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A B S T R A C T

The outcome of allogeneic hematopoietic stem cell transplantation (HCT) in patients with myeloid malig-
nancies is better in those without minimal residual disease (MRD) than in those with MRD+, as assessed by
multiparametric flow cytometry (MPFC). WT1 quantitation also has been used to assess the probability of
relapse in acute myelogenous leukemia (AML) treated with chemotherapy. We analyzed the clinical value of
normalized bone marrow WT1 levels as a measure of the expanded myeloid progenitor compartment in a
consecutive series of 193 adult patients with myeloid malignancies who underwent HCT. Bone marrow WT1
levels before the HCT, at the first bone marrow aspirate after infusion, and in the follow-up samples after HCT
were determined by means of real-time PCR using the European LeukemiaNet normalized method. We sought
to clarify the prognostic relevance in terms of overall survival (OS), progression-free survival (PFS), and cu-
mulative incidence of relapse (CIR). Based on earlier experience in AML, we selected a threshold of 100 copies,
defining 2 groups: patients with <100 WT1 copies and those with ≥100 copies. Patients with <100 WT1 copies
before HCT (median time, 36 days; range, 4 to 268 days) had a better OS, PFS, and CIR than those with ≥100
copies (40 ± 1 versus 29 ± 6 days, P = .004; 35 ± 9 versus 26 ± 6 days, P = .002; and 29 ± 7 versus 37 ± 6 days, P
= .051). In the first bone marrow study after the HCT (median time, 42 days; range 14 to 157 days, respec-
tively), patients with <100 WT1 copies also had better outcomes in terms of OS, PFS, and CIR (40 ± 7 versus
31 ± 9 days, P = .025; 36 ± 7 versus 30 ± 8 days, P = .004; and 29 ± 6 days versus 54 ± 9, P < .001, respectively).
At this time point, bone marrrow samples with >100 copies also included patients who were negative for MRD
as assessed by MPFC (19 of 32). During the HCT follow-up, patients with sustained WT1 levels <100 copies
showed a marked benefit in terms of OS, PFS, and CIR even compared with those with only a single mea-
surement >100 copies (mean, 68 ± 11 versus 26 ± 7 days, P < .001; 63 ± 11 versus 20 ± 8 days, P < .001; and 20 ± 8
vs. 71 ± 8 days, P < .001, respectively). Standardized bone marrow WT1 levels using a 100-copy threshold in
samples obtained before HCT, at leukocyte recovery, and during follow-up provided relevant prognostic in-
formation in patients with myeloid malignacies submitted to HCT.

© 2017 American Society for Blood and Marrow Transplantation.

INTRODUCTION
The analysis of minimal residual disease (MRD) at differ-

ent time points provides useful information in patients with
myeloid malignancies who have undergone allogeneic he-
matopoietic stem cell transplantation (HCT). Patients
with negative MRD respond much better that those with
MRD+ [1-4]. Given that a high number of patients with acue
myelogenous leukemia (AML) lack specific chimeric rear-
rangements that can be monitored by sensitive PCR
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methods, most studies have been performed using
multiparametric flow cytometry (MPFC), which relies on the
identification of aberrant immunophenotypes [5]. The advent
of more robust and more sensitive sequencing platforms and
the use of digital PCR will enable direct analysis of driver mu-
tations in myeloid malignancies. Some such mutations can
be detected in the bone marrow in morphological complete
remission (CR), however [6].

In earlier studies, we analyzed the value of WT1 expres-
sion in risk assessment in patients with AML, and found that
normalized bone marrow WT1 levels provide useful infor-
mation on risk stratification [7]. WT1 is a transcription factor
that is overexpressed in granulocyte-monocyte precursors and
down-regulated as the myeloid cells differentiate [8-10]. Based
on its expression in a subset of bone marrow CD34+ cells and
its up-regulation in most patients with AML and
myelodysplastic syndrome (MDS), overexpression of WT1 is
a surrogate marker of abnormal myelopoiesis and has been
used as a relapse risk stratification tool in myeloid malig-
nancies [7,11-18]. WT1 in bone marrow identifies
hematopoiesis enriched in leukemic cells, as shown by fre-
quent leukemia relapses in AML patients autografted with
mobilized peripheral blood hematopoietic cells harboring high
WT1 levels [18].

Despite efforts to standardize WT1 bone marrow levels,
some authors have pointed out that WT1 mRNA quantitation
is not sufficiently sensitive for use as a reliable marker of MRD.
It is also argued that the WT1 thresholds are within the same
range as those in normal bone marrow. In sharp contrast with
MPFC, which is also a surrogate marker of cells harboring
driver mutations, WT1 is not widely recognized as a “prime
time” MRD tool.

Despite their biological limitations, bone marrow WT1
levels as a marker of bone marrow with an enlarged imma-
ture compartment could become an almost universal target
for assessing the quality of remission achieved in myeloid ma-
lignancies. Their expression in AML and MDS is up-regulated
in parallel with the immature cell number. In this respect,
some authors have also recently used WT1 levels to predict
relapse in bone marrow transplant recipients [19-25]. Given
that lack of consensus on clinically relevant WT1 thresh-
olds and time points in the HCT setting to guide clinical
decisions (eg, immunosupressive withdrawal, donor lym-
phocyte infusion, chemotherapy, hypomethylating agents),
WT1 quantitation has not yet gained widespread use.

To investigate the prognostic impact of normalized bone
marrow WT1 levels in adult patients with AML and MDS, we
retrospectively analyzed a consecutive series of patients who
underwent HCT at Hospital de la Santa Creu i Sant Pau in Bar-
celona. We assessed whether WT1 levels can be useful in
predicting outcomes in this group of patients.

PATIENTS AND METHODS
A total of 1031 bone marrow samples were collected from 193 pa-

tients at different time points: (1) before the hematopoietic stem cell infusion
(177 samples), (2) at the first bone marrow aspirate (184 samples) after HCT,
and (3) during the post-HCT follow-up (670 samples) Diagnostic samples
from all patients were analyzed for mutations in the NPM1, FLT3, CEBPA, MLL,
and WT1 genes using well-established protocols [7,26,27]. Patient charac-
teristics are summarized in Table 1. Mononuclear cells were separated using
Lymphoprep (Axis-Shield, Oslo, Norway) and lysed with Trizol reagent
(Invitrogen, Thermo Fisher Scientific, Waltham, MA) according to the man-
ufacturer’s instructions. Then 1 μg of RNA was reverse-transcribed to cDNA
in a total reaction volume of 20 μL containing 5 mM Cl2Mg, 10× buffer, 10 mM
DTT, 10 mM each dNTPs, 15 μM of random hexamers, 20 U of RNAsin
(Promega, Madison, WI) and 200 U of MMLV enzyme (Applied Biosystems,
Foster City, CA). Samples were incubated for 10 minutes at 20°C, 45 minutes

at 42°C, and 3 minutes at 99°C, followed by 10 minutes at 4°C. WT1 expres-
sion levels were determined by real-time quantitative PCR (qRT-PCR) in an
ABI PRISM 7500 Genetic Analyzer (Applied Biosystems) using the primers
and conditions described by the European LeukemiaNet (ELN) group [11].
For WT1 copy number titration, we used Ipsogen plasmid (Qiagen, Mar-
seilles, France). The WT1 gene transcripts obtained by qRT-PCR were
normalized with respect to the number of ABL transcripts and expressed as
copy numbers per 104 copies of ABL.

All samples were performed in triplicate, and those with inferior RNA
quality or a threshold cycle number exceeding 30 were excluded from our
analyses. Results are expressed as copies, and 25 normal bone marrow
samples were used as test controls [11,13].

IMMUNOPHENOTYPING
To assess aberrant immunophenotypes by MPFC, we used

combinations of 3 or 4 antigens as described elsewhere. We
acquired 10,000 ungated events in a first step, and based on
the reactivity of CD34, CD45, CD33, CD117, CD123, and CD15
markers, an additional 200,000 events were processed to
detect leukemia-associated immunophenotypes [26,27] to
reach a sensitivity of 10−4. Aberrant immunophenotypes were
identified by a single observer (J.N.) and are reported as a
percentage.

HCT REGIMENS
Patients were treated between 2004 and 2011 according

to the CETLAM AML-03 protocol trial [26]. Informed consent
was obtained from each patient. Adults up to 70 years of
age received induction chemotherapy with idarubicin,
intermediate-dose cytarabine, and etoposide, followed by con-
solidation with mitoxantrone and intermediate-dose ara-C
(cytarabine). G-CSF priming during induction and

Table 1
Patient Characteristics

Characteristic Value

Number of cases 193

Male sex, n (%) 111 (57.5)
Female donor to male recipient, n (%) 46 (23.8)
Age, yr, median (range) 49 (17-70)
Age ≥30 yr, n (%) 22 (11.4)
Age 31-50 yr, n (%) 68 (35.2)
Age >50 yr, n (%) 103 (53.4)
Response, n (%)

Complete remission (first or second) 130 (67.4)
Other responses 63 (32.6)

rDRI, n (%)
Low 7 (3.6)
Intermediate 109 (56.5)
High 62 (32.1)
Very high 15 (7.8)

AML, n (%) 148 (76.7)
MDS, n (%) 45 (23.3)
Donor, n (%)

Identical sibling 103 (53.4)
Other donors 90 (46.6)

Conditioning regimen, n (%)
Myeloablative 79 (40.9)
Reduced-intensity 98 (50.8)
Sequential regimen 16 (8.3)

Graft-versus-host disease prophylaxis, n (%)
Cyclosporine-MTX or MMF 134 (69.4)
Sirolimus-tacrolimus 26 (13.5)
Cyclosporine-prednisone 25 (13)
Other 8 (4.1)

Stem cell source, n (%)
Peripheral blood 162 (83.9)
Bone marrow 29 (15)
Cord blood 2 (1)

Follow-up of survivors, yr, median (range) 4.4 (0.6-11.5)

MMF indicates mycophenolate mofetil; MTX, methotrexate.
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consolidation was administered together with the chemo-
therapy. Patients with favorable cytogenetics at diagnosis then
received 1 cycle of high-dose cytarabine. Those with a normal
karytotype and needing a single course to achieve CR were
treated with autologous HCT. Patients with favorable cyto-
genetics and high leukocyte counts at diagnosis were also
treated with autologous transplantation instead of high-
dose cytarabine. A favorable genotype was defined as the
presence of NPM1 or biallelic CEBPA mutations associated
without FLT3 internal tandem duplication (FLT3-ITD). Pa-
tients with a normal karyotype but adverse molecular profile
(FLT3-ITD or MLL rearrangements, including partial tandem
duplication assessed by long-distance PCR) were allocated to
the treatment for unfavorable cases; these included HCT from
an HLA-identical donor (related or unrelated) or autolo-
gous transplant after “in vivo” purging with 3 mg/m2 i.v. of
Mylotarg. Cases with MDS were referred to HCT in accor-
dance with institutional protocols that take into account the
International Prognostic Scoring System. Patients age ≥50 years
with an allogeneic donor received reduced-intensity condi-
tioning with fludarabine and busulfan.

STATISTICAL METHODS
Overall survival (OS) was measured from the date of en-

rollment until the date of death. Progression-free survival (PFS)
was defined as the interval from day 0 to disease progres-
sion or death. OS and PFS were plotted using the Kaplan–
Meier method; differences between curves were analyzed by
the log-rank test. The cumulative incidence estimates with
competing risks were used to calculate the incidences of
relapse and nonrelapse mortality (NRM). The competing risk
for NRM was relapse, and the competing risk for relapse was
NRM. After exploratory univariate comparisons, multivari-
ate analyses were performed, including the variables with a
P < .15. COX regression analyses was used for multivariate
analyses. A landmark analysis was done for survivors after
180 days, excluding those patients who had died or re-
lapsed before that date. PFS was compared between patients
who had a WT1 determination between 180 and 365 days.
Threshold values were established by selecting the most ac-
curate values using a nonparametric receiver operating
characteristic (ROC) curve analysis, taking into account the
maximum sensitivity-specificity ratio. The endpoints for the
threshold were relapse and death. This approach was applied
following the REMARK guidelines [28].

The statistical packages used were the SPSS 19.0.0 (IBM,
Armonk, NY), the open- source integrated development en-
vironment (IDE) GNU Emacs 23.4.1, RStudio version 0.94−110
(RStudio, Boston, MA), and R version 2.14.0 (R Foundation for
Statistical Computing, Vienna, Austria).

RESULTS
HCT outcomes are shown in Tables 2 and 3. One hundred

and eleven patients (57.5%) were male. The median age at HCT
was 49 years (range, 17 to 70 years). One hundred and forty-
eight patients (76.7%) had AML, and 45 patients (23.3%) had
MDS. One hundred and thirty patients (67.4%) were in first
or second CR at HCT. Patients’ refined Disease Risk Index (rDRI)
score was low in 3.6% of cases, intermediate in 56.5%, high
in 32.1%, and very high in the remaining 7.8%. Seventy-nine
patients (40.9%) received a myeloablative conditioning
regimen. An identical sibling donor was used in 103 pa-
tients (53.4%) and the most common stem cell source was
peripheral blood (162 patients; 83.9%).

BONE MARROW WT1 LEVELS BEFORE HCT
A bone marrow RNA sample to perform WT1 quantitation

before HCT was available in 177 patients (91.7%) (median time,
36 days; range, 4 to 268 days). Patients with <100 WT1 copies
had better OS, better PFS, and lower CIR than those with ≥100
WT1 copies (Figure 1). The 70 patients with ≥100 WT1 copies
in bone marrow were divided into 3 groups. In 38 patients,
blasts were observed at microscopic examination (not in CR).
In 20 patients, the morphology showed no blasts but MPFC
was MRD+ (MRD ranging from 0.07% to 2.8%). In 12 pa-
tients, both morphology and MPFC were negative, and an
elevated WT1 level was the sole sign of a poor-quality re-
mission (12 of 32 patients in CR had WT1 levels >100 copies
and negative MPFC). Four of these 12 patients relapsed and
died. Four other patients from this group died as a conse-
quence of a competitive event, including infection in 2 patients
and severe and refractory acute graft-versus-host disease in
the other 2. Only 4 patients were alive at study end, 3 of whom

Table 2
Hematopoietic Reconstitution and WT1 Determination

Variable Value

Achieved stable neutrophils >0.5 × 109/L
Day of neutrophils > 0.5 × 109/L, median
(range)

18 (10-38)

Cumulative incidence (95% CI) of
neutrophil recovery at day +30, %

95.3 (92.3-98.3)

Graft failure: primary, n (%) 3 (1.6)
Achieved stable platelet count >20 × 109/L

Day of platelets >20 × 109/L, median
(range)

17 (6-78)

Cumulative incidence (95% CI) of
platelet recovery to >20 × 109/L at day
+60, %

92 (88.4-96)

Cumulative incidence of acute grade II-III
GVHD
Cumulative incidence (95% CI) of acute
grade II-IV GVHD at day +100, %

26.4 (20-33)

Day of onset, median (range) 45 (13-100)
Cumulative incidence (95% CI) of acute
grade II-IV GVHD at day +365, %

33.12 (24.5-38)

Cumulative incidence of chronic GVHD
Cumulative incidence (95% CI) of
limited chronic GVHD

38.5 (34-42)

Cumulative incidence (95% CI) of
extensive chronic GVHD

20 (18-22)

Pre-HCT WT-1 determination
<100 copies, n (%) 107 (60.5)
≥100 copies, n (%) 70 (39.5)
Time of determination, d, median

(range)
36 (4-268)

Post-HCT WT-1 determination
<100 copies, n (%) 152 (82.6)
≥100 copies, n (%) 32 (17.4)
Time of determination, d, median

(range)
42 (14-157)

Pre-HCT WT-1 determination ≥100
copies, n

70

Complete morphological CR, n
Negative MRD by flow cytometry: 12
Positive MRD by flow cytometry: 20

Other active disease, n 38
Post-HCT WT-1 determination ≥100

copies, n
32

Positive MRD by flow cytometry and/or
morphology, n
Relapsed 11
Not relapsed 2

Negative MRD by flow cytometry, n
Relapsed 7
Not relapsed 12 (6 developed GVHD)

CI indicates confidence interval; GVHD, graft-versus-host disease.
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had no therapeutic intervention other than HCT. In the fourth
patient, a mixed chimerism was identified in the post-HCT
phase. The attending physician decided to discontinue the im-
munosuppressive treatment and the patient again achieved
CR.

BONE MARROW WT1 LEVELS IN THE FIRST EVALUATION
ASPIRATE AFTER HCT

WT1 level quantitation after hematopoietic cell infusion
was obtained in 184 patients (median time, 42 days, range,
14 to 157 days). Again, the 100-copy threshold clearly dis-
tinguished 2 groups in terms of OS, PFS, and CIR (Figure 2).
In the group with WT1 levels exceeding 100 copies (32 pa-
tients), we also found 3 categories: 11 patients not in
morphologic CR, 2 patients without blast cells by morphol-
ogy with a positive MRD by MPFC (MRD 0.07% and 0.3%,
respectively), and 19 patients with >100 WT1 copies, no blasts
by morphology (CR), and negative MRD by MPFC (Table 2).

CLINICAL RELEVANCE OF SUSTAINED WT1 LEVELS <100
COPIES AFTER HCT

Post-HCT WT1 levels were available from 670 samples. Pa-
tients were categorized into two groups: those showing
sustained levels <100 copies (3 or more samples with levels
always below the 100-copy threshold; n = 56) and those with
3 or more samples available after HCT and showing bone
marrow WT1 levels >100 copies (n = 48) in at least one de-
termination. Using these criteria, we identified marked
differences in terms of OS, PFS, and CIR (Figure 3). These find-
ings suggest that at any time after HCT, the appearance of bone
marrow WT1 levels >100 copies is associated with a very high
probability of relapse and death (Table 2) (Supplementary
Material).

MULTIVARIATE ANALYSIS REVEALED AN INDEPENDENT
PROGNOSTIC VALUE OF BONE MARROW WT1 LEVELS
POST-HCT

Univariate analysis performed at 4 years (median follow-
up for survivors) disclosed statistically significant associations
between OS, PFS, and CIR with status at HCT (first CR versus
other), Disease Risk Index (DRI; categorized as low to inter-
mediate versus high to very high), GVHD prophylaxis
(sirolimus-tacrolimus versus other), female donor to male

recipient, and pre-HCT and post-HCT WT1 levels (Supple-
mentary Materials). Multivariate analysis showed the
prognostic impact of bone marrow WT1 levels (Table 4).

DISCUSSION
Our data show that in patients with AML and MDS, bone

marrow WT1 levels before HCT and at the first bone marrow
examination after HCT were predictive of OS, PFS, and CIR.
Furthermore, patients with sustained levels of bone marrow
WT1 <100 copies after HCT had excellent outcomes. Inter-
estingly, bone marrow aspirates with elevated WT1 levels at
any time point, irrespective of the results from convention-
al morphology or MPFC, may identify patients with a high
probability of relapse. The probabilities of relapse and death
were higher in patients with >100 bone marrow WT1 copies
at each time point measured (Figures 1, 2 and 3). These find-
ings suggest that suboptimal remission status in myeloid
malignancies can be detected not only by morphology or by
MPFC, but also by WT1 mRNA quantitation using the ELN
method. Remarkably, some patients with >100 WT1 copies
were free of blasts by morphology and/or flow cytometry.
Other patients with high WT1 levels had detectable leuke-
mia by morphological examination and/or MPFC [22,23]. This
phenomenon was observed pre- and post-HCT. In the latter
group, it may be argued that the scarce bone marrow cellu-
larity frequently obtained early after transplantation (only
200,000 events for each tube acquired in our study) makes
the sensitivity of MPFC suboptimal.

As hypothesized by other groups, normal bone marrow
WT1 levels or, more precisely, those associated with a low
probability of myeloid malignancy relapse, are not in the same
range of normal bone marrow and could be similar to those
observed in normal peripheral blood or those associated with
successful chemotherapy induction in AML [29,30]. Our find-
ings require confirmation in other series, especially regarding
the clinical relevance of the selected time points. Such con-
firmation could reinforce post-HCT interventions, such as
hypomethylating agents, targeted therapies, and immune ap-
proaches based on persistent high WT1 levels. The bone
marrow threshold used in this study was the same as that
described by Pozzi et al. [19] in their patients who under-
went HCT. As we pointed out in a previous study in adults
with AML [7], our present findings should be confirmed with
other standardized methods of WT1 quantitation [31].
Whether our findings also apply to pediatric patients should
be explored as well [32,33]. In this regard, an elevated WT1
level before HCT was identified as an adverse prognostic factor
in children with hematologic malignancies.

The 2 most commonly used techniques to assess MRD
status are MPFC and qRT-PCR. Some allografted patients have
been followed using both MPFC and WT1 quantitation [20,21].
This combined approach has shown improved relapse pre-
diction. Other authors have used the combination of WT1
quantitation with chimerism analysis [23].

In some reports, peripheral blood has been used to assess
WT1 levels. This can make follow-up of patients with HCT
easier. Using this sample source, Israyelyan et al. [34] re-
ported 50 copies as the threshold for predicting relapse in
HCT recipients with AML and MDS. Recently, circulating RNA
in peripheral blood was also used as relapse prediction marker
in HCT recipients [24]. Dulery et al. [35] reported the value
of WT1 quantitation in predicting relapse in the HCT setting;
they used the same WT1 test (Ipsogen) in peripheral blood
samples obtained in the post-HCT phase and identified the
3-month time point as the most useful. In a series of patients

Table 3
Allogeneic HCT Outcomes

Outcome Value

OS probability (95% CI), %

At 1 yr 59.8 (56-63)
At 4 yr 46 (42-50)
At 12 yr 37.6 (32-43)

PFS probability (95% CI), %
At 1 yr 54.6 (51-58)
At 4 yr 43.5 (40-47)
At 12 yr 33.2 (27-39)

NRM, cumulative incidence (95% CI), %
At 100 d 11.3 (7-16)
At 1 yr 23.5 (18-30)
At 4 yr 30.7 (22-35)
At 12 yr 36.2 (23-39)

Disease progression or relapse, cumulative
incidence (95% CI), %
At 100 d 12.4 (8-17)
At 1 yr 22.4 (16-28)
At 4 yr 26.3 (16-28)
At 12 yr 31.2 (20-33)
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Figure 1. Bone marrow WT1 levels before HCT identified 2 relevant groups based on a WT1 threshold of 100 copies: high WT1 (orange curves) and low WT1
(blue curves). Shown are the CIR (A), PFS (B), and OS (C), in days.
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Figure 2. Bone marrow WT1 levels at the first bone marrow aspirate after HCT. A 100-copy threshold identified 2 relevant groups: high WT1 (orange curves)
and low WT1 (blue curves). Shown are CIR (A), PFS (B), and OS (C), in days.
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Figure 3. Bone marrow WT1 levels after HCT: relevance of the sustained levels below 100 copies. Shown are the CIR (A), PFS (B), and OS (C), in days. High
WT1 is represented by orange curves; low WT1, by blue curves.
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with AML treated with HCT, Rossi et al. [36] observed that
WT1 quantitation was most predictive at 3 months post-
HCT, whereas MPFC was most useful before HCT and at day
30 post-HCT. Here we have shown that late bone marrow WT1
determinations are also useful, given that those patients who
were below the 100-copy threshold had good outcomes. Di
Grazia et al. [25] reported the benefits of starting preemp-
tive immunotherapy, and, in accordance with our results, their
optimal threshold was also 100 copies. Yoon et al. [37] used
the same test to analyze a series of 82 patients with MDS,
and found similar thresholds predictive of relapse. In another
study, the same group found that this approach was also useful
for predicting relapses in patients with AML with NPM1 and
FLT3 mutations [38].

In conclusion, elevated pre-HCT and post-HCT WT1 levels
are useful markers for predicting main outcomes in adults
with AML and MDS treated with HCT. Prospective studies are
needed to assess whether bone marrow WT1 levels >100
copies may be an indication to start treatments in the post-
HCT phase. Patients with sustained low WT1 levels post-
HCT (<100 copies) have excellent outcomes. Bone marrow
WT1 quantitation using the ELN method is an easy-to-use tool
for assessing remission in patients who have undergone HCT
for AML or MDS.
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Table 4
Multivariate Analysis at 4 Years: OS, PFS, NRM, and Disease Relapse

Outcome Variable P Value HR 95% CI

OS Status at HCT: first CR versus other response .001 0.34 0.21-0.53
GVHD prophylaxis: sirolimus-tacrolimus versus other response .015 0.35 0.15-0.81
Female-to-male donor direction versus other .001 2.41 10.52-30.83
<100 WT1 copies versus >100 copies after HCT .035 0.57 0.34-0.96

PFS Status at HCT: first CR versus other response .001 0.37 0.23-0.57
GVHD prophylaxis: sirolimus-tacrolimus versus other response .007 0.31 0.13-0.73
Female-to-male donor direction versus other .001 2.11 10.34-30.33
<100 WT1 copies versus >100 copies after HCT .002 0.450 0.27-0.73

Relapse GVHD prophylaxis: sirolimus-tacrolimus versus other response .029 0.20 0.04-0.85
WT1 <100 copies versus >100 copies pre-HCT .007 0.42 0.22 – 0.79
WT1 <100 copies versus >100 copies post-HCT .001 0.19 0.10 – 0.37

NRM Status at HCT: first CR versus other response .001 0.29 0.15 – 0.55
Female-to-male donor direction versus other .002 2.62 1.44 – 4.79

HR indicates hazard ratio.
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