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During primary HIV infection (PHI), there is a striking cascade response of inflammatory 
cytokines and many cells of the immune system show altered frequencies and signs of 
extensive activation. These changes have been shown to have a relevant role in pre-
dicting disease progression; however, the challenges of identifying PHI have resulted in 
a lack of critical information about the dynamics of early pathogenic events. We studied 
soluble inflammatory biomarkers and changes in T-cell subsets in individuals at PHI 
(n  =  40), chronic HIV infection (CHI, n  =  56), and HIV-uninfected (n  =  58) recruited 
at the Manhiça District Hospital in Mozambique. Plasma levels of 49 biomarkers were 
determined by Luminex and ELISA. T-cell immunophenotyping was performed by multi-
color flow cytometry. Plasma HIV viremia, CD4, and CD8 T cell counts underwent rapid 
stabilization after PHI. However, several immunological parameters, including Th1-Th17 
CD4 T cells and activation or exhaustion of CD8 T cells continued decreasing until more 
than 9 months postinfection. Importantly, no sign of immunosenescence was observed 
over the first year of HIV infection. Levels of IP-10, MCP-1, BAFF, sCD14, tumor necrosis 
factor receptor-2, and TRAIL were significantly overexpressed at the first month of infec-
tion and underwent a prompt decrease in the subsequent months while, MIG and CD27 
levels began to increase 1 month after infection and remained overexpressed for almost 
1 year postinfection. Early levels of soluble biomarkers were significantly associated with 
subsequently exhausted CD4 T-cells or with CD8 T-cell activation. Despite rapid immune 
control of virus replication, the stabilization of the T-cell subsets occurs months after vire-
mia and CD4 count plateau, suggesting persistent immune dysfunction and highlighting 
the potential benefit of early treatment initiation that could limit immunological damage.

Keywords: aiDs, hiV pathogenesis, T-cell exhaustion, T-cell activation, immunosenescence, cytokines, acute hiV 
infection, sub-saharan africa

inTrODUcTiOn

During primary HIV infection (PHI), many cells of the immune system show signs of extensive 
activation and a progressive loss of resting subsets (1). Several T-cell subsets can be defined by their 
specificity, surface phenotype, or degree of maturation, and any or all of these parameters can be 
affected by HIV infection (2). Prior to changes in T-cell subsets, as HIV viremia increases during 
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PHI, there is a striking cascade response of pro-inflammatory 
cytokines, which has been referred to as the “cytokine storm” (3). 
Although many of the cytokines present are common inflam-
matory effectors, their study can shed light on key pathogenic 
pathways associated with disease progression (4–9).

Generally, untreated HIV infection is characterized by pro-
gressive CD4 T-cell depletion and CD8 T-cell expansion. The 
profound CD4 T-cell depletion is linked directly to the risk for 
opportunistic infections and mortality (10). Likewise, CD8 T-cell 
activation (11–14) and exhaustion (15, 16) have been observed 
to be strong correlates of disease progression. The subsequent 
alterations in immune homeostatic mechanisms may lead to a 
progressive loss of the naïve and memory T-cell pool, resulting in 
an imbalance in T-cell phenotypes (10, 11). Similarly, after HIV 
infection, accelerated aging of T cells or immunosenescence may 
occur due to the continuous highly productive viral replication 
and cell stimulation (11, 17). Importantly, immunosenescence 
has also been associated with risk of adverse clinical events in 
HIV-infected individuals (18).

Besides interfering in T-cell maturation, HIV infection also 
affects T-cell functional diversity. A switch from Th1 to Th2 has 
been widely described (19), as well as changes in Th17 and Treg 
cells. Th17  cells are CD4-T  cells involved in epithelial barrier 
integrity and protection against extracellular pathogens (20). 
Th17 cells have been seen to be irreversibly depleted in the gut-
associated lymphoid tissue (GALT) during the first stages of PHI 
and have only been preserved by prompt ART initiation (21). 
Regulatory CD4 T  cells (Tregs) induce tolerance against self-
antigens and prevent autoimmunity (22–24). Interestingly, some 
studies have reported an increased Treg frequency in lymphoid 
tissues during progressive HIV disease (25, 26) as shown for SIV 
infection (27, 28), while others have shown a gradual decline 
in Tregs in peripheral blood associated with increased immune 
activation (29–32).

The challenges of identifying PHI have resulted in a lack of 
critical information that constrains the development of therapeutic 
interventions (33). In this study, we provide a longitudinal charac-
terization of different T-cell subsets and the expression of soluble 
inflammatory biomarkers over the first year after PHI in a cohort of 
Mozambican adults and compared these changes with chronically 
HIV-infected (CHI) and HIV-uninfected subjects. Additionally, 
we explore the association between the various T-cell phenotypes 
and the plasma biomarker levels at different stages of infection.

MaTerials anD MeThODs

study Population
The study population was enrolled between 2013 and 2014 at the 
Manhiça District Hospital (MDH) in the district of Manhiça, 
Southern Mozambique. The present analysis is a sub-study of a 
prospective cohort of primary HIV-infected adults enrolled and 
followed up for 12 months in the gastrointestinal biomarkers in 
acute-HIV infected Mozambican adults study (GAMA) (34).

ethics statement
This study was approved by local institutional review boards at 
Barcelona Clinic Hospital (2011/6264) and by the Ministry of 

Health of Mozambique (461/CNBS/12). All methods were carried 
out in accordance with the relevant guidelines and regulations. 
Written informed consent was obtained from patients prior to 
participation.

hiV Diagnosis and clinical Follow-up
All study participants were over 18 years of age and residents of 
the established District Surveillance System study area. During the 
screening, subjects presenting to the outpatient clinic of MDH for 
non-specific febrile symptoms or voluntary HIV counseling and 
testing (VCT) were included in the PHI group if they were nega-
tive or indeterminate for rapid test serology and HIV-RNA positive 
for pooled-viral load (VL) testing (n = 85). A control population 
was established by random selection among HIV-uninfected and 
individuals were invited to attend a study visit 1 month after the 
screening date (n = 58). PHI individuals were followed up at seven 
consecutive visits 1, 2, 3, 4, 6, 9, and 12 months after the screening 
visit. Technical information and procedures regarding HIV diag-
nosis and monitoring, as well as the screening profile have been 
previously described (34). Additionally, adults with documented 
HIV diagnosis ≥12  months earlier attending routine scheduled 
outpatient visits for clinical management of HIV/AIDS at the 
MDH were enrolled as CHI patients. CHI patients were included 
in the CHI-naïve or the CHI-ART, depending whether they had 
previously initiated treatment according to the current national 
guidelines (patients with a CD4 T-cell count ≤ 350 cells/mm3 or 
presenting and AIDS-associated disease).

After screening, demographic and clinical data was collected, 
medical consultation and HIV counseling was provided, and 
blood and stool samples were collected at all the study visits. 
Determination of CD4 and CD8 T-cell counts was performed on 
fresh whole blood in a single platform system using Trucount tubes 
and a FACScalibur flow cytometer. Peripheral blood mononuclear 
cells (PBMCs) were isolated by Ficoll density gradients and imme-
diately stored in liquid nitrogen. VL determination was performed 
in plasma samples as previously described (34). Microbiological 
evaluation was performed in plasma and stool samples, testing 
for the most prevalent infections in the area including malaria, 
hepatitis B virus, syphilis and gastrointestinal protozoa, bacteria, 
and parasites (File S1 in Supplementary Material).

Definition of Phi Phases and 
Quantification of Biomarkers
HIV-specific serology was subsequently performed on frozen 
plasma samples by western blot. VL and WB results at screening 
visit were employed to categorize individuals into Fiebig stages 
I–III (VL positive, WB negative), IV (VL positive, WB indetermi-
nate), V (VL positive, WB positive with p31 band negative), and 
VI (VL positive, WB positive with p31 band positive) as described 
in previous work (34, 35). In order to approximate similar time 
since infection for the PHI individuals at every study visit, visits 
from individuals categorized in Fiebig stage V and VI at screening 
were moved 1 and 2 months forward, respectively, according to 
estimated days post infection previously described (35–37). After 
adjustment by Fiebig, new visits were grouped into M1, M2, M3, 
M4, M5, M6, M7–8, M9–11, and M12–15 according to estimated 
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months since infection (Figure S1 in Supplementary Material). 
PBMCs or clinical data were not collected at the screening visit, so 
all the individuals included in M1 will not have this information, 
as well those individuals categorized in Fiebig stage V and VI at 
M2 and M3, respectively.

Multiplex biomarker profiling was performed for a total of 61 
immune response biomarkers in plasma samples. Determinations 
were performed by ELISA commercial assays or Luminex 
technology as previously described (34–38). From the resulting 
49 quantifiable biomarkers, the difference in the median levels 
between PHI and non-HIV-infected individuals with reported 
fever was highly significant for 13 soluble biomarkers (P < 0.001) 
(38). In order to represent the dynamics along the first year of 
infection, these 13 soluble biomarkers were grouped into two 
main pathways depending on their main function: (1) lymphocyte 
and monocyte function and (2) inflammation, intestinal damage, 
cell death, and proliferation.

cD4 and cD8 T-cell immunophenotyping
Cryopreserved PBMCs were thawed at 37°C, washed in 
RPMI/60% and RPMI/20% of fetal bovine serum (FBS), and 
incubated for 1 h at 37°C in RPMI/10% FBS. PBMCs were then 
stained with the Fixable Viability Stain-FVS780r (APC-H7 
detect, BD Biosciences) for 15  min. After PBMCs washing in 
PBS/1% FBS, cells were plotted to a U-bottom 96-well plate at 
a density of 1.5 millions/well and stained with selected 14-color 
panel including CD3-BV605 (Clone SK7), CD4-FITC (Clone 
RPA-T4), CD8-V500 (Clone SK1), CD45RA-Alexa Fluor®700 
(Clone HI100), CD197-PE-CF594 (Clone 150503), CD57-APC 
(Clone NK-1), CD279-BV421 (Clone EH12.1), HLA-DR- 
BV650 (Clone G46-6), CD38-PerCp-Cy5.5 (Clone HIT2), 
CD25-PE (Clone M-A251), CD127-BV786 (Clone HIL-
7R-M21), CD196-BV711 (Clone 11A9), and CD183-PE-Cy7 
(Clone 1C6/CXCR3) (from BD Biosciences) for 15  min. After 
washing twice in PBS/1% FBS, cells were fixed in PBS/1% 
formaldehyde, acquired in a BD LSRFortessa cytometer using 
a plate HTS loader (BD Biosciences) and analyzed with FlowJo 
software (Tree Star). Gating strategy is described in Figure S2 in 
Supplementary Material. Lymphocyte gate was defined manually 
by morphological parameters excluding nonviable cells and sin-
glets. Median of viability + lymphocytes was 2.5% [IQR 1.6–4.1], 
as an estimation of death cells per sample. Subsets were identified 
as CD3+ cells and gated as CD4+CD8− or CD8+CD4−, while 
double-positive cells and double-negative cells were excluded 
from the analysis. T-cell maturation stage was analyzed automati-
cally using R software for CD45RA and CD197/CCR7 expression 
to define naive (TN, CD45RA+CCR7+), central memory (TCM, 
CD45RA−CCR7+), effector memory (TEM, CD45RA−CCR7−) 
and effector memory RA+ cells (TEMRA, CD45RA+CCR7−). 
T-cell subsets were also analyzed automatically for the expres-
sion of HLA-DR and CD38 to define activated cells (HLA-DR+ 
and CD38+), CD279/PD-1 to define exhausted cells (CD279+) 
and CD57 to define immunosenescent cells (CD57+). CD4+ 
T-cells were subsequently analyzed manually for the expression 
of CD25 and CD27 to define Treg subset (CD25+++CD27−) and 
automatically for the expression of CD183 and CD196 to define  
Th1/Th17 cells (CD183+CD196+).

statistical analysis
Group comparisons were performed using the Fisher’s exact test 
for categorical variables and the non-parametric Kruskal–Wallis 
test for continue variables. Spearman’s correlation was used to 
assess the strength of relationship between continuous variables 
and multiple testing was further adjusted by false discovery rate. 
Individual comparisons between the different groups were per-
formed using post hoc pairwise comparisons with the Tukey and 
Kramer (Nemenyi) test. Relative changes (Z-score) with respect 
to the HIV-uninfected group (in the case of VL the Z-score was 
calculated relative to the CHI-naïve group) have been represented 
by a transformation of the fitted longitudinal models by subtract-
ing the mean and dividing by the standard deviation of HIV-non 
infected distribution, after a logarithmic transformation in the 
cases where it was required for normal distribution. Longitudinal 
behavior for analytes and immunological variables were modeled 
by fitting smoothing-splines mixed-effects models using the 
“sme” package of R. To infer if there was a significant association 
of selected biomarkers with the time variable, polynomial time 
effects approximation until third degree were fitted using linear 
mixed-effects regression models. Best model was selected based 
on likelihood ratio tests under maximum likelihood models esti-
mations. A two-phase exponential decay regression model was 
employed in the case of VL modeling. Statistical analyses were 
performed using R-3.3.1 and Stata14 software.

resUlTs

characteristics of the study Population
In the context of this study, we recruited 57 PHI patients identified 
during the screening process, as described in Section “Materials 
and Methods.” From these, 40 individuals attended a follow-up 
visit 1 month later and 26, 21, 14, 14, 13, and 11 of these patients 
continued visits at 2, 3, 4, 6, 9, and 12 months after screening, 
respectively. There was no significant difference in age, gender 
balance, or HIV-RNA VL between PHI patients who returned 
for enrollment and those who were lost to follow-up (34). HIV-
uninfected individuals were randomly selected from screened 
individuals and 58 subjects representing the control population 
attended a visit 1 month later. During the cross-sectional recruit-
ment of CHI individuals, 26 patients were included in the ART-
naïve group and 30 patients in the ART group. The demographic 
and clinical characteristics of the 40 PHI individuals who started 
follow-up, the HIV-uninfected and the CHI groups, are summa-
rized in Table 1. Significant differences were found for age and 
body mass index (BMI, P < 0.0001) but no differences were found 
for the clinical variables between the study groups (P > 0.05).

Among the 57 PHI identified, 28, 5, 7, and 17 were categorized 
into Fiebig I-III, Fiebig IV, Fiebig V, and Fiebig VI stages, respec-
tively, and were adjusted for time since infection as described in 
Section “Materials and Methods” (Figure S1 in Supplementary 
Material). After categorizing by Fiebig stage, and adjusting for 
time since infection, median VL in the PHI group was 6.9 RNA 
Log10 copies/mL (IQR 6.2–7.5) at month one (M1) and signifi-
cantly decreased to 5.1 RNA Log10 copies/mL (IQR 4.7–5.6) at 
month 2 postinfection (M2), (P  =  0.0001, Figure  1A). In the 
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TaBle 1 | Clinical and demographic characteristics of study population according to HIV-status.

 1st follow-up visit primary hiV infection 
(n = 40)

hiV-uninfected (n = 58) chi-naïve (n = 26) chi-arT (n = 30) P-value

Age (years) [mean (SD)] 27.2 (9.2) 27.9 (9.5) 38.2 (13.4) 42.9 (8.8) 0.0001a

Gender [F (%)] 24 (60.0%) 46 (79.3%) 19 (73.1%) 19 (63.3%) 0.162b

Body mass index (kg/m2) [mean (SD)] 20.3 (3.1) 21.5 (4.1) 24.5 (4.6) 24.1 (3.2) 0.0001a

Time on ART (years) [median (IQR)] – – – 2.6 (0.9–4.5) –
Pregnant [n (% F)] 3 (12.5%) 7 (15.2%) 0 (0%) 3 (15.8%) 0.348b

Fever last 24 h [n (%)] 5 (12.5%) 3 (5.3%) 4 (15.4%) 1 (3.3%) 0.246b

Intestinal complaint last week [n (%)] 12 (30%) 15 (25.9%) 4 (15.4%) 2 (6.7%) 0.067b

Co-infections [n (%)]c

Hepatitis B 5 (12.5%) 2 (3.5%) 2 (7.7%) 3 (10.0%) 0.400b

Syphilis 3 (7.5%) 4 (6.9%) 0 (0%) 1 (3.3%) 0.481b

Malaria 2 (5%) 0 (0%) 1 (3.9%) 0 (0%) 0.242b

Intestinal infection 6 (15%) 11 (19%) 2 (7.7%) 3 (10.0%) 0.552b

aComparisons of continuous variables were performed by Kruskal–Wallis test.
bComparisons for proportions were performed by Fisher exact test.
cCo-infections were assessed as described in Supplementary Methods in Supplementary Material.

4

Pastor et al. Biomarkers during Early HIV Infection

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1925

CHI-naïve patients, median VL was 4.5 RNA Log10 copies/mL 
(IQR 3.9–4.9).

In order to evaluate the dynamics of the different parameters 
along the first year of HIV infection, two approaches based on 
non-parametric modeling and linear regression modeling were 
performed as described in Section “Materials and Methods.” 
Longitudinal analysis confirmed the rapid decrease in VL with 
either a non-parametric models or a nadir VL set point. A bipha-
sic exponential decay model revealed a second phase of VL decay 
with a lower but significant slope until 6 months after infection 
(M6, Figure 1B).

Regarding the dynamics of CD4 and CD8 T cells from M2, we 
observed that at M2 median CD4 T-cell count in PHI individuals 
was significantly lower than in the HIV-uninfected group, 565 
(IQR 387–675) vs. 955 (IQR 773–1,149) cells/mm3, respectively 
(P  =  0.0001, Figure  1C). CD4 T  cells also showed an initial 
decrease that stabilized at months 5–6 postinfection (M5–6) in 
non-parametric longitudinal analysis, while significant linear 
decay was observed overtime in the regression model (P = 0.033 
for the slope, Figure 1D). Median CD8 T-cell count was signifi-
cantly higher in PHI at M2 than in HIV-uninfected controls, 1,175 
(IQR 771–1,683) vs. 591 cells/mm3 (IQR 417–746), respectively 
(P = 0.0001, Figure 1E). Both longitudinal models show that the 
initial increase in CD8 T cells is followed by a significant decay 
that also stabilized at M5-6, remaining stable and high until 
CHI (P  =  0.002, Figure  1F). In the CHI-naïve group, median 
CD4 T-cell and CD8 T-cell count were 595 (IQR 466–729) and 
1,029 (IQR 685–1,562), respectively, while in the CHI-ART 
group, median CD4 T-cell and CD8 T-cell count were 474 (IQR 
377–590) and 830 (IQR 617–1,061), respectively.

cD4 Th1Th17 and Treg changes during 
the Different stages of hiV infection
The frequency of functionally distinct CD4 T cells was analyzed 
by the cell surface expression of CD127 and CD25 (for Treg) and 
CD183 (CXCR3) and CD196 (CCR6) as described in Section 
“Materials and Methods.” This latter combination identifies 
Th1Th17 cells as CD183+CD196+, while CD183+CD196− cells 

are mostly Th1 and CD183− CD196+cells contain the Th17 
population (Figure S2 in Supplementary Material) (19). No 
major changes were observed in CD4 CD183+CD196− or 
CD183−CD196+ cells during PHI (data not shown). However, 
the frequency of CD183+CD196+ (Th1Th17 cells) cells in PBMCs 
significantly decayed overtime until 7–8  months postinfection 
(M7–M8, P = 0.0127, Figures 2A,B). The percentage of activa-
tion in Th1Th17 cells at M2 (as measure by CD38 and HLA-DR 
co-expression) was significantly increased compared to HIV-
uninfected (P < 0.0001) and continued to increase along the first 
year postinfection (data not shown). Looking at the maturation 
stage of the Th1Th17 cells, a significant increase in the frequency of 
naive (TN, P = 0.0002) and a significant decrease in the frequency 
of effector memory (TEM, P = 0.0007) was observed at M2 com-
pared to HIV-uninfected. Since the definition of Th1Th17  cells 
involves cell surface expression of CXCR3, the receptor for IP-10, 
we assessed the relationship between CXCR3 expression and IP-10 
levels. Although a significant negative correlation was observed 
between IP-10 plasma levels and circulating CD4 T cells at M2 
(rho = −0.49, P = 0.0282); such association was positive and bor-
derline significant between plasma IP-10 levels and CXCR3 + CD4 
T cell frequencies (rho = 0.43, P = 0.0574), and no association was 
observed between plasma IP-10 and the frequency of Th1Th17 
CD4 T cells. This fact could be explained because the kinetics of 
CXCR3+ and Th1Th17 CD4 T cells (CXCR3+CCR6+) are dif-
ferent, considering that expression of CCR6 has been reported to 
increase susceptibility to HIV infection (39).

No significant oscillations were observed during PHI for the 
CD4 Tregs (Figure  2C), but comparing to non-HIV infected 
individuals, CD4 Treg frequency was significantly higher in the 
CHI-ART group (P =  0.0267). Consistently, regression models 
showed no significant difference of Treg levels during the first 
year postinfection (Figure 2D).

intensive loss of resting cD8 subsets 
early after hiV infection
Dynamics of the CD4 and CD8 T-cell maturation subsets showed 
a different profile. Although differences were not significant, 
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FigUre 1 | Virological and immunological characteristics along HIV infection. Plasma viral load (VL) as RNA Log10 copies/mL (a), whole blood CD4 absolute count 
(c), and whole blood CD8 absolute count (e) across the different study groups and along time postinfection. M, months after infection. Box as IQR, middle line as 
median, whiskers as maximum and minimum, and dots as individual observations in panels (a,c,e). Pink line in panels (c,e) represents median VL at each time 
point for reference. Dynamics of each parameter (B,D,F) are shown as Z-score values for primary HIV infection individuals over CHI-naïve (VL) and over HIV-
uninfected individuals (CD4 and CD8 T-cell counts). Red lines show non-parametric models, while dotted blue lines indicate the best fitting for polynomial time 
effects regression approximation.
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the CD4 T-cell compartment showed a prompt increase in the 
resting phenotypes (TN and central memory T  cells [TCM]) 
and a decrease in the effector phenotypes [TEM and effector 
RA+ T cells ([TEMRA)] at M2 (Figure 3A) compared to HIV-
uninfected, that normalized several months after infection. These 
longitudinal changes observed in the CD4 T-cell compartment 
over the first year of infection, were not significant for any subset. 

When comparing CHI-naïve and CHI-ART groups, CHI-ART 
group showed a non-significant tendency toward higher levels of 
TEM and lower significant levels of TN (P = 0.0413).

Conversely, we observed a marked loss of the TN and TCM 
CD8 T-cell pool after HIV infection concomitant to an increase 
in the frequencies of the TEM subset (Figure 3B). Comparing to 
HIV-uninfected individuals, CD8 TN significantly decreased in 
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FigUre 2 | Dynamics of CD4 T-cell phenotypes along HIV infection. Characterization of Th1-Th17 (a), Tregs (c) across the different study groups and along time 
postinfection. M, months after infection. Box as IQR, middle line as median, whiskers as maximum and minimum, and dots as individual observations. Pink line 
represents median VL at each time point for reference. Dynamics of each parameter (B,D) are shown as Z-score values for acutely infected individuals. Red lines 
show non-parametric models, while dotted blue lines indicate the best fitting for polynomial time effects regression approximation.
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PHI at M2 and in CHI-naïve groups (P < 0.0001) and CD8 TEM 
significantly increased (P < 0.0001, P = 0.0002, respectively). No 
significant changes were observed in TCM; however, TEMRA 
was significantly increased in CHI-ART compared to PHI at 
M2 (P = 0.0027). Longitudinal analysis confirmed these changes 
(data not shown).

T-cell activation Phenotypes along hiV 
infection
The dynamics of activation (CD38+ HLA-DR+ cells) exhaustion 
(CD279+ cells) and immunosenescence (CD57+ cells) were also 
analyzed in CD4 and CD8 T cells. As for maturation markers, most 
relevant changes were noticed in CD8 T cells. Although both acti-
vated and exhausted CD4 T cells were significantly increased at 
M2 when compared to HIV-uninfected individuals (P < 0.0001, 
P  =  0.0056, respectively), and slowly but significantly decayed 
over the first year of infection (Figures S3A,B in Supplementary 
Material). Immunosenescent CD4 T  cells (CD57+) showed 
no significant changes in the PHI group as compared to  
HIV-uninfected individuals but they were significantly increased 

in the CHI-ART group (P = 0.0001, Figure S3C in Supplementary 
Material).

The analysis of activation in CD8-T cells showed a significant 
increase at M2 as compared to HIV-uninfected that remained in 
CHI-naïve subjects (P <  0.0001) and normalized in CHI-ART 
(Figure  4A). The CD8 T-cell activation observed in the first 
months of infection was significantly reduced over time with 
a slow but significant decrease until months 9–11 (M9–11) 
(P < 0.0001, Figure 4B). Exhausted CD8 T cells also showed a 
transient but less marked significant increase as compared to 
HIV-uninfected individuals (P  <  0.0001, Figure  4C), with a 
significant and slow decrease over time (P = 0.0056, Figure 4D). 
Along the course of HIV infection, the frequency of senescent 
CD8 T-cells was significantly higher in the CHI-ART group as 
compared to the HIV-uninfected group (P < 0.0001, Figure 4E). 
However, no significant changes over time were observed in the 
frequency of senescent CD8 T-cells by linear regression models 
(Figure 4F). There were no significant differences in percentages 
of activated, exhausted or senescent CD8 T-cells associated with 
the presence of co-infection in any of the study groups.
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FigUre 3 | Dynamics of T-cell maturation phenotypes along HIV infection. Characterization of TN, TCM, TEM, and TEMRA frequencies for CD4 (a) and CD8 T cells 
(B) across the different study groups and along time postinfection. M, months after infection. Dot as median. Pink line represents median VL at each time point for 
reference.
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Dynamics of soluble inflammatory 
Biomarkers and association with T-cell 
Phenotypes in Phi
As described in Section “Materials and Methods,” the kinetics of 
13 soluble biomarkers with expression levels most significantly 
different between febrile PHI and HIV-uninfected individuals 
(38) were characterized in detail during the first year after infec-
tion (Figures 5A,B; Figure S4 in Supplementary Material). Levels 
of IP-10, MCP-1, BAFF, soluble (s)CD14, tumor necrosis factor 
receptor-2 (TNFR2), and TRAIL were highly overexpressed at the 
first month of infection (M1) and underwent a prompt decrease 
in the subsequent months. This decrease was more gradual in 
the case of IP-10, which remained overexpressed even 5 months 
postinfection. On the contrary, MIG, sCD27, and sCD23 levels 
started to increase 1 month after infection and remained overex-
pressed for almost 1 year postinfection, while GSCF had a later 
upregulation at 7 months of infection.

Correlations between the plasma biomarker levels at M1 
and activated or exhausted CD4 and CD8 T-cell phenotypes at 
2  months postinfection were assessed as described in Section 
“Materials and Methods” (Figure 5C). We observed a significant 
positive correlation between M1 TNFR2 and sCD27 levels and 

the frequency of exhausted CD4 T cells and CD8 T cells at M2 
(rho = 0.77, P < 0.0001; rho = 0.54, P = 0.0157, respectively). 
Similarly, we saw a significant association between M1 levels of 
BAFF (rho = 0.50, P = 0.0241), IL10 (rho = 0.44, P = 0.05), and 
sCD14 (rho  =  0.44, P  =  0.05) and the frequency of activated 
CD8 T-cells at M2. However, after adjustment by multiple 
testing, only the significance of TNFR2 with exhausted CD4 
T-cells levels was maintained (P = 0.0135). We did not observe 
significant differences in the expression level of these 13 selected 
soluble biomarkers by the presence of any co-infection in the 
PHI or the CHI groups; however, BAFF, MCP-1, MIG, and 
TRAIL expression levels were significantly lower among the 
individuals included in the HIV-uninfected control group with 
a co-infection detected (P  =  0.0254, P  =  0.0418, P  =  0.0001, 
P = 0.0032, respectively).

DiscUssiOn

We conducted a systematic analysis of the clinical, virologic, 
and immunologic characteristics of the different stages of HIV 
infection in HIV-infected Mozambican adults. Soluble bio-
marker quantification and T-cell immunophenotyping revealed 
that while most inflammatory biomarkers, CD4 counts and VL 
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FigUre 4 | CD8 T-cell activation, exhaustion, and immunosenescence along HIV infection. Characterization of activated (a), exhausted (c), and senescent CD8 
T-cells (e) across the different study groups and along time postinfection. M, months after infection. Box as IQR, middle line as median, whiskers as maximum and 
minimum and dots as individual observations. Pink line in panels (a,c,e) represents median VL at each time point for reference. Dynamics of each parameter 
(B,D,F) are shown as Z-score values for acutely infected individuals. Red lines show non-parametric models, while dotted blue lines indicate the best fitting for 
polynomial time effects regression approximation.
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stabilized early after HIV infection, certain T-cell subsets took 
longer to reach a stable level.

Several studies have shown that during AHI up to 80% of CD4 
memory T-cells in GALT is destroyed within the first 3 weeks of 
infection (40–42). Particularly, depletion of memory CD4 Th17-
cells in GALT occurs at the first stages of acute HIV infection (21). 

However, data from our PHI cohort show that these changes are 
not evident in circulating cells. For the specific case of systemic 
Th1Th17 cells, their frequency in PBMCs is similar to uninfected 
individuals at 2  months after infection but decreases steadily 
until 9–11  months after infection displaying and maintaining 
an activated phenotype early after infection. Since the definition 
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FigUre 5 | Association of plasma biomarker levels and T-cell phenotypes during early HIV infection. Biomarker normalized expression levels (Z-score relative to HIV-
uninfected controls) along the first year postinfection (a,B). Biomarkers showing significant correlation at one month postinfection with the subsequent exhausted or 
activated T-cell phenotypes at 2 months postinfection are shown in panel (c). Spearman rho correlation and P-value are shown for each plot.

9

Pastor et al. Biomarkers during Early HIV Infection

Frontiers in Immunology | www.frontiersin.org January 2018 | Volume 8 | Article 1925

of Th1Th17 cells involves cell surface expression of CXCR3, the 
receptor for IP-10, and this cytokine has been associated with 
the recruitment of CXCR3+CD4 T cells to HIV replication sites 
(43), we assessed the relationship between CXCR3 expression 
and IP-10 levels. Although a significant negative correlation was 

observed between IP-10 plasma levels and absolute numbers 
of circulating CD4 T  cells, such association was not observed 
between plasma IP-10 and the frequency of CXCR3+ or Th1Th17 
(CD183+CD196+) CD4 T cells. In contrast to Th17 cells, studies 
have reported both an increased (25, 26) and a gradual decline in 
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Treg frequency in peripheral blood during progressive HIV infec-
tion (29–32). Although we did not observe significant changes in 
the Treg compartment during PHI, we detected a trend toward 
an increase after HIV infection.

Surprisingly, ART seemed to lack beneficial effects in restoring 
the CD4 T-cell maturation profile as the CHI-ART group showed 
higher levels of TEM and lower levels of TN than did CHI-naive. 
This is probably due to poor immunological recovery that associ-
ates with a skewed CD4 T cell maturation (44, 45).

CD8 T-cell activation has been described to be the strongest 
correlate of disease progression (11–14). Recently, the magnitude 
and kinetics of CD8 T-cell activation during early acute HIV 
infection has been observed to impact VL set point (46). Still, we 
observed in our study that both activated and effector memory 
CD8 T-cells peaked at month 2 after infection and reached stable 
levels only at 9–11  months postinfection, several months after 
viremia stabilization. These results indicate that, despite the rapid 
immune control over virus replication, homeostasis in the CD8 
T-cell compartment requires longer to be achieved. Thus, most 
alterations observed in the CD8 T-cell compartment during HIV 
infection are not exclusively viremia driven. Our data also show 
an early increase of the exhaustion marker PD-1 (CD279) that 
slowly decays paralleling activation in CD8 T cells. Importantly, 
despite these profound alterations, no relevant increases of the 
expression of CD57 were observed in CD8 T cells during PHI, 
suggesting that this marker of replicative immunosenescence 
could be associated with longstanding HIV infection, suggested 
by its highest expression in CHI individuals. Moreover, increased 
CD57 expression in CD8 T-cells was previously reported to be 
associated with age (47) and ART initiation (48).

Significant efforts have been made to characterize early 
cytokine responses with the aim of identifying biomarkers of pro-
gression or key pathological pathways that could be targeted to 
minimize HIV-induced immune damage (4–6, 49). In this study, 
we provide additional data showing associations between early 
soluble biomarker levels and specific T-cell phenotypes 2 months 
after infection. TNFR2 and sCD27 levels were associated with 
exhausted CD4 T-cells and CD8 T-cells, respectively, while 
BAFF, interleukin-10 (IL-10), and sCD14 were associated with 
CD8 T-cell activation. TNFR2 is involved in cell survival that can 
result in cell proliferation, while sCD27 participates in generation 
and long-term maintenance of T-cell immunity. Thus, by func-
tion, these two soluble biomarkers could reflect early activation 
of CD4 and CD8 T-cells after HIV infection that subsequently 
lead to a higher proportion of exhausted T-cells. B-cell activating 
factor (BAFF), IL-10, and sCD14 are produced by monocytes and 
macrophages after infection or tissue inflammation in order to 
assure a proper immune response (50, 51) so their association 
with the subsequent CD8 T-cell activation could indicate a way 
of controlling the cellular response to HIV infection.

Adjustment by Fiebig stage at the screening allowed us 
to approximate time since infection according to previous 
categorization (35–37). However, this approximation may add 
potential uncertainty to the biomarker levels detected during 
the first 3 months after infection when the very intense immune 
responses are occurring (35–37). Additionally, age and BMI 
were significantly higher in the CHI groups, comparing to the 

PHI and control HIV-uninfected population. This is explained 
by the high HIV-incidence rate in young population in the Sub-
Saharan setting and the national ART recommendations in place 
at the moment of the study. According to the HIV guidelines 
in Mozambique in 2013–2014, HIV-infected patients initiated 
ART if CD4 T-cell counts were ≤350 cells/mm3 or presenting an 
AIDS-associated disease, features more common at late stages of 
HIV infection. This fact might impact immune recovery (52) and 
along with age and BMI differences could have affected the bio-
marker comparison with CHI groups, especially at the analysis 
of T-cell maturation stages (53), immunosenescence (11), and 
soluble biomarker expression (54, 55).

Due to the study design, T-cell immunophenotyping data were 
not available for the first month of infection. This would have 
allowed a further characterization of the first responses in the 
T-cell compartment and provided additional data in the T-cell 
specific phenotypes. Similarly, the loss to follow-up along the lon-
gitudinal visits may have resulted in insufficient power to detect 
additional significant differences. The high loss to follow-up 
also hampered the possibility to study the associations between 
soluble and cellular markers with clinical disease progression in 
our cohort. Such a high attrition rate is common in these scarce-
resource rural settings (56). Attendance of scheduled visits is 
complicated by high rates of migration, long distances to health 
centers and difficulties missing work, which threat continuity of 
care. Moreover, PHI individuals are usually asymptomatic after 
peak viremia (57), so patients do not feel the need to return to the 
hospital until they have further progressed to AIDS. Additionally, 
some PHI individuals met criteria for ART initiation during the 
study, and therefore follow-up interruption, due to pregnancy or 
AIDS-associated conditions.

The high burden of infectious diseases prevalent in the study 
area could have impacted the T-cell phenotypic characteristics 
and soluble biomarker dynamics and expression levels. However, 
we did not observe any significant difference according to the co-
infection status in the stage of CD8 activation for any of the study 
groups. We did find that soluble biomarker expression levels in 
those individuals who were positive for intestinal, malaria, hepa-
titis B, or syphilis infection were significantly higher for BAFF, 
MCP-1, MIG, and TRAIL as compared to those negative for all 
the tested infections, but only in the HIV-uninfected group. Thus, 
further studies could evaluate the specific effect that additional 
co-infections could have in the dynamics of these cellular and 
plasma biomarkers in the HIV-infected individuals. The soluble 
biomarker levels for PHI patients prior to onset of symptoms were 
not available. Our results thus describe the soluble biomarker lev-
els after the start of the “cytokine storm” from at approximately 10 
(95% CI 7–21) days postinfection (35–37), when VL and cytokine 
levels are already close or pass to their peak.

This characterization of biomarker expression in plasma and 
T-cells during the different stages of HIV infection provides an in 
depth description of the immune responses following HIV acqui-
sition in a population of Mozambican adults. Several studies have 
provided description of the cytokine (3–9) or T-cell phenotypes 
(33, 57, 58) during acute and PHI. However, our longitudinal study 
offers new insight into potential associations between innate and 
cellular responses. Early ART stops progression to AIDS (59, 60), 
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diminishes the size of viral reservoir (61), prevents intestinal dam-
age (21), and reduces further transmissions (62). In our study, we 
also show that stabilization of specific T-cell phenotypes occurs 
months after viremia or CD4 count stabilize in the course of 
infection, adding more evidence to the arguments for treatment 
initiation regardless of CD4 counts or viremia levels. Previous 
studies have seen that ART initiation at the earliest stages of acute 
HIV infection does not normalize the CD4/CD8 ratio even after 
2 years of treatment (33), suggesting some degree of persistent 
immunological dysfunction. Our data show that homeostasis in 
the CD8 T-cell compartment and initiation of Th1Th17 decay in 
PBMCs occurs months after viremia and CD4 count reach the 
set point level. This indicates that many HIV-related changes 
observed in the CD8 T-cell and CD4 T-cell compartment may not 
be exclusively driven by viremia levels and additional immune 
responses could account for these T-cell alterations. This raises 
the potential need for additional therapies that could enhance 
immune recovery and reduce immune activation.
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