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Abstract 

This work reports the applicability of a voltammetric sensor array able to 

evaluate the content of 4-ethylphenol, 4-ethylguaiacol and 4-ethylcatechol in spiked 

wine samples using the electronic tongue (ET) principles. The ET uses cyclic 

voltammetry signals, obtained from an array of six graphite epoxy modified composite 

electrodes, compressed using Discret Wavelet transform with chemometric tools among 

these, artificial neural networks (ANNs) were employed to build the quantitative 

prediction model. In this manner, a set of standards based on a modified full factorial 

design and ranging from 0 to 25 mg·L-1 on each phenol, was prepared to build the 

model; afterwards, the model was validated with an external set of standards. The model 

successfully predicted the concentration of the three considered phenols with a 

normalized root mean square error of 0.02 and 0.05 for the training and test subsets 

respectively and correlation coefficient better than 0.958. 
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1. Introduction 

The wine sector is an important economic that still has some unsolved issues, 

such as the generation of undesired volatile phenols during the early stages of wine 

production, the alcoholic fermentation. Volatile phenols such as phenol, guaiacol, 

cresol, ethylphenol, vinylphenol, eugenol and vainilline are present in wine and are the 

main responsible for the wine aroma [1]. Depending on their concentration levels and 

their aromatic properties, some of them contribute positively to wine aroma, but others 

are responsible for undesired aromas and flavors. Among these compounds the 4-

ethylphenols and vinylphenols are mainly the responsible for unpleasant aromas often 

described as “phenolic”, “leather” or “barnyard”, and are the origin of this defect in 

wine product. 

Presence of 4-ethylphenols in wine is mainly due to the enzymatic side-

processes during its fermentation, especially when the Brettanomyces and Dekkera 

yeast families are present [2, 3]. This yeasts are naturally present in the fruit skin so it is 

almost impossible to avoid the presence of this kind of microorganisms when 

harvesting; the problem arise when the activity of this yeasts is very high, producing a 

wine with a concentration of 4-ethylphenols that surpasses the human threshold, wich 

has been reported to be aprox. 0.5 mg·L-1 of 4-ethylphenols [3]. In the industry, there 

are two alternatives to minimize the presence of these compounds: the early detection of 

proliferating Brettanomyces yeasts via cell culture [4] or a gas chromatography analysis 

of their metabolites [5]; it has to be remarked that both methods are time consuming, 

require trained personnel and cannot be used on-site. 

In this context, electrochemical sensors offer an opportunity to detect the 

Brettanomyces metabolites on site at the wine producer. Electrochemical systems 

present known advantages that include high sensitivity and selectivity, a wide linear 
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range, and low-cost instrumentation. In addition, electrochemical measurement devices 

can be readily miniaturized and/or integrated to facilitate on-site testing. Unfortunately, 

there are some factors that hinder the applicability of such sensors in real samples, e.g. 

matrix effects, interferents, electrode fouling, etc. In this context a new sensor approach 

was proposed in the early 90s to overcome some of the limitations that a single sensory 

element presented, the use of sensor arrays [6]. However, the highly complex data 

generated by the sensor array needs to be treated in order to extract the meaningful 

information; the data is processed employing advanced mathematical tools such as 

Principal Component analysis (PCA), partial least squares (PLS) or artificial neural 

networks (ANNs) [7]. The resulting approach is known as electronic tongue (ET) [8], 

due to its similarities to the biological taste sense. ETs have been specifically employed 

in applications related to the wine field as the determination of the total polyphenolic 

content in wine, prediction of the sensory score or the detection of adulterations, among 

many others [9-12]. Hence, with this methodology, it is possible to achieve a 

simultaneous determination of a large number of different species, while diminishing 

any interference effect using these advanced mathematical tools [13]. 

The ET principles are reported now in an approach based on the coupling of 

cyclic voltammetry responses obtained from an array of modified epoxy graphite 

electrodes, compressed with Discrete Wavelet Transform [14], and processed with 

ANNs to build a predictive model able to quantify the content in 4-ethylphenol, 4-

ethylguayacol and 4-ethylcatechol in wine, as its depicted in Figure 1, this approach 

attempt to obtain an alert tool, to detect the defect of volatile phenols in wine, applicable 

in the wineyard and directed to improve wine quality and prevent the appearance of this 

defect. 
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Figure 1. Scheme of the experimental setup used for the early detection of volatile 

phenol defects in wine. 

2. Experimental 

2.1 Reagents and chemicals 

All reagents used in this work were analytical reagent grade. 4-ethylphenol, 4-

ethylguaiacol, 4-ethylcatechol, Cu nanoparticles (particle size 50 nm), WO3 

nanoparticles (particle size <100 nm), 2% Bi2O3 nanoparticles (particle size 90-210 

nm), polypyrrole and Co phtalocyanine were purchased from Sigma-Aldrich (St. Louis, 

MO, USA). 

Graphite powder (particle size 50 µm) was received from BDH (BDH 

Laboratory Supplies, Poole, UK). Epotek H77 resin was purchased from Epoxy 

Technology (Billerica MA, USA). Don Simon wine was purchased at the local 

supermarket. 

2.2 Electronic tongue 

The voltammetric ET was formed by an array of 6 sensors, plus a combined Pt 

auxiliary and a Ag/AgCl reference electrode (Crison 5261, Barcelona, Spain). Working 
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electrodes were bulk modified graphite epoxy composites, which were prepared by 

mixing the resin, graphite powder and modifiers in the ratio 83:15:2 (w/w) [15]. 

Afterwards, resin was allowed to harden at 80 ºC for 24 h; and electrode surfaces were 

next polished with different sandpapers of decreasing grain size.  

In this manner, the array of 6 voltammetric electrodes was prepared, consisting 

in one blank electrode plus five composite electrodes modified with Cu nanoparticles, 

W03 nanoparticles, Co phtalocyanine, Bi203 nanoparticles and polypyrrole. This choice 

was intended as to maximize the differences in the obtained voltammograms for the 

different sensors used as is demonstrated in section 3.1. 

Electrochemical measurements were performed at room temperature (25ºC), 

using a 6-channel AUTOLAB PGSTAT20 (Ecochemie, Netherlands) controlled with 

GPES Multichannel 4.7 software package. A complete voltammogram was recorded for 

each sample by cycling the potential between -1.1 V and +1.2 V vs. Ag/AgCl with a 

step potential of 9 mV and a scan rate of 100 mV·s-1. 

In order to get stable voltammetric responses and ensure reproducible signals 

from the array during the experiment, the electrodes were cycled in buffer solution after 

the sample measurements and an electrochemical cleaning step was performed between 

samples at +1.4 V during 40 s in a cell containing 20 ml of 100 mM saline solution at 

pH 10 [16]. 

2.3 Data pre-processing 

The main objective of the pre-processing is to reduce the complexity of the input 

signal (6 sensors x 490 current values at different potential) while preserving the 

relevant information, this step allows a gain in training time, avoids redundancy in the 

input data and  a obtained model with better generalization ability [7].  
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The compression of the voltammetric data was achieved by means of Discrete Wavelet 

Transform [14]: each voltamogram was compressed using Daubechies 3 and a 4th 

decomposition level. In this manner, the 2940 inputs per sample were reduced down to 

132 coefficients, achieving a compression ratio of 93.5%. 

The statistical treatment and analysis was performed using routines written by 

the authors through MATLAB 2016b (MathWorks, Natick, MA) programming 

environment and its Neural Network Toolbox; the graphical representation and analysis 

of the results was performed with Sigmaplot (Systat Software Inc., San Jose, CA). 

3. Results and Discussion 

3.1 Voltammetric array response 

The voltammetric responses for each of the electrodes towards individual 

compounds were first evaluated, to assure that the generated signals are different 

enough and the obtained data is rich enough to be the departure point for a multivariate 

calibration model. 

Therefore, under the described conditions in section 2.2, individual stock 

solutions of 25 ppm of 4-ethylphenol, 4-ethylguayacol and 4-ethylcatechol were 

analyzed (Figure 2). As a general trend, as it is already reported in the literature [17], 

two processes are observed for all the sensors corresponding to the oxidation of the 

corresponding phenol to its quinone form, and the reduction of the quinone to the 

phenolic form.  

Moreover, it can also be seen that the copper nanoparticle modified electrode 

displays higher currents, a fact somehow explained by the fact that the main natural 

phenolic-degrading enzymes, like tyrosinase or laccase, are copper containing redox 

enzymes [18, 19]. Besides, slightly differentiated curves are obtained for each of the 

compounds, a necessary condition for any ET study. 
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Figure 2. Example of the different voltammograms obtained for 25 ppm of 4-EP 

(black), 4-EG (red) and 4-EC (blue) in a wine matrix for a (A) Bare epoxy-graphite 

electrode, and electrodes modified with (B) Cu nanoparticles, (C) WO3 nanoparticles, 

(D) Bi2O3 nanoparticles, (E) Polypyrrole and (F) Co(II) phthalocyanine. 

However, if it is not enough to asses visually that each sensor in the array 

responded in a different manner towards 4-ethylphenol, 4-ethylguaiacol and 4-

ethylcatechol a chemometric assay was further done. In order to assess mathematically 

the complementarities between the voltammetric responses of Figure 2 a principal 

component analysis (PCA) was performed [20]. In Figure 3A are plotted the scores of 

samples correcponding to the two first principal components for the array response 

towards the 3 ethylphenols; in there, it can be seen that each compound sample is 

differentiated and clearly clustered. Figure 3B also plots the scores of the two first 

principal components but taking into account each sensor, as it can be seen each sensor 

provides a distinct signal for each analyte. Moreover, the different sensors appear in 

different coordinates in the scores plot meaning that they have different responses that 



 8 

complement each other. Perhaps the two electrodes showing the closest response were 

these of Co (II) phthalocyanine and WO3 that were kept given the very different nature 

of the catalysts involved. 

 

Figure 3. The scores plot of graphite-epoxy electrode (GEC) , CuO NPs electrode, WO3 

NPs electrode, Bi2O3 NPs electrode, polypyrrole electrode and Co(II) phthalocyanine 

electrode for 25 ppm of 4-EP (black), 25 ppm of 4-EG (red) and 25 ppm of 4-EC (blue). 

The array response towards the compounds of interest, once confirmed the 

different behaviour of the employed electrodes, allowed the differentiation of the 

different ethylphenol compounds considered; the next step was to proceed with the 

design of the architecture of the ANN model capable to quantify these compounds in a 

complex matrix such as wine. 

3.2 Building of the ANN model 

The first step in the construction of the artificial neural network is the design of 

the training and test subsets. In this case the chosen experimental design for the train 

subset was a modified (tilted) 33 factorial design (27 samples) [21]; while the validation 

of the constructed model was done with the test set (10 samples), these were randomly 

distributed along the experimental domain (0 to 25 mg·mL-1 for each phenolic 

compound) on a Don Simon commercial wine matrix. 
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Once the data of the samples in the different subsets was collected the 

voltammograms were compressed by use of DWT, as result the obtained dataset is 

suited to be feed to the different ANN models. The next step is to optimize the 

appropriate ANN architecture, this is usually done by trial-and-error procedure due to 

the difficulties to predict the best configuration as there are several parameters involved 

(compression pretreatment, number of neurons in the hidden layer, transfer functions, 

etc.) [22]. 

As previously commented, the samples from the training subset were used to 

build the ANN model and the performance of the model was evaluated with the 

prediction of the analyte concentrations in the test subset samples. As mentioned, the 

test subset is an external set that has not been used in the modeling procedure; the 

goodness of fit for this subset is a good parameter to evaluate the modeling 

performance. 

After the evaluation of different topologies, the final ANN architecture had 132 

neurons (6 sensors × 22 DWT coeffs.) in the input layer, 3 neurons and satlins transfer 

function in the hidden layer and 3 neurons and purelin transfer function in the output 

layer, providing simultaneously the concentration of the three compounds considered. 

Comparison graphs of predicted vs. expected concentrations for training and testing 

subsets, for each of the compounds, were built to evaluate the prediction ability of the 

ANN model (Figure 4). A satisfactory trend is obtained for both subsets, with regression 

lines values very close to the theoretical ones, slope and intercept equal to 1 and 0 

respectively. Nevertheless, the training subset showed better correlation coefficients (r ≥ 

0.99) than the test subset (r ≥ 0.95) but this is expected to be as the train subset is used 

to optimize the architecture, therefore the model is tailored to fit this data, while the test 

subset is not used at all during the modeling. The detailed results, described in Table 1, 
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showing promising results for the test subset as the NRSME (normalized root mean 

square error) for the three compounds is 0.05. Additionally, PLS was employed to 

compare the ANN model with the usual chemometric methods, such as partial least 

squares model. The NRMSE obtained for the test subset with the PLS model was 0.159. 

However, the PLS models achieves comparable NRMSE values in quantification of 4-

EG, the individual NRMSE errors were 0.059, 0.062 and 0.135 for 4-EP, 4-EG and 4EC 

respectively. The results of the PLS model can are detailed in the supporting 

information.  

 

Figure 4. Modeling ability of the developed DWT-ANN. Adjustments of expected vs. 

predicted concentrations for (A) 4-EP, (B) 4-EG and (C) 4-EC, both for training (●, 

solid line) and testing subsets (○, dashed line). Dotted line corresponds to theoretical 

diagonal line. 
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Table 1. Results of the fitted regression lines for the comparison between obtained vs. 

expected values, both for the training and testing subsets of samples and the three 

considered species (intervals calculated at the 95% confidence level). 

  r Slope Intercept (mg·L-1) NRMSE Total NRMSE 

Train 

4-Ethylphenol 0.998 0.990±0.0487 0.131±0.715 0.019 

0.022 4-Ethylguaiacol 0.998 0.981±0.0486 0.213±0.667 0.018 

4-Ethylcatechol 0.995 0.974±0.0816 0.282±1.095 0.029 

Test 

4-Ethylphenol 0.997 1.089±0.133 -1.243±1.798 0.037 

0.050 4-Ethylguaiacol 0.958 0.969±0.474 0.691±6.400 0.069 

4-Ethylcatechol 0.988 0.886±0.227 1.461±3.069 0.043 

NRMSE: Normalized Root Mean Square Error 

Additionally, to double check the goodness of the fit joint confidence intervals 

(JCI) were calculated and plotted according to advanced linear regression methodology 

[23]. The use of JCI plots has been previously employed as a rapid visualization tool to 

detect if two methods have significant differences [24], allowing simultaneous 

evaluation of the slope and intercept. The plotting of the JCI takes into account the 

uncertainties from both axes to calculate the estimated covariance matrix based on a F 

distribution. In this manner the plots were constructed, for the plots shown in Figure 4, 

and the theoretical comparison point (0,1) was included for comparison purposes. As 

can be observed in Figure 5, the theoretical point is included in the confidence intervals 

for both for the training and testing subsets; confirming that statistically there are no 

significant differences for the ET predicted values and the expected ones. As before, the 

results obtained for the training subset are more precise, being close to the ideal point, 

than the ones in the test subset. 
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Again it can be seen that the test subset gives a bigger joint confidence ellipse, 

this fact can be easily explained; firstly, the test subset is not employed at all during the 

construction of the model. Moreover, the number of samples in the testing subset is 

much lower that the train subset, and consequently, the tabulated values of t and F are 

higher, resulting in higher dispersion and larger confidence intervals. 

. 

 

Figure 5. Joint confidence intervals for the train subset: (■, solid line) and the test 

subset (●,dashed line). Also ideal point (1,0) is plotted (x); intervals calculated at the 

95% confidence level. 

4. Conclusions 

The approach presented here combines an array of six voltammetric sensors with 

artificial neural networks to simultaneously quantify the concentrations of 4-

ethylphenol, 4-ethylguaiachol and 4-ethylcatechol, as important defect episode in wine 

samples.  

The ET strategy allowed the resolution of signal overlapping and therefore the 

quantification of the individual species considered. This fact combined with the 

advantages of electrochemical sensors for on-field analysis results in a promising tool 
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that substituted the classical expensive and time consuming methods to help 

winemakers in the early detection of the Brett defect. 
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