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Abstract
In chronic lymphocytic leukemia (CLL), TP53 gene defects, due to deletion of the 17p13 locus and/or mutation(s) within the
TP53 gene, are associated with resistance to chemoimmunotherapy and a particularly dismal clinical outcome. On these
grounds, analysis of TP53 aberrations has been incorporated into routine clinical diagnostics to improve patient stratification
and optimize therapeutic decisions. The predictive implications of TP53 aberrations have increasing significance in the era of
novel targeted therapies, i.e., inhibitors of B-cell receptor (BcR) signaling and anti-apoptotic BCL2 family members, owing
to their efficacy in patients with TP53 defects. In this report, the TP53 Network of the European Research Initiative on
Chronic Lymphocytic Leukemia (ERIC) presents updated recommendations on the methodological approaches for TP53
mutation analysis. Moreover, it provides guidance to ensure that the analysis is performed in a timely manner for all patients
requiring treatment and that the data is interpreted and reported in a consistent, standardized, and accurate way. Since next-
generation sequencing technologies are gaining prominence within diagnostic laboratories, this report also offers advice and
recommendations for the interpretation of TP53 mutation data generated by this methodology.

Introduction

Chronic lymphocytic leukemia (CLL) displays a very het-
erogeneous clinical behavior, therefore prognostic and
predictive markers play an important role in disease man-
agement. To date, the key decision-making biomarkers in
CLL are TP53 gene defects: chromosomal aberrations of
17p13, in particular deletions spanning the TP53 locus, and

TP53 gene mutations, both of which are associated with
adverse disease outcome due to resistance to chemoimmu-
notherapy [1–4].

Early studies utilizing fluorescent in situ hybridization
(FISH), for the detection of cytogenetic aberrations,
revealed that CLL patients carrying del(17p) have a sig-
nificantly shorter overall survival compared to patients
harboring other recurrent cytogenetic abnormalities, i.e.,
del(11q), trisomy 12, or del(13q) [5]. Inactivation of the
TP53 locus due to del(17p) is frequently associated with
mutation(s) on the second TP53 allele. However, TP53
mutations also occur in the absence of del(17p) in about 5%
of untreated patients and are associated with a poor out-
come, similar to the disease course observed in del(17p)
CLL patients [6, 7]. More specifically, approximately 90%
of patients with del(17p) carry a TP53 mutation; conversely,
only 60–70% of patients with TP53 mutation also harbor
del(17p), as detected by FISH [8–12].

The clinical utility of TP53 mutation analysis in CLL has
been well documented by many studies [7–9, 11, 13],
including findings from prospective clinical trials [6, 14, 15]
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clearly showing that patients carrying TP53 defects are
resistant to chemoimmunotherapy. In this context, the
advent of novel treatment options inhibiting B-cell signaling
and anti-apoptotic BCL2 that proved efficacious in patients
harboring TP53 gene disruption [16–18] has brought an
urgent need for accurate assessment of the TP53 gene status
in routine clinical practice with the aim of identifying those
patients who would not benefit from chemoimmunotherapy,
and hence should be considered for targeted agents.

TP53 gene assessment should always be performed prior
to initiation of the first and every subsequent line of treat-
ment [19]. That said, a few situations exist where TP53
mutational analysis may not be required, e.g., when the use
of p53-independent drugs is not possible due to either
patient fitness or limited market access, or when the pre-
sence of a TP53 alteration has already been documented.

The recent introduction of high-throughput next-gen-
eration sequencing (NGS) has led to the identification of
TP53 mutations with a low variant allelic frequency (VAF)
—usually below the detection limit of conventional Sanger
sequencing—that may be positively selected with the use of
chemotherapy, ultimately leading to the expansion of an
initially minor TP53 mutant subclone into a prevalent
refractory clone [20–24].

Taken together, the recent therapeutic and technological
advances necessitate an update of the previously published
ERIC recommendations for TP53 mutation analysis in CLL
[19], including assessment of the current methodological
approaches as well as recommendations for the interpreta-
tion of the findings and the accurate reporting of results. An
overview of the updated recommendations is provided in
Table 1.

Procedure description

Material for TP53 mutation analysis

For most CLL patients, peripheral blood (PB) is an appro-
priate starting material for TP53 mutation analysis. Never-
theless, an important factor influencing the result is the cancer
cell fraction (CCF), and this is particularly relevant in cases
with a low lymphocyte count (<10× 109/L and/or <60–70%
lymphocytes in PB). This is usually evidenced in patients
with predominant lymphadenopathy and few circulating clo-
nal cells, i.e., small lymphocytic lymphoma. In such cases,
material enriched with tumor cells such as bone marrow (BM)
or lymph node biopsies may be an alternative option.

PB or BM should be collected in tubes containing an
anticoagulant, such as EDTA or heparin, followed by
mononuclear cell separation by density gradient centrifuga-
tion to enrich the lymphocyte fraction. The use of mono-
nuclear cells might be insufficient when the specimen

analyzed contains less than 60–70% lymphocytes and could
lead to a false-negative result when using Sanger sequencing
(Supplementary Fig. S1). In such instances, selection of
CD19+ cells using enrichment techniques such as RosetteSep
or MACS should be performed to yield a higher CCF.
Alternatively, ultra-deep NGS, which has a much greater
sensitivity level, can be performed and the VAFs corrected
with respect to the CCF. Regarding tissue material, fresh/
frozen material is strongly preferred. Formalin-fixed, paraffin-
embedded (FFPE) tissues are recommended only when no
alternative sample is available as the fixation and embedding
processes may hamper the analysis, since: (i) FFPE material
often contains highly degraded DNA fragments, therefore
shorter amplicons are required for sequencing; (ii) the process
of tissue fixation damages DNA through cross-linking, thus
reducing the number of intact DNA molecules added into the
PCR [25]; and (iii) DNA can be chemically modified, leading
to artefactual sequencing results (particularly deamination and
oxidation artifacts) [26–28]. Therefore, any variants detected
in DNA samples from FFPE material should be confirmed by
independent PCR and carefully verified using the recom-
mended databases (described below) before interpreting and
reporting them as mutations.

Finally, when considering the type of nucleic acid to
analyze, genomic DNA is highly recommended. Analyzing
RNA may result in truncating or splice site variants being
missed due to nonsense-mediated RNA decay [29]. In
addition, using whole-genome amplification for diagnostic
purposes is discouraged as it may introduce a bias in allelic
frequencies and could lead to allelic drop-out.

Region of interest

At a minimum, the sequenced region of the TP53 gene must
include exons 4–10, which corresponds to the DNA-binding
domain (codons 100–300) and the oligomerization domain
(codons 323–356). Sequencing of exon 10 is recommended
as the frequency of mutations in exons 9 and 10 is similar or
even higher in exon 10 as documented by the recent studies
[30] (Fig. 1). Optimally, exons 2–11 should be analyzed to
cover the entire coding region [30]. TP53 gene profiling
studies by NGS, which usually involves also exons 2, 3, and
11, have shown that variants can also occur in these exons,
although their frequency is low (T. Soussi, unpublished
results; Fig. 1). As each exon is surrounded by a splice
donor and a splice acceptor site, sequencing of +2/−2
intronic nucleotides is required to detect variants which may
impair splicing and translate to inactive proteins.

Sanger sequencing

Primer sequences, as well as the protocol for performing the
PCR, are available on the International Agency for
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Research on Cancer (IARC) TP53 website (http://p53.iarc.
fr/ProtocolsAndTools.aspx). This PCR protocol is adaptable
and can be modified based on local experience. Bidirec-
tional sequencing analysis is the only acceptable strategy,
and the chromatograms generated by Sanger sequencing
should be carefully scrutinized to ensure that somatic var-
iants present at lower allelic frequencies are not overlooked;
adjusting software settings to detect germline homozygous
and heterozygous variants is not sufficient. The ERIC TP53
Network provides the opportunity to analyze Sanger
sequencing data via a web-based tool called GLASS [31].
This software was purpose-built to assist with the assess-
ment of somatic gene variations and provides a standardized
variant output as recommended by the Human Genome
Variation Society (HGVS). GLASS was specifically
developed to support ERIC TP53 Network activities and is
freely accessible at http://bat.infspire.org/genomepd/glass/
or via the ERIC website (http://www.ericll.org/guidance-
toolstp53/).

Finally, although the relevance of pre-screening meth-
ods, such as denaturing high-performance liquid chroma-
tography and high-resolution melting analysis is decreasing,
they remain a viable and cost-effective option. That not-
withstanding, in order to identify the specific variant,
aberrant screening results must always be confirmed by
Sanger sequencing in an independent PCR.

Next-generation sequencing

Targeted NGS can be used for the analysis of the TP53 gene
as a standalone assay or as part of a gene panel investigating
several genes. Numerous commercially available ready-to-
use analytical kits include the TP53 gene, and ERIC is
conducting a multi-center collaborative effort to assess and
compare various pre-designed and custom gene panel
technologies. Previous studies exploring the inter-

reproducibility of targeted NGS and Sanger sequencing
for TP53 analysis demonstrated very good correlation of the
results, specifically showing that all variants detected by
Sanger sequencing are also detectable by NGS [22, 23, 32–
35]. A recent study also showed an excellent correlation
between the results obtained from two different NGS plat-
forms, namely, the Ion PGM (ThermoFisher) and the MiSeq
(Illumina) [33]. In addition, NGS is capable of detecting
variants below the sensitivity threshold of Sanger sequen-
cing, even VAFs as low as <1% [20, 22, 23]. Due to the
low detection limit of NGS, multiple subclonal mutations
within the TP53 gene (i.e., convergent mutations) may be
detected in some patients [20, 35].

To ensure the maximum applicability and reliability of
NGS, several important issues need to be addressed when
establishing the methodology, as erroneous results can arise
for various reasons (Table 2).

DNA input and quality

Low input and/or degraded DNA may result in false-
negative results due to a sampling effect, and may also
produce false-positive results as amplified errors might
constitute a significant proportion of the final sequencing
library [36]. The initial amount of DNA should always be
calculated with respect to the required limit of detection
(LOD), keeping in mind that a human cell (two alleles)
contains approximately 6 pg of DNA. For reliable detection,
the DNA input must ensure that the sample contains a
sufficient number of variant molecules and that the variants
can be distinguished from background noise. For instance,
at least 10 ng corresponding to approximately 1500 cells or
3000 alleles should be used to detect variants present at 1%
VAF. This is also relevant for techniques which require the
starting amount of DNA to be distributed amongst indivi-
dual nano-scale PCRs, e.g., the Fluidigm Access Array,
RainDance Technology, or Wafergen. Although DNA iso-
lated from PB and BM is usually of good quality, testing the
integrity of the DNA by agarose electrophoresis or specia-
lized automated electrophoresis devices is recommended
(and often required) for NGS. Special attention is required
when considering the quality and quantity of DNA obtained
from FFPE samples due to the increased risk of false-
positive as well as false-negative results.

Library preparation

Both amplicon-based and capture-based approaches are
applicable. From a practical perspective, amplicon-based
library preparations require much smaller quantities of input
DNA and the workflow tends to be simpler and less time-
intensive and labor-intensive compared to capture-based
methodologies. On the other hand, hybridization capture-

Fig. 1 Frequency of TP53 variants detected in individual exons. Data
are retrieved from the last version of the UMD_TP53 database (http://
p53.fr/) and include somatic and germline mutations detected by next-
generation sequencing of exons 2–11
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based approaches demonstrate better uniformity of coverage
and generate fewer false-negative as well as false-positive
calls as compared to amplicon-based techniques. When
designing in-house primers for amplicon-based libraries, it is
important to check the primer positions against potential
single-nucleotide polymorphisms (SNP) and ensure that the
primers can efficiently read across splice junctions. In order
to establish an NGS assay with high detection sensitivity,
proofreading polymerases with low error-rates are recom-
mended. Incorporating unique molecular identifiers into the
library preparation helps to distinguish errors introduced
artificially during the process from true low-frequency var-
iants and also allows for more accurate quantification
(especially with PCR-based protocols) [37, 38]. Additional
benchmarking studies are required to establish standard
analytical methods that must then be checked for accuracy
and reproducibility.

Sequencing and coverage

The required coverage should be set to ensure that the call is
statistically above the background noise. Generally, the
minimal coverage should not be less than 100 at any position
within the regions of interest and the number of variant reads
for reliable variant calling should be at least 10. The fre-
quently reported mean or median coverage of a diagnostic
panel is non-informative as uncovered regions cannot be
deduced from this average value and therefore a ≥99%
minimum coverage percentage is a vital requirement. Of note,
the number of reads does not necessarily reflect the actual
number of unique template gDNA molecules, as many reads
will be duplicates generated during PCR amplification. When
employing longer reads, a confident overlap (>60–70%)
between the paired reads is recommended in order to avoid
the introduction of false-positive results. Calling variants
found in unbalanced regions with forward-reverse ratios of
less than 10% (i.e., strand bias) should be avoided.

Data analysis

Multiple commercial, as well as free, software tools are
available to analyze NGS data and, as the bioinformatics

field is continuously evolving, no single tool is currently
preferentially recommended. That said, it is of utmost
importance to use a pipeline that has been optimized, and
validated, for the detection of low abundance variants that
must be distinguished from background error noise.
Another issue concerns the accurate identification of inser-
tions and deletions (indels), which may be missed during
the alignment process, especially in the case of complex
indels. Numerous indel-calling tools have been developed
that often vary in the manner by which they detect indel
breakpoints. Performance evaluations of indel-calling soft-
ware have revealed limitations in detection; consequently,
manual inspection of the data is always recommended and
is particularly required for indel variants and variants close
to the detection limit.

Limit of detection

LOD refers to the lowest VAF that is reproducibly detect-
able by the particular method under specific well-defined
conditions. The LOD is a function of both the initial DNA
input and the coverage achieved. The NGS assay should be
established, and validated, to at least reliably identify var-
iants detectable by Sanger sequencing and avoid false-
positive calls with VAF above the Sanger sequencing
detection limit (e.g., minimum LOD is 10% VAF). LOD
should be set by taking into account non-uniformity of
coverage across the analyzed sequence and an inconsistent
error distribution. The occurrence of sequencing errors
varies depending on the nucleotide position and composi-
tion and is also platform-dependent, with C:G>T:A being
the most frequent using Illumina platforms [39]. The error
rate is also influenced by the specific sequence context (e.g.,
homopolymers are more prone to erroneous variant calling).
The issue of detection limit and how it can influence the
interpretation of findings is discussed in the following
section.

Clinical reporting and interpretation of the
results

Variant description

Detected variants should be described using the nomen-
clature devised by the HGVS nomenclature (http://va
rnomen.hgvs.org/) [40]. Several software programs are
available to ensure adherence to standardized nomenclature
(e.g., Mutalyzer; https://www.mutalyzer.nl/). Variants
should be described at both cDNA and protein level, and the
reference sequence number and version including the tran-
script and protein variant should be stated (see Supplemen-
tary Material). To standardize the output, the preferred

Table 2 Types of NGS errors and their sources

Low quantity of DNA/degraded DNA

False-negative result False-positive result

Polymerase efficiency Non-proofreading polymerase

Low/non-uniform coverage Platform-specific sequence-dependent
errors

Using FFPE samples

Bioinformatics: Sub-optimal alignment and variant calling settings
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coding DNA reference sequence is the stable Locus
Reference Genomic sequence (LRG; http://ftp.ebi.ac.uk/
pub/databases/lrgex/LRG_321.xml) [30]. Transcript and
protein variants 1 should be used (LRG_321t1,
LRG_321p1). Special attention is warranted when anno-
tating variants detected by NGS, especially since many
bioinformatics pipelines do not fulfill the requirements for
correct variant description according to the HGVS nomen-
clature. More specifically: (i) insertions and deletions are
often not handled accurately; (ii) duplications are often
misinterpreted as insertions; (iii) varying reference
sequences for TP53 within the same output are used; and
(iv) the 3′ rule is not always implemented correctly. This is
of particular importance for TP53 and other genes that are
oriented in the reverse direction on the chromosome. In
such situations, the alignment and variant calling steps may
introduce errors if aligning to the 3′ end with respect to the
chromosome position rather than the coding sequence
orientation.

Interpretation

Databases

The detected variant should be checked using locus-specific
databases, i.e., either the IARC TP53 database (http://p53.ia
rc.fr/TP53GeneVariations.aspx) [41] or the TP53 website
(UMD database; http://p53.fr/) [42]. These databases com-
pile data from peer-reviewed literature as well as general
databases, and provide information about: (i) the functional
impact of all possible single-nucleotide exchanges within
the coding region; (ii) the variant frequencies noted in both
the somatic and the germline context; and (iii) additional
relevant information, including links to other resources. The
TP53 website also provides a web-service tool called Seshat
that is capable of managing files generated from NGS both
in the vcf and bam formats. Seshat helps the user to: (i)
check the variant nomenclature for consistency and generate
a full description of each variant formatted according to
HGVS; (ii) assess the pathogenicity of each variant
according to general prediction algorithms and algorithms
developed specifically for analyzing the TP53 gene; and (iii)
obtain functional and structural data for each TP53 variant.
Finally, variants can also be checked using the COSMIC
(http://cancer.sanger.ac.uk/cosmic) or ClinVar (https://
www.ncbi.nlm.nih.gov/clinvar/) databases; however, these
databases are only recommended as a complementary ana-
lysis to the locus-specific databases.

Polymorphisms and neutral variants

In general, it is not recommended to include common
polymorphisms and benign variants in the report to

physicians. If, however, the local practice requires that these
variants are detailed in the clinical report, it should be
clearly indicated that the detected variant is not clinically
relevant.

According to the IARC database, there are six validated
exonic polymorphisms within the TP53 gene; two are
synonymous (c.108G>A: p.Pro36= and c.639A>G: p.
Arg213=) and four are nonsynonymous (c.91G>A: p.
Val31Ile; c.139C>T: p.Pro47Ser; c.215C>G: p.Pro72Arg,
and c.1096T>G: p.Ser366Ala). The most frequent poly-
morphism is c.215C>G: p.Pro72Arg, where the ancestral
allele C coding for proline is less frequent in the general
population than the allele G [43] with latitude-dependent
variations. Although the two alleles were reported to have
different capabilities in inducing apoptosis and G1 arrest
[44], studies analyzing the clinical impact of p.Pro72Arg
and its associations with TP53 mutations in CLL reported
inconclusive results [45–48]. Reporting of the p.Pro72Arg
status is therefore not recommended due to a lack of con-
vincing evidence with regard to prognostic or clinical
relevance.

Using dbSNP for filtering out polymorphisms and neu-
tral variants is strongly discouraged as many variants listed
in dbSNP exhibit loss of function and are frequently
observed in cancer patients despite not being reported as
pathogenic in ClinVar [49]. More specifically, of the 100
most frequent deleterious somatic variants described in the
IARC database, 65 are present in dbSNP147 and only 34
are described as being pathogenic [41]. Using the data set
collected within the context of the Genome Aggregation
Database (gnomAD) is more accurate; however, it should
be noted that several pathological variants are also listed in
this database (http://gnomad.broadinstitute.org/, originally
Exome Aggregation Consortium [43]).

Variants with preserved activity

If a rare variant or a variant with preserved functionality is
detected, it is recommended to repeat the entire analysis,
starting from the PCR step, so as to exclude analytical errors.
If the variant is verified and the VAF is approximately 50%,
suggesting a germline origin, it is advisable to verify the
germline or somatic nature of the variant by testing patient-
matched germline DNA, obtained from CD3+ cells, saliva, a
buccal swab or a skin biopsy (it is advised to rule out the
contamination with CLL cells by flow cytometry or by
testing the patient-specific IGHV rearrangement). Variants
that have preserved transactivation capabilities are often
found as germline and the carriers do not show any personal
or family cancer-history associated with Li-Fraumeni or
another cancer-predisposing syndrome. Specific examples of
variants that should be considered with caution and are often
inaccurately reported are c.704A>G: p.Asn235Ser or

Updated recommendations for TP53 analysis in CLL 1075

http://ftp.ebi.ac.uk/pub/databases/lrgex/LRG_321.xml
http://ftp.ebi.ac.uk/pub/databases/lrgex/LRG_321.xml
http://p53.iarc.�fr/TP53GeneVariations.aspx
http://p53.iarc.�fr/TP53GeneVariations.aspx
http://p53.fr/
http://cancer.sanger.ac.uk/cosmic
https://www.ncbi.nlm.nih.gov/clinvar/
https://www.ncbi.nlm.nih.gov/clinvar/
http://gnomad.broadinstitute.org/


c.847C>T: p.Arg283Cys. If the somatic origin of such a
variant is confirmed, the variant should be reported to the
clinician clearly stating that a variant of unknown sig-
nificance was found. In the case that the variant is of germ-
line origin, reporting should follow the recommendations of
The American College of Medical Genetics and Genomics
[50, 51] (recommendations of The European Society of
Human Genetics are currently under preparation).

Intronic variants

Variants affecting splice sites (+2/−2 intronic nucleotides)
are considered pathogenic as they lead to aberrant mRNA
splicing. Pathogenicity of intronic variants outside the
donor and acceptor sequence is largely unexplored, and
therefore they should not be reported unless their functional
impact is proven at the RNA or protein level by doc-
umenting the presence of aberrantly spliced transcripts or
shortened protein products. As these methods are not
usually accessible in diagnostic labs, reporting of intronic
variants with the exception of splice sites is not recom-
mended within clinical routine.

Synonymous variants

If a synonymous variant is detected, it is important to check
its predicted effect on splicing [52] via the IARC database
or the TP53 website. For instance, synonymous variants in
codon 125 (c.375G>A and c.375G>T) have been found in
various cancers and Li-Fraumeni families and shown to
affect the splicing of exon 4 [53], therefore they are clas-
sified as pathogenic.

Indel variants

Insertions and deletions leading to the formation of a pre-
mature stop codon (frameshift variants) as well as in-frame
indels within the DNA-binding domain are considered as
likely pathogenic.

Clinical reporting of subclonal variants with low
variant allele frequency detected by NGS

The definition of the term “subclonal” is generally used to
describe variants that are not present in the entire tumor
population, as opposed to “clonal” [21]. Terms such as
“minor subclone”, “low-burden”, or “low-level” variants refer
to variants with allelic burdens below the detection limit of
Sanger sequencing, i.e., <10% VAF. Of note, caution is
necessary when interpreting VAFs as its calculation does
not take into consideration the CCF and the presence of
genomic copy number aberrations. Therefore, it is important
to bear in mind that a 5% VAF could be clonal if the CCF is

only 10% and no del(17p) or copy-neutral loss of hetero-
zygosity is present.

Several publications have suggested that TP53 mutations
within minor clones are clinically relevant, which is parti-
cularly important considering that administration of ther-
apeutic regimens based on DNA-damaging agents
represents a risk for the selection of these low-level TP53-
mutated subclones [20–23, 33, 54]. However, the extent of
the risk posed by minor subclones harboring TP53 muta-
tions has not been conclusively defined, and the current
evidence on the poor outcome of TP53-mutated patients
treated with chemoimmunotherapy in clinical trials is based
on data obtained using Sanger sequencing only. Therefore,
currently, the presence of minor subclonal mutations should
not impact clinical decision-making. Based on current
knowledge, the recommended threshold for reporting of
mutations detected by NGS should reflect the Sanger-like
threshold of approximately ~10% VAF. That said, bearing
in mind that the 10% threshold is arbitrary, variants with
5–10% VAF can also be reported; however, always men-
tioning in the report that the clinical significance of TP53
mutations with VAF 5–10% is currently unknown, since we
are lacking data from prospective clinical studies addressing
this issue. Importantly, NGS technology should be validated
to a LOD above which there are no false positives (mini-
mum 10% VAF). Confirmation of mutations detected at the
level near the validated LOD is desirable either by Sanger
sequencing or, in the case of minor clone variants, by digital
PCR, independent NGS run or allele-specific PCR.

Report form

In addition to the obligatory standard medical report content
(e.g., patient and lab identifiers, date of sampling, type of
material), the report should always contain the following
information: (i) the type of analysis and description of the
method: methodology used, exons analyzed, LOD, and cov-
erage in the case of NGS (median and ≥99% minimum); (ii)
results and interpretation: description of the identified variant
(s) according to the HGVS nomenclature, reference sequence
used, type of variant (missense/truncating etc.), effect
according to the TP53 locus-specific database, frequency, and
any known association with cancer; (iii) conclusion: clinical
consequence of the variant and summary of the finding in the
context of the current knowledge; and (iv) other optional data:
VAF of the detected variant if available (estimations from
Sanger sequence traces can also be informative), comparison
with a previously tested sample from the same patient and, if
evidenced, description of clonal evolution.

All labs issuing clinical reports of their results must have
accreditation according to their national authorities. ERIC is
also regularly conducting TP53 mutational Analysis Certi-
fication to confirm the reliability and reproducibility of the
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results provided by participating labs. Examples of report
forms for both Sanger sequencing and NGS are provided in
the Supplementary Material and a template report form can
be found on the ERIC website (http://www.ericll.org/).

Publishing and scientific reporting in the
databases

It is important to distinguish between clinical reporting and
reporting variants for research purposes in scientific jour-
nals. Data from publications are transferred to databases,
and these databases then serve as the source of information
for general use [42, 49]. For this reason, in order to prevent
incorrect entries, it is essential to follow specific rules in
addition to all above-mentioned basic procedures: (i) using
consistent sample and patient identifiers if the data are
repeatedly published, as inconsistent identification leads to
redundancy in mutation databases; (ii) including the geno-
mic coordinate and reference genome in the variant
description to avoid ambiguities; (iii) listing all variants that
are found in the patient including synonymous and other
benign variants [55]. It is recommended to include the
complete list of variants in the Supplementary Material,
with appropriate description of their clinical significance.
Note that if more than one variant in a patient is found, all
variants should be listed. Centers following ERIC recom-
mendations are kindly asked to mention ERIC in the
“Material and methods” section of their studies and refer to
this manuscript.

Concluding remarks

In CLL, inactivation of the TP53 gene by deletion and/or
mutation is strongly associated with adverse prognosis and
refractoriness to chemoimmunotherapy. Detection of del
(17p) and TP53 gene mutations has become an integral part
in routine diagnostics and should always be performed
before deciding about treatment. Analysis of TP53 exons
4–10 is a minimal requirement; however, ideally, the entire
coding sequence, i.e., exons 2–11, should be analyzed, and
this can be performed by either bidirectional Sanger
sequencing or NGS. NGS also allows the parallel analysis
of multiple genes and is capable of identifying variants
undetectable by Sanger sequencing. That notwithstanding,
NGS currently faces certain technical limitations and may
lead to problems with data interpretation. The clinical
importance of mutations within minor clones remains an
unresolved issue and there is currently not enough evidence
for making therapeutic decisions based on the presence of

mutations undetectable by Sanger sequencing. To assist the
community with the implementation of TP53 mutational
analysis in a harmonized manner, ERIC created the TP53
Network with the following objectives: regular certification
of laboratories for TP53 mutation status assessment (both
for Sanger and NGS), the organization of educational
events, and regular updating of recommendations for TP53
analysis. The Network also provides tools facilitating
laboratories to achieve reliable and comparable results that
are accessible via the ERIC web page (http://www.ericll.
org/).

Funding Supported by the IMI 2 HARMONY JU under GA No
116026, this JU receives support from the EU’s H2020 R&I program
and EFPIA. Further supported by the EU Horizon 2020 projects
MEDGENET 692298, AEGLE 644906, projects CEITEC 2020
(LQ1601), NCMG research infrastructure (LM2015091 funded by
MEYS CR), project FNBr 65269705, FM MU ROZV/24/LF/2016,
DFG (SFB1074, projects B1 and B2, and EU (FIRE CLL)), and the
Swedish Cancer Society and the Swedish Research Council. Pub-
lication reflects only the authors’ views and the Commission is not
responsible for any use that may be made of the information it
contains.

Compliance with ethical standards

Conflict of interest JM and SP: consultancy fees and travel grants
from Gilead and Abbvie. DR: research funding from Abbvie and
Gilead, consultancy fees from Abbvie, Janssen, Gilead. LAS: honor-
aria for consultancy from Gilead and Janssen. TZ: honoraria from
Janssen, Gilead, Abbvie, Vaniam Group, Roche. APK: research
funding from Janssen, Gilead, Abbvie, Celgene, Roche. CN: research
funding from Novo Nordisk Foundation, Danish Cancer Foundation
and Abbvie and consultancy fees and/or travel grants from Roche,
Janssen, Novartis, Gilead, and Abbvie. FD: consultant fees from
Gilead. CM: consultant fees from Janssen, Gilead, Pharmacyclics and
research funding from Roche and Gilead. GG: consultancy fees from
Janssen, Gilead, Roche, Morphosys, and Abbvie. KS: research support
from Janssen Pharmaceuticals, Gilead Sciences, Novartis SA, and
Abbvie. RR: consultancy fees from Gilead and Roche. SS: honoraria
for consultancy, honoraria and research grants from AbbVie, Celgene,
Genentech, Gilead, GSK, Hoffmann La-Roche, Janssen, Novartis,
Pharmacyclics. PG: honoraria for consultancy and research grants
from AbbVie, Janssen, Gilead, Roche. The remaining authors declare
that they have no conflict of interest.

Open Access This article is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike 4.0 International License,
which permits any non-commercial use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if
changes were made. If you remix, transform, or build upon this article
or a part thereof, you must distribute your contributions under the same
license as the original. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright

Updated recommendations for TP53 analysis in CLL 1077

http://www.ericll.org/
http://www.ericll.org/
http://www.ericll.org/


holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by-nc-sa/4.0/.

References

1. Hallek M, Fischer K, Fingerle-Rowson G, Fink AM, Busch R,
Mayer J, et al. Addition of rituximab to fludarabine and cyclo-
phosphamide in patients with chronic lymphocytic leukaemia: a
randomised, open-label, phase 3 trial. Lancet. 2010;376:1164–74.

2. Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Döhner
K, et al. Gene mutations and treatment outcome in chronic lym-
phocytic leukemia: results from the CLL8 trial. Blood.
2014;123:3247–54.

3. Fischer K, Cramer P, Busch R, Böttcher S, Bahlo J, Schubert J,
et al. Bendamustine in combination with rituximab for previously
untreated patients with chronic lymphocytic leukemia: a multi-
center phase II trial of the German Chronic Lymphocytic
Leukemia Study Group. J Clin Oncol. 2012;30:3209–16.

4. Hallek M, Cheson BD, Catovsky D, Caligaris-Cappio F, Dighiero
G, Dohner H, et al. Guidelines for the diagnosis and treatment of
chronic lymphocytic leukemia: a report from the International
Workshop on Chronic Lymphocytic Leukemia updating the
National Cancer Institute-Working Group 1996 guidelines. Blood.
2008;111:5446–56.

5. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A,
Bullinger L, et al. Genomic aberrations and survival in chronic
lymphocytic leukemia. N Engl J Med. 2000;343:1910–6.

6. Zenz T, Eichhorst B, Busch R, Denzel T, Häbe S, Winkler D,
et al. TP53 mutation and survival in chronic lymphocytic leuke-
mia. J Clin Oncol. 2010;28:4473–9.

7. Rossi D, Cerri M, Deambrogi C, Sozzi E, Cresta S, Rasi S, et al.
The prognostic value of TP53 mutations in chronic lymphocytic
leukemia is independent of Del17p13: implications for overall
survival and chemorefractoriness. Clin Cancer Res.
2009;15:995–1004.

8. Zenz T, Krober A, Scherer K, Habe S, Buhler A, Benner A, et al.
Monoallelic TP53 inactivation is associated with poor prognosis
in chronic lymphocytic leukemia: results from a detailed genetic
characterization with long-term follow-up. Blood.
2008;112:3322–9.

9. Malcikova J, Smardova J, Rocnova L, Tichy B, Kuglik P, Vra-
nova V, et al. Monoallelic and biallelic inactivation of TP53 gene
in chronic lymphocytic leukemia: selection, impact on survival,
and response to DNA damage. Blood. 2009;114:5307–14.

10. Zainuddin N, Murray F, Kanduri M, Gunnarsson R, Smedby KE,
Enblad G, et al. TP53 mutations are infrequent in newly diagnosed
chronic lymphocytic leukemia. Leuk Res. 2011;35:272–4.

11. Dicker F, Herholz H, Schnittger S, Nakao A, Patten N, Wu L,
et al. The detection of TP53 mutations in chronic lymphocytic
leukemia independently predicts rapid disease progression and is
highly correlated with a complex aberrant karyotype. Leukemia.
2009;23:117–24.

12. Zenz T, Häbe S, Denzel T, Mohr J, Winkler D, Bühler A, et al.
Detailed analysis of p53 pathway defects in fludarabine-refractory
chronic lymphocytic leukemia (CLL): dissecting the contribution
of 17p deletion, TP53 mutation, p53-p21 dysfunction, and
miR34a in a prospective clinical trial. Blood. 2009;114:2589–97.

13. Stengel A, Kern W, Haferlach T, Meggendorfer M, Fasan A,
Haferlach C. The impact of TP53 mutations and TP53 deletions
on survival varies between AML, ALL, MDS and CLL: an ana-
lysis of 3307 cases. Leukemia. 2017;31:705–11.

14. Gonzalez D, Martinez P, Wade R, Hockley S, Oscier D, Matutes
E, et al. Mutational status of the TP53 gene as a predictor of
response and survival in patients with chronic lymphocytic

leukemia: results from the LRF CLL4 trial. J Clin Oncol.
2011;29:2223–9.

15. Stilgenbauer S, Schnaiter A, Paschka P, Zenz T, Rossi M, Dohner
K, et al. Gene mutations and treatment outcome in chronic lym-
phocytic leukemia: results from the CLL8 trial. Blood.
2014;123:3247–54.

16. Stilgenbauer S, Eichhorst B, Schetelig J, Coutre S, Seymour JF,
Munir T, et al. Venetoclax in relapsed or refractory chronic
lymphocytic leukaemia with 17p deletion: a multicentre, open-
label, phase 2 study. Lancet Oncol. 2016;17:768–78.

17. O’Brien S, Jones JA, Coutre SE, Mato AR, Hillmen P, Tam C,
et al. Ibrutinib for patients with relapsed or refractory chronic
lymphocytic leukaemia with 17p deletion (RESONATE-17): a
phase 2, open-label, multicentre study. Lancet Oncol.
2016;17:1409–18.

18. Brown JR, Byrd JC, Coutre SE, Benson DM, Flinn IW, Wagner-
Johnston ND, et al. Idelalisib, an inhibitor of phosphatidylinositol
3-kinase p110δ, for relapsed/refractory chronic lymphocytic leu-
kemia. Blood. 2014;123:3390–7.

19. Pospisilova S, Gonzalez D, Malcikova J, Trbusek M, Rossi D,
Kater AP, et al. ERIC recommendations on TP53 mutation ana-
lysis in chronic lymphocytic leukemia. Leukemia.
2012;26:1458–61.

20. Malcikova J, Stano-Kozubik K, Tichy B, Kantorova B, Pavlova S,
Tom N, et al. Detailed analysis of therapy-driven clonal evolution
of TP53 mutations in chronic lymphocytic leukemia. Leukemia.
2015;29:877–85.

21. Landau DA, Carter SL, Stojanov P, McKenna A, Stevenson K,
Lawrence MS, et al. Evolution and impact of subclonal mutations
in chronic lymphocytic leukemia. Cell. 2013;152:714–26.

22. Nadeu F, Delgado J, Royo C, Baumann T, Stankovic T, Pinyol M,
et al. Clinical impact of clonal and subclonal TP53, SF3B1,
BIRC3, NOTCH1 and ATM mutations in chronic lymphocytic
leukemia. Blood. 2016;127:2122–30.

23. Rossi D, Khiabanian H, Spina V, Ciardullo C, Bruscaggin A,
Famà R, et al. Clinical impact of small TP53 mutated subclones in
chronic lymphocytic leukemia. Blood. 2014;123:2139–47.

24. Zenz T, Habe S, Denzel T, Winkler D, Dohner H, Stilgenbauer S.
How little is too much? p53 inactivation: from laboratory cutoff to
biological basis of chemotherapy resistance. Leukemia.
2008;22:2257–8.

25. Lin MT, Mosier SL, Thiess M, Beierl KF, Debeljak M, Tseng LH,
et al. Clinical validation of KRAS, BRAF, and EGFR mutation
detection using next-generation sequencing. Am J Clin Pathol.
2014;141:856–66.

26. Oh E, Choi YL, Kwon MJ, Kim RN, Kim YJ, Song JY, et al.
Comparison of accuracy of whole-exome sequencing with
formalin-fixed paraffin-embedded and fresh frozen tissue samples.
PLoS ONE. 2015;10:e0144162.

27. Williams C, Pontén F, Moberg C, Söderkvist P, Uhlén M, Pontén
J, et al. A high frequency of sequence alterations is due to for-
malin fixation of archival specimens. Am J Pathol.
1999;155:1467–71.

28. Edlund K, Larsson O, Ameur A, Bunikis I, Gyllensten U, Leroy
B, et al. Data-driven unbiased curation of the TP53 tumor sup-
pressor gene mutation database and validation by ultradeep
sequencing of human tumors. Proc Natl Acad Sci USA.
2012;109:9551–6.

29. Lykke-Andersen S, Jensen TH. Nonsense-mediated mRNA decay:
an intricate machinery that shapes transcriptomes. Nat Rev Mol
Cell Biol. 2015;16:665–77.

30. Leroy B, Ballinger ML, Baran-Marszak F, Bond GL, Braithwaite
A, Concin N, et al. Recommended guidelines for validation,
quality control, and reporting of TP53 variants in clinical practice.
Cancer Res. 2017;77:1250–60.

1078 J. Malcikova et al.

http://creativecommons.org/licenses/by-nc-sa/4.0/
http://creativecommons.org/licenses/by-nc-sa/4.0/


31. Pal K, Bystry V, Reigl T, Demko M, Krejci A, Touloumenidou T,
et al. GLASS: assisted and standardized assessment of gene var-
iations from Sanger sequence trace data. Bioinformatics.
2017;33:3802–4.

32. Kantorova B, Malcikova J, Smardova J, Pavlova S, Trbusek M,
Tom N, et al. TP53 mutation analysis in chronic lymphocytic
leukemia: comparison of different detection methods. Tumour
Biol. 2015;36:3371–80.

33. Lazarian G, Tausch E, Eclache V, Sebaa A, Bianchi V, Letestu R,
et al. TP53 mutations are early events in chronic lymphocytic
leukemia disease progression and precede evolution to complex
karyotypes. Int J Cancer. 2016;139:1759–63.

34. Sutton LA, Ljungström V, Mansouri L, Young E, Cortese D,
Navrkalova V, et al. Targeted next-generation sequencing in
chronic lymphocytic leukemia: a high-throughput yet tailored
approach will facilitate implementation in a clinical setting.
Haematologica. 2015;100:370–6.

35. Jethwa A, Hüllein J, Stolz T, Blume C, Sellner L, Jauch A, et al.
Targeted resequencing for analysis of clonal composition of
recurrent gene mutations in chronic lymphocytic leukaemia. Br J
Haematol. 2013;163:496–500.

36. Akbari M, Hansen MD, Halgunset J, Skorpen F, Krokan HE. Low
copy number DNA template can render polymerase chain reaction
error prone in a sequence-dependent manner. J Mol Diagn.
2005;7:36–9.

37. Hiatt JB, Pritchard CC, Salipante SJ, O’Roak BJ, Shendure J.
Single molecule molecular inversion probes for targeted, high-
accuracy detection of low-frequency variation. Genome Res.
2013;23:843–54.

38. Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B.
Detection and quantification of rare mutations with massively
parallel sequencing. Proc Natl Acad Sci USA. 2011;108:
9530–5.

39. Chen G, Mosier S, Gocke CD, Lin MT, Eshleman JR. Cytosine
deamination is a major cause of baseline noise in next-generation
sequencing. Mol Diagn Ther. 2014;18:587–93.

40. den Dunnen JT, Dalgleish R, Maglott DR, Hart RK, Greenblatt
MS, McGowan-Jordan J, et al. HGVS recommendations for the
description of sequence variants: 2016 update. Hum Mutat.
2016;37:564–9.

41. Bouaoun L, Sonkin D, Ardin M, Hollstein M, Byrnes G, Zavadil
J, et al. TP53 variations in human cancers: new lessons from the
IARC TP53 database and genomics data. Hum Mutat.
2016;37:865–76.

42. Leroy B, Anderson M, Soussi T. TP53 mutations in human can-
cer: database reassessment and prospects for the next decade. Hum
Mutat. 2014;35:672–88.

43. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E,
Fennell T, et al. Analysis of protein-coding genetic variation in
60,706 humans. Nature. 2016;536:285–91.

44. Dumont P, Leu JI, Della Pietra AC, George DL, Murphy M. The
codon 72 polymorphic variants of p53 have markedly different
apoptotic potential. Nat Genet. 2003;33:357–65.

45. Kochethu G, Delgado J, Pepper C, Starczynski J, Hooper L,
Krishnan S, et al. Two germ line polymorphisms of the tumour
suppressor gene p53 may influence the biology of chronic lym-
phocytic leukaemia. Leuk Res. 2006;30:1113–8.

46. Majid A, Richards T, Dusanjh P, Kennedy DB, Miall F, Gesk S,
et al. TP53 codon 72 polymorphism in patients with chronic
lymphocytic leukaemia: identification of a subgroup with mutated
IGHV genes and poor clinical outcome. Br J Haematol.
2011;153:533–5.

47. Dong HJ, Fang C, Wang L, Fan L, Xu J, Wu JZ, et al. TP53 Pro72
allele potentially increases the poor prognostic significance of
TP53 mutation in chronic lymphocytic leukemia. Med Oncol.
2014;31:908.

48. Sturm I, Bosanquet AG, Hummel M, Dörken B, Daniel PT.
In B-CLL, the codon 72 polymorphic variants of p53 are not
related to drug resistance and disease prognosis. BMC Cancer.
2005;5:105.

49. Soussi T, Leroy B, Taschner PE. Recommendations for analyzing
and reporting TP53 gene variants in the high-throughput
sequencing era. Hum Mutat. 2014;35:766–78.

50. Kalia SS, Adelman K, Bale SJ, Chung WK, Eng C, Evans JP,
et al. Recommendations for reporting of secondary findings in
clinical exome and genome sequencing, 2016 update (ACMG
SFv2.0): a policy statement of the American College of Medical
Genetics and Genomics. Genet Med. 2017;19:249–55.

51. Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL,
et al. ACMG recommendations for reporting of incidental findings
in clinical exome and genome sequencing. Genet Med.
2013;15:565–74.

52. Supek F, Miñana B, Valcárcel J, Gabaldón T, Lehner B. Synon-
ymous mutations frequently act as driver mutations in human
cancers. Cell. 2014;156:1324–35.

53. Varley JM, Attwooll C, White G, McGown G, Thorncroft M,
Kelsey AM, et al. Characterization of germline TP53 splicing
mutations and their genetic and functional analysis. Oncogene.
2001;20:2647–54.

54. Landau DA, Tausch E, Taylor-Weiner AN, Stewart C, Reiter JG,
Bahlo J, et al. Mutations driving CLL and their evolution in
progression and relapse. Nature. 2015;526:525–30.

55. Soussi T, Taschner PE, Samuels Y. Synonymous somatic variants
in human cancer are not infamous: a plea for full disclosure in
databases and publications. Hum Mutat. 2017;38:339–42.

Affiliations

J. Malcikova1,2 ● E. Tausch3
● D. Rossi4 ● L.A. Sutton5,6

● T. Soussi 7,8,9
● T. Zenz10 ● A.P. Kater11 ● C.U. Niemann12

●

D. Gonzalez13 ● F. Davi14 ● M. Gonzalez Diaz15 ● C. Moreno16
● G. Gaidano17

● K. Stamatopoulos18 ● R. Rosenquist5,6 ●

S. Stilgenbauer3 ● P. Ghia 19
● S. Pospisilova1,2on behalf of the European Research Initiative on Chronic

Lymphocytic Leukemia (ERIC) — TP53 network

1 Department of Internal Medicine — Hematology and Oncology,
University Hospital Brno and Medical Faculty, Masaryk
University, Brno, Czech Republic

2 Central European Institute of Technology, Masaryk University,

Brno, Czech Republic

3 Department of Internal Medicine III, Ulm University,
Ulm, Germany

4 Hematology, Oncology Institute of Southern Switzerland, Institute

Updated recommendations for TP53 analysis in CLL 1079

http://orcid.org/0000-0001-8184-3293
http://orcid.org/0000-0001-8184-3293
http://orcid.org/0000-0001-8184-3293
http://orcid.org/0000-0001-8184-3293
http://orcid.org/0000-0001-8184-3293
http://orcid.org/0000-0003-3750-7342
http://orcid.org/0000-0003-3750-7342
http://orcid.org/0000-0003-3750-7342
http://orcid.org/0000-0003-3750-7342
http://orcid.org/0000-0003-3750-7342


of Oncology Research, Bellinzona, Switzerland

5 Department of Immunology, Genetics and Pathology, Science for
Life Laboratory, Uppsala University, Uppsala, Sweden

6 Department of Molecular Medicine and Surgery, Karolinska
Institutet, Stockholm, Sweden

7 Université Pierre et Marie Curie, Paris, France

8 INSERM, U1138, Centre de Recherche des Cordeliers,
Paris, France

9 Department of Oncology-Pathology, Karolinska Institutet, Cancer
Center Karolinska, Stockholm, Sweden

10 Division of Hematology, University Hospital Zürich, University of
Zürich, Zürich, Switzerland

11 Department of Hematology, Academic Medical Center,
Amsterdam, The Netherlands

12 Department of Hematology, Rigshospitalet,
Copenhagen, Denmark

13 Centre for Cancer Research and Cell Biology, Queen’s University
Belfast, Belfast, UK

14 Department of Hematology, Hôpital Pitié-Salpêtière, AP-HP,
Sorbonne Universités-UPMC University, Paris, France

15 Centro de Investigación del Cancer and Centro de Investigación
Biomédica en Red de Cáncer (CIBERONC), University of
Salamanca, Salamanca, Spain

16 Department of Haematology, Hospital de la Santa Creu I Sant Pau,
Autonomous University of Barcelona, Barcelona, Spain

17 Division of Haematology, Department of Translational Medicine,
University of Eastern Piedmont, Novara, Italy

18 Institute of Applied Biosciences, CERTH, Thessaloniki, Greece

19 Division of Experimental Oncology, IRCCS San Raffaele
Scientific Institute, Università Vita-Salute San Raffaele,
Milan, Italy

1080 J. Malcikova et al.


	ERIC recommendations for TP53 mutation analysis in chronic lymphocytic leukemia—update on methodological approaches and results interpretation
	Abstract
	Introduction
	Procedure description
	Material for TP53 mutation analysis
	Region of interest
	Sanger sequencing
	Next-generation sequencing
	DNA input and quality
	Library preparation
	Sequencing and coverage
	Data analysis
	Limit of detection

	Clinical reporting and interpretation of the results
	Variant description
	Interpretation
	Databases
	Polymorphisms and neutral variants
	Variants with preserved activity
	Intronic variants
	Synonymous variants
	Indel variants
	Clinical reporting of subclonal variants with low variant allele frequency detected by NGS
	Report form

	Publishing and scientific reporting in the databases
	Concluding remarks
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References
	A8




