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ALGEBRAIC LIMIT CYCLES FOR QUADRATIC
POLYNOMIAL DIFFERENTIAL SYSTEMS

JAUME LLIBRE AND CLAUDIA VALLS

ABSTRACT. We prove that for a quadratic polynomial differential sys-
tem having three pairs of diametrally opposite equilibrium points at
infinity that are positively rationally independent, has at most one al-
gebraic limit cycle. Our result provides a partial positive answer to the
following conjecture: Quadratic polynomial differential systems have at
most one algebraic limit cycle.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

In this paper we focus on differential systems of the form

dr | dy .
where P, @Q € R[z,y], being R[z, y] the ring of all real polynomials in x and y
and where the maximum degree of P and () is two. They are called quadratic

systems and in what follows will be denoted simply by QS systems.

The algebraic curve g(z,y) = 0 of R? with g = g(z,y) € R[z,y] is an
invariant algebraic curve of the QS system (1) if for some polynomial K €

Rz, y], we have
99 , »9%
P D +Q oy Kg.

The polynomial K is called the cofactor and has degree at most one. More-
over, the algebraic curve g = 0 is invariant under the flow defined by the
solution of the QS system (1). If g is irreducible in Rz, y] we say that the
invariant algebraic curve is irreducible. A limit cycle of the QS system (1) is
an isolated periodic orbit in the set of all periodic orbits of system (1). An
algebraic limit cycle of system (1) is an oval of a real irreducible invariant
algebraic curve which is a limit cycle of system (1). From now on we will
denote it by ALC.

The following open conjecture is related with the second part of Hilbert’s
16th problem (see [16]): A QS system has at most one ALC.

This conjecture has been running from 1958 where the ALC of quadratic
systems started to be studied. More concretely, it is proved in [23] that QS
systems can have an ALC of degree 2, and that they are unique whenever
they exist. In [12, 13, 14] (see also [4, 17, 21, 24] for different proofs) the
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author proved that a QS system does not have ALC of degree 3. In [22]
and [15] it is found two different families of ALC of degree 4 inside the QS
systems. More recently, two new families have been found and in [7] the
authors proved that there are no other families of ALC of degree 4 for QS
systems. The uniqueness of these limit cycles was proved in [9]. It is known
that there are QS systems having ALC of degrees 5 and 6, see [7], and that
this limit cycle is the unique one for these QS systems.

In [19] and [20] the authors proved the conjecture in the cases in which a
QS system has one or two pairs of equilibrium points at infinity. Therefore
in order to prove the conjecture we can restrict to the cases in which the
QS has three pairs of diametrally opposite equilibrium points at infinity.
Recall that a QS system has at most three pairs of equilibria at infinity.
This problem is still too demanding and so we restrict to the case in which
there are two infinite equilibria that are positively rationally independent.
An equilibrium point is said to be positively rationally independent if the
eigenvalues of the Jacobian matrix of the differential equation at this point
has two eigenvalues A # 0, u # 0 such that A\/u & QF, where QT denotes
the set of positive rational numbers. We shall use the next assumption.

(H1) The three pairs of equilibrium points at infinity are positively ratio-
nally independent.

The following is the main result in this paper.

Theorem 1. A QS system with three pairs of equilibrium points at infinity
satisfying the hypothesis (H1) has at most one ALC.

In view of Theorem 1 it remains to prove the conjecture in the case in
which a QS has three pairs of equilibrium points at infinity not two of them
being positively rationally independent.

The proof of Theorem 1 is divided in two sections 3 and 4. In section 2
we state some known facts about quadratic polynomial differential systems
that we shall need.

2. QUADRATIC SYSTEMS: KNOWN RESULTS

The following results are known. The first one is proved in [9, 4].
Theorem 2. A QS system having an ALC of degree 2 or 4 has at most 1
ALC.

In view of Theorem 2 from now on we will consider ALC' of degree n > 5.

The next result is proved in [3, 10].

Theorem 3. A (S system having an invariant straight line has at most 1
limit cycle.

The next result is proved in [18] and [19] (see Theorem 4 of [18] and its
proof and Theorem 2 of [19]).
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Theorem 4. If a QS system has an ALC of degree n, then it can be written,
through an affine change of variables and a scaling of the time, into one of
the following two systems. First

i =&x —y+ azx? + by, (2)
§ =1z — &y + da® + exy + fi?,
with d # 0 and € € (—1,1), and second
&= —y+ ax® + bry + cy?, (3)
§=x+exy+ fy*.
The cofactor of g = 0 in both cases is ny. Moreover, if systems (2) or (3)
have a limit, it must surround the origin.
The following result is proved in [18] (see Proposition 13).
Proposition 5. If yP» — Qs = 0, where Py and Q2 are the homogeneous
components of degree two of P and Q in the QS system (1), then it has no
limit cycles.
The following lemma is proved in [6].

Proposition 6. Assume that a QS system (1) has the invariant algebraic
curve g = 0 of degree n. Let Py and Q2 be as in Proposition 5 and g, the
homogeneous component of g of degree n. Then the irreducible factors of g,
must be factors of yPo — Q2.

The proof of the next theorem can be found in [5] (or also in [8] via
Theorem A2).
Theorem 7. A QS system of the form
b= —y+ax+a?, §=z(14+ a3z + a),

has at most 1 limit cycle surrounding the (0,0).

The proof of the next theorem is Theorem 2 in [19].

Theorem 8. A QS system with at most one pair of equilibrium points at
infinity has at most 1 ALC.

The proof of the next theorem can be found in [20] (see Theorem 1).

Theorem 9. A QS system with at most two pairs of equilibrium points at
infinity has at most 1 ALC.

In view of Theorems 8 and 9 in order to prove Theorem 1 we can restrict
ourselves to study the quadratic polynomial differential systems having three
pairs of equilibrium points at infinity.

We now give necessary conditions in order that a polynomial be a cofactor

K of an invariant algebraic curve. The following result is taken from [1].

Let g(z,y) = 0 be an ALC of degree n of a QS system of the form (1).
Let (zo,y0) be a point such that g(zo,yo) = 0 and we expand the ALC in
powers of x — zg and y — yg in the following way

9(z,y) = gs(z,y) + gs+1(x,y) + -+ - + gn(z,y) (4)



4 JAUME LLIBRE AND CLAUDIA VALLS

where g;(x,y) are homogeneous polynomials of degree j in powers of x — xg
and y — yo. We denote by s the lowest degree in expansion (4). Note
that s > 1 because g(zg,y0) = 0 we have s > 1, and since gs(z,y) is a
homogeneous polynomial of degree s it factorizes as follows

gs(:(},y) = L1L2 o -LS Li = ai(x—azo)—l—bi(y—yo), ai,bi S C, 7= 1,2 ceey S

We denote by A and p the eigenvalues of the linear approximation of g at
this point (xo,yo)-

Theorem 10. Consider a QS system (1) with (zo,yo) being one of its equi-
librium points and let g(xz,y) = 0 be an ALC with cofactor K(z,y). If
9(zo,y0) # 0 then K(xo,y0) = 0. Furthermore, if g(xo,yo) = 0, with the
above notation, we have that gs(x,y) = (Lx)**(L,)°~** with s,sx € N and
sx < s and K(zo,y0) = sxpt + (s — sa)\. Assume that p # 0 and \/p & QF
then

(a) either s =2, sy =1 and go = L\L,;
(b) ors=1 and g1 = Ly;
(c) ors=1and g =1L,.

It is stated in [1] that Theorem 10 is also valid in the local charts U; and
Us of the Poincaré disc. For the definition of Poincaré disc and the local
charts for studying it see for instance Chapter 5 in [11].

3. PROOF OF THEOREM 1 FOR SYSTEM (2)

In this section we prove the following theorem.

Theorem 11. Let g = 0 be an invariant algebraic curve of degree n > 5 of
a QS system (2). Assume that g = 0 has three pairs of equilibrium points at
infinity and that satisfies hypothesis (H1). Then there is at most 1 ALC on
g=0.

Proof. Let g = (Z:‘zo gn,i,i:p”_iyi) +--, 0 <m < n with go—mm # 0,

where the dot denotes the terms of order n — 1 and lower. The coefficient

of the term ™ ™y™*! in the expression of ¢ = nyg is equal to

gn—m,m((n - m)b +mf — n) = 0.
Therefore
b=m-—mf)/(n—m)ifm+#n, and f=1ifm=n.

From Proposition 6 we have
m
> gnoiia" Ty = 2" (@ — myy)F (@ — 2ay)™F, (5)
i=0

where

a—e:l:\/Z

5 with A= (a—e)®+4d(b—f) >0

T12 =
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are the roots of the polynomial dz? — (a — e)x — (b — f) = 0. The case in
which A < 0 was proved in [19] because in that case at infinity there is a
unique pair of singular points which are the endpoints of x = 0.

On the local chart U; in the variables (u,v) the algebraic invariant curve
g has the form

g(u,v) =u"""(u— xl)mfk(u — ﬂfg)k +vgp—1(u)+ Uan_g(u) +---+0"go(u),

(6)

where g;(u) is a polynomial of degree j and the cofactor becomes
K(u,v) =n. (7)
Note that K(0,0) = K(x1,0) = K(2z2,0) = n # 0 and so in view of Theorem
10 we have n > m, m > k and k£ > 0.
We recall that g, given in (5) must satisfy

n—mf I

8971 2 2 _
xy)% + (dz* + exy + fy°) oy NYGn.-

(ax2+
n—m

Doing so we get that three possibilities can hold:
(i) if f # 1 and m # 2k then
(n—m)((a —e)k —an)((a —e)(k —m)+an)
(f = D2k —m)*n ’

(ii) If m = 2k and f # 1 then a = ek/(k — n),
(iii) If f =1, then either a = ek/(k — n) or a = e(k —m)/(n — m + k).

d=

Note that if f = 1 then b = 1 and A = (a — ¢)? which implies that either
x1 = 0 or z9 = 0. So, system (2) has only two pairs of equilibrium points
at infinity, which is not possible. We will consider the other two cases
separately.

For the definition of Poincaré disc and the local charts for studying it, see
for instance Chapter 5 in [11].

Case 1: d as in (i), with f # 1 and m # 2k. In the local chart Uy system
(2) with b= (n — mf)/(n — m) becomes
—1
U= uu—v—i—(a—e)uZ—i-quv—u2v—du3,
m—n (8)
U= —v<f+eu—§v+du2 —i—uv),

where d is as in (i). The infinite equilibrium points for system (2) are on
v = 0 and with coordinates

(f =12k —m)n B (f =12k —m)n

w=0 = S ek —an) T = m){(a—e)k —m) +an)

We compute the eigenvalues Ay and u; of the Jacobian matrix at the point
(u1,0) and we get
n(f—1)

m-—n

>‘1:_f> 1 =
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Assume that Ajp; # 0 and A\1/p1 € Qt. Then it follows from Theorem
10(a) that either s = 2 and r = 1 in which case K(u1,0) = A1 + pg, or
s =1 and r = 0 in which case K(uj,0) = A1, or s = 1,7 = 1 in which case
K(u1,0) = pp. Since K(u1,0) = n we must have either A\y + 3 = n, or
Al =mn, 0r up =n.

In the first case Ay + p1 = n, solving this last equation in f we get
that f = n(n —m — 1)/(m — 2n), which is well-defined because m < n.
Substituting f in A; and g1 we obtain

A —-n—1
M _m=mn—2 cQt, ifn£m+1,
1 n+1
which is not possible. In the second case A\; = n, solving this equation in f
we get f = —n and then
Al _n—m

= & +7
n1 n+1 Q

which is not possible. Finally, in the third case u; = n, solving this equation
in f we obtain f =14+ m —n and

A —m-—1

A_DTMTCcQf, ifnAmtl,

K1 n
which again is not possible. In view of hypothesis (H1) we must have n =
m+ 1.

By hypothesis (H1) we have that \o/us € QT and A3/us ¢ Q. Now
we compute the eigenvalues Ay and po of the Jacobian matrix at the point
(u2,0) with n # m + 1 and we get

(f = 1)(m+1)(ma+ 2a+ em)
ma + a + ek — ka

_ 2fka—ka+ fkma — kma —ma —a — ek —ekm +efkm

N ma + a + ek — ka ’

Since K(u;,0) = n # 0 for i = 1,2, in view of Theorem 10 we must have
gn(u2,0) = gn(u3,0) = 0. So m > k > 0. Since by assumptions we have
Ao/ 2 & QF, it follows from Theorem 10(a) that either s = 2 and r = 1 in
which case K (ug,0) = Ay + p2, or s =1 and r = 0 in which case K (ug,0) =
A2, or s = 1,7 =1 in which case K (ug,0) = us. Since K (ug,0) = n we must
have either A 4+ o = n, or Ao =n, or us = n.

Ag =

)

12

In the first case Ao + uo = n, solving this equation in e we get that
B _a(m+2)(f(k:—i—m+ 1) —2(m+1))
(f=1)mm+1)+k((f —2)m—2)
if (f —1)m(m+1)+k((f —2)m —2) # 0. Substituting e in A2 and po we
get that

)\2 . m+ 2 + .

L= T EQN WAL 9)
which is not possible. If (f —1)m(m+1)+ k((f —2)m —2) = 0, solving the
equation Ao + s = n we obtain a = 0, and again we get (9) which is not
possible.
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In the second case A2 = n, solving this equation in e we get
_alk—2m+ f(m+2) —3)

k—fm+m ’
if k — fm + m # 0. Substituting e in A and po we get that
)\2 m+1 + .
—=— fk#£1 10
i €Q, ifk#1, (10)

which is not possible. If £ — fm 4+ m = 0, solving the equation \s = n we
obtain a = 0, and again we get (10) which is not possible.

Finally, in the third case p2 = n, solving this equation in e we get
a(fk—m—1)(m + 2)
O K(f-2m-2)
if k((f —2)m —2) # 0. Substituting e it in A9 and p2 we get
22 = mTH €Q*, (11)
which is again not possible. If k((f — 2)m — 2) = 0, solving the equation
w2 = n we obtain a = 0, and again we get (11) which is not possible.

e =

In short, by assumption (H1) we must have n =m + 1 and k = 1.
The eigenvalues A3 and u3 of the Jacobian matrix at the point (us,0) are
(f =1)(m+1)(ma+ 2a + em)

)\3: )
20 —e+em

—am? —em? + afm? +efm? —am+afm —efm+e—2af

Ha = 20 —e+em

Since by assumptions we have A\3/us € QT it follows from Theorem 10(a)
that either A3 + us = n, or A3 = n, or uz = n.
In the first case A3 + pu3 = n, solving this equation in e we get that
_ 2am+2)(f —Dm —1)
o om(2f-3m—-1)+2
if m((2f —3)m — 1) + 2 # 0. Substituting e in A3 and p3 we get that
A 2
A3 — ﬁ c Q-l-’ (12)
3 mo—2

because n = m+1 > 5 this case is not possible. If m((2f —3)m—1)+2 =0,
then A3 + p3 = n implies that a = 0, and we again obtain (12) which is not
possible.

In the second case A3 = n, solving this equation in e we get
a(m — f(m+2) +4)

e= ,
(f—=2)m+1
if (f —2)m + 1 # 0. Substituting e in A3 and pus we get that
Az m+1

= (13)
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Again since n = m + 1 > 5 this case is not possible. If (f —2)m +1 =0,
then A3 = n implies that a = 0, and we obtain (13), which is not possible.
Finally, in the third case pu3 = n, solving this equation in e we get
L _alfm =) —m - )(m+2)
(m—=1((f-2)m—-2)
if (f —2)m — 2 # 0. Substituting e it in A3 and p3 we get

A m+ 2
£:m€Q+a (14)

which is again not possible. If (f —2)m —2 = 0, then u3 = n implies a = 0,
and we obtain (14) which is not possible.

This concludes the proof of the theorem in Case 1.

Case 2: m = 2k, a = ek/(k —n) and f # 1. Clearly & > 0. In the local
chart Uy system (2) with b = (n — mf)/(n — m) becomes (8) with m = 2k
and a = ek/(k—n), g(u,v) asin (6) and K as in (7). The equilibrium points
for system (8) are on v = 0 and coordinates

_en(2k—n) FVS
2d(2k2 — 3kn +n2)’

up =0, w23

where

S = (2k —n)n(d(f — 1)(k —n)? + e*(2k — n)n).

We compute the eigenvalues Ay and p; of the Jacobian matrix at the point
(u1,0) and we get
n(f—1)
M=—f, m= Y ——
Note that g(u1,0) = 0. By assumption (H1) we have that Ajpuq # 0 and
A/m € QF. Then it follows from Theorem 10(a) that either A\; + p1 = n,
or A\{ =n, or uy = n.

In the first case A\; + g1 = n, solving this equation in f we get that
f=mn-2k-1))/(2(k —n)) (which is well-defined because k # n) and
—2k—1

Mmoo 2ok,

n1 n+1
which is not possible. In the second case \; = n, solving this equation in f
we get f = —n and then

At n—2k

— +
= (= ,
w1 n+1 Q

which is not possible. Finally, in the third case p; = n, solving this equation
in f we obtain f =1+ 2k — n and

A -2k -1

A_DTNT D oQf, ifn£2k+,

K1 n

which is again not possible.
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In short, n = 2k + 1 and by assumptions (H1) we must have \o/uo ¢ QT
and \3/u3 ¢ Q. We compute the eigenvalues A 3 and p2 3, of the Jacobian
matrix at the points (ug 3, 0) respectively, and we get respectively

(2k + 1)(—2ke? — e F V/Se — 4dk? + 4dfk* — 4d + 4df — 8dk + 8dfk)

A23 = 2d(k + 1)2 ’

4dfk? — Adk® — 2e2k? — 10dk? + 8dfk* — e*k — 8dk + 4dfk F ev/Sk — 2d
K23 = 2d(k + 1) ’
where

S=—2k+1) (4d(f — 1)(k + 1)* — e*(2k + 1)) .

Since we are assuming that \y/us ¢ Q7 in view of Theorem 10(a) we have
that either Ay + ps = n, or Ay = n, or ps = n.
In the first case Ao + uo = n, solving this equation in e we get that
2Vd(k 4+ 1)(3kf + f — 4k — 2)
V3Ef+ f =5k —3/k(6k +5)+1’
if 3kf 4+ f — 5k — 3 # 0. Substituting e in As and uo we get
Q: 2(k+1) c Q)
2 k—1

because n = 2k + 1 and n > 5. So this case is not possible. If 3kf 4+ f —
5k — 3 = 0, there is no solution of Ay + 2 = n because d cannot be zero.

In the second case Ay = n, solving this equation in e we get that

VA3 —2f)(k+1)

VIi—=2V2k+1 "’
if f 22, but then
Ay 2k +1 i
g_ k—1 EQ )

because n = 2k + 1 and n > 5. So this case is not possible. If f = 2, then
there is no solution of Ay = n because d cannot be zero.

Finally, in the third case p2 = n, solving this equation in e we get that
_ VAR )((f -2k - 1)
VEV2E+1/(f = 3)k -2’
if (f —3)k —2# 0. Substituting e in Ay and uy we get
Ay 2(k+1)
H2 k
which is again not possible. If (f — 3)k — 2 = 0, then there is no solution

of Ay = n because d cannot be zero. Hence, this case is not possible and so
the proof of the theorem is complete. O

€ Qt,

Proof of Theorem 1 for system (2). Theorem 1 for system (2) follows di-
rectly from Theorem 11. O
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4. PROOF OF THEOREM 1 FOR SYSTEM (3)

The proof of Theorem 1 for system (3) will be an immediate consequence
of the proof of the following theorem.

Theorem 12. Let g = 0 be an invariant algebraic curve of degree n > 5 of
a QS (3). Assume that g = 0 has three pairs of equilibrium points at infinity
and that satisfies hypothesis (H1). Then there is at most 1 ALC on g = 0.

Proof. Let g = (Z;’;O gn—i,z’ynii.ﬂ') + .-+ with gn—mm # 0, where the

dots indicate terms of degree n — 1 and lower. The coefficient of the term
Y™™+ in the expression §—nyg is equal to am+e(n—m) = 0. Therefore
am

e= ifm#mn, and a=0if m=n.

m—n
We consider different cases: ¢ =0 and ¢ # 0.

Case 1: ¢ =0 In this case system (3) becomes

- 2

T = —y+ax” + bry
. 2 (15)

y=x+exy+ fy°.
By Propositions 5 and 6 (we are assuming that the line at infinity is not
formed by equilibrium points, otherwise the system cannot have a limit
cycle), we have that 37" gn_iiy" "2t = y"""a*((a — )z + (b — fy)™*k
with 0 < k < m. We recall that b # f and e # f, otherwise system (15)
would have only two pairs of singular points at infinity which is not possible.

If n = m then a = 0. If b # 0 system (15) has the invariant straight line
x = 1/b and in view of Proposition 3 system (3) has at most one limit cycle.
So, b = 0. Moreover, if f = 0, then either the system has no equilibrium
points at infinity (if e # 0) or the line at infinity is formed by equilibrium
points (if e = 0). In both cases it follows, respectively, from Propositions
system (3) has no limit cycles. So, we can assume that m # n.

On the local chart U; we have that K (u,v) = nu. Since K (y1,0) = ny; #
0, being y1 = (a —€)/(b — f), we must have m > k. Moreover, imposing
that g, = y" "aF(y — y12)™ " satisfies
Ogn Ogn

(ax2 + bmy)% (exy + fyZ)G—y = NYGn,

we get that e = am/(m —n) and b = (fk +n — fn)/k. Note that a # 0
otherwise e = 0 which is not possible.

On the local chart U; system (15) with e, f as above becomes
-1
U = Lu—kv—kuuz—ku%,
m-—n k (16)

_%(ak+(fk+n—fn)u—kuv).

The infinite singular points of system (3) correspond to v = 0 in system (16)
and coordinates u; = 0 and ug = ak/((f — 1)(n — m)). We compute the

D=
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eigenvalues A1, 1 of the Jacobian matrix at the point (u,0) and we get

an

)\1:—0,, M1 = .
m-—-n

Note that A\;/p1 = (n —m)/n € QT so this case is not possible.
Case 2: ¢ # 0. We now consider different cases: m =n and m < n.

Case 2.1: m = n. In this case a = 0. Since ¢ # 0, proceeding as in [18§],
there are two reasons for having the condition m = n. First we simply
have chosen the wrong system of coordinates, and there is some other real
singular point of the system at infinity through which g = 0 passes. In that
case the system can be transformed into system (2) with m < n.

The second reason for having m = n is that all the branches of ¢ = 0 go
through non-real equilibrium points of the system at infinity. This means
that y1 = 72 ¢ R. In that case system (3) would have only a pair of
equilibrium points at infinity and in view of Theorem 8 it is proved that in
this case the system has at most one limit cycle.

Case 2.2: m < n. If a = 0 then e = 0 and it follows from Theorem 7
(making the change x — y and y — z) that system (3) has at most one
limit cycle.

We can thus assume that a # 0 and so e = am/(m — n). We write
gn = Y™ (y — y12)*(y — yox)™ % where y1,y2 are the simple solutions of
cy’+(b—f)y+a—e = 0and so (a—e)?>—4c(b— f) > 0. Moreover y; # 0 and
y2 # 0 otherwise the system would have only two pairs of infinite singular
points which is not possible. Indeed,

(b= ) £/ (b= f)? —4dacn/(n —m))
2¢ '

Y12 =

On the local chart U; system (3) with e = am/(m —n), a # 0 becomes

u+v+ (f —bu? — cud + u?v,
m—n (17)
v = —v(a+ bu + cu® — ww).

U=

The infinite singular points of system (3) correspond to v = 0 in system
(17) and coordinates u; = 0 and uy = y; and ug = yo. We compute the
eigenvalues A1, g of the Jacobian matrix at the point (u1,0) = (0,0) and
we get

an

Al =—a, = .
m-—n

Note that A\j, Ay # 0 and A\;/u1 = (n —m)/n € QF, which is not possible.
This completes the proof of Theorem 12. OJ

Proof of Theorem 1 for system (3). Theorem 1 for system (3) follows di-
rectly from Theorem 12. O
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