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Does ALS-FUS without FUS mutation

represent ALS-FET? Report of three cases

Abnormal cytoplasmic accumulation of fused in sar-

coma (FUS) protein is the pathological hallmark of

some cases of amyotrophic lateral sclerosis (ALS) with

transactive response DNA-binding protein of 43KDa

(TDP-43)-negative pathology that lack SOD1 muta-

tions. FUS is an RNA-binding protein located predomi-

nantly in the nucleus and is involved in regulation of

transcription, alternative splicing, RNA stability, micro-

RNA biogenesis, apoptosis and cell division. FUS,

Ewing’s sarcoma (EWS) and TATA-binding protein-

associated factor 15 (TAF15) proteins constitute the

FET (FUS/EWS/TAF15) family, highly conserved and

ubiquitously expressed RNA-binding proteins that shut-

tle between nucleus and cytoplasm assisted by the

nuclear import protein Transportin 1 (Trn1) [1].

Accumulation of FUS also occurs in other related

neurodegenerative conditions such as atypical fron-

totemporal lobar degeneration with ubiquitinated inclu-

sions (aFTLD), neuronal intermediate filament inclusion

disease (NIFID) and basophilic inclusion body disease

(BIBD), the three currently recognized forms of fron-

totemporal lobar degeneration with FUS pathology

(FTLD-FUS) [2].

Recent work suggests different pathological processes

underlie ALS-FUS and FTLD-FUS. First, most ALS-FUS

cases are caused by FUS mutations [3], while most

FTLD-FUS cases are not [2,4]. Neumann et al. described

that in ALS-FUS, the cytoplasmic inclusions consist

solely of FUS protein while in FTLD-FUS, the inclusions

include other FET family proteins such as TAF15 or

EWS [5]. In addition, they observed that Trn1, a pro-

tein involved in the nuclear transport, accumulates

specifically in FTLD-FUS inclusions but not in ALS-FUS.

These findings led the authors to suggest that ALS with

FUS mutations is more restricted to FUS dysfunction,

while in FTLD-FUS, there is a more global and complex

dysregulation of all FET proteins. They suggest chang-

ing the nomenclature and recommended using the

term FTLD-FET for FTLD-FUS but to preserve the term

ALS-FUS [5].

We describe three cases of ALS-FUS with TAF15 and

Trn1 accumulation in which FUS mutations were not

detected. Brain donors and/or next of kin had given

their written informed consent for the use of brain tis-

sue for research, and the research protocol has been

approved by the Ethics Committee of the Hospital Clinic

Barcelona.

Patient 1, a 63-year-old man, developed slowly pro-

gressive weakness in the distal muscles, dysarthria and

dysphagia. Neurological examination revealed symmet-

rical weakness and hyperreflexia, fulfilling the criteria

for ALS. Cognitive and behavioural symptoms were not

reported during follow-up. He died of respiratory failure

at 69 years. After brain donation, the unfixed brain

weight was 1390 g. A prominent atrophy of the

medullary pyramids, anterior nerve roots and spinal

cord was appreciated on gross examination, but with-

out brain atrophy. Histologically, prominent neuronal

loss of motor neurones of the anterior horn was

observed at all levels of the spinal cord and was also

present in the motor nuclei of the brain stem and the

primary motor cortex. Degeneration of the corticospinal

tracts was also observed. Several of the remaining

spinal and cortical motor neurones showed relatively

large cytoplasmic basophilic inclusions. These inclu-

sions were also observed in nonmotor pyramidal neu-

rones and were partly basophilic and partly fibrillar.

These inclusions were immunoreactive for FUS protein,

p62, TAF15 and Trn1 (Figure 1A1–A5), and partially

for ubiquitin, alpha-internexin and phosphorylated

neurofilaments. These findings were consistent with

ALS with FUS-positive basophilic and fibrillary inclu-

sions.

Patient 2, a 71-year-old woman, presented with pro-

gressive weakness of lower extremities, dysarthria and

dysphagia. Neurological examination revealed pyrami-

dal signs. No lower motor neurone signs were found

on examination, and she was diagnosed with primary

lateral sclerosis. During the disease course, she devel-

oped an akinetic–rigid syndrome without response to

levodopa. DAT-SPECT showed bilaterally reduced

putaminal tracer uptake. No cognitive symptoms were

reported. The patient died at the age of 83 years after
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a total disease duration of 12 years. After brain dona-

tion, the unfixed brain weight was 1035 g. Gross

examination showed moderate brain atrophy with pref-

erential involvement of the frontotemporal regions. Dif-

fuse nigral pallor was also observed. Histologically,

severe loss of motor neurones at all levels of the spinal

cord and brain stem nuclei was observed. In contrast,

no prominent neuronal loss of primary motor cortex

neurones and no unequivocal signs of corticospinal

tract degeneration were identified. In addition, there

was a depletion of pigmented neurones of the substan-

tia nigra and neuronal loss and gliosis of the subthala-

mic nucleus and internal pallidum. Residual motor

neurones of the spinal cord and hypoglossal nucleus

showed relatively large, faintly basophilic inclusions

that showed strong FUS immunoreactivity (Fig-

ure 1B1–B4) and were negative for ubiquitin, neurofil-

aments and TDP-43. Some FUS-positive glial inclusions

were also identified. Most of these inclusions showed

immunoreactivity for TAF15 and Trn1 antibodies (Fig-

ure 1B4). The final diagnosis was motor neurone

disease with preferential involvement of lower motor

neurones with pallidoluysian atrophy and nigral

degeneration with abundant neuronal and lesser glial

FUS-positive inclusions. Concomitantly, advanced Alz-

heimer’s disease neuropathological change (A3, B3, C3

score according to the NIAA/AA consensus criteria)

was found [6].

Patient 3, a 43-year-old man, presented with leg

weakness. On neurological examination, there was gen-

eralized amyotrophy, fasciculations and hyperreflexia.

He developed dysarthria and dysphagia during follow-

up and died of pneumonia at the age of 48 years. Cog-

nitive and behavioural symptoms were not reported.

The clinical diagnosis was ALS. He had no family his-

tory of ALS or dementia. After brain donation, the

unfixed brain weight was 1500 g. Gross examination

revealed mild brain atrophy with preferential involve-

ment of the precentral and postcentral gyri. Histologi-

cally, loss of motor neurones was evident in the

primary motor cortex, hypoglossal nuclei and also at

all levels of the spinal cord. Moreover, in the pre- and

postcentral regions as well as in the temporal cortex,

laminar spongiosis and gliosis were evident in superfi-

cial cortical layers. While with H&E staining, inclusions

were difficult to identify (Figure 1C1), immunohisto-

chemistry for FUS showed frequent neuronal cytoplas-

mic inclusions (Figure 1C2), short neurites and few

intranuclear inclusions. Inclusions were more abun-

dant in the precentral gyrus, in the brainstem nuclei

and in the spinal cord. They were also immunoreactive

for TAF15 and Trn1 (Figure 1C4–C5) and were nega-

tive for TDP-43. The final diagnosis was ALS-FUS. In

all three cases, granular neurones of the dentate gyrus

were devoid of inclusions (Figure 1A3, B3, C3 and

insets).

Genetic analysis of the FUS gene was performed in

the three donors. All 15 FUS exons including intron–

exon flanking regions, as well as the 30UTR region of

FUS gene, were amplified through PCR. Final PCR

products were purified and Sanger-sequenced using

BigDye terminator chemistry (Applied Biosystems).

Sequences were run on an Applied Biosystems� 3130

Genetic Analyzer, and resulting electropherograms

were visually inspected using Sequencher (version 4.1,

Gene Codes Corp.). Genetic analysis did not disclose

any FUS mutation in any of these three patients. Since

several variants in the 30 untranslated region (30UTR)
of the FUS gene have been described with uncertain

pathogenicity (that is c.∗48G>A, c.∗59G>A,

c.∗108C>T and c.∗110G>A) [7,8], we also screened

the genomic region containing these variants. We only

Figure 1. Representative neuropathological findings in the three cases: (A1, B1, C1) HE-stained sections show different types of

intraneuronal inclusion bodies in the motor neurones of the frontal cortex, brainstem and spinal cord (arrows) varying in shape and

tinctorial properties (basophilic, pale, with a condensed centre or with fibrillar appearance). (A2, B2, C2) Inclusions are FUS-positive and

appear either compact, more fibrillar or skein-like (inset) (immunohistochemistry for FUS; slightly counterstained with haematoxylin).

(A3, B3, C3) There is no involvement of the dentate gyrus of the hippocampus, and granule cells are devoid of FUS/TAF15/Trn1 +
inclusion bodies (immunohistochemistry for FUS (A3, B3 and insets), TAF15 (C3 and insets) and Transportin 1 (Trn1)(insets)). (A4, B4,

C4) Intraneuronal inclusion bodies in motor cortex, brainstem and spinal cord neurones are also strongly immunoreactive for

Transportin 1 and TAF15 (immunohistochemistry for Transportin 1 (Trn1) and TAF15 shown in the left and right panel, respectively;

slightly counterstained with haematoxylin). A5: Double immunofluorescence for FUS (red, left panel), Trn1 (green, middle panel) and

merged image (yellow-orange, right panel) shows codistribution of both proteins in the same inclusion body in patient 1. C5: Double

immunofluorescence for TAF15 (red, left panel), Trn1 (green, middle panel) and merged image (yellow-orange, right panel) shows

codistribution of both proteins in the same inclusion body in patient 3. A1–A5 are from patient 1, B1–B4 are from patient 2, and C1–C5
are from patient 3. Scale bars: A1, B1, C1, A2, B2, C2, A4, B4, C4: 20 lm, A3, B3, C3: 50 lm.
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found one patient harbouring the c.*41G>A rare

heterozygous variant (rs80301724) [9]. Previous stud-

ies have reported this polymorphic variant to be

equally present in ALS cases and controls, thus show-

ing a lack of genetic association between this particular

nucleotide change and ALS [8,10].

Here, we describe the clinicopathological phenotype

of three ALS patients with abundant FUS-positive pro-

tein aggregates. The inclusion bodies were also

immunoreactive for TAF15 and Trn1, and no mutation

in the FUS gene was detected. Similar cases had been

reported in Japan by Matsuoka et al., Fujita et al. and

Takeuchi et al. (Table 1)[11–13]. Other possible genes

that could have mutations include TPN1 and TAF15,

among others, that were not tested in our cases.

These findings differ from the ALS-FUS cases previ-

ously reported by Neumann and behave immunohisto-

chemically similar to FTLD-FET cases. Whether these

cases might be specific to certain populations is unre-

solved. Based on our results, we confirm the concept

that the presence of FET and Trn1 proteins within the

inclusions is strong indicator of a lack of pathogenic

mutations within FUS. However, this immunohisto-

chemical profile does not differentiate between an ALS

and FTLD phenotype. If we hypothesize that FTLD-FUS

with FUS mutations will not show Trn1 or any other

FET family protein than FUS, a change of the nomen-

clature in the ALS-FUS and FTLD-FUS with no muta-

tions of FUS should be considered, and the use of the

terms ALS-FET and FTLD-FET might be more appropri-

ate.

ALS-FUS mutation cases seem to have different mor-

phological phenotypes depending on the age of onset or

disease duration; neuronal basophilic inclusions being

more frequently detected in early juvenile forms, while

fibrillary or tangle-like inclusions and glial inclusions

tend to appear in late-onset cases [3]. Similar findings

have been described in some sporadic FTLD-FUS cases

[4,14]. Interestingly, ALS-FUS cases without FUS

mutations seem to have an older age of onset and a

less aggressive progression than cases with mutations

[3].

While some reports have detected FUS mutations in

‘juvenile ALS with basophilic inclusions’ [15], others

have not found mutations in the adult-onset group

[11,12]. It might be therefore that a subgroup of

‘adult-onset ALS with basophilic inclusions’ represents

the ALS counterpart of basophilic inclusion body dis-

ease and may therefore be considered an ALS-FET sub-

type without FUS mutations.

Our study expands the clinicopathological spectrum

of nongenetic ALS-FUS cases and reinforces the idea

that not all ALS-FUS cases are secondary to FUS muta-

tions. It also corroborates the usefulness of TAF-15 and

Trn1 immunohistochemistry for the neuropathological

diagnosis of nongenetic FTLD-FET and ALS-FET

patients. Whether these cases represent a different

pathogenetic subgroup among ALS-FUS is unclear and

Table 1. Demographic and clinical features of ALS-FUS cases in the literature

Present study

Fujita et al. [10] Matsuoka et al. [11] Takeuchi et al. [12]Patient 1 Patient 2 Patient 3

Gender Male Female Male Female Female Female

Family history No No No No No No

FUS mutation No No No No No No

Age at onset (y) 63 71 43 73 75 73

Age at death (y) 69 83 48 75 79 75

Motor neurone Yes Yes Yes Yes Yes Yes

Onset Spinal Spinal Spinal Spinal Spinal Spinal

Dementia No No No No No No

Parkinsonism No Yes No No No No

Neuropathology ALS-FUS ALS-FUS ALS-FUS ALS-FUS ALS-FUS ALS-FUS

FUS IHC + + + + + +
TAF15 IHC + + + NE NE +
TRN1 IHC + + + NE NE +

ALS, amyotrophic lateral sclerosis; FUS, fused in sarcoma; NE, not evaluated; y, years; IHC, immunohistochemistry.
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requires further detailed clinical, neuropathological and

molecular studies.
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