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Tone-mapping operators (TMO) are designed to generate perceptually similar low-dynamic range images
from high-dynamic range ones. We studied the performance of fifteen TMOs in two psychophysical
experiments where observers compared the digitally-generated tone-mapped images to their correspond-
ing physical scenes. All experiments were performed in a controlled environment and the setups were
designed to emphasize different image properties: in the first experiment we evaluated the local rela-
tionships among intensity-levels, and in the second one we evaluated global visual appearance among
physical scenes and tone-mapped images, which were presented side by side. We ranked the TMOs ac-
cording to how well they reproduced the results obtained in the physical scene. Our results show that
ranking position clearly depends on the adopted evaluation criteria, which implies that, in general, these
tone-mapping algorithms consider either local or global image attributes but rarely both. Regarding the
question of which TMO is the best, KimKautz [1] and Krawczyk [2] obtained the better results across the
different experiments. We conclude that a more thorough and standardized evaluation criteria is needed
to study all the characteristics of TMOs, as there is ample room for improvement in future developments.
© 2018 Optical Society of America
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1. INTRODUCTION

In almost all naturalistic viewing situations, we are immersed in
scenes that could be described as High Dynamic Range (HDR),
in other words, the intensity difference between the brightest
and the darkest patch is much higher than the difference both
imaging and capturing devices can faithfully capture. For in-
stance, the energy ratio between sunlight and starlight is approx-
imately about 100,000,000:1 [3]. If the Human Visual System
(HVS) was to linearly represent these extreme differences in its
normal daylight operation, it would require a much larger sensi-
tivity range for its retinal sensors (cones) and neural pathways
than is achievable within biological limitations. Instead, millions
of years of evolution have solved this problem by adapting the
sensorial and neural machinery, allowing it to non-linearly con-
vert the large natural intensity range into a much smaller range
of about 10,000:1 [4, 5].

A. Historical Context
The problem of translating the HDR world into Low Dynamic
Range (LDR) depictions is very old. Renaissance painters such
as da Vinci and Caravaggio tried to solve it by creating an artis-

tic technique called Chiaroscuro, which pays attention to strong
contrasts in different painted areas, creating very strong effects.
This and the need to overcome the limitations of physical mate-
rials (oil paints and substrates) inspired later artists to produce
remarkable paintings. Perhaps the most dramatic were created
by depicting a single artificial source of light (such as a can-
dle), making the details of the central subject very bright, while
other subjects are slightly darker. It can be argued that some of
the works by Rembrandt and Constable are no different from
today’s HDR photography [6–8].

The arrival of photography implied a new set of challenges
given the strong limitations of early light-sensitive material [9].
Examples of the first characterization of silver halide films as
plots of density vs exposure was made by Hurter and Driffield
in 1890 [8]. In particular, outdoor scenes were very difficult to
capture and early photographers experimented with multiple
exposures to overcome dynamic range problems. When pho-
tographs involved human subjects, these had to remain still
during the whole process so that several exposures could be
combined into a single image.

http://dx.doi.org/10.1364/ao.XX.XXXXXX
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B. Electronic HDR imaging

Analog HDR imaging allowed only limited manipulations (via
exposure time, chemical reactions or the combination of several
exposures, etc.) but the arrival of electronic digital imaging
made possible for long-range interactions of pixels located in
different parts of the image. This opened the field to multiple
possibilities including mimicking the operation of the Human
Visual System (HVS) and the work of chiaroscuro artists.

Physiological and psychophysical research has shown that
photopic human vision is the result of highly nonlinear process-
ing of the information captured by retinal cones. This processing
includes the inhibition of the output of a neuron by the output
of surrounding neurons in its field of view [10], which results
in higher sensitivity for edges and spots than for uniform light.
Other processing includes the combination of visual informa-
tion in the retina into a series of post-receptoral chromatically-
opponent channels to transmit it to the visual cortex via the optic
nerve [11]. In the cortex, visual information is mostly processed
in terms of its spatial frequency and visual orientation [12]. In
the 1960’s a series of psychophysical experiments with achro-
matic Mondrians run by Edwin Land demonstrated that patches
reflecting light with exactly the same physical properties appear
completely different to observers [13]. This implies that a digi-
tal image (where these patches produce exactly the same pixel
values) cannot be modified using a pixel-wise transformation to
simulate the appearance reported by observers. In other words,
the information contained in individual pixels is not enough
to mimic human vision. A comprehensive review of these ex-
periments can be found in [14–17]. Other effects to consider
are related to how the visual cortex processes local brightness
interactions [18, 19]. More detailed experiments have shown
the effects of edges in illumination perception by matching the
appearance of painted wooden facets to that of a painted test
target ("ground truth") [20], a paradigm very similar to ours (see
below).

In order to mimic the response of the HVS, electronic imaging
systems set out to use information not only from single pixels but
from the entire scene. This allowed them a much larger flexibility
to calculate appearances and to apply them to electronic displays
or prints. Ironically, later HDR algorithms reverted to the old
"multiple exposures" and "pixel-wise" processing techniques of
analog photography for the same task (see below).

C. Tone-Mapping Operator (TMO)

Mapping the HDR dynamic range of the world into LDR media
presents an important challenge for visual representation tech-
nologies mainly because most imaging devices (cameras and
monitors) are only able to obtain/display images within a small
range of about 100:1 [4] which can be increased up to 1000:1 for
specialized HDR led-based displays [21]. To solve this problem,
an assortment of non-linear image processing techniques were
defined to display HDR scenes in LDR devices. To construct the
HDR image, many LDR images of the same scene are usually
taken at different exposure values, capturing a much larger dy-
namic range. This HDR image is generated by extracting from
each LDR image the information corresponding to its region of
interest (where it is neither over- or under-exposed) and com-
bining them. Since this new HDR image cannot be displayed
on a standard LDR monitor, an algorithm is needed to reduce
its dynamic range to match that of the monitor. A common
solution is to use a Tone-Mapping Operator (TMO) to reduce
the dynamic range while keeping the perceptual characteristics

of the original HDR image approximately constant. The per-
formance of these TMOs depends of several factors including
lighting and viewing conditions, aesthetic/realistic preferences,
local/global assumptions, etc. and are usually evaluated using
computational ([22, 23]) and psychophysical ([24–34]) methods.

Although HDR images are able to reproduce a wider range
of luminance highlights and a shadows than LDR ones, the pres-
ence of veiling glare both in the camera and the eye limits the
possible range of accurate luminance measurements [8]. Since
HDR are perceptually closer to the original scene, there must be
other reasons than simply obtaining a larger range of luminances
for this perceived improvement. It has been hypothesized [8]
that the improvement comes from a better preservation of rel-
ative spatial information that comes from digital quantization
(spatial differences in highlights and shadows are preserved)
and TMOs use this to replicate the HVS processing.

In this work we present a new set of experiments and analysis
to psychophysically evaluate the performance of 15 state-of-the-
art TMOs. This allowed us to rank the TMOs according to how
well they represent the original scene as human observers per-
ceive it. Unlike previous studies, all the experiments were per-
formed in a controlled environment and tone-mapped images
were presented side by side with the physical scene.

D. "Global" vs "Local" analysis
At this point we believe it is important to clarify the terminology
used throughout this work. The term "Tone" is traditionally
used to describe pixel data (as in "Tone Mapping") and was
introduced by Mees [9] in 1920 to explain how exposure was
related to photographic print density (silver halide response).
Indeed “Tone Scale” is the name given to a look-up table that
transforms data in an input space to a desired output space.

The term "Global TMO", which is also used by several au-
thors [35–37] generally refers to an algorithm that applies the
same pixel-wise adjustment to all pixels in the image (although,
in fact, it uses the most local information: a single pixel). In
contrast, the term "Local TMO" generally defines an algorithm
that applies a combination of pixel-wise processing and spa-
tial transformations to improve the image. Although confusing
we will follow the traditional terminology here, calling Global
TMOs to algorithms that apply pixel-wise processing and Local
TMOs to algorithms that apply a combination of pixel-wise and
spatial image processing.

We will refer to our psychophysical experiments (see below)
as "Scene Reproduction" when observers judge images by freely
comparing them, and "Segment Matching" when they match the
luminances of specific points in the scene to those of a reference
table in the same scene.

2. STATE-OF-THE-ART

A. Previous TMO Psychophysics
Although the idea of using algorithms to match the brightness of
real scenes to that of imaging devices is not new [35, 38], TMOs
did not become popular until the turn of the century, when
affordable digital cameras became available [1, 2, 32, 37, 39–49].
To date, many different psychophysical experiments have been
performed and they can be classified as follows:

A.1. Experiments without a reference HDR scene

One of the first psychophysical experiments to evaluate TMOs
compared the performance of 6 TMOs on 4 different (synthetic
and photographic) scenes by asking subjects to make pairwise
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perceptual evaluations and by rating stimuli with respect to three
attributes: apparent image contrast, apparent level of detail, and
apparent naturalness [24]. The results showed that preferred
operators produced detailed images with moderate contrast.

Kuang et al. [25] performed pairwise comparisons on 8 differ-
ent tone-mapping operators using 10 different scenes and two
conditions (color and grey-level) where subjects had to choose
the preferred image considering general rendering performance
(including tone compression performance, color saturation, nat-
ural appearance, image contrast and image sharpness). Their
results showed that the grey-scale tone-mapping performances
are consistent with those in the overall rendering results, if not
the same.

A.2. Experiments with a reference HDR scene

Yoshida et al. [26] conducted a psychophysical experiment based
on a direct comparison between the appearance of real-world
scenes and TMO images of these scenes displayed on a LDR
monitor. In their experiment, they differentiate between global
and local operators, and introduced, for the first time, the com-
parison between tone-mapped image and real scene, selecting
two different indoor architectural scenes. Fourteen subjects were
asked to give ratings according to several criteria like realism
(image naturalness in terms of reproducing the overall appear-
ance of the real world views) and image appearance (brightness,
contrast, detail reproduction in dark regions, and in bright ones).
They found that none of these image appearance attributes had
a strong influence on the perception of naturalness by itself. This
work was extended to find out which attributes of image ap-
pearance accounted for the differences between tone-mapped
images and the real scene [30]. They observed a clear distinction
between global and local operators. However, they concluded
again that none of the evaluated image attributes had a strong
influence on the perception of naturalness by itself which sug-
gested that naturalness depends on a combination of the other
attributes with different weights.

In an another work, Ashikhmin and Goyal [28] performed
three different experiments. Subjects ranked different tone-
mapped images depending on the task. In the first experiment,
the authors asked which image they liked more without having
the reference scene. In the second one, the authors asked which
image seemed more real without viewing the reference scene
and, in the third one, they asked which image was the closest to
the real scene viewing the reference scene. They observed that
rankings were totally different when subjects could compare the
tone-mapped image to the reference scene.

In a subsequent study, Kuang et al. [31] performed three
different experiments they named preference evaluation, image-
preference modelling and accuracy evaluation. In the preference eval-
uation experiment, pairwise comparisons between tone-mapped
images were performed. Here they used only color images and
the aim was to evaluate the general rendering performance by
instructing observers to consider perceptual attributes such as
overall impression on image contrast, colorfulness, image sharp-
ness, and natural appearance. In contrast, in the image-preference
modelling experiment, they rated grey-scale images (which were
grey-scale versions of the first experiment color images). Here,
observers considered perceptual attributes such as highlight de-
tails, shadow details, overall contrast, sharpness, colorfulness
and appearance of artifacts, comparing the TMO’s visual render-
ing "to their internal representation of a ‘perfect’ image in their
minds" [31]. In the accuracy evaluation, both pairwise compar-
ison and rating techniques were used in order to evaluate the

perceptual accuracy of the rendering algorithms. The pairwise
comparison of TMOs was performed without viewing the real
scene and subjects were asked to compare the overall impression
on image contrast, colorfulness, image sharpness, and overall
natural appearance. An additional rating evaluation was per-
formed using the real scenes set up in the adjoining room as
references. Here, subjects had to rate image attributes like high-
light contrast, shadow contrast, highlight colorfulness, shadow
colorfulness, overall contrast and the overall rendering accuracy
comparing to the overall appearance of the real-world scenes. In
both experiments, observers did not have immediate access to
the real scene and had to rely on their memories (either short- or
long-term) to perform the tasks.

To validate the iCAM06 operator [32], its authors per-
formed two psychophysical experiments similar to the previous
ones [31]. The first experiment was a pairwise comparison with-
out viewing the reference scene. Observers had to choose the
tone-mapped image that they preferred based on overall impres-
sion on image quality (considering contrast, colorfulness, image
sharpness, and overall natural appearance). In the second exper-
iment, observers were also asked to evaluate overall rendering
accuracy by comparing the overall appearance of the rendered
images to their corresponding real-world scenes, which were set
up in an adjoining room.

While looking for a definition of an overall image quality
measure, Cadík et al. [29] studied the relationships between
some image attributes such as brightness, contrast, reproduction
of colors and reproduction of details. They performed two psy-
chophysical experiments, using 14 TMO, in order to propose a
scheme of relationships between these attributes, being aware
that some special attributes, which were not evaluated (e.g. glare
stimulation, visual acuity and artifacts), can influence their re-
lationships. In the first one, 10 subjects were asked to perform
ratings using five criteria: overall image quality and the four
basic attributes (brightness, contrast, reproduction of detail and
colors). These evaluations were performed using a real scene
as a reference (a typical real indoor HDR scene). In the second
experiment, subjects did not have access to the real scene and
they had to rank image printouts according to the overall image
quality and the four basic attributes.

In a new study, Cadík et al. [34] performed exactly the same
type of experiments adding two new scenes, that is, they had a
total of three scenes, i.e. a real indoor HDR scene, a HDR out-
door scene and a night urban HDR scene. In the first experiment,
subjects were asked to rate overall image quality and the quality
of reproduction of five attributes by comparing samples to the
real scene. These attributes were the same four basic ones of
their previous work and the lack of disturbing image artifacts
(which was one of the non-evaluated special attributes in [29]).
These experiments were set-up in an uncontrolled natural envi-
ronment, so subjects had to perform the experiments at the same
time of the day as the HDR image was acquired. In the second
experiment, subjects had no possibility of directly comparing to
the real scene and had to rank the image printouts according to
the overall image quality, and the quality of basic attributes.

A.3. Experiments using an HDR monitor

In 2005, Ledda et al. [27] performed two different psychophysical
experiments comparing 6 different tone-mapping operators to
linearly mapped HDR scenes displayed on a HDR device. They
used 23 different color and grey-scale HDR scenes showing
3 different images per comparison: the HDR and two tone-
mapped images. In the first experiment, subjects were asked
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to select the TMO image more similar to the HDR reference by
judging its global appearance. In the second one, they were
asked to make their judgment based on reproduction detail.

In a later work, Akyüz et al. [33] asked subjects to rank six
images (1 HDR image, 3 tone-mapped images, 1 objectively
good LDR exposure value and 1 subjectively good LDR
exposure value) according to their subjective preferences.
They found that participants did not systematically prefer
tone-mapped HDR images over the best single LDR exposures.

All the previous studies have been focused on subjective com-
parisons of global and local image appearance attributes such
as contrast, colourfulness, sharpness, reproduction artifacts, etc.
either within TMOs or against the real scene. While this is no
doubt extremely important, we believe a good TMO should
output a scene that produces the same visual sensation as the
physical scene, in particular the interrelations between objects
and their perceived attributes. For instance, no study has been
conducted (as far as we know) to evaluate whether objects repre-
sented within a TMO image maintain the same perceived visual
differences as the real scene. This is the main objective of our
work.

B. Tone-Mapping Operators
As mentioned before, TMOs can be classified according to their
processing in global and local. Global operators perform the
same computation in all pixels, regardless of spatial position,
which make them more computationally efficient at the cost
of losing contrast and image detail. Some examples of global
TMO are [1, 39, 43, 45]. On the other hand, local operators,
which take into account surrounding pixels, produce images
with more contrast and higher detail level, but they may show
problems with halos around high contrast edges. Local operators
are inspired on the local adaptation process present at the early
processing stages of the human visual system. Some examples of
local operators are [2, 32, 40–42, 44, 47, 49]. There are some tone-
mapping operators which could be global or local depending on
their setup configuration parameters. One example is [37] and
another one is [48], which is developed in two stages, the first
global and the second local. A brief summary of the properties
of each tone-mapping operator used in our experiments is given
in Table 1. The first column shows the names that we will use to
refer to each operator throughout this work. The characteristics
of each TMO are detailed below:

-Ashikhmin [40]. This local tone-mapping operator is inspired
by the processing mechanisms present at the first stages of the
Human Visual System. Intensity range is compressed by a local
luminance adaptation function and, in a last step, detail infor-
mation is added.

-Drago [43]. This global tone-mapping operator is based on
luminance logarithmic compression that, depending on scene
content, uses a predetermined logarithmic basis to preserve
contrast and details.

-Durand [41]. This local tone-mapping operator decomposes
the image in two layers: the base and the detail. Large-scale
variations of the base layer are encoded, while the magnitudes
of the detail layer are preserved.

-Fattal [42]. This local tone-mapping operator manipulates
the gradient fields of the luminance image. Its idea is to identify
high gradients in different scales and attenuate their magnitudes,
while maintaining their directions.

-Ferradans [48]. This tone-mapping operator can be executed
as global or local because it is divided in two stages. In the

Table 1. Summary of used TMO’s characteristics. Second col-
umn shows whether the TMO is global (G) or local (L). Third
column shows whether it is inspired by the Human Visual
System, and following columns show whether it processes
luminace and color information.

TMO Global/Local HVS Luminance Color

Ashikhmin L X X

Drago G X

Durand L X X

Fattal L X

Ferradans L X X X

Ferwerda G X X X

iCAM06 L X X X

KimKautz G X

Krawczyk L X

Li L X

Mertens -

Meylan L X X X

Otazu L X X

Reinhard G X

Reinhard-Devlin G X

first stage, it applies a global method that implements the visual
adaptation, trying to mimic human cones’ saturation. In the
second stage, it enhances local contrast using a variational model
inspired by color vision phenomenology. In our work, this
operator was run as local.

-Ferwerda [39]. This global tone-mapping operator is based
on computational model of visual adaptation that was adjusted
to fit psychophysical results on threshold visibility, color appear-
ance, visual acuity, and sensitivity over the time.

-iCAM06 [32]. This local tone-mapping operator is based on
the iCAM06 color appearance model, which gives the perceptual
attributes of each pixel, like lightness, chromaticity, hue, contrast
and sharpness. It includes an inverse model which considers
viewing conditions to generate the result.

-KimKautz [1]. This global tone-mapping operator is based
on the assumption that human vision sensitivity is adapted to
the average log luminance of the scene and that it follows a
Gaussian distribution.

-Krawczyk [2]. This local tone-mapping operator is inspired
on the anchoring theory [50]. It decomposes the image into
patches of consistent luminance (frameworks) and calculates,
locally, the lightness values.

-Li [44]. This local tone-mapping operator is based on mul-
tiscale image decomposition that uses a symmetrical analysis-
synthesis filter bank to reconstruct the signal, and applies local
gain control to the subbands to reduce the dynamic range.

-Mertens [46]. This technique fuses original LDR images of
different exposure values (exposure fusion) to obtain the final
“tone-mapped” image, which avoids the generation of an HDR
image. Guided by simple quality measures like saturation and
contrast, it selects “good” pixels of the sequence and combines
them to create the resulting image. Thus, for this method instead
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of an HDR image we used a stack of LDR images.
-Meylan [47]. This local tone-mapping operator is derived

from a model of retinal processing. In a first step, a basic tone-
mapping algorithm is applied on the mosaic image captured by
the sensors. In a second step, it introduces a variation of the
center/surround spatial opponency.

-Otazu [49]. This local tone-mapping operator is based on
a multipurpose human colour perception algorithm. It decom-
poses the intensity channel in a multiresolution contrast decom-
position and applies a non-linear saturation model of visual
cortex neurons.

-Reinhard [37]. This tone-mapping operator can be executed
as global or local. It performs a global scaling of the dynamic
range followed by a dodging and burning (local) processes. In
our work, this operator was run as global which is its default
value in the toolbox.

-Reinhard-Devlin [45]. This global tone-mapping operator
uses a model of photoreceptors adaptation which can be auto-
matically adjusted to the general light level.

3. METHODS

In order to compare TMOs, we performed two different exper-
iments called Segment Matching and Scene Reproduction experi-
ments. The aim of the first experiment was to study the internal
relationships among grey-levels in the tone-mapping image and
in the real scene (i.e. a segment matching experiment similar
to [51]). The aim of the second experiment was to evaluate TMOs
according to how similar their results were perceived to be with
respect to the real scene. In both cases, we obtained a ranking of
the different TMOs. Behind these experiments is the idea that
a good TMO is one whose output is perceptually similar to the
real scene and, to do that, a good reproduction of the objects’
relationships is needed.

A. Materials
Our experiments were performed in a controlled environment
where the only sources of light were a lamp, which illuminated
the real scene and a CRT screen. We used a ViSaGe MKI Stimulus
Generator and a Mitsubishi Diamond-Pro®2045u CRT monitor
side-by-side with a handmade real HDR scene. The monitor
was calibrated via a customary Cambridge Research Systems
Ltd. software for ViSaGe MKI Stimulus Generator (Rochester,
England) and a ColorCal (Minolta sensor) suction-cup colorime-
ter. Both the monitor and the real scene were setup so that the
objects in both scenes subtended approximately the same angle
(18.13°x 13.81°) and looked similarly positioned to the observer.

We built three different HDR scenes, each including a grey-
level reference table and two solid parallelepipeds (cuboids).
The reference table was built by printing a series of 65 grey
squares (2.8 x 2.2 cm) arranged in a flat 11x6 distribution. The
arrangement of rows and columns was labelled A,B,C,...,K for
the rows and 1,2,3...,6 for the columns. The lightness of these
patches decreased monotonically from the top (patch A1 - #1) to
the bottom (patch K5 - #65), as measured by our PR-655 Spec-
traScan®Spectroradiometer. The printed values were selected
so that their CIE L* (lightness) value was equally spaced, mean-
ing that their distribution was approximately uniform in terms
of perceived lightness (see Table 2). The cuboids consisted of
pieces of wood (3.6 x 3.6 x variable length between 9.4 and 10
cm), whose sides (facets) were covered with arbitrary samples
of the same printed paper as the reference table. There were
two cuboids in each scene (one under direct illumination and

the other in the shade). The third column of Table 3 shows the
patch of the reference table that the cuboid’s facet corresponded
to, the fourth column indicates its position with respect to the
illumination and the last column indicates its luminance (when
placed within its scene). Table 2 also shows the luminance values
for these patches once lit by our light source. The chromaticity
of all printed material was CIE xy= (0.3652, 0.3817). The rest
of the scenes consisted of many plastic and wooden objects of
different colours and shapes (see Figure 1).

Two facets of one cuboid and three of the other were always
visible from the subjects’ location, resulting in 15 different grey

Table 2. In this table we show the L* CIELab colour space val-
ues and the luminance values (cd/m2) of each patch in the
reference table. The lightness values have been measured by
our PR-655 SpectraScan®Spectroradiometer under a uniform
illumination. In contrast, the luminance values were measured
in the scene by the same Spectroradiometer. The lightness of
the patches monotonically increases from patch #1 (A1) to
patch #65 (K5). Middle gray which is universally defined as
18% reflectance on a white surround. In this table, 18% max is
patch #34 (F4).

Lightness (L*) of patches in the reference table

Coordinate 1 2 3 4 5 6

A 1.50 3.64 5.76 7.88 9.97 12.06

B 14.13 16.18 18.22 20.25 22.26 24.26

C 26.24 28.20 30.15 32.08 34.00 35.90

D 37.78 39.65 41.50 43.33 45.15 46.95

E 48.73 50.49 52.24 53.96 55.67 57.36

F 59.03 60.68 62.31 63.91 65.50 67.07

G 68.61 70.14 71.64 73.11 74.57 76.00

H 77.40 78.78 80.13 81.46 82.76 84.03

I 85.27 86.49 87.67 88.82 89.93 91.01

J 92.05 93.06 94.02 94.94 95.81 96.63

K 97.40 98.11 98.74 99.30 99.73

Luminance (cd/m2) of patches in the reference table

Coordinate 1 2 3 4 5 6

A 0.559 0.565 0.617 0.692 0.853 0.815

B 0.901 0.957 1.007 1.360 1.484 1.622

C 1.575 1.734 1.992 2.218 2.624 2.978

D 3.031 3.243 3.651 4.133 4.634 5.076

E 5.215 5.718 6.439 7.199 7.827 10.39

F 12.95 15.85 16.94 18.69 20.63 21.32

G 22.53 23.67 25.79 28.34 30.40 31.47

H 32.66 34.2 37.69 38.40 42.75 44.63

I 46.28 48.39 52.27 55.57 58.1 60.61

J 61.76 66.17 67.75 69.82 74.71 78.24

K 78.96 84.67 90.37 96.38 104.0
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(a) Scene 1 (b) Scene 2 (c) Scene 3

Fig. 1. To show the general appearance of the physical scenes, here we show a single LDR exposure (chosen by simple visual in-
spection by the authors) from the set of LDR exposures used to create the HDR images. Since they are a single LDR exposure, the
cuboids in the dark regions are not completely visible in these pictures.

Table 3. Photometric assessment of the scene facets used in
our matching experiments. Column 3 indicates the corre-
sponding gray patch (same material) from the reference table.
Column 4 indicates whether the facet was directly illuminated
or in the shade and column 5 shows its luminance from the
observer’s point of view.

Luminance values (cd/m2) of the scene facets

Scene Facet Original Patch Light/Shade Luminance (cd/m2)

1 1 B4 light 0.66

1 2 H4 light 59.22

1 3 F4 light 33.38

1 4 B4 shade 5.34

1 5 F4 shade 7.48

2 6 C4 light 3.44

2 7 H1 light 32.13

2 8 C1 shade 5.93

2 9 J1 shade 12.00

2 10 E4 shade 0.80

3 11 A4 light 1.73

3 12 I1 light 25.93

3 13 J1 light 27.46

3 14 G4 shade 31.58

3 15 B1 shade 9.06

facets in total (see Table 3). The incandescent lamp (100W) had
its bulb painted blue to simulate D65 illumination and was set
up so that the luminance of the brightest object was about the
same as the maximum luminance the monitor was capable of
producing (about 100 cd/m2).

We photographed the real scene using a Sigma Foveon SD10
camera placed in the exact same position as the subjects’ heads
during the psychophysical experiments. The same camera was
calibrated for use in other measurements [52] and because of
this, we have a fairly good idea of the linearity and spectral
sensitivity of its sensors. The setup was arranged so that the
images presented on the monitor looked geometrically the same
as the real ones shown beside it. Since the walls were covered in
black felt, reflections from all other objects were minimized. The
dynamic range of the scenes as measured by multiple exposures
using the camera were approximately 105 for scene 1 and 106

for scenes 2 and 3. The dynamic range of the reference table as

measured by the PR-655 was 104.0 - 0.559 cd/m2.
Although it has been shown that because of glare, is not pos-

sible to achieve an accurate representation of scene luminance
distribution from a combination of many LDR images, this tech-
nique can still provide a good enough approximation [8]. In
consequence, a set of 25 photographs were taken at different
exposure values (from 15 sec to 1/6000 sec) using the same aper-
ture, focal distance, zoom settings and visual field. Individual
images were stored in RAW format and transformed into 16 bits
sRGB (using the camera manufacturer’s software).

To avoid any bias regarding the operators, all experiments
started with a 1-minute subject adaptation to the ambient
light. Most TMO implementations were obtained from the
popular HDR Toolbox for MATLAB [53] while others (Fer-
radans, iCAM06, Li, Meylan and Otazu, were obtained from their
corresponding authors’ web pages). In order to avoid benefiting
any of the TMOs, we ran all of them with their default settings.
In Ferradans’ case, we had to chose between two different pa-
rameters and we selected the default values specified in their
paper (ρ = 0 and α−1 = 3). Other cases required that the TMO’s
author was asked to perform the best tone-mapping, but we
discarded this option because of its impracticality (we could not
ask all authors the same) and besides, this practice impairs the
reproducibility of the results.

4. EXPERIMENTS

A. Experiment 1: Segment Matching
A.1. Procedure

The Segment Matching experiment consisted on two different
tasks:

Task 1. After adaptation, subjects were asked to match, in the
real scenes (i.e. with monitor turned off), the brightness of the 5
cuboids’ facets to the brightness of the patches in the reference
table in each scene (see Figure 2a). Although there were no time
constraints to perform the tasks, subjects were advised to take
no more than 30 seconds per match.

Task 2. Here the real scene was not visible and the observers
only saw digital (tone-mapped) versions presented on the
monitor. Their task was similar to Task 1, except that all
matchings were conducted entirely between the facets and
patches shown on the screen (see Figure 2b).

There were three conditions for Experiment 1, corresponding
to the three different scenes created (see Figure 1). Observers
performed 240 matchings in total (5 facets x 15 different tone-
mapped images x 3 three scenes plus 15 matchings in the real
scenes). In practice, all matchings were conducted by writing for
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each facet, the coordinates of the matching reference table patch
on a piece of paper. The presentation order of the tone-mapped
images was randomized.

A.2. Experimental Design

In Experiment 1, the independent variables (IVs) were the
cuboid’s facets and the reference table patches. The dependent
variables (DVs) were the subjects’ segment matches in the tone-
mapped images (Task 2) and the control variable (CV) were the
subjects’ segment matches in the real scene (Task 1). Our null
hypothesis was that there was not significant difference between
the segments matched in the real scene (CV - Task 1) and the
matches in the tone-mapped images (DVs - Task2) because the
TMOs perfectly reproduce the perceptual relationships among
the objects present in the real scene.

A.3. Participants

Task 1 was completed by a group of 12 observers with nor-
mal or corrected-to-normal vision, recruited from our lab aca-
demic/research community. This group (8 males and 4 females)
was comprised by people aged between 17 and 54. Nine of them
were completely naïve to the aims of the experiment. Task 2
was completed by 10 of the previous observers (8 males and 2
females).

A.4. Results

Figure 3 shows a plot of the segments matches obtained in Task 2
against the segments matches in Task 1. We fitted a linear model
to the results obtained by each TMO. If a TMO reproduced well
the interrelations among the grey facets, the fitting should be
very similar to the fitting for the real scene (i.e. points should
lay about the diagonal).

We performed two different analyses to evaluate to what
extent the local interrelations perceived by the observers in the
tone-mapped versions corresponded to those perceived in the
real scene. In the first analysis, we studied the slopes of the
different fitted linear models w.r.t. the slope obtained in the real
scene. The smaller the difference, the better the reproduction
of the interrelations (it means that the TMO maintained the
relationships among the facets and patches). Figure 3 shows
the offset between the lines fitted to the TMOs and the line
fitted to the real scene. In the second analysis, we studied this
displacement by computing the root mean squared error (RMSE)
between them.

All results are shown in Table 4, where iCAM06 has the small-
est distance to the real scene in both analyses. Since its slope
difference and RMSE are very small, we can assume that the
pixel interrelations in its tone-mapped image perceptually mimic
the real scene. Given that iCAM06 is based on a color appear-
ance model that considers perceptual attributes such as light-
ness, chromaticity, hue, contrast and sharpness, its results are
expected to be in line with observers’ perception.

We calculated the Spearman’s rank correlation coefficient
between the rankings obtained from both Segment Matching
analyses (see Table 4) and obtained a value of 0.59 (p < 0.05).
Since both rankings are quite similar, it is worth paying atten-
tion to some interesting cases such as Ferradans, whose slope
is very close to that of the real scene, but the fitted model lays
systematically under the real scene’s line (i.e. its RMSE is very
big). An opposite example is Mertens which has a different slope,
but its RMSE is the second smallest.

Another interesting observation from Figure 3 is that, at the
lowest and highest brightness values, the agreement between

Table 4. Performance of all TMOs in the Segment Matching
experiment. The second and third columns show the analysis’
results and the last the type of the TMO. In both metrics (i.e.
slope difference and root mean squared error -RMSE- between
the diagonal and the TMO fitted line), the smaller (indicated in
bold), the more similar to the real scene, and thus, the better.

TMO Slope Difference RMSE Type

Ashikhmin 0.29 11.19 Local

Drago 0.15 7.02 Global

Durand 0.12 5.01 Local

Fattal 0.02 4.66 Local

Ferradans 0.00 5.12 Local

Ferwerda 0.09 7.09 Global

iCAM06 0.01 0.42 Local

KimKautz 0.09 5.51 Global

Krawczyk 0.09 5.46 Local

Li 0.01 4.02 Local

Mertens 0.15 3.84 -

Meylan 0.16 5.93 Local

Otazu 0.24 5.30 Local

Reinhard 0.15 6.72 Global

Reinhard-Devlin 0.16 6.82 Global

subjects is higher than at middle values (both horizontal and
vertical dispersion lines are smaller). This suggests that the
TMOs are more accurate at reproducing both the brightest and
the darkest parts of the image. To analyze this effect in more
detail, we studied the subjects’ results for each facet. In Fig-
ure 4, the abscissa shows the segments matched in the real scene
ordered from darkest to brightest and the ordinate represents
the RMSE in the tone-mapped images with respect to the real

scene. We defined RMSE as: RMSEscene =
√

1
n ∑∀i (xi − yi)2,

where xi is the i-th subject segment matched in the real scene, yi
is the i-th subject segment matched in the tone-mapped image
and n is the number of subjects. Again, in almost all TMOs, the
RMSE value is smaller for darkest and brightest facets than for
mid-grey facets. Thus, not only the agreement between subjects
but also the error (RMSEscene) is lower for both brightest and
darkest values.

B. Experiment 2: Scene Reproduction
B.1. Procedure

Experiment 2 consisted of a pairwise comparison of tone-
mapped images obtained using different TMOs in the presence
of the original scene (side by side). After 1-minute adaptation
in front of the physical scene, a pair of tone-mapped images of
the same physical scene was randomly selected and presented
sequentially to the observer on the CRT screen besides the real
scene. Subjects could press a gamepad button to toggle which
image of the tone-mapped pair was presented on the monitor
(only one image was displayed at a time). For this task, they
were asked to ’select the image that was more similar to the real
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(a) Task 1 (b) Task 2

Fig. 2. In Experiment 1, observers performed two tasks. In Task 1 (Figure 2a), observers had to match the brightnesses of the 5
cuboids’ facets to the brightnesses of 5 patches in the reference table. In Task 2 (Figure 2b), observers had to perform the same task
on the TMO image displayed on the calibrated monitor. (Red arrows are randomly drawed just for illustrative purposes).

scene.’ As before, there was no time limit but subjects were ad-
vised to complete a trial in less than 30 seconds. After an image
was chosen, a grey background was shown for two seconds, and
a different random pair was selected for the next trial. Every
subject performed 105 comparisons per scene taking around
25 minutes in total. There were three experimental conditions,
corresponding to the three different physical scenes created (see
Figure 1). Between conditions, subjects were forced take 5 to 10
minutes breaks outside while the physical scene was replaced.

B.2. Experimental Design

In this experiment the IVs were the different TMOs, the DVs
were the subjects’ evaluations (i.e. the preference matrix), and
the CV was the real scene. Our null hypothesis was that there
were no differences in the TMOs performances since all of them
perceptually reproduce the real scene.

B.3. Participants

A group of 10 people with normal or corrected-to-normal vision,
7 males and 3 females recruited from our lab academic and
research community, completed this experiment. This group
was comprised by people aged between 17 and 54 y.o. Seven of
them were naïve to the aims of the experiment.

B.4. Results

From the pairwise comparison results, we defined a preference
matrix for each subject and each scene. We constructed a directed
graph where the nodes were the evaluated TMOs and the arrows
pointed from a preferred TMO to a non-preferred TMO, e.g. if
the TMOi is preferred over the TMOj (tone-mapped image from
TMOi is more similar to the real scene than the one from TMOj),
we drew an arrow from nodei to nodej, for i 6= j.

From this graph, we were able to analyse intra-subject consis-
tency coefficient ζ for each scene. The consistency coefficient for
each subject and scene is defined by

ζst =

{
1− 24dst

n3−n , if n is odd.
1− 24dst

n3−4n , if n is even.
, with

dst =
n(n− 1)(2n− 1)

12
− 1

2

n

∑
i=1

a2
ist

(1)

where s is the scene number (s ∈ [1, 3]), t is the subject number
(t ∈ [1, m]), n is the number of evaluated TMOs, and ai is the
number of arrows which leave the nodei. The maximum ζ value
is 1 (perfect consistency within-subject).

The consistency between subjects, i.e. inter-subject agree-
ment, is measured by the Kendall Coefficient of Agreement [27,
54]. This measure is defined by

us =
2 ∑i 6=j (

pij
2 )

(m
2 )(

n
2)
− 1 (2)

where pij is the number of times TMOi is preferred over TMOj
and m is the number of subjects. Since the number of subjects
is even (m = 10), the possible minimum value of u, given by
Equation 2, is u = − 1

m−1 and its possible maximum value is
u = 1.

In order to study if us values are significant, we used the
chi-squared test (χ2). The χ2

s values are defined by

χ2
s =

n(n− 1)(1 + us(m− 1))
2

(3)

The number of degrees of freedom of the chi-squared test is
given by n(n−1)

2 .

Table 5. Summary of all statistical analysis from section B.4.
We computed the intra-subject evaluation (consistency coef-
ficient ζ), the inter-subjects evaluation (Kendall Agreement
Coefficient u) and calculated chi-squared test to see if u values
were significant.

Scene ζ̄ u χ2 p, 105 df

1 0.91 0.61 681 < 0.001

2 0.95 0.65 719 < 0.001

3 0.93 0.55 624 < 0.001

In Table 5, we show all statistical measures for each scene,
where we can see that intra- and inter-subject consistency values
are very high and statistically significant. Then, in Figure 5, we
show the results of the overall paired comparison evaluations
for every scene (obtained from Thurstone’s Law of Comparative
Judgment, Case V [55]) with 95% confidence limits. Spearman’s
correlation between these rankings shows that TMOs have simi-
lar behaviour across different scenes (their coefficients are equal
or higher than 0.90, with p < 0.05). We computed the mean
value along all the scenes (Table 6) and observed that the best
ranked TMOs were KimKautz, Krawczyk and Reinhard, which are
completely different from the rankings obtained in the previous
experiment.
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Fig. 3. Results of Experiment 1. Segments matches in the tone-mapped images are plotted against segment matches in the real
scene. Markers and lines identify each TMOs. Since not all the data had a normal distribution, the markers show the median of
the subjects’ observations. Horizontal lines indicate the first and the third quartiles of Task 1 and vertical lines indicate the first
and the third quartiles of Task 2. For each operator, we fitted a linear model using the median of the subjects’ observations. The
figure is divided in four panels for clarity. The real scene is plotted against itself in all panels to provide a fixed reference (y = x). In
summary, the better the TMO, the closer its fit to the solid black line.

5. DISCUSSION

Comparing the results of our two experiments, we observe that
in Section A (Segment Matching experiment - see Table 4), local
TMOs are significantly better than global ones. On the con-
trary, in Section B (Scene Reproduction experiment - see Table 6),
global TMOs are significantly better than local ones. We com-
puted Spearman’s correlation coefficient between both experi-
ments rankings and verified that there is no correlation.

An interesting example of this lack of correlation is iCAM06.
It is clearly at the top of the rankings in the Segment Matching
experiment, but it is in the middle position in the Scene Repro-
duction experiment. This means that it correctly reproduces
relationships among grey-levels, but overall features are not
maintained. An extreme example is Fattal, which is in the fourth
position in the Segment Matching rankings, but is the last in
the Scene Reproduction ranking. This can be explained because
Fattal is based on local (or spatial) features, e.g. luminance gra-
dients, but it does not enforce global features (such as global
brightness and contrast). In fact, from Table 4 (RMSE results) we
can conclude that Fattal produces a tone-mapped image which
is systematically brighter than the real scene. Since Fattal’s fitted
line has almost the same slope as the real scene (see Figure 3)
removing this offset could improve its performance in the Scene
Reproduction experiment.

From the previous results, we infer that overall appearance

does not only depend on the correct reproduction of intensity
relationships, but it might depend on many other weighted lo-
cal attributes, such as the reproduction of grey-level and color
relationships, contrast, brightness, artifacts, level of detail, etc.
This is in agreement with other authors [26, 29, 30, 34]. Further-
more, our results show that overall attributes should also be
considered to correctly reproduce the appearance.

Regarding the question of which is the best TMO, KimKautz
and Krawczyk are very close in all rankings, hence both can be
considered equally good.

A. Comparison to other Studies

In Section 4 A (Segment Matching) we took into account a par-
ticular criterion which, up to our knowledge, has never been
studied in this kind of TMO ranking experiments. Moreover, we
compare our Segment Matching results to the results obtained
by other works that study TMOs applied to grey-level images
(given that our analysis has been performed on grey-level facets).

Many works perform overall appearance comparisons, either
with (as in our work) or without the real scene. Although Kuang
et al. [25] performed an experiment without a real scene refer-
ence, our scene reproduction results agree with theirs in that
Fattal is the worst ranked operator and Reinhard is one of the
best ranked. Contrary to our results, Kuang et al. [25] conclude
that Durand is better than Reinhard. The reason could be that
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Fig. 4. The RMSE w.r.t. the real scene (RMSEscene) is the difference between segments matched in the tone-mapped image and in
the real scene. Different types of lines and markers represent different TMOs. Abscissa represents the segments matched in the real
scene ordered from darkest to brightest. According to this metric, the smaller the value, the better the TMO.

they might have run Reinhard in local operator mode, which we
did not. Furthermore, they performed a study with grey-scales
images and their results showed that Durand was better than
Reinhard, but iCAM was worse than Reinhard, which is approx-
imately similar to our Segment Matching experiment’s results.
They differ in iCAM’s result, but they used iCAM [56] instead
of iCAM06, as in our case.

Yoshida et al. [26, 30] performed experiments with architec-
tural indoor HDR scenes and they concluded that Reinhard and
Drago were good in terms of naturalness and Durand was not
ranked as highly as in [25] (in an experiment without the ref-
erence scene). Our results agree with Yoshida et al. [26, 30].
Moreover, Yoshida et al. [30] showed that global and local oper-
ators obtain different results, but global TMO results are more
similar among themselves than local TMO. As pointed out in the
previous section, this relationship is also present in our study
(Tables 4 and 6).

Ledda et al. [27] used a High Dynamic Range display and
obtained a ranking according to the overall similarity of TMO
images. In this ranking, iCAM was the first one, which does
not agree with our results. In addition, their ranking shows
the following TMO’s order: Reinhard, Drago and Durand, which
match to our results. These authors also performed experiments
in grey-scales obtaining Reinhard as the best ranked, which does
not agree with our results.

Cadík et al. [29, 34] performed a very exhaustive study of
perceptual attributes. We agree with some of their results like the
good ranking of Reinhard (close to the best) and the unnatural-

ness of Fattal. Moreover, we strongly agree with them in that the
best overall quality is generally observed in images produced
by global tone-mapping operators. Nevertheless, we want to
point out that there was some conflict between these two studies.
In the first one ([29]), Durand was the worst ranked operator,
ranked even lower than Fattal, but in the second one ([34]), Fattal
was the worst ranked and Durand was in a middle position. Our
results are in line with Cadík et al. [34].

We do not agree with Kuang et al. [31] in that Durand is
always the best ranked operator (with and without a reference
scene). Furthermore, in contrast with our results, Reinhard is in a
middle position of their ranking.

Kuang et al. [32] suggested, again, that Durand was better
than Reinhard and iCAM06 was even better than Durand. In our
results, Durand and iCAM06 are quite close, but Reinhard is much
better than them. Again, Reinhard could have been run in local
TMO mode.

In a similar study as Kuang et al. [25], Ashikhmin and
Goyal [28] concluded that, comparing to the real scene, Fat-
tal and Drago were two of their overall best performers. We do
not agree that Fattal is one of the best performers, but we have
to point out that, in their work, they tuned the TMO’s parame-
ters, which implies that Fattal could be a good TMO when a fine
tuning of the parameters is performed. Furthermore, in their
work, Drago obtained more or less the same results as Fattal, but
Reinhard obtained worse results than them. They do not specify
how they run Reinhard, but it is possible that they run it in the
local mode. They obtained that the trilateral filtering [57], which
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(a) Scene 1 (b) Scene 2

(c) Scene 3

Fig. 5. Case V Thurstone Law’s scores for each evaluated TMO for each different scene. Thurstone scores are an arbitrary measure
that shows how many times a particular TMO is better than the other ones. Thus, in that case, the higher score, the better TMO.
Vertical lines show the 95% confidence limits.

is an improvement of Durand, was the worst ranked TMO, so
it makes sense that, in our work, Durand has obtained worse
results than Drago and Reinhard.

In [33], the outputs of the most internally sophisticated
TMO are statistically worse than the best single LDR exposure.
Since a global operator is generally less sophisticated than a
local, we could expect that global TMO results are better than
local TMO results. Contrary to this theory, Mertens (which
cannot be considered a sophisticated TMO because it uses
single exposure values) is on middle positions in the Segment
Matching experiments but it is one of the worst ranked in the
Scene Reproduction experiments.

Some authors emphasize the creation and use of particular
metrics to compare tone-mapped images. For example,
Ferradans et al. [48] performed an evaluation of several TMOs
using the metric of Aydin et al. [22]. Although it is not the
purpose of our work, we performed a very preliminary analysis
comparing our results to those of Aydin et al.’s [22] as shown
in [48]. We agree that Fattal was the operator with highest total
error percentages, but disagree with the general overall TMOs
ranking. A detailed analysis comparing numerical metrics and
psychophysical results is scheduled for future work.

It is possible to identify several shortcomings in our study
that need to be addressed before a more definitive conclusion is
achieved. Firstly, we have assumed that the software provided
by the Sigma camera manufacturers is accurate enough to con-

vert the scene luminance array to the sRGB digital file used as
input to all TMO algorithms. This assumption hides possible
inaccuracies because of glare effects, lens aberrations and pos-
sible tone/chroma enhancements. In the past, we calibrated
this camera and measured the linearity and spectral sensitivity
of its sensors for use in daylight settings [52] and verified that
tone/chroma enhancements are kept to a minimum at least for
its raw image settings. For this work we did not employ our
own calibration (which is valid within a fairly limited dynamic
range) but decided to rely on the manufacturer’s algorithm in-
stead. All these limits the reproducibility of our experiments
(unless of course the same camera is used). We are also aware
that the absence of an accurate radiometric description of our
scenes also limits the reproducibility of our experiments. To this
end we provide photometric information at least of the patches
and facets used in the matching comparisons (see Tables 2 and 3)
and the dynamic range of the both the monitor and the scenes
(see Section 3 A).

6. CONCLUSIONS

Our results show that TMO quality rankings strongly depend
on the criteria used for the psychophysical evaluation. Not sur-
prisingly, on one hand, local TMOs are better than global TMOs
on our Segment Matching experiment because these operators
do not consider just a pixel, but also a region of pixels (i.e. spa-
tial information). On the other hand, global TMOs are better
than local ones in our Scene Reproduction experiment. We have
found no significant correlation between Segment Matching and
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Table 6. Ranking obtained by averaging the scores given by
Case V Thurstone Law in the three different scenes. In this
ranking, the higher, the more similar to the real scene.

Averaged Thurstone Law’s Scores

TMO Score Type

Krawczyk 2.10 Local

KimKautz 2.03 Global

Reinhard 1.90 Global

Ferwerda 1.57 Global

Ferradans 1.48 Local

Drago 1.36 Global

Li 0.75 Local

Otazu 0.13 Local

Durand 0.10 Local

iCAM06 0.00 Local

Meylan -2.01 Local

Reinhard-Devlin -2.04 Global

Mertens -2.22 -

Ashikhmin -2.25 Local

Fattal -2.89 Local

Scene Reproduction rankings, showing that observers are us-
ing several visual attributes to perform their tasks and some of
these attributes are not considered by TMOs. We conclude that
TMOs should take into account both local and global charac-
teristics of the image, which implies that there is ample room
for improvement in the future development of TMO algorithms.
Furthermore, we suggest that an agreed standard criteria should
be defined for a proper and fair comparison among them.

Our rankings also show there is no TMO that is clearly bet-
ter than all the others across our experiments, but KimKautz
and Krawczyk are perhaps the best ranked since they do not
underperform in any of the metrics.

As a general conclusion, since none of the tested TMOs sat-
isfies all the testing criteria ("Segment Matching", "Scene Re-
production" and their respective analyses), operators have to
be selected depending on each particular task. This is a conse-
quence of the lack of coherent understanding of the goals of a
TMO, which is reflected in the wide variety of evaluation meth-
ods and results present in the literature. From a scientific point
of view, a TMO should aim to perceptually reproduce the real
scene instead of modifying image appearance according to aes-
thetics (for which we already have a wide selection of image
tools). Having said so, it is also important to consider that these
operators are widely used in digital cameras and mobile phone’s
cameras and TMO users often prefer aesthetic improvements
over accurate scene reproduction.
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