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G protein-coupled receptors (GPCRs), G proteins and adenylyl cyclase (AC) comprise one of
the most studied transmembrane cell signaling pathways. However, it is unknown whether
the ligand-dependent interactions between these signaling molecules are based on random
collisions or the rearrangement of pre-coupled elements in a macromolecular complex.
Furthermore, it remains controversial whether a GPCR homodimer coupled to a single
heterotrimeric G protein constitutes a common functional unit. Using a peptide-based
approach, we here report evidence for the existence of functional pre-coupled complexes of
heteromers of adenosine A, receptor and dopamine D, receptor homodimers coupled to
their cognate Gs and Gi proteins and to subtype 5 AC. We also demonstrate that this
macromolecular complex provides the necessary frame for the canonical Gs-Gi interactions
at the AC level, sustaining the ability of a Gi-coupled GPCR to counteract AC activation
mediated by a Gs-coupled GPCR.
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nteractions between G protein-coupled receptors (GPCRs), Ga

and Gy protein subunits and adenylyl cyclase (AC) have been

classically analyzed in the frame of ‘collision-coupling’
mechanisms, which implies they are freely mobile molecules in
the plasma membrane able to couple by random collision.
Binding of an agonist to its GPCR induces the binding and
subsequent activation of the heterotrimeric G protein, which
leads to the dissociation of Ga and GPy subunits and binding of
free Ga subunit to AC, leading to its regulation!. However,
accumulating experimental evidence suggests that GPCR activa-
tion commonly occurs without dissociation of the receptor from
its G protein, without G-protein subunit dissociation and even
with pre-coupling of the heterotrimeric G protein to AC
(reviewed in ref.?). Moreover, growing evidence suggests that the
pentameric complex formed by one GPCR homodimer (two
identical protomers) and one heterotrimeric G protein constitutes
a common GPCR functional unit®>=®. Therefore, classical GPCR
physiology needs to be revisited in the frame of pre-coupling
mechanisms and GPCR oligomerization.

The topology of mammalian transmembrane AC consists of a
variable cytoplasmic N terminus (NT) and two large cytoplasmic
domains, C1 and C2, separated by two membrane-spanning
domains, M1 and M2, each comprising six putative transmem-
brane domains (TMs)’. C1 and C2 interact to form the enzyme
catalytic core at their interface and their arrangement allows, at
least in theory, the simultaneous binding of their external sides to
Gsa and Gia®, providing the structural framework for the cano-
nical antagonistic interaction between Gs-coupled and Gi-
coupled receptors at the AC level of specific AC isoforms,
including AC1, AC5, and AC6>7. Gsa subunit binds to C2 and
increases the affinity of C1 and C2, promoting catalysis, while
Gia, by binding to C1, works in the opposite direction and
counteracts AC activation’.

It is becoming accepted that GPCRs can form heteromers®?,
defined as macromolecular complexes composed of at least two
different protomers with biochemical properties that are
demonstrably different from those of its individual compoments®.
Considering homodimers as main functional GPCR units, het-
eromers could be viewed as constituted by different interacting
homodimers®. Of special functional significance could be those
heteromers constituted by one homodimer coupled to a Gs/olf
(Gs for short) protein and another different homodimer coupled
to a Gi/o (Gi for short) protein. Our hypothesis is that such a
“GPCR heterotetramer” would be part of a pre-coupled macro-
molecular complex that also includes AC, a necessary frame for
the canonical antagonistic interaction at the AC level. Recent
studies have provided experimental evidence for the existence of
GPCR heterotetramers that fulfill this scheme, like the adenosine
A, s-dopamine D, receptor (A;AR-D,R) heterotetramer!?. In the
present study, using interfering peptides with amino acid
sequences of TMs of adenosine A,4R and D,R and putative TMs
of AC5, we provide evidence for the existence of functional pre-
coupled complexes of A,sR and D,R homodimers, their cognate
Gs and Gi proteins and AC5, and demonstrate that this macro-
molecular complex provides the sufficient but necessary condi-
tion for the canonical Gs-Gi interactions at the AC level.

Results

Symmetrical TM interfaces in the A,,R-D,R heterotetramer.
To identify the arrangement of A,,R and D,R protomers in the
heterotetramer (TMs involved in the homo and heterodimeriza-
tion interfaces), we used synthetic peptides with the amino acid
sequence of TMs 1-7 of A,sR and D,R (TMs and TM peptides
are abbreviated TM 1, TM 2, ... and TM1, TM2, ... respectively)
fused to the HIV transactivator of transcription (TAT) peptide,
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which determines the orientation of the peptide when inserted in
the plasma membrane (see ref.!! and Methods section). Peptides
were first tested in bimolecular fluorescence complementation
(BiFC) experiments, in HEK-293T cells expressing receptors
fused to two complementary halves of YFP (Venus variant; cYFP
and nYFP). Functionality of all fused receptors was shown with
cAMP accumulation experiments (Supplementary Fig. 1).
Fluorescence was detected when cells were transfected with
A AR-nYFP and A;zR-cYFP ¢cDNA (broken lines in Fig. 1a) or
with D,R-nYFP and D,R-cYFP ¢cDNA (broken lines in Fig. 1b),
indicating the formation of both A;5R-A;,R and D,R-D,R
homodimers. Notably, when BiFC assay was performed in
the presence of TM peptides (Fig. 1la, b), fluorescence
complementation of A,,R-nYFP and A,,R-cYFP was only
significantly reduced in the presence of TM6 of A, 4R (Fig. 1a; see
Methods and Supplementary Fig. 2 for justification of the optimal
concentration and time of incubation of the TM peptides).
Similarly, only TM6 of D,R reduced fluorescence complementa-
tion of D,R-nYFP and D,R-cYFP (Fig. 1b). These results indicate
that TM 6 forms part of a symmetric interface for both AR and
D,R homodimers when expressed alone. The same results were
obtained in cells expressing A, R-nYFP and A,,R-cYFP co-
transfected with non-fused D,R cDNA (Fig. la) or in cells
expressing D,R-nYFP and D,R-cYFP co-transfected with non-
fused A;5sR cDNA (Fig. 1b). These results therefore indicate that
TM 6 also forms part of a symmetric interface for both A,,R and
D,R homodimers in the heterotetramer. Fluorescence was also
detected in cells expressing A,aR-nYFP and D,R-cYFP (broken
lines in Fig. 1c), indicating the formation of A,,R-D,R hetero-
mers. This fluorescence was only significantly reduced in the
presence of TM4 and TM5 of both A,,R and D,R (Fig. 1c),
suggesting a TMs 4/5 interface for A,sR and D,R heterodimer in
the heterotetramer. Additional evidence of heteromer formation
via TMs 4/5 was obtained from proximity ligation assay (PLA).
This technique permits the direct detection of molecular inter-
actions between two proteins without the need of fusion proteins.
A, sR-D,R heteromers were observed as red punctate staining in
HEK-293T cells expressing both A,,R and D,R (Supplementary
Fig. 3a—c). Pretreatment of cells with TM4 and TM5 of A,,R and
D,R but not with TM6 or TM7 (negative control), significantly
decreased PLA staining (Supplementary Fig. 3d), decreasing the
number of stained cells and red spots per stained cell (Fig. 2a),
supporting TMs 4/5 as the interface of the A,yR-D,R heteromer.

In HEK-293T cells expressing both receptors, the A,4R agonist
CGS21680 (100 nM; minimal concentration with maximal effect)
significantly increased basal cAMP and the D,R agonist quinpirole
(1 uM; minimal concentration with maximal effect) decreased
forskolin-induced cAMP (Fig. 2b). Pertussis toxin, by catalyzing
ADP-ribosylation of the alpha-subunit of Gi, impeded D,R-
mediated Gi activation and thus the ability of quinpirole to inhibit
forskolin-induced cAMP accumulation (Fig. 2b). Cholera toxin, by
selectively catalyzing ADP-ribosylation of the alpha-subunit of Gs
and leading to persistent AC stimulation, impeded an additional
effect of CGS21680 but left unaltered the Gi-mediated quinpirole-
induced inhibition of forskolin-induced cAMP accumulation
(Fig. 2b). These results support the coupling of A,4R and D,R to
their respective cognate Gs and Gi proteins in the A,,R-D,R
heterotetramer. We could then demonstrate that neither A,,R or
D,R activation leads to rearrangements of the TM interfaces in the
AAR-D,R heterotetramer, since, in the presence of CGS21680
(100 nM) or quinpirole (1 uM), fluorescence in cells expressing
A R-nYFP and D,R-cYFP was still selectively reduced by TM4
and TM5 of A,,R and D,R (Fig. 1¢). Similarly, A, 4R activation by
CGS21680 (Fig. 1a) or D,R activation by quinpirole (Fig. 1b) did
not modify the corresponding specific homomer TM 6 interface
determined in ligand-free experiments.
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Fig. 1 Quaternary structure of A,aAR-D3R heterotetramer coupled to Gs and Gi proteins. a-¢ BiFC experiments in HEK-293T cells transfected with A,aAR-
nYFP (0.5 pg) and A;aR-cYFP (0.5 pg) cDNA in the absence or presence of D,R cDNA (0.5 pg) (a), with D,R-nYFP (0.75 pg) and D,R-cYFP (0.75 pg)
cDNA in the absence or the presence of A;aR cDNA (0.4 pg) (b) or with A;aAR-nYFP (0.6 pg) and D,R-cYFP (0.6 pg) cDNA (c); cells were treated for 4 h
with medium (broken lines) or 4 pM of indicated TM peptides (numbered 1-7) of A,aR (green squares) or D,R (orange squares) before addition of
medium, CGS21680 (CGS; 100 nM) or quinpirole (Q; 1pM); fluorescence was detected at 530 nm and values (in means = SEM) are expressed as
fluorescence arbitrary units (n = 8, with triplicates); *, **, and *** represent significantly lower values as compared to control values (p < 0.05, p < 0.01 and
p < 0.001, respectively; one-way ANOVA followed by Dunnett's multiple comparison tests). d Computational model of the A;oR-D,R heterotetramer built
using the experimental interfaces predicted in panels (a-¢) (TMs 4/5 for heterodimerization and TM 6 for homodimerization) with Gs and Gi binding to
the external protomers; schematic slice-representation (left) and the constructed molecular model (right; with the same color code as the schematic slice-

representation), viewed from the extracellular side

We then constructed a molecular model of the A,,R-D,R
heterotetramer (Fig. 1d), considering: (i) the crystal structures of
GPCRs and G proteins, as well as homology models (see Methods
section); (ii) the structural details of TM interfaces of GPCR
oligomers, observed in crystal structures'? as well as predicted by
molecular dynamics simulations (see Methods section); (iii) the
results from BiFC experiments with interfering TM peptides; (iv)
the general assumption of a common minimal functional unit of
GPCRs constituted by a homodimer coupled to its cognate G
protein (see Introduction section); (v) the suggested tetrameric
structure of the A, R-D,R heteromer constituted by two
interacting homodimers, from previous results obtained with
bioluminescence resonance energy transfer (BRET) experiments
with com}flementation of both the donor and the acceptor
biosensors'%; and (vi) the previously enunciated assumption
about the necessity of a simultaneous activation of Gs and Gi
coupled to the interacting catalytic domains of the same molecule
of AC for a canonical antagonistic interaction®. This resulted in
one minimal computational solution that accommodates the TMs
4/5 interface for A,,R-D,R heterodimerization and the TM 6
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interface for both A,;4R-A,sR and D,R-D,R homodimerization
(see Methods and Supplementary Fig. 4). The existence of these
interfaces implies two internal interacting A;,R and D,R
protomers and two external A,sR and D,R protomers in which
the a-subunits of Gi and Gs bind to the corresponding external
protomers of the D,R or A;,R homodimers. This would be the
only feasible configuration to avoid any steric clash between the
two G proteins simultaneously bound to the complex. Finally, the
model also predicts a large distance between both Py-subunits
(Fig. 1d).

Asymmetrical TM interfaces of the heterotetramer with AC5.
Although several studies have provided direct evidence for pre-
coupling between G protein subunits and AC”13~1%, specifically
with the AC NT”!4, to our knowledge, the existence of pre-
coupling between TMs of a GPCR and TMs of AC had not been
previously addressed. We first analyzed the ability of AC5 to
establish direct intermolecular interactions with A,,R or D,R or
with A;AR-D,R heteromers via saturation BRET experiments in
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Fig. 2 Functional A,AR-D,R heterotetramers in transfected cells. a Quantification from PLA experiments (see Supplementary Fig. 1) performed in HEK-293T
cells transfected with 0.4 pg of A;aR and 0.5 pg of DR cDNA treated for 4 h with medium (control) or 4 pM of indicated TM peptides of A,aR or DyR;
values are expressed as the ratio between the number of red spots representing heteromers in confocal microscopy images and the number of cells showing
spots (r) (30-50 cells from three independent preparations); % values represent the percentage of cells showing one or more red spots; ***p <0.001, as
compared to control (one-way ANOVA followed by Dunnett’'s multiple comparison tests). b cAMP production in HEK-293T cells transfected as in (a); cells
were incubated overnight with vehicle or pertussis toxin (PTX; 10 ng/ml), or for 2 h with cholera toxin (CTX; 100 ng/ml), and exposed to CGS21680
(CGS; 100 nM) or quinpirole (Q; 1pM) in the absence or in the presence of forskolin (Fk; 0.5 pM), respectively; values are expressed as percentage over
cAMP accumulation in non-treated cells (basal) (n=5-7, with triplicates); ###p <0.001, as compared to basal values; ** and ***p < 0.01 and p < 0.001 as
compared to Fk, respectively; one-way ANOVA followed by Tukey's multiple comparison tests. Results are always represented as means + SEM

the absence of ligands (results are always shown as means +
SEM). Clear-cut saturation BRET curves were obtained with
HEK-293T cells transfected with a constant amount of A ;R
fused to Renilla Luciferase (A;paR-RLuc) cDNA and increasing
quantities of AC5 fused to YFP (AC5-YFP) cDNA (Fig. 3a;
BRET,,.,x =54+ 6 mBU and BRET5,=42+13) or with cells
transfected with a constant amount of D,R-RLuc cDNA and
increasing amounts of AC5-YFP cDNA (Fig. 3b; BRET ,,x = 38 £
5 mBU and BRETs, =28 +14), indicating that AC5 interacts
with A,,R or D,R in the absence of ligands. Also, saturation
BRET curves were obtained when HEK-293T cells transfected
with A, R-RLuc and increasing amounts of AC5-YFP cDNAs
were co-transfected with D,R ¢cDNA (Fig. 3¢; BRET ,,x =39+ 3
mBU and BRET5, =24 + 8) or when cells transfected with D,R-
RLuc and increasing amount of AC5-YFP cDNAs were co-
transfected with A;4R cDNA (Fig. 3d; BRET ., =30 £2 mBU
and BRETs5,=20+7). All saturation BRET curves were best-
fitted to a monophasic model. We also verified that over-
expression of AC5 did not alter A,yR-D,R heteromerization with
BRET experiments in HEK-293T cells transfected with A,5R-
Rluc (0.4 pg) and D,R-YFP (0.6 pg) and increasing amounts of
AC5 ¢cDNA. No BRET differences were observed between the
results obtained with 0, 0.3, 1.0 and 3.0 ug of AC5 cDNA (56 + 7,
53+6, 53+3, and 52+4 mBU, respectively). Altogether, these
results suggest that AC5 oligomerize with A,sR-D,R heteromers
in the absence of ligands.

Next, we performed BiFC assays in HEK-293T cells expressing
AC5-nYFP, A,5R-cYFP, and D,R (Fig. 3e) as well as AC5-nYFP,
D,R-cYFP and A,4R (Fig. 3f). Normal functionality of AC5-YFP
has been previously reported!®. Significant fluorescence was
detected in all cases, providing additional support to direct
interactions between AC5 and A,,R-D,R heteromers (broken
lines in Fig. 3e, f). To determine the possible involvement of
receptor TMs in the A, ,R-D,R heterotetramer-AC5 interface, we
performed BiFC experiments with all different A,,R (Fig. 3e) or
D,R (Fig. 3f) TM peptides. In the absence of ligands,
pretreatment of cells with TM1, TM5, or TM6 of A,,R
significantly decreased complementation between AC5 and
A AR (Fig. 3e, top panel). Similarly, pretreatment with TM1,
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TM4, TM5, or TM6 of D,R significantly decreased complemen-
tation between AC5 and D,R (Fig. 3f, top panel). This suggests a
discrete interaction between TM1 of both receptors with ACS5.
Since TMs 4-5 of the inner receptor protomers and TMs 6 of
inner and outer receptor protomers participate in homo- and
heterodimerization (see above), respectively, their apparent
involvement in the interactions with AC5 must be indirect,
implying that the optimal interaction of the A,yR-D,R hetero-
tetramer and AC5 requires the optimal quaternary structure of
the heterotetramer. When BiFC experiments were performed in
the presence of CGS21680 (100 nM, Fig. 3e, bottom panel) or
quinpirole (1 uM, Fig. 3f, bottom panel), the pattern of interfering
synthetic peptides changed: In addition to TM5 and TM6 of
A5AR and D,R, TM7 of A,,R and TM2 of D,R decreased
fluorescence complementation in the presence of CGS21680 and
quinpirole, respectively, while TM1 of A,,R and D,R were no
longer effective (Fig. 3e, f).

We then investigated the involvement of TMs of AC5 TMs in
the oligomerization with A;,R-D,R heteromers. Since the
structure of M1 and M2 domains of any AC isoform is unknown,
we used five commonly used algorithms to predict their most
probable TMs (Supplementary Table 1). All algorithms predicted
the same six TMs for the M2 domain (TM 7 to TM 12), but there
was discrepancy on the predicted TMs of the M1 domain. Taking
into account the orientation of the predicted TM helices, only
Uniprot and TOPCONS solutions were compatible with the well-
established intracellular N-terminal and C-terminal domains of
ACS5’. First, TM peptides mimicking right-oriented TMs derived
from Uniprot predictions (abbreviated TMI1 to TMI12) were
tested for their ability to destabilize complementation in HEK-
293T cells expressing AC5-nYFP, A,,R-cYFP, and D,R (Fig. 4a),
as well as AC5-nYFP, D,R-cYFP and A,,R (Fig. 4b). In the
absence of agonists, pretreatment of cells with TM1 or
TMI2 significantly decreased complementation between AC5
and A, 4R, while TM5 showed a small but not significant decrease
(Fig. 4a, top panel). Similarly, pretreatment with TM6 or
TM12 significantly decreased complementation between AC5
and D,R while TM5 again showed a small but not significant
decrease (Fig. 4b, top panel). Remarkably, when BiFC
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Fig. 3 Involvement of receptor TMs in A;4R-D5R heterotetramer-AC5 oligomerization. a-d BRET saturation experiments in HEK-293T cells transfected
with 0.5 pg of A aR-Rluc cDNA and increasing amounts of AC5-YFP cDNA (0.3-2.5 pg) not co-transfected (a) or co-transfected (¢) with D,R cDNA (0.5
pg), or with 0.75 pug of DoR-Rluc cDNA and increasing amounts of AC5-YFP cDNA (0.3-2.5 pg) not co-transfected (b) or co-transfected (d) with A,AR
cDNA (0.4 pg); the relative amount of BRET is given as a function of 1000x the ratio between the fluorescence of the acceptor (YFP) and the luciferase
activity of the donor (Rluc) and expressed as milli BRET units (mBU) (6-8 experiments, with duplicates, grouped as a function of the amount of BRET
acceptor). e, f BiFC experiments in HEK-293T cells transfected with AC5-nYFP (0.75 pg), A aR-cYFP (0.5 pg) and D,R (0.75 pug) cDNA (e) or AC5-nYFP
(0.75 pg), DoR-cYFP (0.75 pg) and AaR (0.4 pg) cDNA (F); cells were treated for 4 h with medium (dotted lines) or 4 pM of indicated TM peptides

(numbered 1-7) of AyaR (e) or D2R (f) before addition of medium, CGS21680 (CGS; 100 nM; e) or quinpirole (Q; 1uM; f); fluorescence was detected at
530 nm and values are expressed as arbitrary fluorescent units (n = 8, with triplicates); *, ** and *** represent significantly lower values as compared to

control values (p <0.05, p<0.01 and p <0.001, respectively; one-way ANOVA followed by Dunnett's multiple comparison tests). Results are always

represented as means = SEM

experiments were performed in the presence of CGS21680 (100
nM, Fig. 4a, bottom panel) or quinpirole (1 uM, Fig. 4b, bottom
panel), the pattern of interfering synthetic peptides dramatically
changed. When receptors were activated, TM1, TM2, TM3, TM5
and TM6 significantly decreased fluorescence complementation
between AC5-nYFP and A,,R-cYFP and between AC5-nYFP and
D,R-cYFP. The results imply a major rearrangement of the
membrane-spanning domains of the activated pre-coupled
complex with an increase in the number of TMs of AC5 directly
or indirectly involved in the oligomerization with the A,yR-D,R
heterotetramer.

Opposite-oriented TM peptides, abbreviated as TM2n, TM3n,
TM4n, TM5n and TM6n, were tested to examine the specificity of
their destabilizing effect (see Supplementary Table 2), which
should insert in the membrane in the opposite direction and act

| (2018)9:1242

as scrambled control peptides. The peptides were tested in HEK-
293T cells expressing AC5-nYFP, A, R-cYFP, and D,R (Fig. 4c)
as well as AC5-nYFP, D,R-cYFP, and A,,R (Fig. 4d) in the
absence or in the presence of agonists. The same as TM4, TM4n
did not have a significant effect, and TM2n, TM3n and TMén did
behave as negative controls to their opposite-oriented peptides,
since they did not decrease AC5-nYFP-A,,R-cYFP or AC5-
nYFP-D2R-cYFP complementation in the absence (Fig. 4c, d, top
panels) or in the presence (Fig. 4c, d, bottom panels) of agonists.
Intriguingly, both TM5 and the opposite-oriented TM5n were
able to decrease AC5-nYFP-A,,R-cYFP and AC5-nYFP-D2R-
cYFP complementation (Fig. 4c, d). Importantly, TM5 and TM5n
had the lowest hydrophobicity as compared to all the other
putative TM sequences (Supplementary Table 1), decreasing the
probability of being embedded in the membrane bilayer!”. This
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Fig. 4 Involvement of AC5 TMs in A,aR-D3R heterotetramer-AC5 oligomerization. a-d BiFC experiments in HEK-293T cells transfected with AC5-nYFP
(0.75 ug), A2aR-cYFP (0.5 pg) and D4R (0.75 ug) cDNA (a, €) or AC5-nYFP (0.75 pg), DoR-cYFP (0.75 pg) and AzaR (0.4 ug) cDNA (b, d); cells were
treated for 4 h with medium (dotted lines) or 4 pM of indicated TM peptides predicted from Uniprot algorithm (numbered 1-12) (a, b) or control peptides
(numbered 2n—6n and 5b; see text) (¢, d), before addition of medium, CGS21680 (CGS; 100 nM) or quinpirole (Q; TpM); fluorescence was detected at
530 nm and values (in means £ SEM) are expressed as arbitrary fluorescent units (n = 8, with triplicates); *, ** and *** represent significantly lower values
as compared to control values (p <0.05, p<0.01, and p < 0.001, respectively; one-way ANOVA followed by Dunnett's multiple comparison tests). e-g
Schematic slice-representations of A,oR-D3R heterotetramer-AC5 models: heterotetramer coupled with two AC5 molecules in the absence (e) and in the
presence (f) of agonists; extension of the agonist-bound complex with a second A,AR-D5R heterotetramer, with simultaneous binding of both Gas and Gai
to the central C1 and C2 domains of AC5 (g). Schematic slice-representation viewed from the extracellular side of the A,AR-D5R heterotetramer in
complex with Gs, Gi, and AC5 in the absence and presence of agonists are shown in Supplementary Fig. 6

could indicate that the AC5 325-345 amino acid sequence forms
part of the second intracellular loop (IL2), which could establish
direct or indirect intermolecular interactions with the A,,R-D,R
heteromer. Then, the 348-368 aa sequence predicted by the
TOPCONS algorithm (TM 5b in Supplementary Table 1), which
has the right orientation, becomes a very plausible TM that could
interact with the A, R-D,R heterotetramer. In fact, TM5b
peptide significantly decreased AC5-nYFP-A,,R-cYFP or AC5-
nYFP-D2R-cYFP complementation in the absence or in the
presence of agonists (Fig. 4c,d). In agreement with this
interpretation, a scrambled TM5-TM5n peptide (AC5-TM5s in
Supplementary Table 2) did not decrease AC5-nYFP-A,,R-cYFP
or AC5-nYFP-D2R-cYFP complementation in the absence of
ligands (93 +7, and 95 + 6%, respectively, in means + SEM and
expressed as percentage of change of fluorescent values without
peptide; n =9, with triplicates). As additional controls, we also
tested AC5 TM1 to TM12 peptides on A2AR-nYFP-D2R-cYFP
complementation and all the D2R TM and A2AR TM peptides
on AC5-nYFP-A2AR-cYFP and AC5-nYFP-D2R-cYFP com-
plementation, respectively, in the absence of ligands; no
changes in BiFC were observed under any condition
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(Supplementary Fig. 5). Considering TM 1, TM 2, TM 3, TM
4, TM 5b, and TM 6 as the six putative TMs of the M1 domain
of AC5, altogether these results indicate that TM 1 and TM 6, as
well as IL2 and TM 5b, are involved in pre-coupling of A,,R-
D,R heterotetramer and AC5 in the absence of agonists. Upon
A,AR or D,R activation there is a rearrangement with an
apparent participation of almost all TMs of the M1 domain.

Two A,AR-D,R heterotetramers and two AC5 molecules. It
seems reasonable to hypothesize that the membrane-spanning
domains of AC5 are formed by two interacting antiparallel six-
helix-bundle domains (M1-M2) with an elliptical ring shape’. In
the absence of ligands, since it is not feasible that TM 1 from both
A,4R and D,R interact simultaneously with the same TM 5 or
TM 12 or the same IL2 of a single AC5 molecule, this suggests the
presence of two AC5 molecules simultaneously binding to the
A, sR-D,R heterotetramer in complex with Gi and Gs, possibly
with TM1 of D,R and TM 1 of A,4R interacting specifically with
TM 1 and TM 6 of ACS5, respectively (Fig. 4e). The ability of
peptides that mimic TM 5, TM 12, and IL2 of AC to destabilize
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Fig. 5 A,AR-D,R heterotetramer expression in striatal neurons in culture. Proximity ligation assay (PLA) in rat striatal primary cultures. a, ¢ Confocal
microscopy images (superimposed sections) are shown in which A,AR-D,R heteromers appear as red spots. Primary cultures were treated for 4 h with
medium (a) or 4 pM of indicated TM peptides (numbered 1-7) of A,aR or D3R (€); cell nuclei were stained with DAPI (blue); scale bars: 20 pm. b
Quantification from PLA experiments: values (in means + SEM) are expressed as the ratio between the number of red spots and the number of cells

showing spots (r) (20-30 neurons from three independent preparations); % values represent the percentage of cells showing one or more red spots;
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<0.001, as compared to control (one-way ANOVA followed by Dunnett's multiple comparison tests)

oligomerization between AC5 and the A,,R-D,R heterotetramer
might depend on an indirect modification of their discrete
asymmetrical interfaces.

It is well established that the Ga binding site for GBy overlaps
with the Ga binding sites for the effector, the cytoplasmic domains
Cl and C2 of AC. During G protein activation, GPy relative
movement promotes Ga binding to AC!®1%. These swapping
interactions can take place within the frame of the A,sR-D,R
heterotetramer with two AC5 molecules binding simultaneously to
Gs and Gi in the complex (Fig. 4e, f). The rearrangement of TM
interfaces between the A, ,R-D,R heterotetramer and AC5 upon
receptor activation occurs simultaneously with the rearrangement
of the GPy subunit, by its established stable coupling with the NT of
AC5'S, which facilitates the interaction between the Ga subunit and
its corresponding catalytic AC5 domain. This rearrangement in the
frame of the heteromer gives a computational molecular model of
activated complex schematized in Fig. 4f Details about the
model are shown in Supplementary Fig. 6. However, within the
frame of the constraints imposed by a pre-coupled A, R-D,R
heterotetramer-Gs-Gi-AC5 complex, a single A,yR-D,R hetero-
tetramer cannot accomplish the model proposed by Dessauer et al.%,
in which one Gs and one Gi bind simultaneously to one single AC5
(see below). Therefore, we propose that AC5 should oligomerize
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with an additional A;sR-D,R heterotetramer (Fig. 4g). The results
with interfering peptides, together with the proposed simultaneous
binding of Gs and Gi to AC5, suggest a minimal functional complex
composed of two A,sR-D,R heterotetramers and two AC5
molecules (Fig. 4g).

The canonical Gs-Gi antagonistic interaction. To corroborate
the proposed model we studied the functional characteristics of
the A;sR-D,R heterotetramer-AC5 complex in rat striatal neu-
ronal primary cultures, which express endogenous A, ,R-D,R
heteromer complexes?. Furthermore, AC5 is the predominant
AC subtype in striatal neurons®!. First, we analyzed by PLA the
expression of A,yR-D,R heteromers, as well as the ability of the
synthetic peptides mimicking the TMs of A,,R and D,R to
modify the quaternary structure of the endogenous A, R-D,R
heterotetramer. A, R-D,R heteromers were observed as red
punctate staining in neuronal cells (Fig. 5a, b). As expected,
pretreatment of cells with TM4 and TM5 of AR and DR, but
not with TM6 or with TM7, produced a significant decrease in
the number of red spots per cell (Fig. 5b, c). These results
mirrored those obtained in HEK-293T cells (see Fig. 2a and
Supplementary Fig. 3), confirming the same TMs 4/5 interface of
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Fig. 6 Canonical Gs-Gi antagonistic interaction in striatal neurons in culture. a, b cAMP production determined in rat striatal primary cultures incubated
overnight with vehicle (a) or with pertussis toxin (PTX; 10 ng/ml), or for 2 h with cholera toxin (CTX; 100 ng/ml) (b), and exposed to CGS21680 (CGS;
100 nM), quinpirole (Q; 1pM) or both in the absence or in the presence of forskolin (Fk; 0.5 uM), respectively. c-e cAMP production determined in rat
striatal primary cultures incubated 4 h with 4 pM of indicated TM peptides of AaR (€), D2R (d), or AC5 (e) and exposed to agonists as in a, b. Values (in
means * SEM) are expressed as percentage of cAMP accumulation in non-treated cells (basal) (n=5-7, with triplicates); #¥#p < 0.001, as compared to
basal values; ** and ***p < 0.01 and p < 0.001 as compared to Fk, respectively; & &&&p < 0.05 and p < 0.001 as compared to CGS, respectively; one-way

ANOVA followed by Tukey's multiple comparison tests

A,AR-D,R heteromers in striatal cells and that TM6 does not
destabilize heterodimerization. PLA experiments were also per-
formed with a recently characterized AC5 antibody®%. A,5R-AC5
and D,R-AC5 complexes could be revealed as red punctate
staining in neuronal cells (Supplementary Fig. 7). Next, we
measured cAMP production to analyze the functional char-
acteristics of the A,,R-D,R heteromer and the effect of the
interfering peptides. As expected, CGS21680 (100 nM) increased
the synthesis of cCAMP (Fig. 6a) and quinpirole (1 uM) decreased
forskolin-induced cAMP accumulation (Fig. 6a). Pertussis toxin,
selectively counteracted the ability of quinpirole to inhibit
forskolin-induced cAMP (Fig. 6b), while cholera toxin impeded
the activating effect of CGS21680 while leaving unaltered
quinpirole-induced  inhibition of forskolin-induced AC5
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activation (Fig. 6b). Simultaneous exposure to both agonists
demonstrated the ability of quinpirole to inhibit the effect of
CGS21680, revealing the canonical Gs-Gi interaction at AC5
(Fig. 6a).

Accumulation of cAMP was also determined in striatal cultures
upon exposure to ligands and interfering TM peptides. Pretreat-
ment with TM7 (as negative control) or with TM6 of A,,R or
D,R did not modify receptor signaling or the canonical
interaction (Fig. 6¢, d). In contrast, although pretreatment with
TM4 and TM5 of A,4R (Fig. 6¢) or D,R (Fig. 6d) did not modify
receptor signaling, it blocked the canonical interaction (Fig. 6c,
d). These results indicate that TMs that destabilize receptor
heteromerization do not disrupt the individual functional
interactions between the receptors and ACS5, most probably
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because of stable pre-coupling between the G proteins and AC5,
as recently demonstrated for the specific Gaof3,y,-AC5 complex
in the rodent striatum??. Nevertheless, the peptides that
destabilize receptor heteromerization alter the correct coupling
of AC5 to the complex that allows the simultaneous binding of
Gas and Gai subunit to AC, impeding the canonical interaction.
In conclusion, A;sR-D,R heteromerization is a necessary
condition for the canonical antagonistic interaction between
Gs-coupled AR and Gi-coupled D,R at AC in striatal neurons
in culture. In agreement with this conclusion, cAMP accumula-
tion induced by CGS21680 was not counteracted by an agonist of
dopamine D4R, which does not heteromerize with A, R*?
(Supplementary Fig. 8). Finally, pretreatment of striatal cultures
with interfering peptides TM1, TM6 or TM12 of AC5 did not
change receptor signaling but also blocked the canonical
interaction, while TM10 was ineffective (Fig. 6e). These results
confirm the involvement of the AC5 subtype in striatal cultures
and indicate that these AC5 TM peptides are not able to
destabilize the interactions between AC5 and the receptors but
induce an alteration of the quaternary structure of the complex
that impedes the simultaneous binding of Gas and Gai subunit to
ACS5, the canonical interaction. Thus, the correct intermolecular
interaction between AC5 and the A, R-D,R heterotetramer is
also a necessary condition for the presence of the canonical Gs-Gi
interaction at AC5.

The ability of quinpirole to reduce cAMP accumulation
induced by CGS21680 implies that Gi acts on a Gs-activated
AC5. Thus, simultaneous binding of Gsa to the C2 domain and
Gia to the C1 domain of a single AC5 must occur®. This, in fact,
agrees with the suggested complex of two A,sR-D,R hetero-
tetramers that simultaneously bind to the same AC5 molecule
(see Fig. 4g). In this model AC5 acts as a link between two
heterotetramers, which makes compatible the antagonistic
canonical interaction between Gsa and Gia activated proteins
at the same AC5 molecule. Moreover, the membrane-spanning
M1 and M2 domains of AC5 can accommodate between the two
A, AR-D;R heterotetramers (Supplementary Fig. 6), providing the
frame for the series of experimentally determined TM contacts
between A,sR, D,R, and AC5 (see above). However, with the
model that includes two A,,R-D,R heterotetramers and two AC5
molecules (Fig. 4g), only one AC5 simultaneously interacts with
Gsa and Gia. This would imply that quinpirole could only
produce a partial inhibition of CGS21680-induced cAMP
accumulation, while the results showed in Fig. 5a—e demonstrate
that quinpirole produces an almost complete blockade. We
therefore propose that the minimal functional quaternary
structure (see Fig. 4g) forms a linearly arranged high-order
oligomeric structures (Supplementary Fig. 6e).

Discussion

Striatal A,,R and D,R are known to form functionally and
pharmacologically significant heteromers that modulate basal
ganglia function!®. Here, we demonstrate the existence of inter-
molecular interactions between A,5R, D,R, and AC5 with the
emergence of functional A, R-D,R heterotetramer-AC5 com-
plexes. These complexes sustain the canonical Gs-Gi interaction
at the AC level, the ability of a Gi-coupled GPCR to counteract
AC activation mediated by a Gs-coupled GPCR.

We first identified the symmetrical TM 6 homodimer and TMs
4/5 heterodimer interfaces in the A, R-D,R heterotetramer from
results of BiFC experiments obtained with specific TM peptides
mimicking TM receptor domains. While BiFC complex forma-
tion under in vitro conditions has been considered to be essen-
tially irreversible’®, several studies indicate that under in vivo
conditions BiFC complex formation can be reversible?>~2’. The
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present results provide additional support to that reversibility,
which lies on the specificity of the peptide approach, demonstrated
by the qualitative identical results from BiFC, PLA, and cAMP
accumulation experiments. From these results, we could develop a
computational model, where only the two internal protomers
participate in the heteromeric interface and the two external pro-
tomers participate in the homomeric interface of the A,,R-D,R
heterotetramer. A pattern of similar symmetrical interfaces of
GPCR homomers and heteromers involving specific TMs has
emerged from several studies also using TM interfering peptides,
cross-linking techniques or crystallographic analysis (see ref.5, for
review). The consistent results we obtained with interfering pep-
tides in experiments with biosensor-fused receptors in transfected
cells and with native receptors in striatal neurons in culture, pro-
vide strong support for the involvement of TM 6 in the homomeric
interfaces and TM 4 and TM 5 in the heteromeric interface of the
A,AR-D,R heterotetramer in its natural environment. The differ-
ences in the apparent interfaces of A,,R and D,R homomers here
reported as compared to previous studies (TM 6 versus TMs 4 or/
and 5)*%%%, could be due to the different experimental approaches
and, most likely, due to the presence of heteromeric partner
receptors that influence the TM interfaces. The fact that rearran-
gement of TM 6 constitutes main ligand-induced conformational
changes that determine G protein activation and modulation of
ligand affinity’, provides a frame for the understanding of allos-
teric communications through the protomers in GPCR oligomers*~
®. Thus, in our constructed models, TM 6 in the inactive closed
conformation of the unliganded protomer interacts with TM 6 in
the active open conformation of the G protein-bound protomer
(Supplementary Fig. 4).

An important conclusion from this study is that the non-
activated or agonist-activated A,,R-D,R heterotetramer is able to
stablish different molecular interactions with AC5. By using
specific interfering peptides, we demonstrate that these interac-
tions involve TMs from the receptors and the AC5. The specifi-
city of the peptide approach was unambiguously demonstrated
with their orientation-dependent selectivity on their ability to
destabilize the asymmetrical interfaces between AC5 and the
receptors. The differential effect of interfering TM peptides in the
absence and presence of agonists implies a major rearrangement
of the membrane-spanning domains of the activated pre-coupled
complex with an increase in the number of TMs of AC5 directly
or indirectly involved in the oligomerization with the A,yR-D,R
heterotetramer during agonist exposure. This rearrangement
could be driven by the agonist-induced relative movement of the
GPy subunit away from the helical-domain of the Ga subunit,
simultaneously pulling the NT domain of AC5' and facilitating
the interaction of its catalytic domains with the corresponding Ga
subunit'®!1, This key role of the G protein in determining
changes in the quaternary structure of the A,,R-D,R
heterotetramer-AC5 complex upon receptor activation would
agree with the recently described stable pre-coupling of striatal
Golf and AC5?? and the here described less stable interactions
between TMs of AC5 and A,R and D,R.

Probably the most significant conclusion of the study is that the
A;sR-D,R heterotetramer-AC5 complex sustains the canonical
antagonistic Gs-Gi interaction at the AC level. This was also
demonstrated with specific interfering TM peptides, by the very
selective ability of the TM peptides that mimic the heteromeric
interface in the A, R-D,R heterotetramer to block the canonical
antagonistic interaction in striatal neurons in culture. The sig-
nificant control of A, 4R signaling by D,R implied that most A;5R
that signal through AC5 are forming heteromers with D,R in this
neuronal preparation. Previous studies indicate that the same
situation occurs in vivo in the striatum, where the pharmacolo-
gical or genetic blockade of D,R disinhibits adenosine-mediated
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activation of AC in the striato-pallidal neuron®!. In fact, A5uR
blockade counteracts most biochemical and behavioral effects
induced by interruption of D,R signaling®!. In complete agree-
ment are also the results obtained by Lee et al. with AC5
knockout mice?!, which show that AC5 is the principal AC
integrating signals from A,sR and D,R in the striatum and that
the signaling cascade involving AC5 is essential for the behavioral
effects of D,R antagonists, and therefore antipsychotic drugs. The
efficient D,R-mediated antagonism of A,sR-mediated AC acti-
vation, however, cannot be explained by a minimal functional
structure of an A,,R-D,R heterotetramer-AC5 complex that can
sustain a canonical Gs-Gi interaction at AC, which is composed
of two A;AR-D,R heterotetramers and two AC5 molecules. Such
a complex would not allow the D,R agonist to exert the almost
complete inhibition of A,,R agonist-mediated cAMP revealed in
the experiments on striatal neurons in culture. In fact, this qua-
ternary structure suggests the possible formation of zig-zagged
arranged high-order oligomeric structures (Supplementary
Fig. 6), as proposed for other GPCRs, including D,R and rho-
dopsin homomers?®32. To our knowledge, these are the first data
suggesting higher-order linear arrangements of GPCR heteromers
and effectors.

The present study represents a proof of concept of the significant
functional role of GPCR heteromers within a signalosome, since it
demonstrates that GPCR heteromers provide the frame for bio-
chemical interactions previously thought to be independent of
intermolecular receptor-receptor interactions, on classical receptor
cross-talk at the second-messenger level®>. Therefore, we postulate
that pre-coupling should not only apply to other Gs-Gi-AC-cou-
pled heteromers, but also to heteromers coupled to other G pro-
teins and effectors, such as the well-established Gi-Gq-coupled
metabotropic glutamate receptor mGlu, receptor-serotonin 5-
HT,, receptor heteromer®!, which could be pre-coupled to
potassium channels>®. At a more general level, the present results
represent a very significant support to the still controversial con-
cepts of GPCR pre-coupling and oligomerization.

Methods

Vectors and fusion proteins. Sequences encoding amino acid residues 1-155 and
156-238 of YFP Venus protein were subcloned into the pcDNA3.1 vector to obtain
the YFP Venus hemi-truncated proteins (pcDNA3.1-cVenus or pcDNA3.1-nVenus
vectors). The cDNA constructs encoding human A, 4R or D,R in pcDNA3 vectors
were subcloned in pRluc-N1 (PerkinElmer, Wellesley, MA) to generate A,,R-Rluc or
D,R-Rluc fusion proteins on the C-terminal end or were subcloned to be in-frame
with restriction sites of pcDNA3.1-cVenus or pcDNA3.1-nVenus vectors to give the
plasmids that express proteins fused to hemi-YFP Venus on the C-terminal end
(A3AR-cYFP, D,R-cYFP, A;,R-nYFP or A,,R-nYFP). Human AC5 cDNA was
amplified without its stop codon using sense and antisense primers harboring unique
Kpnl and EcoRV. The amplified fragment was subcloned to be in-frame with
restriction sites of pEYFP-N1 (enhanced yellow variant of GFP; Clontech, Heidel-
berg, Germany) or pcDNA3.1-nVenus vectors to give the plasmids that express AC5
fused to YFP or hemi-YFP Venus on the C-terminal end (AC5-YFP or AC5-nYFP).

Cell cultures and transfection. Primary cultures of striatal neurons were obtained
from fetal Sprague Dawley rats of 19 days. All experiments were carried out in
accordance with EU directives (2010/63/EU and 86/609/CEE) and were approved
by the Ethical Committee of the University of Barcelona. Striatal cells were isolated
as described elsewhere?? and plated at a confluence of 40,000 cells/0.32 cm?. Cells
were grown in Neurobasal medium supplemented with 2 mM L-glutamine, 100 U/
ml penicillin/ streptomycin, and 2% (v/v) B27 supplement (GIBCO) in a 96-well
plate for 12 days. HEK-293T cells were grown in Dulbecco’s modified Eagle’s
medium (DMEM) supplemented with 2 mM L-glutamine, 100 U/ml penicillin/
streptomycin, and 5% (v/v) heat inactivated fetal bovine serum (Invitrogen). HEK-
293T cells (ATCC, Manassas, VA) were transfected with the plasmids encoding
receptors by the PEI (PolyEthylenImine) method as previously described®.

TAT-TM peptides. Peptides with the sequence of transmembrane domains (TM) of
AR and D,R and putative TM peptides of AC5 fused to the HIV transactivator of
transcription (TAT) peptide (YGRKKRRQRRR) were used as oligomer-destabilizing
molecules. The cell-penetrating TAT peptide allows intracellular delivery of fused
peptides®®. The TAT-fused TM peptide can then be inserted effectively into the
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plasma membrane because of the penetration capacity of the TAT peptide and the
hydrophobic property of the TM moiety'!. To obtain the right orientation of the
inserted peptide, the HIV-TAT peptide was fused to the C-terminus or to the N-
terminus as indicated. The amino acid sequences of the fusion peptides are shown in
Supplementary Table 2. Several algorithms were used to identify putative TMs in the
primary amino acid sequence of AC5 (Supplementary Table 1).

Bimolecular fluorescence complementation. HEK-293T cells were transiently
co-transfected with the cDNA encoding a protein fused to nYFP and a protein
fused to cYFP. After 48 h, cells were treated or not with the indicated TM peptides
(4 uM) for 4 h at 37 °C. The time of incubation and concentration of TM peptides
were chosen from results of concentration-dependent and time-dependent
response experiments of the possible BiFC destabilization by all seven TM peptides
of the AR in HEK-293T cells transfected with A,,R-nYFP and A, R-cYFP
(Supplementary Fig. 3). The same parameters were applied with D,R and AC5 TM
peptides and in PLA and cAMP experiments. To quantify protein reconstituted
YFP Venus expression, cells (20 pg protein; 50,000 cells/well) were distributed in
96-well microplates (black plates with a transparent bottom, Porvair, King’s Lynn,
UK), and emission fluorescence at 530 nm was monitored in a FLUOstar Optima
Fluorimeter (BMG Labtechnologies, Offenburg, Germany) equipped with a high-
energy xenon flash lamp, using a 10-nm bandwidth excitation filter at 400 nm
reading. Protein fluorescence expression was determined as the fluorescence of the
sample minus the fluorescence of cells not expressing the fusion proteins (basal).
Cells expressing protein-cVenus and nVenus or protein-nVenus and cVenus
showed similar fluorescence levels than non-transfected cells.

Bioluminescence resonance energy transfer assay. HEK-293T cells were tran-
siently cotransfected with a constant amount of expression vectors encoding for
proteins fused to RLuc and with increasing amounts of the expression vectors
corresponding to proteins fused to YFP. To quantify protein-YFP expression, cells
(20 pg protein, around 50,000 cells/well) were distributed in 96-well microplates
(black plates with a transparent bottom), and fluorescence was read in a Fluo Star
Optima Fluorimeter (BMG Labtechnologies, Offenburg, Germany) equipped with a
high-energy xenon flash lamp, using a 10-nm bandwidth excitation filter at 400 nm
reading. Fluorescence expression was determined as fluorescence of the sample
minus the fluorescence of cells only expressing the BRET donor. For BRET mea-
surements, the equivalent of 20 ug of cell suspension was distributed into 96-well
microplates (Corning 3600, white plates; Sigma) and 5 uM coelenterazine H
(Molecular Probes, Eugene, OR) was added. The readings were taken 1 min later
using a Mithras LB 940. The integration of the signals detected in the short-
wavelength filter at 485 nm and the long-wavelength filter at 530 nm was recorded.
To quantify protein-RLuc expression luminescence, readings were performed 10
min after adding 5 uM of coelenterazine H. Fluorescence and luminescence of each
sample were measured before every experiment to confirm similar donor expres-
sions (approximately 100,000 bioluminescence units) while monitoring the
increase in acceptor expression (1000 to 30,000 fluorescence units). The net BRET
is defined as [(long-wavelength emission)/(short-wavelength emission)] — Cf,
where Cf corresponds to [(long-wavelength emission)/(short-wavelength emis-
sion)] for the donor construct expressed alone in the same experiment. BRET is
expressed as milliBRET units (mBU; net BRET x 1000). Data were fitted to a
nonlinear regression equation, assuming a single-phase saturation curve with
GraphPad Prism software (San Diego, California, US). BRET ., and BRETSs,
values were obtained from the analysis of the BRET saturation curves. BRET5 is a
magnitude related to the affinity of the protein-protein interaction, with low values
representing high affinity (as in the present results; Fig. 2a-d).

Proximity ligation assay. HEK293T cells or neuronal primary cultures were
grown on glass coverslips and fixed in 4% paraformaldehyde for 15 min, washed
with phosphate-buffered saline (PBS) containing 20 mM glycine, permeabilized
with the same buffer containing 0.05% Triton X-100, and successively washed with
TBS. Heteromers and AC5-receptor complexes were detected using the Duolink IT
in situ PLA detection Kit (OLink; Bioscience, Uppsala, Sweden) following sup-
plier’s instructions. A mixture of the primary antibodies [mouse or rabbit anti-
A, AR antibodies (1:100; 05-717 and AB1559P, Millipore, Darmstadt, Germany),
rabbit anti-D,R antibody (1:100; AB5084P, Millipore) and the recently character-
ized mouse anti-AC5 antibody22 (1:50)] was used to detect A,,R-D,R heteromers
together with PLA probes detecting mouse or rabbit antibodies. The specificity of
the same A,,R and D,R antibodies for PLA assays has been previously demon-
strated®”. Then, samples were processed for ligation and amplification with a
Detection Reagent Red and were mounted using a DAPI-containing mounting
medium. Samples were analyzed in a Leica SP2 confocal microscope (Leica
Microsystems, Mannheim, Germany) equipped with an apochromatic 63X oil-
immersion objective (1.4 numerical aperture), and 405-nm and 561-nm laser lines.
For each field of view a stack of two channels (one per staining) and 4 to 6 Z-stacks
with a step size of 1 um were acquired. Images were opened and processed with
Image ] software (National Institutes of Health, Bethesda, MD). Quantification of
the total number of red dots versus total cells (blue nuclei) was counted on the
maximum projections of each image stack. After getting the projection, each
channel was processed individually.

| DOI: 10.1038/541467-018-03522-3 |www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

Determination of cCAMP. Homogeneous time-resolved fluorescence energy
transfer (HTRF) assays were performed using the Lance Ultra cAMP kit (Perki-
nElmer), based on competitive displacement of a europium chelate-labeled cAMP
tracer bound to a specific antibody conjugated to acceptor beads. We first estab-
lished the optimal cell density for an appropriate fluorescent signal. This was done
by measuring the TR-FRET signal as a function of forskolin concentration using
different cell densities. The forskolin dose-response curves were related to the
cAMP standard curve, to establish which cell density provides a response that
covers most of the dynamic range of the cAMP standard curve. Cells (1000-2000
HEK-293T or 4000 to 5000 primary cultures per well) growing in medium con-
taining 50 uM zardeverine were pre-treated with toxins or the corresponding
vehicle in white ProxiPlate 384-well microplates (PerkinElmer) at 25 °C for the
indicated time and stimulated with agonists for 15 min before adding 0.5 uM
forskolin or vehicle and incubating for an additional 15 min period. Fluorescence at
665 nm was analyzed on a PHERAstar Flagship microplate reader equipped with
an HTRF optical module (BMGLab technologies, Offenburg, Germany).

Computational models. Inactive models of the human A,,R and D,R were
constructed based on the crystal structures of inactive A,oR (PDB id 51U4)3® and
D;R (PDB id 3PBL)%, respectively. The “active” conformations of A,,R bound to
Gs and D,R bound to Gi were modeled by incorporating the active features of the
crystal structure of ,-adrenoceptor in complex with Gs (PDB code 3SN6). The
globular a-helical domain of the a-subunit was modeled in the “closed” con-
formation, using the crystal structure of either Gsa (PDB id 1AZT)* or Gia (PDB
id 3UMR)*!. The absence of crystal structures of the M1 and M2 domains of AC or
close protein templates impede their inclusion on the models. Nevertheless, the
results with interfering peptides provide significant information about the putative
location of the TM segments, which have been considered to form an antiparallel
six-helix bundle with an elliptical ring shape as most of the membrane proteins.
The structure of the intracellular C1 and C2 domains of AC in complex with Gsa
and Gia was modeled as in the crystal structure of C1 and C2 in complex with Gsa
(PDB id 1CUL)*2. All homology models were built using Modeller 9.16*>. The
structure of A,4R and D,R heterodimer, using the TMs 4/5 interface, was modeled
as in the oligomeric structure of the B;-adrenoceptor (PDB code 4GPO)*, whereas
the structures for A,5R (inactive and Gs-bound “active” A,,R) and D,R (inactive
and Gi-bound “active” D,R) homodimers were modeled using molecular dynamics
simulations (see Supplementary Fig. 2) due to the absence of crystal structures of
oligomers using exclusively the TM6 interface!!.

Statistical information. One-way ANOVA followed by Dunnett’s or Tukey’s
multiple comparison tests were used for statistical comparisons between different
groups of results. Number of experiments and replications as well as the statistical
results are shown in the corresponding figure legends.

Data availability. All data that support the findings of this study are available from
the corresponding author upon reasonable request.
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