% for the ibrutinib arm. The
18-month PFS with ibrutinib was similar regardless of baseline
genetic factors including unmutated IGHV, del17p, del11q, CK or
mutations including NOTCH1, BIRC3 and ATM (Table 2). With SF3B1
mutation, a trend toward a lower 18-month PFS rate was seen in
the ibrutinib arm (P= 0.1424); however, when all data were taken
into account by log-rank test (P= 0.3349), this trend was less
apparent. The presence of del17p or del11q did not confer inferior
PFS outcomes compared with PFS in patients with neither
deletion (P= 0.2160; Figure 2a). Those with any del17p/TP53
alteration (carrying either one or both abnormalities) did not show
significantly inferior PFS compared with those with neither
abnormality (P= 0.1306; Figure 3a). Interestingly, however, an
exploratory subset analysis focusing on patients with both del17p
and TP53mutation (n= 38) compared with patients with neither of
these abnormalities (n= 68) showed worse PFS in the subset
carrying both abnormalities (P= 0.0381; Figure 2b). Although
survival assessment by CK status was somewhat limited due to
missing CK data in 22% of patients, available data suggest that PFS
was not significantly different in ibrutinib patients with known CK
relative to those without CK (Figure 3b). Among ofatumumab-
treated patients, unmutated IGHV (P= 0.0436) and presence of
del11q (P= 0.0654) had a lower 18-month PFS rate (Table 2) and
NOTCH1 mutation was associated with a worse overall PFS (log-
rank P= 0.0064); conversely, the presence of a NOTCH1 mutation

did not negatively impact the efficacy of ibrutinib (Table 2;
Supplementary Table 2).
A limited multivariate Cox proportional hazards regression

analysis (MVA) was performed including the following candidate
factors: age, Rai stage, ECOG, number of prior therapies, del11q,
del17p, β2-microglobulin, and disease refractory to purine analo-
gues. Gene mutations (for example, TP53 alone) and CK were not
included in the MVA due to missing data in ~23% of patients in the
ibrutinib and ofatumumab arms. Del17p, del11q and β2-micro-
globulin were considered significant prognostic factors for PFS in all
patients. No significant prognostic factors were identified with
current follow-up when the MVA was limited to the ibrutinib arm.
Eighty-six percent of patients randomized to ibrutinib were alive

at the time of analysis. Of patients randomized to ofatumumab,
77% were alive with the majority of these patients (108/196)
continuing crossover therapy with ibrutinib. Crossover was
instituted ~ 4 months after the last patient was randomized, and
OS analyses showed consistent benefit with ibrutinib in the naïve
intent-to-treat comparison and when OS was adjusted for
crossover (based on rank preserving structural failure time model
methodology), with a significant reduction in the risk of death of
approximately 64% for ibrutinib vs ofatumumab (Supplementary
Figure 3). OS was similar between ibrutinib subgroups including
del17p without del11q, del11q without del17p, neither deletion
(Supplementary Figure 4) and del17p and/or TP53 (Figure 4a for
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Figure 1. PFS in patient subgroups. (a) Overall PFS; Po0.0001 for the comparison of ibrutinib vs ofatumumab. (b) PFS in patients with del17p
CLL; P= 0.2575 for ibrutinib-treated patients with and without del17p and P= 0.0582 for ofatumumab-treated patients with and without
del17p. (c) PFS in patients with 1 vs 41 prior therapy; P= 0.0348 for ibrutinib-treated patients with 1 prior line vs 41 prior line of therapy and
P= 0.2761 for ofatumumab-treated patients with 1 prior line vs 41 prior line of therapy. (d) PFS in patients who did or did not develop
lymphocytosis; P= 0.0259 for ibrutinib-treated patients with and without lymphocytosis at baseline and P= 0.0095 for ofatumumab-treated
patients with and without lymphocytosis.
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any alteration vs none, log-rank P= 0.1903). No significant
difference in OS benefit was observed for ibrutinib-treated
patients with respect to known CK, although data were limited
(P= 0.1610; Figure 4b). The OS 18-month point estimate was 86%
in the ibrutinib arm: 83% for the del17p subgroup, 89% for the
del11q subgroup, 85% for those with neither deletion, and 79%

for those with CK. There was a trend towards improved OS for
patients on the ibrutinib arm treated in a second-line setting (HR
2.874, P= 0.1324) compared with those salvaged in later lines of
therapy (Supplementary Figure 5).
Lymphocytosis occurred in 69% of ibrutinib-treated patients

and was typically transient, resolving with continued ibrutinib

Table 2. 18-month PFS rate and ORR by subgroup

Subgroup 18-month PFSa ORR, n/N (%)a,d

Ibrutinib (N= 195) Ofatumumab (N= 196) Ibrutinib (N= 195) Ofatumumab (N= 196)

Overall 76% 8% 90% 25%

Median number of prior therapies
1 91%c 11% 35/35 (100%)c 14/53 (26%)
2 76%c 0% 141/160 (88%)c,b 35/143 (24%)b

⩾ 3 71%c 4%

Del11q
Yes 83% 0% 57/63 (90%) 7/59 (12%)c

No 73% 10% 114/127 (90%) 42/132 (32%)c

Del17p
Yes 71% 7% 56/63 (89%) 13/64 (20%)g

No 79% 8% 120/132 (91%) 36/132 (27%)g

Complex karyotype
Yes 72% 0% 35/39 (90%) 2/33 (6%)c

No 80% 10% 102/114 (89%) 38/114 (33%)c

Trisomy 12 77% 0% 21/22 (95%) 8/27 (30%)

CD38 (⩾ 30%) 78% 0% 65/69 (94%) 21/69 (30%)

IGHV
Unmutated 77% 0% 90/98 (92%) 22/83 (27%)
Mutated 74% 15% 32/36 (89%) 12/49 (24%)

Gene mutations Ibrutinib (N= 154) Ofatumumab (N= 149) Ibrutinib (N= 154) Ofatumumab (N= 149)

ATM
Mutated 78% 0 28/30 (93%) 8/33 (24%)
Not mutated 73% 8% 113/124 (91%) 32/116 (28%)

NOTCH1
Mutated 72% 0c 40/43 (93%) 13/45 (29%)
Not mutated 74% 11%c 101/111 (91%) 27/104 (26%)

SF3B1
Mutated 65%e 10% 45/47 (96%) 10/44 (23%)
Not mutated 79%e 0 96/107 (90%) 30/105 (29%)

TP53
Mutated 66%f 0 72/79 (91%) 13/68 (19%)g

Not mutated 81%f 9% 69/75 (92%) 27/81 (33%)g

MYD88
Mutated 0 0 2/3 (67%) 1/3 (33%)
Not mutated 73% 8% 139/151 (92%) 39/146 (27%)

BIRC3
Mutated 81% 0 20/21 (95%) 4/15 (27%)
Not mutated 72% 9% 121/133 (91%) 36/134 (27%)

aPo0.0001 (Z test) ibrutinib vs ofatumumab for 18-mo PFS rate. Mutated subgroup for MYD88 was not assessed. Po0.05 within ofatumumab arm for 18-mo
PFS rate (Z test) for IGHV (Unmutated vs Mutated). Po0.0001 for ORR (Fisher’s exact test) ibrutinib vs ofatumumab, except for MYD88. bRepresents ⩾ 2 prior
therapy. cPo0.05 within an arm for overall PFS (log-rank test) and ORR (Fisher’s exact test). dIncludes PR-L. eP= 0.1424 for SF3B1mutated vs not mutated within
the ibrutinib arm; P= 0.3349 for overall PFS (log-rank test). fP= 0.0672 for TP53 mutated vs not mutated within the ibrutinib arm. gP= 0.3793 for del17p and
P= 0.0638 for TP53 mutated vs not mutated within the ofatumumab arm.
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therapy in 87% of patients with a median duration of 14.1 weeks.
PFS appeared better for those who developed lymphocytosis vs
those who did not (Figure 1d); a previous study has reported non-
inferior outcomes between patients with or without persistent
lymphocytosis.25 Ibrutinib patients with mutated IGHV showed a
slight trend to greater initial increase in absolute lymphocyte
count (ALC) compared with those with unmutated IGHV
(Supplementary Figure 6), with apparent slower resolution in
patients with mutated IGHV vs those with unmutated IGHV similar
to a previous report (Po0.001).26

The best ORR increased in the ibrutinib arm with 90% of
patients now attaining PR with lymphocytosis (PR-L) or better, as
compared with 83 vs 23% (ibrutinib vs ofatumumab, Po0.0001)
by investigator assessment at interim analysis.10 ORR was higher in
the ibrutinib arm in all evaluable subgroups compared with
ofatumumab (Po0.0001). In addition, the complete response (CR)
rate improved with 7% of patients demonstrating CR (9 (5%)) or
complete response with incomplete blood count recovery (CRi; 4
(2%)) compared with 2% at interim analysis. The latest CR/CRi was
achieved in the ibrutinib arm at 17.5 months. One patient on
ofatumumab achieved CR at 8 months. The ORR was 100% in
ibrutinib-treated patients with only one prior therapy as compared
with 88% with ⩾ 2 prior therapies (P= 0.0275, Table 2). No

difference was seen in ORR within the ibrutinib arm among
patients with or without various genetic mutations. On the
ofatumumab arm, patients with del11q and CK had a significantly
lower ORR compared with those without del11q and CK
(P= 0.0038 and P= 0.0015, respectively) (Table 2).
Twenty-eight ibrutinib patients progressed including patients

who discontinued due to AE and later progressed. Of the 28
patients who progressed, 20 had CLL progression (without RT) and
8 had RT, of which 6 developed large cell lymphoma and 2
Hodgkin disease (5 ofatumumab patients progressed with RT,
including 1 after crossover to ibrutinib). Clonal relationship of the
RT to prior CLL was unknown. Of the 8 ibrutinib-treated patients
with RT (6 within 1 year, 2 within two years), baseline mutations
were available for 6 patients and reported as follows: NOTCH1
(n= 2), BIRC3 (n= 1), TP53 (n= 5), SF3B1 (n= 1), or ATM (n= 1).
Other high-risk features were observed in these RT patients,
including del17p (n= 4), del11q (n= 2), and CK (n= 3), and in non-
RT PD patients (n= 20) including del17p (n= 9), del11q (n= 4), CK
(n= 5), NOTCH1 (n= 7), TP53 (n= 11), SF3B1 (n= 10). At the time of
analysis, 12 of 28 patients who progressed had died (including 8
patients with non-RT progression and 4 with RT). Seventeen of 28
patients had received subsequent anticancer therapy (including
11 patients with non-RT progression and 6 with RT). The most
common subsequent therapies were regimens containing ofatu-
mumab (n= 6), R-CHOP (n= 4) or R ± EPOCH (n= 4). Of 14 patients
who discontinued ibrutinib due to PD and received subsequent
anticancer therapy, 6 had RT: 2 died, and 3 were alive at time of
analysis on subsequent therapy (See Supplementary Table 3 for
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Figure 2. PFS with ibrutinib by cytogenetics (FISH)/mutational
association. (a) PFS in patients by del17p/del11q CLL subgroups;
the del17p subgroup contains patients with del17p with or without
del11q (P= 0.2160 comparing all three groups). (b) PFS in patients
by del17p/TP53 CLL subgroups (P= 0.1737 for both del17p and TP53
mutation vs either del17p or TP53 mutation; P= 0.0381 for both
del17p and TP53 mutation vs neither; P= 0.5022 for either del17p or
TP53 mutation vs no del17p or TP53 mutation).
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Figure 3. PFS with ibrutinib by del17p/TP53 status and complex
karyotype. (a) PFS with ibrutinib in patients by any del17p/TP53
alteration vs none. (b) PFS with ibrutinib in all patients with or
without complex karyotype.
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details). Eight with non-RT PD received subsequent anticancer
therapy, and 3 were alive at analysis.

Safety
The longer-term safety profile of ibrutinib in this randomized
phase 3 study was consistent with the 3-year follow-up from the
phase 2 study.27 The most common cumulative AE of any grade
remains diarrhea, now 54 from 48% at interim analysis, followed
by fatigue (34 vs 28%), nausea (31 vs 26%) and fever (30 vs 24%)
(Table 3). The most common (410%) infections included upper
respiratory tract infections (25% any grade, 0.5% grade ⩾ 3),
sinusitis (19% any grade, 0.5% grade ⩾ 3), pneumonia (17% any
grade, 12% grade ⩾ 3), and urinary tract infections (14% any
grade, 4% grade ⩾ 3). Pneumocystis jirovecii pneumonia (grade 3)
occurred in 1 patient (0.5%). Seven patients (4%) had grade 5
infections, which included pneumonia (n= 4), sepsis (n= 2) and
neutropenic sepsis (n= 1) (Supplementary Table 1); none of these
grade 5 infections were considered related to study treatment.
Nineteen patients (10%) in the ibrutinib arm had received
prophylactic growth factor support, and 131 patients (67%) had
received some form of anti-infective prophylaxis, most commonly
with antiviral agents including aciclovir (n= 53; 27%) and
valaciclovir (n= 52; 27%). The most common antibiotic agents
used for prophylaxis included trimethoprim-sulfamethoxazole
(n= 47; 24%) and levofloxacin (n= 16; 8%).
New onset of diarrhea, atrial fibrillation (AF), arthralgia and

grade ⩾ 3 infection decreased over time (Table 4). Grade ⩾ 3
bleeding events were infrequent with three additional events over
approximately 1-year follow-up since interim analysis, including
grade 3 epistaxis and spontaneous psoas hematoma (the latter
during concomitant enoxaparin and clopidogrel) and grade 4
subdural hematoma (post-traumatic event, resolved and patient
restarted and continues ibrutinib). Any grade AF occurred in 13
(7%) patients (grade 1 (n= 2), grade 2 (n= 4), grade 3 (n= 7)) with
the median time to onset of first event being 5.1 months). Eight
(62%) of these patients resolved their AF event (median 3 days to
resolution, range 1–42), and all received thromboprophylaxis that

Figure 4. Overall survival with ibrutinib by del17p/TP53 status and
complex karyotype. (a) Overall survival with ibrutinib in patients by
any del17p/TP53 alteration vs none. (b) Overall survival with
ibrutinib in all patients with or without complex karyotype.

Table 3. Most common cumulative AEs for ibrutinib (⩾15%) at interim analysis (IA) and current data cut

Adverse event Any grade, n (%) (N= 195) Grade 3-4, n (%) (N= 195) Grade 5, n (%) (N= 195)

IA data (median
follow-up of
9.4 mo)a

Updated data (median
follow-up of
19 mo)b

IA data (median
follow-up of
9.4 mo)a

Updated data
(median follow-up of

19 mo)b

IA data (median
follow-up of
9.4 mo)a

Updated data
(median follow-up of

19 mo)b

Diarrhea 93 (47.7) 105 (53.8) 8 (4.1) 9 (4.6) 0 0
Fatigue 54 (27.7) 67 (34.4) 4 (2.1) 7 (3.6) 0 0
Nausea 51 (26.2) 61 (31.3) 3 (1.5) 3 (1.5) 0 0
Pyrexia 46 (23.6) 58 (29.7) 3 (1.5) 3 (1.5) 0 0
Cough 38 (19.5) 51 (26.2) 0 1 (0.5) 0 0
Neutropenia 42 (21.5) 50 (25.6) 32 (16.4) 38 (19.5) 0 0
Anemia 44 (22.6) 49 (25.1) 9 (4.6) 12 (6.2) 0 0
Upper respiratory
tract infection

31 (15.9) 49 (25.1) 1 (0.5) 1 (0.5) 0 0

Peripheral edema 22 (11.3) 38 (19.5) 0 0 0 0
Sinusitis 21 (10.8) 37 (19.0) 1 (0.5) 1 (0.5) 0 0
Arthralgia 34 (17.4) 36 (18.5) 2 (1.0) 3 (1.5) 0 0
Muscle spasms 25 (12.8) 36 (18.5) 0 1 (0.5) 0 0
Constipation 30 (15.4) 35 (17.9) 0 0 0 0
Headache 27 (13.8) 33 (16.9) 2 (1.0) 3 (1.5) 0 0
Pneumonia 19 (9.7) 33 (16.9) 13 (6.7) 20 (10.3) 3 (1.5) 4 (2.1)
Thrombocytopenia 33 (16.9) 33 (16.9) 11 (5.6) 11 (5.6) 0 0
Vomiting 28 (14.4) 33 (16.9) 0 0 0 0

Abbreviation: IA, interim analysis. aRepresents cumulative AEs as of interim analysis data cut with median follow-up of 9.6 months. bRepresents total
cumulative AEs (including all IA data) with median follow-up of 19 months, maximum follow-up of 24 months.
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included aspirin, low molecular weight heparin, direct oral
anticoagulants or combinations thereof (Supplementary Table 4).
One patient with AF had a major hemorrhagic event that was the
grade 3 spontaneous psoas hematoma described above.

DISCUSSION
Efficacy with ibrutinib remained high at this 2-year follow-up of
the RESONATE study, with 74% of patients alive and progression-
free. Patients on the ibrutinib arm treated after only one prior
therapy experienced improved efficacy compared with those
salvaged after ⩾ second-line therapy. Phase 3 data in treatment-
naive patients without del17p also suggest high efficacy in the
frontline setting with significantly improved PFS and OS compared
with chlorambucil with a median 19-month follow-up.28 Taken
together, the results from this study as well as from studies of
ibrutinib in frontline therapy27,28 suggest that the best results
occur when ibrutinib has been used earlier in the treatment
course. This observation has also been true of other therapies
historically, including chemoimmunotherapy with FCR, perhaps
reflecting the accumulation of multiple and broad mechanisms of
drug resistance over time with treatment. The outcome of
ongoing randomized trials using standard combination chemoim-
munotherapy vs ibrutinib-containing regimens in the upfront
setting will be required to determine the true extent of ibrutinib
benefit in that setting as compared with the early relapsed setting.
Tolerability to ibrutinib was well maintained in this relapsed

patient population with extended treatment. The most common
side effects were similar to those at interim analysis with only a
slight increase in the cumulative event rate despite the additional
year of therapy. Specifically, the rate of new infection, diarrhea and
arthralgia appeared lower later in follow-up when compared with
the first 6 months, consistent with a recent report of long-term
follow-up with ibrutinib at the Ohio State University, in which
patients who discontinued for reasons other than progression did
so relatively early, followed by a plateau.29 Severe (grade ⩾ 3)
bleeding events were infrequent with three events occurring
during the additional follow-up period, with two of these events
occurring in the context of concomitant anticoagulation and in a
post-traumatic setting, respectively. Recent studies have reported
reduced ristocetin-30and collagen-31 mediated platelet aggrega-
tion in patients treated with ibrutinib. Grade ⩾ 3 bleeding events
with ibrutinib were uncommon in these reports. With regard to AF,
the median time of onset of 5.1 months in our study was similar to
3.8 months reported in the largest cohort of ibrutinib-treated CLL
patients with AF (n= 56).32 Further, hypertension has been noted
throughout the ibrutinib treatment course including at later
times.27,28 Thus, ongoing monitoring of toxicity, particularly in

patients who may remain on ibrutinib for many years, remains
important.
Prior non-randomized trials have reported that RT tends to

occur early in the course of ibrutinib treatment29,33,34 followed by
a plateau in incidence. In this study, which followed patients only
until disease progression, more events of RT were reported in the
ibrutinib arm compared with the ofatumumab arm (8 patients vs 5
patients, respectively, with 6 and 4 patients with RT in the first
year of follow-up), but these frequencies reflect a median PFS (and
therefore of follow-up) of 8.1 months on ofatumumab vs ongoing
follow-up in most patients on ibrutinib. Previous reports of three
randomized controlled CLL trials have identified a similar
incidence of RT on the ibrutinib and control arms; there were 3
patients with RT on the placebo arm vs 0 on the ibrutinib arm of
HELIOS,35 1 RT on the chlorambucil arm vs 0 on the ibrutinib arm
of RESONATE-2,28 and 2 RT cases on each arm of RESONATE at
time of primary analysis.10 Moreover, the 4% rate of RT in the
ibrutinib arm of our current analysis is not different from historical
rates reported with other CLL regimens.36–38 Patients who
developed RT in the ibrutinib arm had frequent adverse genomic
features at baseline, including del17p, NOTCH1, and TP53
abnormalities, which are known to be associated with, and may
contribute to, the development of RT. Thus, the risk of RT with
ibrutinib treatment does not appear to be higher compared with
other treatment regimens in CLL, and likely reflects the natural
history of high-risk, relapsed/refractory disease.
For the first time, we report randomized efficacy outcomes with

ibrutinib in high-risk FISH-defined genetic subgroups in addition
to more novel high-risk gene mutations. Ibrutinib markedly
improved PFS and ORR in all genetic subgroups over ofatumu-
mab. In particular, with an additional year of follow-up, patients on
ibrutinib with either del17p or TP53 mutation did not show
markedly worse PFS than those without these genetic abnorm-
alities, although in an exploratory analysis, the presence of both
abnormalities was associated with a decrease in the PFS curve.
Notably, similar to prior reports,39 41/2 of patients with TP53
mutations did not have del17p – such patients experience poor
outcomes to chemotherapy regimens,40 yet TP53 mutational
testing is not standardly performed in the United States. The
3-year update of the phase 2 data demonstrated that patients
with del17p have significantly lower PFS (median 28 months) than
patients with del11q or neither of these anomalies, where the
median PFS was NR.27 In that study, TP53mutation was not tested,
but it is likely that most patients with del17p had TP53 mutation,
as previously reported;24 thus, these findings are likely consistent
with the emerging decrease in PFS observed in the current study
for patients with both abnormalities. In a subsequent efficacy
analysis of patients with del17p from the same study, patients
without CK appeared to experience the most favorable PFS/OS

Table 4. Adverse events of interest for ibrutinib-treated patients by time of event onset

Adverse eventa 0–6 months, n/N* (%)
(N= 195)

46–12 months, n/N* (%)
(N= 172)

412–18 months, n/N* (%)
(N= 159)

418–24 months, n/N* (%)
(N=136)

Atrial fibrillation 7/195 (4%) 7/171 (4%) 2/156 (1%) 0/133 (0%)
Arthralgia 34/195 (17%) 5/153 (3%) 3/140 (2%) 2/115 (2%)
Diarrhea 92/195 (47%) 17/142 (12%) 12/131 (9%) 4/110 (4%)
Hypertension 10/195 (5%) 8/165 (5%) 7/144 (5%) 2/120 (2%)
Bleeding 84/195 (43%) 28/141 (20%) 16/127 (13%) 10/103 (10%)
BleedingXgrade 3 1/195 (o1%) 1/172 (o1%) 2/159 (1%) 0/135 (0%)
Infection 147/195 (75%) 83/135 (61%) 57/110 (52%) 18/91 (20%)
InfectionXgrade 3 40/195 (21%) 22/166 (13%) 11/155 (7%) 5/133 (4%)

n, number of patients who were treated and had an event onset for a given AE within each exposure period. N*, number of patients who were treated and at
risk for event onset for a given AE in each exposure period; patients whose AE started in the previous time period and continued into the current or next time
period(s) are not considered at risk for event onset in the current exposure period for that AE. N, number of patients who were treated in each exposure
period. aIncludes any severity grade unless specified as Xgrade 3.
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outcomes.41 Consistent with these findings, investigators at MD
Anderson Cancer Center and Ohio State University have
previously reported that CK adversely affects ibrutinib
outcomes.29,42 This finding was not observed yet in this study,
but may be due to incomplete data or still relatively short
follow-up.
Analysis of other relevant prognostic genes including SF3B1,

BIRC3, ATM and NOTCH1 revealed no difference in progression
outcomes between ibrutinib patients with or without these
mutations at 19 months follow-up. In contrast, NOTCH1-mutated
patients randomized to ofatumumab fared significantly worse
than their non-mutated counterparts, perhaps consistent with
previous reports in which NOTCH1mutations were associated with
lack of benefit of CD20 antibody therapies.18,19 It should be noted
that, in order to make our results relevant to clinical practice, we
used a clinically available next generation sequencing panel
applied only to tumor, and because of that, the analysis may be
limited by the absence of comparison to matched germline, which
may result in some rare germline variants being counted as
somatic mutations. In addition, all mutations detected in the NGS
panel, which has a detection limit of approximately 1% allele
frequency, were included in the clinical analysis, yet at present, it
is unknown whether a cutoff should be applied for a minimum
allele frequency when assessing these mutations in relation to
clinical outcome. Given this uncertainty, we chose to err on the
side of including any detected candidate mutation, particularly as
prior literature does suggest that even tiny TP53 mutated clones
are associated with poor outcome.39,43 Ultimately, detailed
scientific studies with large uniformly treated datasets will be
required to determine whether an allele frequency cutoff would
be more appropriate.
In this study, patients who developed lymphocytosis experi-

enced longer PFS compared with those who did not. In a 3-year
follow-up of treatment-naïve and relapsed/refractory patients with
CLL/SLL, Byrd et al. reported similar PFS outcomes in patients with
and without persistent lymphocytosis at one year of ibrutinib
therapy.27 Woyach et al. have also reported similar outcomes
among patients with or without persistent lymphocytosis treated
with ibrutinib, although a trend towards improved PFS was seen in
patients who achieved PR-L.25 An association between prolonged
lymphocytosis and favorable prognostic features was also
observed, with ibrutinib responders with prolonged treatment-
related lymphocytosis more likely to carry favorable prognostic
markers including del13q and mutated IGHV.25 Taken together,
these data suggest that prolonged lymphocytosis is associated
with favorable prognostic factors that are associated with longer
response, but ultimately longer follow-up is warranted to establish
a definite correlation.
Ultimately, given the low number of PFS events in patients

treated with ibrutinib, the follow-up is still too short to definitively
know whether subgroups characterized by higher-risk mutations,
including del17p, will have reduced PFS. Meanwhile, the majority
of relapsed CLL patients treated on this trial continue to do
extremely well, underscoring the significant impact of ibrutinib in
altering the course of relapsed CLL.
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