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Abstract. In this paper we consider planar potential differential systems and we study the bifurcation
of critical periodic orbits from the outer boundary of the period annulus of a center. In the literature
the usual approach to tackle this problem is to obtain a uniform asymptotic expansion of the period
function near the outer boundary. The novelty in the present paper is that we directly embed the
derivative of the period function into a collection of functions that form a Chebyshev system near the
outer boundary. We obtain in this way explicit sufficient conditions in order that at most n > 0 critical
periodic orbits bifurcate from the outer boundary. These theoretical results are then applied to study
the bifurcation diagram of the period function of the family ẍ = xp − xq, p, q ∈ R with p > q.

1 Introduction and setting of the problem

This paper is concerned with the period function of centers of planar differential systems. A singular point p
of an analytic differential system {

ẋ = f(x, y),

ẏ = g(x, y),

is a center if it has a punctured neighbourhood that consists entirely of periodic orbits surrounding p. The
largest punctured neighbourhood with this property is called the period annulus of the center and it will
be denoted by P. Henceforth ∂P will denote the boundary of P after embedding it into RP2. Clearly
the center p belongs to ∂P, and in what follows we will call it the inner boundary of the period annulus.
We also define the outer boundary of the period annulus to be Π:= ∂P \ {p}. Note that Π is a non-empty
compact subset of RP2. The period function of the center assigns to each periodic orbits in P its period.
Since the period function is defined on the set of periodic orbits in P, in order to study its qualitative
properties usually the first step is to parametrize this set. This can be done by taking an analytic transverse
section to the vector field

X = f(x, y)∂x + g(x, y)∂y

on P, for instance an orbit of the orthogonal vector field X⊥. If {γs}s∈(0,1) is such a parametrization,
then s 7−→ T (s) :={period of γs} is an analytic map that provides the qualitative properties of the period
function that we are interested in. In particular the existence of critical periods, which are isolated critical
points of this function, i.e. ŝ ∈ (0, 1) such that T ′(s) = α(s − ŝ)k + o

(
(s − ŝ)k

)
with α 6= 0 and k > 1. In

this case we shall say that γŝ is a critical periodic orbit of multiplicity k of the center. One can readily see
that this definition does not depend on the particular parametrization of the set of periodic orbits used.
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The study of critical periodic orbits is analogous to the study of limit cycles, which are the main concern
of the celebrated Hilbert’s 16th problem (see [2, 7, 24, 30] and references there in) and its various weakened
versions. Questions related to the behaviour of the period function have been extensively studied by a
number of authors. Let us quote for instance the problems of isochronicity (see [6, 12, 20]), monotonicity
(see [3, 4, 26]) or bifurcation of critical periodic orbits (see [5, 25,27]).

Our goal in the present paper is to study the bifurcation of critical periodic orbits from the outer boundary
of the period annulus. Of course, as any bifurcation phenomenon, this occurs in case that X depends on
a parameter, say µ ∈ Λ ⊂ Rd. Thus, for each µ ∈ Λ, suppose that Xµ is an analytic vector field on some
open set Uµ ⊂ R2 with a center at pµ. Following the notation introduced previously, we denote by Πµ the
outer boundary of its period annulus Pµ. Concerning the regularity with respect to the parameter, we shall
assume that {Xµ}µ∈Λ is a continuous family, meaning that the map (x, y, µ) 7−→ Xµ(x, y) is continuous in
{(x, y, µ) ∈ Rd+2 : (x, y) ∈ Uµ, µ ∈ Λ}. The present paper is addressed to study of the number of critical
periodic orbits of Xµ that can emerge or disappear from Πµ̂ as we move slightly the parameter µ ≈ µ̂. We
call this number the criticality of the outer boundary and its precise definition is the following, where dH
stands for the Hausdorff distance between compact sets of RP2.

Definition 1.1. Consider a continuous family {Xµ}µ∈Λ of planar analytic vector fields with a center and
fix some µ̂ ∈ Λ. Suppose that the outer boundary of the period annulus varies continuously at µ̂ ∈ Λ,
meaning that for any ε > 0 there exists δ > 0 such that dH(Πµ,Πµ̂) 6 ε for all µ ∈ Λ with ‖µ − µ̂‖ 6 δ.
Then, setting

N(δ, ε) = sup {# critical periodic orbits γ of Xµ in Pµ with dH(γ,Πµ̂) 6 ε and ‖µ− µ̂‖ 6 δ} ,

the criticality of (Πµ̂, Xµ̂) with respect to the deformation Xµ is Crit
(
(Πµ̂, Xµ̂), Xµ

)
:= infδ,εN(δ, ε). �

Certainly Crit
(
(Πµ̂, Xµ̂), Xµ

)
may be infinite but if it is not, then it gives the maximal number of

critical periodic orbits of Xµ that tend to Πµ̂ in the Hausdorff sense as µ → µ̂. It is clear that, for a given
µ̂ ∈ Λ, the geometry of the period annulus Pµ̂ changes as we move µ ≈ µ̂. The assumption that the period
annulus varies continuously ensures that these changes do not occur abruptly. In this regard note that
Xµ = −y∂x + (x+µx3 +x5)∂y, with µ ∈ R, form a continuous family of planar analytic vector fields with a
center at the origin for which the outer boundary does not vary continuously at µ = 2. Indeed, the period
annulus Pµ is the whole plane for µ < 2, whereas is bounded for µ = 2 (see [21] for details). Clearly the
notion of criticality as defined in Definition 1.1 is meaningless in this situation.

Definition 1.2. We say that µ̂ ∈ Λ is a local regular value of the period function at the outer boundary of
the period annulus if Crit

(
(Πµ̂, Xµ̂), Xµ

)
= 0. Otherwise we say that it is a local bifurcation value of the

period function at the outer boundary. �

In this paper we develop tools that enable to bound the criticality at the outer boundary in case that we
deal with a family of potential differential systems. These tools improve the ones that we obtained in [13]
although to prove them we shall strongly rely on the results in that paper. In order to set all these results in
a context we first recall some well-known facts about the period function of potential differential systems. So
consider an analytic function V on some open interval I containing x = 0 such that V (0) = V ′(0) = 0 and
V ′′(0) > 0. Then the potential differential system X = −y∂x +V ′(x)∂y has a non-degenerated center at the
origin with the periodic orbits inside the energy levels of the Hamiltonian function H(x, y) = 1

2y
2 + V (x).

We have in this case that H(P) = (0, h0) with h0 ∈ R+ ∪ {+∞}. Clearly the inner boundary of P, i.e.
the center at the origin, is inside the energy level h = 0. We say, by abuse of language, that the outer
boundary Π of P is “inside” the energy level h = h0. (We remark that Π is a subset of RP2 which may
have points outside the vertical strip I× R, the domain of the Hamiltonian function.) The period T (h) of
the periodic orbit γh inside the energy level {H(x, y) = h} is given by the Abelian integral

T (h) =

∫

γh

dx

y
.

It is well known that T is an analytic function on (0, h0) that, if the center is non-degenerated, can be
extended analytically to h = 0. Its derivative T ′(h) is also given by an Abelian integral and we are interested
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in its zeros near h = h0, which correspond to critical period orbits near Π. Suppose now that we deal with
a family of potential differential systems {Xµ}µ∈Λ and that the problem is to compute Crit

(
(Πµ̂, Xµ̂), Xµ

)

for a given µ̂ ∈ Λ. Note firstly that the energy level h0 at the outer boundary depends on µ. The tools that
we developed in [13] allow to tackle the problem in the following two situations:

• either h0(µ) = +∞ for all µ ≈ µ̂,

• or h0(µ) < +∞ for all µ ≈ µ̂.

(We do not treat the case in which in any neighbourhood of µ̂ there are µ1 and µ2 with h(µ1) = +∞ and
h(µ2) < +∞.) For each one of these two situations, we gave a theoretical result for Crit

(
(Πµ̂, Xµ̂), Xµ

)
= 0

and another one for Crit
(
(Πµ̂, Xµ̂), Xµ

)
6 1. It is to be noted that the approach we followed to prove

those results, as well as their assumptions, are very different for the cases h0 = +∞ and h0 < +∞. In
this paper we go further and prove Theorems A and B, addressed to cases h0 = +∞ and h0 < +∞,
respectively, in which we give sufficient conditions in order that Crit

(
(Πµ̂, Xµ̂), Xµ

)
6 n for n ∈ N ∪ {0}.

The idea in both cases is to find functions φiµ(h), i = 1, 2, . . . , n, verifying that there exist δ, ε > 0 such that if
‖µ−µ̂‖ < δ, then (φ1

µ, φ
2
µ, . . . , φ

n
µ, T

′
µ) is an extended complete Chebyshev system (ECT-system for short, see

Definition 2.1) on the interval (h0(µ)−ε, h0(µ)). This implies in particular that T ′µ(h) has at most n zeros for

h ∈ (h0(µ)− ε, h0(µ)), counted with multiplicities, for all µ ≈ µ̂ and, accordingly, Crit
(
(Πµ̂, Xµ̂), Xµ

)
6 n.

We choose different type of functions φiµ for the cases h0 = +∞ and h0 < +∞, but in both situations we
take them simple enough in order that (φ1

µ, φ
2
µ, . . . , φ

n
µ) is an ECT-system on (0, h0(µ)). Taking this into

account, the problem is then to guarantee that the Wronskian (see Definition 2.2) of (φ1
µ, φ

2
µ, . . . , φ

n
µ, T

′
µ) is

non-vanishing near h = h0(µ) for all µ ≈ µ̂.
Theorems A and B can be compared to the results obtained in the series of papers [16–19] by Mardešić

et al. because both studies deal with the bifurcation of critical periodic orbits from the outer boundary of
the period annulus. However striking differences exist. The first one is that their results apply to differential
systems which need not be potential, but on the other hand their approach requires that the differential
system has a meromorphic extension to Π (for instance, starting with a polynomial system and making its
Poincaré compactification). The second one is due to the fact that we bound the criticality by embedding
the derivative of the period function in an ECT-system, whereas their approach is to obtain the asymptotic
expansion of the period function near the outer boundary and then compute the coefficient of the principal
term. The testing ground for the results by Mardešić et al. is the family of Loud’s centers. In this regard
it is to be pointed out that the Loud’s family can be brought to potential form by means of an explicit
coordinate transformation, see [28, Lemma 2.2], and hence it is susceptible to be studied with our techniques.
We expect to exploit this in a forthcoming paper that we hope will prove some aspects of the conjectural
bifurcation diagram of the period function of the Loud’s centers proposed in [18].

Our testing ground is the two-parametric family of potential differential systems given by

{
ẋ = −y,
ẏ = (x+ 1)p − (x+ 1)q,

(1)

which has a non-degenerated center at the origin for all µ := (q, p) varying inside Λ:= {(q, p) ∈ R2 : p > q}.
Note that, for each µ ∈ Λ, Xµ := −y∂x +

(
(x + 1)p − (x + 1)q

)
∂y is analytic on {(x, y) ∈ R2 : x > −1}.

We became interested in this family because of the previous results by Miyamoto and Yagasaki in [22]
concerning the monotonicity of the period function for q = 1 and p ∈ N. Later Yagasaki improved the result
showing in [29] the monotonicity of the period function for q = 1 and any real number p > 1. We studied
afterwards the whole family {Xµ}µ∈Λ in [13, 14]. To be more precise, in [14] we were concerned with the
monotonicity of the period function, the criticality of the inner boundary and the criticality of the interior
of the period annulus of the isochronous centers. In [13] we studied the criticality of the outer boundary
and it is precisely the result we obtained there for the family (1) the one that we seek to improve here. In
short, see Figure 1, we proved that Crit

(
(Πµ̂, Xµ̂), Xµ

)
= 0 if µ̂ ∈ Λ\{ΓB∪ΓU} and Crit

(
(Πµ̂, Xµ̂), Xµ

)
> 1

if µ̂ ∈ ΓB . Without going into detail for the sake of shortness, we proved moreover that the criticality is
exactly one for parameters inside two segments in ΓB . By applying the general tools developed in this paper

we can go further and prove the following result, where f(p) := (2 + 2p)
2+2p
1+2p − 2(1 + 2p).
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Figure 1: Bifurcation diagram of the period function of the family (1) at the outer
boundary of the period annulus according to [13, Theorem E], where ΓB and ΓU stand,
respectively, for the union of the solid and dotted lines. Then Crit

(
(Πµ̂, Xµ̂), Xµ

)
= 0

if µ̂ ∈ Λ \ {ΓB ∪ ΓU} and Crit
(
(Πµ̂, Xµ̂), Xµ

)
> 1 if µ̂ ∈ ΓB .

Theorem C. Let {Xµ}µ∈Λ be the family of potential vector fields in (1) and consider the period function
of the center at the origin. Then the following hold:

(a) If µ̂ = (− 1
2 , p̂) with p̂ ∈ (− 1

2 ,+∞) \ {0, p0}, where p0 ≈ 1.20175 is the unique zero of f on (− 1
2 ,+∞),

then Crit
(
(Πµ̂, Xµ̂), Xµ

)
= 0.

(b) If µ̂ = (0, p̂) with p̂ ∈ (0,+∞) \ { 1
2 , 1}, then Crit

(
(Πµ̂, Xµ̂), Xµ

)
= 1.

It is worth mentioning that the centers corresponding to the parameters µ = (− 1
2 , 0) and µ = (0, 1) are

isochronous. In this regard the result in (a) and (b) is optimal for these particular parameters.

The paper has three additional sections organized in the following way. In Section 2 we introduce the
notions of ECT-system and Wronskian and recall well-known properties that relate them. Furthermore we
obtain the analytical tools that we shall later use to prove the results about the criticality, which is done
in Section 3. To be more precise, we treat the case h0 = +∞ and prove Theorem A in Section 3.1, whereas
we consider the case h0 < +∞ and show Theorem B in Section 3.2. Finally, to illustrate its applicability
we prove Theorem C in Section 4.

2 Previous analytic results

This section is devoted to obtain the technical tools that we shall later use to prove the results concerning
the criticality. To this end let us take a ∈ R+ ∪ {+∞} and consider the integral operator

F : C ω
(
[0, a)

)
−→ C ω

(
[0, a)

)

defined by

F [f ](x) :=

∫ π
2

0

f
(
x sin θ

)
dθ. (2)

Here, and in what follows, C ω([0, a)) stands for the set of analytic functions on (0, a) that can be analytically
extended to x = 0. The reason why we are interested in this operator is because we can relate it with the
derivative of the period function of X = −y∂x + V ′(x)∂y. Indeed, it is well known (see for instance [3, 15])
that the period T (h) of the periodic orbit γh inside the energy level { 1

2y
2 + V (x) = h} is given by

T (h) =

∫

γh

dx

y
=
√

2

∫ π
2

−π2
(g−1)′

(√
h sin θ

)
dθ,
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where g(x) = sgn(x)
√
V (x). Consequently

T ′(h) =
1√
2h

∫ π
2

−π2
(g−1)′′

(√
h sin θ

)
sin θdθ, (3)

so that
√

2h2T ′(h2) = F [f ](h) with f(x) = x(g−1)′′(x)− x(g−1)′′(−x).

Next we recall the notions of Chebyshev system and Wronskian, that will be very useful for our purposes.

Definition 2.1. Let f0, f1, . . . fn−1 be analytic functions on an open real interval I. The ordered set
(f0, f1, . . . fn−1) is an extended complete Chebyshev system (for short, a ECT-system) on I if, for all k =
1, 2, . . . n, any nontrivial linear combination

α0f0(x) + α1f1(x) + · · ·+ αk−1fk−1(x)

has at most k−1 isolated zeros on I counted with multiplicities. (Let us mention that, in these abbreviations,
“T” stands for Tchebycheff, which in some sources is the transcription of the Russian name Chebyshev). �

Definition 2.2. Let f0, f1, . . . , fk−1 be analytic functions on an open interval I of R. Then

W [f0, f1, . . . , fk−1](x) = det
(
f

(i)
j (x)

)
06i,j6k−1

=

∣∣∣∣∣∣∣∣∣

f0(x) · · · fk−1(x)
f ′0(x) · · · f ′k−1(x)

...

f
(k−1)
0 (x) · · · f

(k−1)
k−1 (x)

∣∣∣∣∣∣∣∣∣

is the Wronskian of (f0, f1, . . . , fk−1) at x ∈ I. �

These two notions are closely related by the following well-known result (see for instance [11]).

Lemma 2.3. (f0, f1, . . . , fn−1) is an ECT-system on I if and only if, for each k = 1, 2, . . . , n,

W [f0, f1, . . . , fk−1](x) 6= 0 for all x ∈ I.

Our goal is to complete F [f ] with some analytic functions g0, . . . , gn−1 in order that (g0, . . . , gn−1,F [f ])
form an ECT-system on (a − ε, a) for some ε > 0. In particular this will imply that F [f ](x), and so the
derivative of the period function, has at most n isolated zeroes for x ≈ a counted with multiplicities. Then
to obtain the desired upper bounds on the criticality, the delicate point will be as usual to guarantee the
uniformity with respect to the parameters of the system. Thus we aim to find sufficient conditions in terms
of f in order that F [f ] can be embedded into an ECT-system. These conditions will be formulated using
the notions that we introduce next:

Definition 2.4. Let f be an analytic function on I = (a, b). We say that f is quantifiable at b by α with
limit ` in case that:

(i) If b ∈ R, then limx→b− f(x)(b− x)α = ` and ` 6= 0.

(ii) If b = +∞, then limx→+∞
f(x)
xα = ` and ` 6= 0.

We call α the quantifier of f at b. We shall use the analogous definition at a. �

Definition 2.5. Let Λ be an open subset of Rd and suppose that, for each µ ∈ Λ, fµ is an analytic
function on some real interval Iµ. Suppose furthermore that the map (x, µ) 7−→ fµ(x) is continuous on
{(x, µ) ∈ R× Λ : x ∈ Iµ}. Then we say that {fµ}µ∈Λ is a continuous family of analytic functions on Iµ. �

Definition 2.6. Let {fµ}µ∈Λ be a continuous family of analytic functions on Iµ =
(
a(µ), b(µ)

)
. Assume

that b is either a continuous function from Λ to R or b(µ) = +∞ for all µ ∈ Λ. Given µ̂ ∈ Λ we shall
say that {fµ}µ∈Λ is continuously quantifiable in µ̂ at b(µ) by α(µ) with limit ` if there exists an open
neighbourhood U of µ̂ such that fµ is quantifiable at b(µ) by α(µ) for all µ ∈ U and, moreover,
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(i) In case that b(µ̂) < +∞, then lim(x,µ)→(b(µ̂),µ̂) fµ(x)
(
b(µ)− x

)α(µ)
= ` and ` 6= 0.

(ii) In case that b(µ̂) = +∞, then lim(x,µ)→(+∞,µ̂)
fµ(x)

xα(µ) = ` and ` 6= 0.

We shall use the analogous definition for the left endpoint of Iµ. �

Remark 2.7. Notice that the map α : U −→ R that appears in the previous definition must be continuous
at µ̂, otherwise there exists a sequence {µn}n∈N such that limn→∞ α(µn) = α(µ̂) + κ with κ 6= 0. Then, for
instance in case that b(µ̂) = +∞, we would have

` = lim
(x,n)→(+∞,+∞)

fµn(x)

xα(µn)
= lim
x→+∞

(
lim

n→+∞
fµn(x)

xα(µn)

)
= lim
x→+∞

fµ̂(x)

xα(µ̂)+κ

which, on account of ` 6= 0, contradicts that limx→+∞
fµ̂(x)

xα(µ̂) is finite and different from zero by definition. �

Lemma 2.8. Let {fµ}µ∈Λ be a continuous family of analytic functions on [0,+∞). Assume that {fµ}µ∈Λ

and {f ′µ}µ∈Λ are continuously quantifiable in µ̂ at +∞ by α(µ) and β(µ) with limit a and b, respectively,
and that α(µ̂) 6= 0. Then β = α− 1 and b = α(µ̂)a.

Proof. The result follows by using Hôpital’s Rule and the uniqueness of the quantifier (see Remark 2.7).

Definition 2.9. Let f be an analytic function on [0,+∞). Then, for each n ∈ N, we call

Mn[f ] :=

∫ +∞

0

x2n−2f(x)dx

the n-th momentum of f , whenever it is well defined. �

Following the previous definitions and notation, the next result gathers Theorems 2.13 and 2.17 in [13].

Theorem 2.10. Let Λ be an open subset of Rd and consider a continuous family {fµ}µ∈Λ of analytic
functions on [0,+∞). Suppose that {fµ}µ∈Λ is continuously quantifiable in Λ at +∞ by α(µ). The following
assertions hold:

(a) If α(µ̂) > −1, then
{
F [fµ]

}
µ∈Λ

is continuously quantifiable in µ̂ at +∞ by α(µ).

(b) If α(µ̂) < −1, let us take m ∈ N such that α(µ̂) + 2m ∈ [−1, 1). In this case:

(b1) If M1[fµ] ≡M2[fµ] ≡ . . . ≡Mj−1[fµ] ≡ 0 and Mj [fµ̂] 6= 0 for some 1 6 j 6 m, then
{
F [fµ]

}
µ∈Λ

is continuously quantifiable in µ̂ at +∞ by 1− 2j.

(b2) If M1[fµ] ≡ M2[fµ] ≡ · · · ≡ Mm[fµ] ≡ 0 and α(µ̂) + 2m /∈ {−1, 0}, then
{
F [fµ]

}
µ∈Λ

is continu-

ously quantifiable in µ̂ at +∞ by α(µ).

We point out that the hypothesis M1[fµ] ≡ M2[fµ] ≡ . . . ≡ Mj−1[fµ] ≡ 0 in the previous statement is
void for j = 1.

Given ν1, ν2, . . . , νn ∈ R, we define the linear ordinary differential operator

Lνn : C ω
(
(0,+∞)

)
−→ C ω

(
(0,+∞)

)

given by

Lνn [f ](x) :=
W [xν1 , xν2 , . . . , xνn , f(x)]

x
∑n
i=1(νi−i) . (4)

Here, and in what follows, for the sake of shortness we use the notation νn = (ν1, . . . , νn). Furthermore we
define Lν0

= id in order that the statements of the next results contemplate the case n = 0 as well.

The rest of the present section is devoted to study under which conditions the quantifier of Lνn [fµ] at
x = +∞ enables to quantify (Lνn ◦F )[fµ] at x = +∞. To this end some previous technical results about
Wronskians are needed. The first two lemmas are well known (see, respectively, [15] and [10,23]).

6



Lemma 2.11. Let f0, f1, . . . , fn−1 be analytic functions. Then the following statements hold:

(a) W [f0 ◦ ϕ, . . . , fn−1 ◦ ϕ](x) = (ϕ′(x))
(n−1)n

2 W [f0, . . . , fn−1](ϕ(x)) for any analytic diffeomorphism ϕ.

(b) W [gf0, . . . , gfn−1](x) = g(x)nW [f0, . . . , fn−1](x) for any analytic function g.

Lemma 2.12. Let f0, f1, . . . , fn be analytic functions on an open interval I such that W [f0, . . . , fn−2, fn−1]
does not vanish on I. Then

(
W [f0, . . . , fn−2, fn]

W [f0, . . . , fn−2, fn−1]

)′
=
W [f0, . . . , fn]W [f0, . . . , fn−2]

(W [f0, . . . , fn−2, fn−1])2
.

Lemma 2.13. Given ν1, ν2, . . . , νn ∈ R, the following identity holds:

W [xν1 , xν2 , . . . , xνn ]

x
∑n
i=1(νi−i) = xn

n∏

i,j=1
i>j

(νi − νj).

Proof. We prove the result by induction on n. Since the base case n = 1 is obvious, let us show the
induction step. By applying (b) in Lemma 2.11 we get

W [xν1 , . . . , xνn−1 , xνn ] = xnνnW [xν1−νn , . . . , xνn−1−νn , 1]. (5)

Let us denote βi := νi − νn for shortness. Then, using well-known properties of the determinant and the
induction hypothesis,

W [xβ1 , . . . , xβn−1 , 1] = (−1)n−1W [β1x
β1−1, . . . , βn−1x

βn−1−1] = (−1)n−1W [xβ1−1, . . . , xβn−1−1]
n−1∏

k=1

βk

= (−1)n−1x
∑n−1
i=1 (βi−1−i)xn−1

n−1∏

k=1

βk

n−1∏

i,j=1
i>j

(βi − βj).

Consequently, substituting the previous equality in (5), we have

W [xν1 , . . . , xνn−1 , xνn ] = xnνn(−1)n−1x
∑n−1
i=1 (νi−νn−1−i)xn−1

n−1∏

i=k

(νk − νn)
n−1∏

i,j=1
i>j

(νi − νj)

= xnx
∑n
i=1(νi−i)

n∏

i,j=1
i>j

(νi − νj),

where we used βi = νi − νn in the first equality and the second one follows by means of some easy manipu-
lations. This shows the induction step and so the result is proved.

The previous lemma enables to write the differential operator under consideration as a quotient of
Wronskians. Indeed, if ν1, ν2, . . . , νn are pairwise distinct, then we have that

Lνn [f ](x) = xn
n∏

i,j=1
i>j

(νi − νj)
W [xν1 , . . . , xνn , f(x)]

W [xν1 , . . . , xνn ]
.

At this point it is worth noting that the linear ordinary differential operator

f 7−→ W [φ1, φ2, . . . , φn, f ]

W [φ1, φ2, . . . , φn]
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has already appeared in the literature in relation with the so called “Chebyshev asymptotic scales” (see [8,9]
and references therein). Of course, it is also related to the division-derivation algorithm (see [24] for instance)
due to the fact that its kernel is spanned by {φ1, φ2, . . . , φn}.

Our next result shows that the integral operator F and the differential operator Lνn commute. This
fact is the key point in order to prove our main results.

Proposition 2.14. For any given f ∈ C ω((0,+∞)) and ν1, . . . , νn ∈ R, the following recurrence holds:

Lνn [f ](x) = cn
(
xLνn−1 [f ]′(x)− νnLνn−1 [f ](x)

)
,

where c1 := 1 and cn :=
∏n−1
i=1 (νn − νi) for n > 2. In particular, if f can be extended analytically to x = 0,

then Lνn [f ] can be extended analytically to x = 0. Finally, F ◦Lνn = Lνn ◦F .

Proof. We can suppose that ν1, ν2, . . . , νn are pairwise distinct, otherwise there is nothing to be proved.
The case n = 1 of the recurrence is straightforward because, by definition, Lν0

= id and

Lν1 [f ](x) =
W [xν1 , f(x)]

xν1−1
= xf ′(x)− ν1f(x).

Let us show now the case n > 2. To this end take any k ∈ {1, 2, . . . , n− 1} and note that, by Lemma 2.12,

(
W [xν1 , . . . , xνk , f(x)]

W [xν1 , . . . , xνk+1 ]

)′
=
W [xν1 , . . . , xνk+1 , f(x)]W [xν1 , . . . , xνk ]

(W [xν1 , . . . , xνk+1 ])2
.

Hence, some easy computations taking Lemma 2.13 into account show that

W [xν1 , . . . , xνk , f(x)]
′

=
W [xν1 , . . . , xνk+1 , f(x)]

xνk+1−k
∏k
i=1(νk+1 − νi)

+
1

x

(
νk+1 +

k∑

i=1

(νi − i)
)
W [xν1 , . . . , xνk , f(x)]. (6)

By definition, see (4), we have on the other hand that

W [xν1 , xν2 , . . . , xνk , f(x)]′ = x
∑k
i=1(νi−i)Lνk [f ]′(x) +

1

x

k∑

i=1

(νi − i)W [xν1 , xν2 , . . . , xνk , f(x)].

Then, using (6) and the above equality, after some computations we get

Lνk+1
[f ](x) =

k∏

i=1

(νk+1 − νi)
(
xLνk [f ]′(x)− νk+1Lνk [f ](x)

)
.

Thus, taking k = n− 1 we obtain the recurrence in the statement for n > 2.

Let us turn to the proof of F ◦Lνn = Lνn◦F . We show it by induction on n > 0 taking advantage of the
recurrence we have just proved. The base case n = 0 is clear because Lν0

= id. To show the induction step
take any g ∈ C ω((0,+∞)) and note that F [g]′(x) = 1

xF [xg′(x)]. Thus, deriving the induction hypothesis,

we get 0 = F
[
Lνn [g]

]′
(x)−Lνn

[
F [g]

]′
(x) = 1

xF
[
xLνn [g]′(x)

]
−Lνn

[
F [g]

]′
(x). Therefore,

0 =F
[
xLνn [g]′(x)

]
− xLνn

[
F [g]

]′
(x)

=F

[
1

cn+1
Lνn+1

[g] + νn+1Lνn [g]

]
(x)−

(
1

cn+1
Lνn+1

[
F [g]

]
+ νn+1Lνn

[
F [g]

])
(x)

=
1

cn+1
F
[
Lνn+1

[g]
]
(x) + νn+1F

[
Lνn [g]

]
(x)− 1

cn+1
Lνn+1

[
F [g]

]
(x)− νn+1Lνn

[
F [g]

]
(x)

=
1

cn+1

(
F
[
Lνn+1 [g]

]
(x)−Lνn+1

[
F [g]

]
(x)
)
,

where in the second equality we use twice the recurrence, taking f = g and f = F [g], in the third one the
linearity of F , and in the fourth one the induction hypothesis. Hence F

[
Lνn+1

[g]
]
−Lνn+1

[
F [g]

]
= 0 and

so the induction step follows. This concludes the proof of the result.
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Lemma 2.15. Let f be an analytic function on [0,+∞), ν1, ν2, . . . , νn ∈ R and ` ∈ N. Let us assume that
Lνn−1

[f ] is quantifiable at +∞ by ξ. If ξ < 1− 2`, then

M`

[
Lνn [f ]

]
= cn(1− 2`− νn)M`

[
Lνn−1

[f ]
]
,

where c1 := 1 and cn :=
∏n−1
i=1 (νn − νi) for n > 2.

Proof. By using the recurrence in Proposition 2.14 and the definition of the momentum,

M`

[
Lνn [f ]

]
=

∫ +∞

0

x2`−2Lνn [f ](x)dx = cn

∫ +∞

0

x2`−2
(
xLνn−1

[f ]′(x)− νnLνn−1
[f ](x)

)
dx.

Since Lνn−1 [f ] is quantifiable at infinity by ξ < 1− 2`, we can assert that limx→+∞ x2`−1Lνn−1 [f ](x) = 0.
Moreover, by Proposition 2.14, Lνn−1

[f ] is analytic at x = 0. So integrating by parts we get

M`

[
Lνn [f ]

]
= cn(1− 2`− νn)

∫ +∞

0

x2`−2Lνn−1 [f ](x)dx = cn(1− 2`− νn)M`

[
Lνn−1 [f ]

]
,

and this proves the result.

In the following statement ν1, ν2, . . . , νn are not real numbers any more but continuous functions on Λ.
For shortness, we keep using the notation νn(µ) =

(
ν1(µ), . . . , νn(µ)

)
.

Proposition 2.16. Let Λ be an open subset of Rd and {fµ}µ∈Λ be a continuous family of analytic functions
on [0,+∞). Assume that, in a neighbourhood of some fixed µ̂ ∈ Λ, there exist n > 0 continuous functions
ν1, ν2, . . . , νn, with ν1(µ̂), ν2(µ̂), . . . , νn(µ̂) pairwise distinct, and such that the family

{
Lνn(µ)[fµ]

}
µ∈Λ

is

continuously quantifiable in Λ at +∞ by ξ(µ). The following assertions hold:

(a) If ξ(µ̂) > −1, then
{

(Lνn(µ) ◦F )[fµ]
}
µ∈Λ

is continuously quantifiable in µ̂ at +∞ by ξ(µ).

(b) If ξ(µ̂) < −1, let us take m ∈ N such that ξ(µ̂) + 2m ∈ [−1, 1). In this case:

(b1) If M1

[
Lνn(µ)[fµ]

]
≡ M2

[
Lνn(µ)[fµ]

]
≡ . . . ≡ Mj−1

[
Lνn(µ)[fµ]

]
≡ 0 and Mj

[
Lνn(µ̂)[fµ̂]

]
6= 0 for

some 1 6 j 6 m, then
{

(Lνn(µ) ◦F )[fµ]
}
µ∈Λ

is continuously quantifiable in µ̂ at +∞ by 1− 2j.

(b2) If M1

[
Lνn(µ)[fµ]

]
≡M2

[
Lνn(µ)[fµ]

]
≡ . . . ≡Mm

[
Lνn(µ)[fµ]

]
≡ 0 and ξ(µ̂) + 2m /∈ {−1, 0}, then{

(Lνn(µ) ◦F )[fµ]
}
µ∈Λ

is continuously quantifiable in µ̂ at +∞ by ξ(µ).

Proof. We first apply Proposition 2.14, which shows that Lνn(µ)[fµ] is an analytic function on [0,+∞) for
each µ ∈ Λ, and that

(Lνn(µ) ◦F )[fµ](x) = (F ◦Lνn(µ))[fµ](x) =

∫ π
2

0

Lνn(µ)[fµ](x sin θ)dθ.

Then the result follows by applying Theorem 2.10 to the family
{
Lνn(µ)[fµ]

}
µ∈Λ

.

We point out that the assumption M1

[
Lνn(µ)[fµ]

]
≡ M2

[
Lνn(µ)[fµ]

]
≡ . . . ≡ Mj−1

[
Lνn(µ)[fµ]

]
≡ 0

in (b1) is void for j = 1. Recall in addition that, by definition, Lν0(µ) = id. Thus Proposition 2.16 with
n = 0 gives Theorem 2.10 as a particular case.

3 Criticality of the period function at the outer boundary

This section is devoted to prove the two main theoretical results of the paper. We consider analytic potential
differential systems {

ẋ = −y,
ẏ = V ′µ(x),
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depending on a parameter µ ∈ Λ ⊂ Rd. Here, for each fixed µ ∈ Λ, Vµ is an analytic function on a certain
real interval Iµ that contains x = 0. In what follows sometimes we shall also use the vector field notation
Xµ := −y∂x + V ′µ(x)∂y to refer to the above differential system. We suppose V ′µ(0) = 0 and V ′′µ (0) > 0,
so that the origin is a non-degenerated center and we shall denote the projection of its period annulus Pµ

on the x-axis by Iµ = (x`(µ), xr(µ)). Thus x`(µ) < 0 < xr(µ). The corresponding Hamiltonian function
is given by Hµ(x, y) = 1

2y
2 + Vµ(x), where we fix that Vµ(0) = 0, and we set the energy level of the outer

boundary of Pµ to be h0(µ), i.e. Hµ(Pµ) = (0, h0(µ)). Note then that h0(µ) is a positive number or +∞.
In addition we define

gµ(x) := x

√
Vµ(x)

x2
= sgn(x)

√
Vµ(x),

which is clearly a diffeomorphism from (x`(µ), xr(µ)) to (−
√
h0(µ),

√
h0(µ)) due to Vµ(0) = V ′µ(0) = 0 and

V ′′µ (0) > 0. Recall in addition that, from (2) and (3), the period Tµ(h) of the periodic orbit of Xµ inside the
energy level {Hµ(x, y) = h} verifies

√
2h2T ′µ(h2) = F [fµ](h), with fµ(x) = x(g−1

µ )′′(x)− x(g−1
µ )′′(−x), (7)

for all h ∈ (0,
√
h0(µ)). Finally, it is also well known that Tµ is an analytic function on (0, h0(µ)) which can

be analytically extended to h = 0.

Definition 3.1. Following the notation introduced just before, we say that the family of potential analytic
differential systems {Xµ}µ∈Λ verifies the hypothesis (H) in case that:

(a) For all k > 0, the map (x, µ) 7−→ V
(k)
µ (x) is continuous on {(x, µ) ∈ R× Λ : x ∈ Iµ},

(b) µ 7−→ xr(µ) is continuous on Λ or xr(µ) = +∞ for all µ ∈ Λ,

(c) µ 7−→ x`(µ) is continuous on Λ or x`(µ) = −∞ for all µ ∈ Λ,

(d) µ 7−→ h0(µ) is continuous on Λ or h0(µ) = +∞ for all µ ∈ Λ.
�

Remark 3.2. Let {Xµ}µ∈Λ be a family of potential analytic differential systems verifying (H). Then the
outer boundary of its period annulus varies continuously in the sense of Definition 1.1. Indeed, to show this
let γh,µ be the periodic orbit of Xµ inside the energy level { 1

2y
2 + Vµ(x) = h}. Then

dH(Πµ,Πµ̂) 6 dH(γh,µ̂,Πµ̂) + 2dH(γh,µ̂, γh,µ) + dH(γh,µ,Πµ),

which tends to zero as h→ h0(µ̂) and µ→ µ̂ thanks to the hypothesis (a) and (d) in (H). �

Next two results are proved in [13].

Lemma 3.3. Let {Xµ}µ∈Λ be a family of potential analytic differential systems verifying (H). Then the

map (z, µ) 7−→ g−1
µ (z) is continuous on the open set

{
(z, µ) ∈ R× Λ : z ∈

(
−
√
h0(µ),

√
h0(µ)

)}
.

Lemma 3.4. Let {Xµ}µ∈Λ be a family of potential analytic differential systems verifying (H). Then

lim
z→−
√
h0(µ)

g−1
µ (z) = x`(µ) and lim

z→
√
h0(µ)

g−1
µ (z) = xr(µ)

uniformly on every compact subset of Λ. Moreover, if h0, x` and xr are finite at µ = µ̂, then (z, µ) 7−→ g−1
µ (z)

extends continuously to (−
√
h0(µ̂), µ̂) and (

√
h0(µ̂), µ̂) for all µ ∈ Λ.

Next two sections are concerned with the criticality at the outer boundary of potential systems verifying
the hypothesis (H). Section 3.1 is devoted to prove Theorem A, that deals with the case h0 ≡ +∞, whereas
in Section 3.2 we prove Theorem B, that tackle the case in which h0 is finite.
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3.1 Potential systems with infinite energy

In this section we shall study the criticality at the outer boundary of the period annulus for families of
potential systems such that h0(µ) = +∞ for all µ ∈ Λ. The idea is to take a non-vanishing function f and
find sufficient conditions in order that fT ′µ can be embedded into the simplest ECT-system we can consider,

namely (hν1(µ), hν2(µ), . . . , hνn(µ)). We precise this in the following result.

Lemma 3.5. Let {Xµ}µ∈Λ be a family of potential analytic differential systems verifying (H) and such that
h0 ≡ +∞. Assume that there exist n > 1 continuous functions ν1, ν2 . . . , νn in a neighbourhood of some
fixed µ̂ ∈ Λ and an analytic non-vanishing function f on (0,+∞) such that

lim
h→+∞

hνn(µ)W [hν1(µ), . . . , hνn−1(µ), f(h)T ′µ(h)] = ∆(µ),

uniformly in µ ≈ µ̂, and ∆(µ̂) 6= 0. Then Crit
(
(Πµ̂, Xµ̂), Xµ

)
6 n− 1.

Proof. Note first that ν1, ν2 . . . , νn−1 must be pairwise distinct at µ = µ̂ because ∆(µ̂) 6= 0. Thus, by
continuity, for each k = 1, 2, . . . , n− 1 we have that W [hν1(µ), . . . , hνk(µ)] 6= 0 for all h > 0 and µ ≈ µ̂. On
the other hand, by the uniformity of the limit as h tends to +∞ and the assumption ∆(µ̂) 6= 0, there exist
M > 0 and a neighbourhood U of µ̂ such that

W [hν1(µ), . . . , hνn−1(µ), f(h)T ′µ(h)] 6= 0 for h ∈ (M,+∞) and µ ∈ U.

Then, by Lemma 2.3 we can assert that (hν1(µ), . . . , hνn−1(µ), f(h)T ′µ(h)) is an ECT-system on (M,+∞) for
all µ ∈ U. In particular, since f is a unity, T ′µ has no more than n− 1 isolated zeros on (M,+∞) for µ ≈ µ̂,
counted with multiplicities. We claim that this implies Crit

(
(Πµ̂, Xµ̂), Xµ

)
6 n− 1, see Definition 1.1. To

show this notice first that, by Remark 3.2, the outer boundary of the period annulus varies continuously.
Suppose, by contradiction, that there exist n sequences {γkµi}i∈N, k = 1, 2, . . . , n, where each γkµi is a critical

periodic orbit of Xµi , such that µi → µ̂ and dH(γkµi ,Πµ̂)→ 0 as i→ +∞. Then, due to

dH(γkµi ,Πµi) 6 dH(γkµi ,Πµ̂) + dH(Πµi ,Πµ̂),

we have that dH(γkµi ,Πµi) tends to zero as i → +∞. This contradicts that, for all µ ∈ U, T ′µ has no more
than n− 1 isolated zeros on (M,+∞). So the claim is true and the result follows.

The proof of the following result is a straightforward application of [13, Lemma 3.5]. For the sake of
brevity we omit it here but we refer the reader to the proof of Lemma 3.11, which follows similarly.

Lemma 3.6. Let {Xµ}µ∈Λ be a family of potential analytic systems verifying (H) and such that h0 ≡ +∞.
Let {fµ}µ∈Λ be a continuous family of analytic functions which is continuously quantifiable in Λ at x = xr(µ)
(respectively, x = x`(µ)) by α(µ) with limit a(µ). Assume moreover that {Vµ}µ∈Λ is continuously quantifiable
in Λ at x = xr(µ) (respectively, x = x`(µ)) by β(µ) with limit b(µ). Then, {fµ ◦ g−1

µ }µ∈Λ is continuously

quantifiable at +∞ (respectively, −∞) by 2(α/β)(µ) with limit
(
ab−α/β

)
(µ).

We can now state our result concerning the criticality at the outer boundary for the case h0 ≡ +∞. In
its statement, and from now on, for a given function f : (−a, a) −→ R, we denote P[f ](x) := f(x) + f(−x).
Let us also remark that the assumption requiring the existence of functions ν1, ν2, . . . , νn is void in case
that n = 0.

Theorem A. Let {Xµ}µ∈Λ be a family of potential analytic systems verifying (H) and such that h0 ≡ +∞.
Assume that there exist n > 0 continuous functions ν1, ν2, . . . , νn in a neighbourhood of some fixed µ̂ ∈ Λ
such that the family

{
(Lνn(µ) ◦ P)[z(g−1

µ )′′(z)]
}
µ∈Λ

is continuously quantifiable in Λ at +∞ by ξ(µ). For

each i ∈ N, let Mi(µ) be the i-th momentum of (Lνn(µ) ◦ P)[z(g−1
µ )′′(z)], whenever it is well defined. The

following assertions hold:

(a) If ξ(µ̂) > −1, then Crit
(
(Πµ̂, Xµ̂), Xµ

)
6 n.
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(b) If ξ(µ̂) < −1, let m ∈ N be such that ξ(µ̂) + 2m ∈ [−1, 1). Then Crit
(
(Πµ̂, Xµ̂), Xµ

)
6 n in case that

(b1) either M1 ≡M2 ≡ . . . ≡Mj−1 ≡ 0 and Mj(µ̂) 6= 0 for some j ∈ {1, 2, . . . ,m},
(b2) or M1 ≡M2 ≡ . . . ≡Mm ≡ 0 and ξ(µ̂) + 2m /∈ {−1, 0}.

Finally, if the following conditions are verified, then
{

(Lνn(µ) ◦ P)[z(g−1
µ )′′(z)]

}
µ∈Λ

is continuously quan-

tifiable at +∞ by ξ(µ) = 2 max
{(

α`
β`

)
(µ),

(
αr
βr

)
(µ)
}

+ (n+ 1)2 −∑n
i=1 νi(µ) :

(i) {Vµ}µ∈Λ is continuously quantifiable at x`(µ) by β`(µ) and at xr(µ) by βr(µ) with limits b`(µ) and
br(µ), respectively,

(ii) setting Rµ :=
(V ′µ)2−2VµV

′′
µ

(V ′µ)3 , the function x 7−→ V ′µ(x)−
n(n+1)

2 W
[
V
ν1(µ)−1

2
µ , . . . , V

νn(µ)−1
2

µ ,Rµ

]
(x) is con-

tinuously quantifiable at x`(µ) by α`(µ) and at xr(µ) by αr(µ) with limits a`(µ) and ar(µ), respectively,

(iii) and either α`
β`

(µ) 6= αr
βr

(µ) or, otherwise,
(
a`(br)

αr
βr − (−1)

n(n+1)
2 ar(b`)

α`
β`

)
(µ) 6= 0.

Proof. Denote fµ(z) := P[z
(
g−1
µ

)′′
(z)] for shortness. Then Lemma 3.3 and the hypothesis (H) guarantee

that {fµ}µ∈Λ is a continuous family of analytic functions on [0,+∞). From (7),
√

2h2T ′µ(h2) = F [fµ](h)
for all h ∈ (0,+∞), and therefore it suffices to prove that there exist M, ε > 0 such that F [fµ](h) has at
most n isolated zeroes counted with multiplicities for h > M and ‖µ− µ̂‖ < ε.

Since ξ(µ) is the quantifier of {Lνn(µ)[fµ]}µ∈Λ at +∞, by applying Proposition 2.16 we can assert that
{(Lνn(µ) ◦F )[fµ]}µ∈Λ is continuously quantifiable in µ̂ at +∞ by νn+1(µ) := ξ(µ), in cases (a) and (b2),
and by νn+1(µ) := 1 − 2j, in case (b1). Then, taking account of the definition of Lνn(µ), see (4), in these
cases we get that

lim
(h,µ)→(+∞,µ̂)

h−νn+1(µ)W
[
hν1(µ), . . . , hνn(µ),F [fµ](h)

]

h
∑n
i=1(νi(µ)−i) 6= 0.

Thus, since F [fµ](h) =
√

2h2T ′µ(h2), by applying Lemma 3.5 we have that Crit
(
(Πµ̂, Xµ̂), Xµ

)
6 n, as

desired. This proves the first part of the result.

Let us turn now to the proof of second part of the result. With this aim in view we note that if φ is any
analytic function on (−a, a), then

Lνn [P ◦ φ](x) =
W [xν1 , xν2 , . . . , xνn , φ(x)]

x
∑n
i=1(νi−i) +

W [xν1 , xν2 , . . . , xνn , φ(−x)]

x
∑n
i=1(νi−i) for all x ∈ (0, a). (8)

Let us set ∆(µ) :=
∑n
i=1(νi(µ) − i) for shortness. Since one can verify that

(
g−1(z)

)′′
= 2R

(
g−1(z)

)
with

R = (V ′)2−2V V ′′

(V ′)3 and V
(
g−1(z)

)
= z2, by applying Lemma 2.11 some computations show that

W [zν1(µ), zν2(µ), . . . , zνn(µ), z(g−1
µ )′′(z)]

z∆(µ)
= 21+

n(n+1)
2 Sµ

(
g−1
µ (z)

)
, for all z > 0,

where

Sµ(x) :=

W

[
V
ν1(µ)−1

2
µ , . . . , V

νn(µ)−1
2

µ ,Rµ

]
(x)

V ′µ(x)
n(n+1)

2 Vµ(x)
∆(µ)

2 − (n+1)(n+2)
4

.

Similarly, due to V (g−1(−z)) = z2,

W [zν1 , zν2 , . . . , zνn ,−z(g−1
µ )′′(−z)]

z∆(µ)
= (−2)1+

n(n+1)
2 Sµ

(
g−1
µ (−z)

)
, for all z > 0.

Accordingly, taking (8) with φ(z) = z
(
g−1
µ

)′′
(z), it turns out that the quantifiers of Sµ◦ g−1

µ at +∞ and
at −∞ will “generically” determine the quantifier of Lνn(µ)[fµ] at +∞.

12



Henceforth, for the sake of shortness, we omit the unessential dependence with respect to µ. On account

of (i) and (ii) it follows that {Sµ}µ∈Λ is continuously quantifiable at x` by α` − β`
(

∆
2 −

(n+1)(n+2)
4

)
and

at xr by αr − βr
(

∆
2 −

(n+1)(n+2)
4

)
, with limits a`b

(n+1)(n+2)
4 −∆

2

` and arb
(n+1)(n+2)

4 −∆
2

r , respectively. Then, by

applying Lemma 3.6 and using (i) again, {Sµ◦g−1
µ }µ∈Λ is continuously quantifiable in Λ at −∞ by 2α`β` −∆+

(n+1)(n+2)
2 and at +∞ by 2αrβr −∆ + (n+1)(n+2)

2 , with limits a`(b`)
−α`β` and ar(br)

−αrβr , respectively. Finally,

again from (8) with φ(z) = z
(
g−1
µ

)′′
(z), the assumption (iii) gurarantees that {(Lνn(µ)◦P)[z(g−1

µ )′′(z)]}µ∈Λ

is continuously quantifiable at +∞ by ξ = 2 max
{(

α`
β`

)
,
(
αr
βr

)}
−∆ + (n+1)(n+2)

2 . This completes the proof

of the result because one can easily verify that (n+1)(n+2)
2 −∆ = (n+ 1)2 −∑n

i=1 νi.

3.2 Potential systems with finite energy

In this section we shall study the criticality at the outer boundary of the period annulus for families of
potential systems with h0(µ) < +∞ for all µ ∈ Λ. If we proceed the same way as for the case h0 = +∞,
we would take an appropriate non-vanishing function f and try to embed fT ′µ into some easy ECT-system.

To this end the natural candidate is ((h0(µ) − h)ν1(µ), (h0(µ) − h)ν2(µ), . . . , (h0(µ) − h)νn(µ)). However we
did not succeed with such an approach. Instead we shall take advantage of Proposition 2.16, which is in
fact addressed to the case h0 = +∞. This forces us to “translate” the case h0 < +∞ to the case h0 = +∞
and gives rise to some technicalities that make things more complicated than it should be. With this aim
in view we define next a differential operator which is conjugated to Lνn . The conjugation is precisely the
tool that enables us to translate the case h0 < +∞ to the case h0 = +∞ and apply Proposition 2.16.

Given ν1, . . . , νn ∈ R, in this section we consider the linear ordinary differential operator

Dνn : C ω
(
(0, 1)

)
−→ C ω

(
(0, 1)

)

defined by

Dνn [f ](x) := (x(1− x2))
n(n+1)

2
W [ψν1 , . . . , ψνn , f ] (x)∏n

i=1 ψνi(x)
, (9)

where as usual we use the notation νn = (ν1, . . . , νn) and

ψν(x) :=
1

1− x2

(
x√

1− x2

)ν
.

In addition we define Dν0 := id for the sake of convenience. Setting

φ(x) :=
x√

1 + x2
,

we also consider the operator B : C ω
(
[0, 1)

)
−→ C ω

(
[0,+∞)

)
defined by

B[f ](x) :=
(
1− φ2(x)

)(
f ◦ φ

)
(x) =

1

1 + x2

(
f ◦ φ

)
(x). (10)

We will show next that B conjugates Dνn and Lνn . This fact eventually will enable us to take advantage
of Proposition 2.16. Before proving it we introduce the following definition.

Definition 3.7. Let f be an analytic function on [0, 1). Then, for each n ∈ N we call

Nn[f ] :=

∫ 1

0

f(x)√
1− x2

(
x√

1− x2

)2n−2

dx

the n-th momentum of f , whenever it is well defined. �

Lemma 3.8. Consider ν1, ν2, . . . , νn ∈ R. Then the following hold:

13



(a) B[ψνi ](x) = xνi for i = 1, 2, . . . , n.

(b) B ◦Dνn = Lνn ◦B.

(c)
(
F ◦B

)
[f ](x) =

√
1 + x2

(
B ◦F

)
[f ](x) for any f ∈ C ω

(
(0, 1)

)
.

(d) Nn = Mn ◦B.

Proof. Let us show (b) because (a) follows straightforward. So take f ∈ C ω
(
(0, 1)

)
and note that

(B ◦Dνn)[f ](x) = (1− φ(x)2)
(
φ(x)(1− φ(x)2)

)n(n+1)
2

W [ψν1
, . . . , ψνn , f ](φ(x))∏n
i=1 ψνi(φ(x))

by definition. On the other hand, by applying Lemma 2.11 we get

W [ψν1 , . . . , ψνn , f ](φ(x)) = (1− φ(x)2)−n−1(φ′(x))−
n(n+1)

2 W
[
B[ψν1 ], . . . ,B[ψνn ],B[f ]

]
(x)

= (1− φ(x)2)−n−1x
n(n+1)

2

(
φ(x)(1− φ(x)2)

)−n(n+1)
2 W

[
xν1 , . . . , xνn ,B[f ](x)

]
,

where in the second equality we use (a) and that xφ′(x) = φ(x)(1−φ(x)2). Consequently, since on account
of (a) we have ψν

(
φ(x)

)
= xν

1−φ(x)2 , the combination of the two previous indented equalities gives

(B ◦Dνn)[f ](x) =
W [xν1 , . . . , xνn ,B[f ](x)]

x
∑n
i=1(νi−i) = (Lνn ◦B)[f ](x),

as desired. Let us turn now to the proof of (c). Take any s ∈ (0, 1) and h ∈ C ω([0, 1)) and note that the
change of variable u = s sin θ gives

F [h](s) =

∫ π
2

0

h(s sin θ)dθ =

∫ s

0

h(u)√
s2 − u2

du. (11)

If f is any analytic function on [0, 1), then performing the change of variable z = φ(x) it follows that

∫ s

0

f(z)√
s2 − z2

dz =
1√

1− s2

∫ s√
1−s2

0

(f ◦ φ)(x)

1 + x2

dx√
s2

1−s2 − x2
=

1√
1− s2

∫ s√
1−s2

0

B[f ](x)
dx√
s2

1−s2 − x2
.

Accordingly, by applying above the equality in (11) with h = f and h = B[f ], we get

F [f ](s) =
1√

1− s2
(F ◦B)[f ]

(
s√

1− s2

)
.

Finally the composition with B on both sides of this equality and an easy computation yields to

(B ◦F )[f ](s) = (1− φ(s)2)
1√

1− φ(s)2
(F ◦B)[f ]

(
φ(s)√

1− φ(s)2

)

= (1 + s2)−
1
2 (F ◦B)[f ](s),

which shows (c). Finally let us prove (d). If f is an analytic function on [0, 1), then by means of the change
of variable z = φ(x) once again we get

Nn[f ] =

∫ 1

0

f(z)√
1− z2

(
z√

1− z2

)2n−2

dz =

∫ +∞

0

(f ◦ φ)(x)

1 + x2
x2n−2dx = Mn

[
B[f ]

]
,

as desired. This completes the proof of the result.

Lemma 3.9. Let {fµ}µ∈Λ be a continuous family of analytic functions on [0, 1). Then {fµ}µ∈Λ is continu-
ously quantifiable in Λ at z = 1 by α(µ) if and only if {B[fµ]}µ∈Λ is continuously quantifiable in Λ at +∞
by 2α(µ)− 2.
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Proof. By definition, B[fµ](x) = 1
1+x2 fµ(φ(x)) with φ(x) = x√

1+x2
. Therefore, for a given µ̂ ∈ Λ,

lim
(x,µ)→(+∞,µ̂)

B[fµ](x)

x2α(µ)−2
= lim

(x,µ)→(+∞,µ̂)

fµ(φ(x))

(1 + x2)x2α(µ)−2
= lim

(x,µ)→(+∞,µ̂)

fµ(φ(x))

(1 + x2)α(µ)

= lim
(z,µ)→(1,µ̂)

fµ(z)

(1 + φ−1(z)2)α(µ)
= lim

(z,µ)→(1,µ̂)
fµ(z)(1− z2)α(µ),

where we used that φ−1(z) = z√
1−z2

. Since the first limit is different from zero if and only if the last one is

different from zero, the result follows.

We shall bound the criticality at the outer boundary by means of the following result.

Lemma 3.10. Let {Xµ}µ∈Λ be a family of potential analytic differential systems verifying (H) and such
that µ 7−→ h0(µ) is continuous on Λ. Assume that there exist n > 1 continuous functions ν1, ν2 . . . , νn in a
neighbourhood of some fixed µ̂ ∈ Λ and an analytic non-vanishing function f on (0, 1) such that

lim
z−→1

(1− z)νn(µ)W
[
ψν1(µ)(z), . . . , ψνn−1(µ)(z), f(z)T ′µ(z2h0(µ))

]
= ∆(µ),

uniformly in µ ≈ µ̂, and ∆(µ̂) 6= 0. Then Crit
(
(Πµ̂, Xµ̂), Xµ

)
6 n− 1.

Proof. Note first that ν1, ν2 . . . , νn−1 must be pairwise distinct at µ = µ̂ because ∆(µ̂) 6= 0. Consequently,
since B[ψνi(µ)](x) = xνi(µ) due to (a) in Lemma 3.8, by applying Lemmas 2.11 and 2.13 we can assert that
W [ψν1(µ), . . . , ψνk(µ)](z) 6= 0 for all z ∈ (0, 1) and µ ≈ µ̂, k = 1, 2, . . . , n − 1. On the other hand, by the
uniformity of the limit as z −→ 1 and the hypothesis ∆(µ̂) 6= 0, there exist ε > 0 and a neighbourhood U
of µ̂ such that

W
[
ψν1(µ)(z), . . . , ψνn−1(µ)(z), f(z)T ′µ(z2h0(µ))

]
6= 0 for all z ∈ (1− ε, 1) and µ ∈ U.

Accordingly, by Lemma 2.3,
(
ψν1(µ)(z), . . . , ψνn−1(µ)(z), f(z)T ′µ(z2h0(µ))

)
is an ECT-system on (1 − ε, 1)

for all µ ∈ U. In particular, since f is a unity, there exists δ > 0 such that T ′µ(h) has no more than n − 1

zeros on
(
h0(µ)− δ, h0(µ)

)
, counted with multiplicities, for all µ ∈ U. From here the proof follows verbatim

what we do to show Lemma 3.5 and so for the sake of brevity we omit it.

Lemma 3.11. Let {Xµ}µ∈Λ be a family of potential analytic systems verifying (H) such that h0(µ) < +∞
for all µ ∈ Λ. Let {fµ}µ∈Λ be a continuous family of analytic functions which is continuously quantifiable
in Λ at x = xr(µ) (respectively, x = x`(µ)) by α(µ) with limit a(µ). Assume moreover that {h0(µ)−Vµ}µ∈Λ

is continuously quantifiable in Λ at x = xr(µ) (respectively, x = x`(µ)) by β(µ) with limit b(µ). Then,{
(fµ ◦ g−1

µ )(z
√
h0(µ))

}
µ∈Λ

is continuously quantifiable at z = 1 (respectively, z = −1) by −(α/β)(µ) with

limit
(
a (2h0/b)

α/β
)
(µ).

Proof. We show the result for z = 1 (the case z = −1 follows exactly the same way). By Lemma 3.4, we
know that g−1

µ (z
√
h0(µ)) tends to xr(µ) uniformly on µ as z −→ 1. Therefore, since g2

µ = Vµ,

lim
z→1

(fµ ◦ g−1
µ )
(
z
√
h0(µ)

)

(1− z2)(
α
β)(µ)

= lim
x→xr(µ)

h0(µ)(
α
β)(µ)fµ(x)

(
h0(µ)− Vµ(x)

)(αβ)(µ)
=
(
a (h0/b)

α/β
)
(µ)

uniformly on µ. Taking any µ̂ ∈ Λ, this shows that

lim
(z,µ)→(1,µ̂)

(fµ ◦ g−1
µ )
(
z
√
h0(µ)

)

(1− z)(αβ)(µ)
=
(
a (2h0/b)

α/β
)
(µ̂),

and so the result follows.
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Lemma 3.12. Let f be an analytic function on [0, 1), ν1, ν2, . . . , νn ∈ R and ` ∈ N. Let us assume that
Dνn−1

[f ] is quantifiable at 1 by ξ. If ξ < 3/2− `, then

N`
[
Dνn [f ]

]
= cn(1− 2`− νn)N`

[
Dνn−1 [f ]

]
,

where c1 := 1 and cn :=
∏n−1
i=1 (νn − νi) for n > 2.

Proof. Due to f ∈ C ω([0, 1)), from the definition of B it follows that B[f ] ∈ C ω([0,+∞)). By Lemma 3.9,
the function (B ◦Dνn−1

)[f ] is quantifiable at +∞ by 2ξ − 2 < 1− 2`. Thus, since B ◦Dνn−1
= Lνn−1

◦B
by (b) in Lemma 3.8, by applying Lemma 2.15 we can assert that

M`

[
(Lνn ◦B)[f ]

]
= cn(1− 2`− νn)M`

[
(Lνn−1

◦B)[f ]
]
.

Now the result follows by using (b) and (d) in Lemma 3.8.

The following is our main result in order to study the criticality of the outer boundary in case that its
energy level is finite. As usual we point out that, in its statement, the assumptions requiring the existence
of functions ν1, ν2, . . . , νn for n = 0 and that N1 ≡ N2 ≡ . . . ≡ Nj−1 ≡ 0 for j = 1 are void.

Theorem B. Let {Xµ}µ∈Λ be a family of potential analytic systems verifying (H) such that h0(µ) < +∞ for
all µ ∈ Λ. Assume that there exist n > 0 continuous functions ν1, ν2, . . . , νn in a neighbourhood of some fixed
µ̂ ∈ Λ such that the family

{
(Dνn(µ) ◦ P)

[
z
√
h0(µ)(g−1

µ )′′(z
√
h0(µ))

]}
µ∈Λ

is continuously quantifiable in Λ

at z = 1 by ξ(µ). For each i ∈ N, let Ni(µ) be the i-th momentum of (Dνn(µ)◦P)
[
z
√
h0(µ)(g−1

µ )′′(z
√
h0(µ))

]
,

whenever it is well defined. The following assertions hold:

(a) If ξ(µ̂) > 1
2 , then Crit

(
(Πµ̂, Xµ̂), Xµ

)
6 n.

(b) If ξ(µ̂) < 1
2 , let m ∈ N be such that ξ(µ̂) +m ∈

[
1
2 ,

3
2

)
. Then Crit

(
(Πµ̂, Xµ̂), Xµ

)
6 n in case that

(b1) either N1 ≡ N2 ≡ . . . ≡ Nj−1 ≡ 0 and Nj(µ̂) 6= 0 for some j ∈ {1, 2, . . . ,m},
(b2) or N1 ≡ N2 ≡ . . . ≡ Nm ≡ 0 and ξ(µ̂) +m /∈

{
1
2 , 1
}
.

Finally, if the following conditions are verified, then
{

(Dνn(µ) ◦ P)
[
z
√
h0(µ)(g−1

µ )′′(z
√
h0(µ))

]}
µ∈Λ

is con-

tinuously quantifiable at z = 1 by ξ(µ) = −min
{(

α`
β`

)
(µ),

(
αr
βr

)
(µ)
}
− 1

2

∑n
i=1 νi(µ)− n(n+1)

2 + 1 :

(i) {h0(µ)−Vµ}µ∈Λ is continuously quantifiable at x`(µ) by β`(µ) and at xr(µ) by βr(µ) with limits b`(µ)
and br(µ), respectively,

(ii) setting Rµ :=
(V ′µ)2−2VµV

′′
µ

(V ′µ)3 , the function

x 7−→ V ′µ(x)−
n(n+1)

2 W



(

Vµ
h0(µ)− Vµ

) ν1(µ)
2

, . . . ,

(
Vµ

h0(µ)− Vµ

) νn(µ)
2

, (h0(µ)− Vµ)Vµ
1
2 Rµ


(x)

is continuously quantifiable at x`(µ) by α`(µ) and at xr(µ) by αr(µ) with limits a`(µ) and ar(µ),
respectively,

(iii) and either α`
β`

(µ) 6= αr
βr

(µ) or, otherwise,
(
ar(br)

−αrβr + (−1)
n(n+1)

2 a`(b`)
−α`β`

)
(µ) 6= 0.

Proof. Set fµ(z) := P
[
z
√
h0(µ)(g−1

µ )′′(z
√
h0(µ))

]
for shortness. Then, the hypothesis (H) and Lemma 3.3

guarantee that {fµ}µ∈Λ is a continuous family of analytic functions on [0, 1). Furthermore, see (7), recall

that
√

2h2T ′µ(h2) = F [fµ](h) for all h ∈ (0,
√
h0(µ)). Hence the obvious rescaling yields to the identity

F [fµ](z) =
√

2h0(µ)z2T ′µ
(
h0(µ)z2

)
, for all z ∈ (0, 1). (12)
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So we must show that there exist ε > 0 and a neighbourhood U of µ̂ such that F [fµ](z) has at most n
zeros for z ∈ (1 − ε, 1), multiplicities taking into account, for all µ ∈ U. Recall that, by (b) in Lemma 3.8,
B ◦Dνn = Lνn ◦B. This will allow us to transfer the assumptions on the family {Dνn(µ)[fµ]}µ∈Λ, which
is defined on [0, 1), to another family defined on [0,+∞) and then apply Proposition 2.16 as we did in the
proof of Theorem A. With this aim in view we first note that

(Lνn(µ) ◦F ◦B)[fµ](x) = Lνn(µ)

[√
1 + x2(B ◦F )[fµ](x)

]

= (Lνn(µ) ◦B)
[
(1− x2)−

1
2 F [fµ](x)

]

= (B ◦Dνn(µ))
[
(1− x2)−

1
2 F [fµ](x)

]
,

where we use (c) in Lemma 3.8 in the first equality, the identity
√

1 + x2B[φ](x) = B[(1−x2)−
1
2φ(x)] with

φ = F [fµ] in the second one, and (b) in Lemma 3.8 in the third one. Note that
{

(Lνn(µ) ◦F ◦B)[fµ]
}
µ∈Λ

is a continuous family of analytic functions on [0,+∞).

We claim that if
{

(Lνn(µ) ◦F ◦B)[fµ]
}
µ∈Λ

is continuously quantifiable at +∞ in µ̂, then the criticality

of Xµ at the outer boundary of the period annulus is at most n. Indeed, to show this suppose that the quan-

tifier is η(µ). Then, on account of the previous equality and Lemma 3.9,
{
Dνn(µ)

[
(1−x2)−

1
2 F [fµ](x)

]}
µ∈Λ

is continuously quantifiable at z = 1 in µ̂ by 1
2η(µ) + 1, i.e.

lim
(x,µ)→(1,µ̂)

(1− x)
1
2η(µ)+1Dνn(µ)

[
(1− x2)−

1
2 F [fµ](x)

]
6= 0.

Thus, according to the definition of Dνn in (9),

lim
(x,µ)→(1,µ̂)

(1− x)
η(µ)

2 +1
(
x(1− x2)

)n(n+1)
2

W
[
ψν1(µ)(x), . . . , ψνn(µ)(x), (1− x2)−

1
2 F [fµ](x)

]
∏n
i=1 ψνi(µ)(x)

6= 0,

which, due to ψν(x) = 1
1−x2

(
x√

1−x2

)ν
, easily implies that

lim
(x,µ)→(1,µ̂)

(1− x)κ(µ)W
[
ψν1(µ)(x), . . . , ψνn(µ)(x), (1− x2)−

1
2 F [fµ](x)

]
6= 0,

where κ(µ) := 1
2

(
η(µ) + (n+ 1)(n+ 2) +

∑n
i=1 νi(µ)

)
. Now the claim follows by applying Lemma 3.10 and

taking (12) into account.

We are now in position to prove (a) and (b) in the first part of the statement. To this end recall that, by
assumption, the family

{
Dνn(µ)[fµ]

}
µ∈Λ

is continuously quantifiable in Λ at z = 1 by ξ(µ). On the other

hand, by (b) in Lemma 3.8, (B ◦ Dνn(µ))[fµ] = (Lνn(µ) ◦B)[fµ]. Hence by applying Lemma 3.9 we can

assert that the family
{

(Lνn(µ) ◦B)[fµ]
}
µ∈Λ

is continuously quantifiable in Λ at +∞ by 2ξ(µ)− 2. (This

is precisely the family defined on [0,+∞) that in the beginning of the proof we refer to.)

• If ξ(µ̂) > 1
2 , then 2ξ(µ̂) − 2 > −1 and so Proposition 2.16 applied to {B[fµ]}µ∈Λ guarantees that{

(Lνn(µ) ◦F ◦B)[fµ]
}
µ∈Λ

is continuously quantifiable in a neighbourhood of µ̂ at +∞ by 2ξ(µ)− 2.

This, thanks to the previous claim, proves that Crit
(
(Πµ̂, Xµ̂), Xµ

)
6 n and hence (a) follows.

• To show (b) we use that, by (b) and (d) in Lemma 3.8,

N`
[
Dνn(µ)[fµ]

]
= M`

[
(B ◦Dνn(µ))[fµ]

]
= M`

[
(Lνn(µ) ◦B)[fµ]

]
.

Then the result follows straightforward by applying Proposition 2.16 and taking the previous claim
into account again.

Let us turn next to the proof of the second part of the result. Denote ∆(µ) :=
∑n
i=1(νi(µ) − i) for the

sake shortness. For the same reason, from now on we omit the dependence on µ when it is not essential.
That being said note that, due to Vµ(g−1

µ (z)) = z2,

ψνi(z) =

(
h0

h0 − Vµ

(
Vµ

h0 − Vµ

) νi
2

)
(
g−1
µ (z

√
h0 )
)

for all z ∈ (0, 1).
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In addition, since
(
g−1
µ (z)

)′′
= 2Rµ

(
g−1
µ (z)

)
, we have that fµ is the even part of 2(gµ Rµ)

(
g−1
µ (z

√
h0)
)
.

Consequently, taking Lemma 2.11 also into account, some computations show that

Dνn(µ)

[
z
√
h0(g−1

µ )′′(z
√
h0)
]

= 21+
n(n+1)

2 h
−n(n+1)

2
0 Sµ

(
g−1
µ (z

√
h0)
)
, for all z ∈ (0, 1),

where

Sµ(x) :=
W
[(

Vµ
h0−Vµ

) ν1
2

, . . . ,
(

Vµ
h0−Vµ

) νn
2

, (h0 − Vµ)Vµ
1
2 Rµ

]
(x)

(h0 − Vµ(x))−
∆
2 −

3n(n+1)
4 +1Vµ(x)−

n(n+1)
4 + ∆

2 (V ′µ(x))
n(n+1)

2

.

Similarly, due to g(z) = −
√
V (z) for z < 0, we have that

Dνn(µ)

[
−z
√
h0(g−1

µ )′′(−z
√
h0)
]

= −(−2)1+
n(n+1)

2 h
−n(n+1)

2
0 Sµ

(
g−1
µ (−z

√
h0)
)
, for all z ∈ (0, 1).

On account of the assumptions in (i) and (ii), we can assert that {Sµ}µ∈Λ is continuously quantifiable

at x` by γ` := α` + β`(
∆
2 + 3n(n+1)

4 − 1) and at xr by γr := αr + βr(
∆
2 + 3n(n+1)

4 − 1), with limits c` :=

a`b`
∆
2 +

3n(n+1)
4 −1h0

n(n+1)
4 −∆

2 and cr := arbr
∆
2 +

3n(n+1)
4 −1h0

n(n+1)
4 −∆

2 , respectively. Then, by Lemma 3.11,
some computations show that

{
(Sµ ◦ g−1

µ )(z
√
h0)
}
µ∈Λ

is continuously quantifiable at z = −1 by − γ`
β`

and at z = 1 by − γr
βr

, with limits c`(
2h0

b`
)
γ`
β` and cr(

2h0

br
)
γr
βr , respectively. Accordingly, by the assumption

in (iii), we have that
{

(Dνn(µ) ◦ P)
[
z
√
h0(g−1

µ )′′(z
√
h0)
]}
µ∈Λ

is continuously quantifiable at z = 1 by

ξ = max
{
−α`β` ,−

αr
βr

}
− ∆

2 −
3n(n+1)

4 + 1. This shows the second assertion and completes the proof.

4 Application

In this section we resume the study that we began in [13] for the family of potential differential systems
{Xµ}µ∈Λ, where

Xµ = −y∂x +
(
(x+ 1)p − (x+ 1)q

)
∂y with µ = (q, p)

and Λ = {(q, p) ∈ R2 : p > q}. Following the previous notation, we define

Vµ(x) =

∫ x+1

1

(up − uq)du.

We will prove Theorem C to illustrate the application of the theoretical results we have obtained so far.
Before we need to show several lemmas. The first one will in particular ensure the uniqueness of p0 as
introduced in the statement of Theorem C.

Lemma 4.1. (a) The function f(p) = (2 + 2p)
2+2p
1+2p − 2(1 + 2p) has a unique zero on (− 1

2 ,+∞).

(b) If p ∈ (− 1
2 ,+∞), then (2 + 2p)

2+2p
1+2p + 4p(1 + 2p) 6= 0.

Proof. In order to prove (a) we claim that g(x) := x
x
x−1 − 2x + 2 is monotonous decreasing on (1,+∞).

Note that g(x) = f(x/2 − 1) and, consequently, (a) will follow once we prove the claim because one can
easily verify that limx→1 g(x) = e and limx→+∞ g(x) = −∞. To show the claim we first note that

g′(x) = −2 +
x

x
x−1 (x− 1− log(x))

(x− 1)2
and g′′(x) =

x
x
x−1 (x log(x)2 − (x− 1)2)

(x− 1)4
.

Since limx→1+ g′(x) < 0, it suffices to show that g′′(x) < 0 for all x ∈ (1,+∞), which is equivalent to
κ(x) := x log(x)2 − (x− 1)2 < 0. However this is clear because one can verify that κ(1) = κ′(1) = κ′′(1) = 0

and κ′′′(x) = − 2 log(x)
x2 < 0 for all x > 1. This shows the validity of (a). The proof of (b) follows similarly

and we omit it here for the sake of brevity.
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Definition 4.2. The function defined by

2F1(a, b, c; z) =
∞∑

n=0

(a)n(b)n
(c)n

zn

n!
,

where (k)n := k(k + 1) . . . (k + n− 1) for n > 1 and (k)0 := 1, is the Gaussian Hypergeometric function. �

Lemma 4.3. If a, b ∈ C, then d
dz 2F1(a, b, b+ 1; z) = b

z ((1− z)−a − 2F1(a, b, b+ 1; z)) .

Proof. This is straightforward by using the formulae in [1]. Indeed, it shows that

d

dz
zb2F1(a, b, b+ 1; z) = bzb−1

2F1(a, b, b; z) = bzb−1(1− z)−a,

where the first equality is a particular case of 15.2.4 and the second one follows by applying 15.1.8. Then
an easy manipulation yields to the desired equality after deriving the product on the left.

For the parameter values under consideration in Theorem C, it is easy to show that the projection of
the period annulus on the x-axis is Iµ = (−1, ρ(µ)), with

ρ(µ) :=

(
p+ 1

q + 1

) 1
p−q
− 1,

and that the energy level at the outer boundary is h0(µ) := p−q
(p+1)(q+1) . Then, with notation introduced in

Section 3.2, we have the following result:

Lemma 4.4. Let {Xµ}µ∈Λ be the family of potential vector fields in (1) and let fµ be the even part of

z 7−→ z
√
h0(µ)(g−1

µ )′′(z
√
h0(µ)), where gµ(x) := sgn(x)

√
Vµ(x) for x ∈ Iµ. Then the following hold:

(a) If µ = (− 1
2 , p) with p ∈ (− 1

2 ,+∞) \ {0}, then N1[fµ] 6= 0.

(b) If µ = (0, p) with p ∈ ( 1
2 ,+∞) \ {1} and ν1(µ) = 0, then N1

[
Dν1(µ)[fµ]

]
6= 0.

Proof. For the sake of shortness we shall omit the nonessential dependence on µ. That being said, the
change of variable x = g−1(z

√
h0) gives formally

N1[f ] =

∫ 1

−1

z
√
h0(g−1)′′(z

√
h0)√

1− z2
dz =

∫ ρ

−1

(
V ′2 − 2V V ′′

)
(x)

V ′(x)2
√
h0 − V (x)

dx. (13)

It is proved in [13, Lemma A.4] that the second integral is convergent for p > q and q ∈ (−1,− 1
3 ). That

result provides moreover its precise value in terms of the Gamma function. On account of this we can assert
that, for those parameters,

N1[f ] = −√π (p+ 1)
1
2 (p+ 2q + 1)

(p− q)(q + 1)(ρ(µ) + 1)
3p+1

2

Γ
(
− 3q+1

2(p−q)

)

Γ
(
p−4q−1
2(p−q)

) .

Therefore, for µ = (− 1
2 , p) with p > − 1

2 , N1[f ] = 0 if and only if p = 0. This proves (a).

In order to show (b) let us take µ = (0, p) with p > 1
2 . We shall take advantage of the second part of

Theorem B with n = 0 to prove that then f is quantifiable at z = 1 by ξ < 1
2 . Indeed, if µ = (0, p) then

h0 − V (x) = x+ 1− (x+1)p+1

p+1 is quantifiable at x` = −1 by β` = −1 and at xr = (p+ 1)
1
p − 1 by βr = −1.

On the other hand, some computations show that (h0 − V (x))V (x)
1
2 R(x) is quantifiable at x` = −1 by

α` = −1 if p > 1 and by α` = −p if p < 1, in both cases with limit a` =
√
h0. Similarly, it is quantifiable at

xr = (p+1)
1
p −1 by αr = −1 with limit ar =

√
h0

(
1−2(1+p)−

1
p
)
. According to this and taking p > 1

2 into
account, by applying the second part of Theorem B with n = 0, it turns out that f is quantifiable at z = 1 by
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ξ < 1
2 . Then, by applying Lemma 3.12 with ` = n = 1 and ν1 = 0, N1

[
Dν1

[f ]
]

= −(1 + ν1)N1[f ] = −N1[f ].
Consequently, from (13),

N1

[
Dν1

[f ]
]

= −N1[f ] = −
∫ ρ

−1

(
V ′2 − 2V V ′′

)
(x)

V ′(x)2
√
h0 − V (x)

dx.

Since V (x) = (x+1)p+1−1
p+1 − x for µ = (0, p) with p 6= −1, some long but easy computations by applying

Lemma 4.3 show that

G(x) := 2
2F1

(
1
2 ,− 1

2p , 1− 1
2p ,

(x+1)p

p+1

)
− x

(x+1)p−1

√
1− (x+1)p

1+p√
x+ 1

is a primitive of V ′2−2V V ′

V ′2
√
h0−V . By [1, 15.1.20], and using p > 1

2 , we get that limx→ρG(x) =
2
√
πΓ
(

1− 1
2p

)

(p+1)
1
2p Γ
(
p−1
2p

) . On

the other hand, since by definition

2F1

(
1

2
,− 1

2p
, 1− 1

2p
,

(x+ 1)p

p+ 1

)
= 1− (x+ 1)p

2(2p− 1)(p+ 1)
+ o
(
(x+ 1)p

)
,

we can assert, taking p > 1
2 into account once again, that limx→−1G(x) = 0. Consequently,

N1

[
Dν1

[f ]
]

= −N1[f ] = lim
x→−1

G(x)− lim
x→ρ

G(x) =
−2
√
πΓ
(
1− 1

2p

)

(p+ 1)
1
2pΓ
(
p−1
2p

) ,

which shows that if p ∈ ( 1
2 ,+∞) \ {1} and ν1 = 0, then N1

[
Dν1 [f ]

]
6= 0, as desired.

Proof of Theorem C. Note first that if p and q are both different from −1, then

Vµ(x) =
(x+ 1)p+1

p+ 1
− (x+ 1)q+1

q + 1
+ h0(µ), (14)

where h0(µ) := p−q
(p+1)(q+1) is the energy level at the outer boundary of Pµ. Moreover, the projection of Pµ

on the x-axis is Iµ =
(
x`(µ), xr(µ)

)
, with

x`(µ) = −1 and xr(µ) = ρ(µ) :=

(
p+ 1

q + 1

) 1
p−q
− 1.

Following the notation in Theorem B, from (14) and on account p > q, we have that {h0(µ)− Vµ(x)}µ∈Λ is
continuously quantifiable for any µ̂ = (q̂, p̂) ∈ Λ at x = x` by β`(µ) with limit b` and at x = xr by βr(µ)
with limit br, where

β`(µ) = −(q + 1), βr(µ) = −1, b` =
1

q̂ + 1
and br = V ′µ̂(xr). (15)

We will prove (a) by applying Theorem B with n = 0. So let us consider µ̂ = (q̂, p̂) with q̂ = − 1
2 and

p̂ ∈ (− 1
2 ,+∞) \ {0, p0}, where p0 is the unique root of f(p) = 0 on (− 1

2 ,+∞). We begin by studying the

quantifiers of the family
{

(h0−Vµ)Vµ
1
2 Rµ

}
µ∈Λ

, where recall that Rµ :=
(V ′µ)2−2VµV

′′
µ

(V ′µ)3 . An easy computation

from (14) shows that this family is continuously quantifiable in µ̂ at x = x` by α`(µ) = q with limit

a` = 2
(
2− 1

p̂+1

) 3
2 . Note on the other hand that Vµ is analytic at x = xr with V ′µ̂(xr) 6= 0. Consequently the

family is continuously quantifiable in µ̂ at x = xr by αr(µ) = −1 with limit

ar =
√
h0(µ̂)

V ′µ̂(xr)
2 − 2h0(µ̂)V ′′µ̂ (xr)

V ′µ̂(xr)2
,
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provided that V ′µ̂(xr)
2 − 2h0(µ̂)V ′′µ̂ (xr) 6= 0. One can check that this is equivalent to require that f(p̂) 6= 0,

which is indeed satisfied because p̂ 6= p0 by assumption, cf. (a) in Lemma 4.1. Accordingly, taking (15) also
into account, we have that

(
α`
β`

)
(µ̂) =

(
αr
βr

)
(µ̂) = 1 and

(
ar(br)

−αrβr + a`(b`)
−α`β`

)
(µ̂) =

(2 + 2p̂)
2+2p
1+2p̂ + 4p̂(1 + 2p̂)

2(1 + p̂)
3
2

√
1 + 2p̂

6= 0.

(The fact that this expression is different from zero follows by (b) in Lemma 4.1.) Accordingly, by the second
part of Theorem B, the family

{
P[z
√
h0(µ)(g−1

µ )′′(z
√
h0(µ))]

}
µ∈Λ

is continuously quantifiable in µ̂ at z = 1

by ξ(µ) = max{ q
q+1 ,−1}+1. We apply next the first part of Theorem B. To this end note that ξ(µ̂) = 0 and

that, by (a) in Lemma 4.4, the first momentum of the even part of z 7−→ z
√
h0(µ̂)(g−1

µ̂ )′(z
√
h0(µ̂)) does not

vanish. Then, the application of (b1) in Theorem B with n = 0 and j = 1 shows that Crit
(
(Πµ̂, Xµ̂), Xµ

)
= 0.

This proves the validity of (a).

Finally let us turn to the proof of (b). So consider now µ̂ = (q̂, p̂) with q̂ = 0 and p̂ ∈ (0,+∞)\{ 1
2 , 1}. We

note that, by [13, Theorem E], Crit((Πµ̂, Xµ̂), Xµ) > 1, and so the result will follow by applying Theorem B
with n = 1. To this end we need to study the function

Ψµ(x) :=
1

V ′µ(x)
W



(

Vµ
h0(µ)− Vµ

) ν1(µ)
2

, (h0(µ)− Vµ)V
1
2
µ Rµ


(x),

where ν1 is a continuous function to be determined. Some tedious calculations show that

Ψµ =
ψµ

2V
1
2
µ V ′5µ

(
Vµ

h0(µ)− Vµ

) ν1(µ)
2

,

where, omitting the dependence on µ for shortness,

ψ := −(V ′2 − 2V V ′′)
(
V ′2(h0(ν1 − 1) + 3V ) + 6(h0 − V )V V ′′

)
+ 4V 2(V − h0)V ′V ′′′.

By means of an algebraic manipulator we can assert that ψµ(x) is the sum of 15 monomials of the form
c(µ)(x+ 1)n1p+n2q+n3 with ni ∈ Z, for i = 1, 2, 3, and c a well defined rational function at µ = µ̂. Moreover
the monomial with the smallest exponent for µ ≈ µ̂ is (x+ 1)3q−1. Consequently,

ψµ(x) = (x+ 1)3q−1

(
2q(p− q)2(2q − (q + 1)ν1)

(p+ 1)2(q + 1)2
+ rµ(x)

)
,

with limx→−1 rµ(x) = 0 uniformly for µ ≈ µ̂. This leads us to the choice ν1(µ) = 2q
q+1 , otherwise {Ψµ}µ∈Λ

would not be continuously quantifiable in µ̂ at x = x`. From now on we set ν1(µ) := 2q
q+1 . Accordingly, the

monomial (x+ 1)3q−1 “disappears” and we get that

ψµ(x) =
2(p− q)(q − 1)

(p+ 1)(q + 1)3
(x+ 1)4q +

4(p− 2q)(p− q)3(1 + p− q)
(p+ 1)3(q + 1)3

(x+ 1)p+2q−1 + r̂µ(x)

with both, (x + 1)−4q r̂µ(x) and (x + 1)1−p−2q r̂µ(x) tending to zero as x −→ −1 uniformly for µ ≈ µ̂. We
now consider two cases, p̂ ∈ (0, 1) and p̂ > 1.

• If p̂ ∈ (0, 1), then the monomial with smallest exponent in ψµ for µ ≈ µ̂ is (x+ 1)p+2q−1. Taking this
into account, some computations show that the family {Ψµ}µ∈Λ is continuously quantifiable in µ̂ at
x = x` by α`(µ) = 1− p+ 4q.

• If p̂ > 1, then (x + 1)4q is the monomial with smallest exponent in ψµ for µ ≈ µ̂ and, similarly as

before, {Ψµ}µ∈Λ is continuously quantifiable in µ̂ at x = x` by α`(µ) = 2q with limit a` =
√

p̂
p̂+1 .
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On the other hand, taking advantage of the analyticity of Vµ at x = xr, one can easily check that {Ψµ}µ∈Λ

is continuously quantifiable in µ̂ at x = xr by αr(µ) = − q
q+1 with limit ar = p̂−

1
2 (p̂+ 1)−

p̂+2
2p̂ (2− (p̂+ 1)

1
p̂ ).

We are now in position to conclude the proof. Let us consider the case p̂ ∈ (0, 1) first. Then, on account
of (15) and the values of α` and αr obtained above, by applying the second part of Theorem B with n = 1
we get ξ(µ̂) = −min{p̂− 1, 0} = 1− p̂. Consequently if p̂ ∈ (0, 1

2 ), then ξ(µ̂) > 1
2 and by (a) in Theorem B

we can assert that Crit((Πµ̂, Xµ̂), Xµ) 6 1, as desired. If p̂ ∈ ( 1
2 , 1), then by (b) in Lemma 4.4 we have

N1(µ̂) 6= 0 and hence, by (b1) in Theorem B, we get Crit((Πµ̂, Xµ̂), Xµ) 6 1, as well. Let us consider finally
the case p̂ > 1. Then, from (15) and the values of α` and αr obtained above,

(
α`
β`

)
(µ̂) =

(
αr
βr

)
(µ̂) = 0 and

(
ar(br)

−αrβr − a`(b`)−
α`
β`

)
(µ̂) =

(p̂+ 1)−
2+p̂
2p̂ (2− (p̂+ 1)

p̂+1
p̂ )√

p̂
6= 0

for all p̂ > 1. Thus, by the second part of Theorem B, ξ(µ̂) = 0. Since N1(µ̂) 6= 0 due to (b) in Lemma 4.4,
by the first part of Theorem B we get Crit((Πµ̂, Xµ̂), Xµ) 6 1 also in this case. This proves the result.
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