
REVIEW
published: 06 December 2018

doi: 10.3389/fimmu.2018.02876

Frontiers in Immunology | www.frontiersin.org 1 December 2018 | Volume 9 | Article 2876

Edited by:

Serge Benichou,

Centre National de la Recherche

Scientifique (CNRS), France

Reviewed by:

Lucie Bracq,

Institut Pasteur of Shanghai (CAS),

China

Jan Rehwinkel,

University of Oxford, United Kingdom

*Correspondence:

Julia G. Prado

jgarciaprado@irsicaixa.es

Specialty section:

This article was submitted to

Viral Immunology,

a section of the journal

Frontiers in Immunology

Received: 09 October 2018

Accepted: 22 November 2018

Published: 06 December 2018

Citation:

Colomer-Lluch M, Ruiz A, Moris A and

Prado JG (2018) Restriction Factors:

From Intrinsic Viral Restriction to

Shaping Cellular Immunity Against

HIV-1. Front. Immunol. 9:2876.

doi: 10.3389/fimmu.2018.02876

Restriction Factors: From Intrinsic
Viral Restriction to Shaping Cellular
Immunity Against HIV-1

Marta Colomer-Lluch 1, Alba Ruiz 1, Arnaud Moris 2 and Julia G. Prado 1*

1 IrsiCaixa AIDS Research Institute, Germans Trias i Pujol Research Institute, Universitat Autonoma de Barcelona, Badalona,

Spain, 2 Sorbonne Université, INSERM U1135, CNRS ERL 8255, Centre d’Immunologie et des Maladies Infectieuses

(CIMI-Paris), Paris, France

Antiviral restriction factors are host cellular proteins that constitute a first line of defense

blocking viral replication and propagation. In addition to interfering at critical steps of

the viral replication cycle, some restriction factors also act as innate sensors triggering

innate responses against infections. Accumulating evidence suggests an additional role

for restriction factors in promoting antiviral cellular immunity to combat viruses. Here, we

review the recent progress in our understanding on how restriction factors, particularly

APOBEC3G, SAMHD1, Tetherin, and TRIM5α have the cell-autonomous potential to

induce cellular resistance against HIV-1 while promoting antiviral innate and adaptive

immune responses. Also, we provide an overview of how these restriction factors may

connect with protein degradation pathways to modulate anti-HIV-1 cellular immune

responses, and we summarize the potential of restriction factors-based therapeutics.

This review brings a global perspective on the influence of restrictions factors in intrinsic,

innate, and also adaptive antiviral immunity opening up novel research avenues for

therapeutic strategies in the fields of drug discovery, gene therapy, and vaccines to

control viral infections.

Keywords: restriction factors, HIV-1, innate immunity, adaptive immunity, virus, degradation pathways,

immunotherapies

INTRODUCTION

Restriction factors are host cellular proteins contributing to the frontline defense against viral
infections. Restriction factors recognize and interfere with specific steps of the replication
cycle of viruses, thereby blocking infection. They are generally interferon (IFN)-inducible and
their inherent features, such as constitutive expression in different cell types, self-sufficient
activity, and rapidity of action, confer a potent and early restriction of viruses (1). So far,
more than nine groups of cellular restriction factors have been identified that inhibit Human
Immunodeficiency Virus type 1 (HIV-1), and other primate lentiviruses, including the classical
and well-documented APOBEC3G, SAMHD1, Tetherin/BST-2, and TRIM5α (2–10), and those of
more recent characterization MX-2, SERINC3/5, IFITMs, Schlafen 11, and MARCH2/8 (11–16).
The continuous adaptation of HIV-1 to the pressure exerted by the antiviral activities of restriction
factors underscores the importance of restriction factors in controlling viral infections.

A tight regulation of innate and adaptive immune responses is required to counteract
infections. During the acute phase of viral infections, pro-inflammatory cytokine storms contribute
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to controlling viral replication. These cytokine secretions
are initiated in response to pattern recognition receptor
(PRR) engagement by viral molecules (or pathogen-associated
molecular patterns, PAMPs) and the recruitment at the site of
entry of innate immune cells including natural killer (NK) cells,
macrophages, dendritic cells (DCs), and other phagocytic cells.
Innate immune cells, especially DCs, further orchestrate the
priming of cells involved in adaptive immunity, meaning CD4+
T helper cells, CD8+ cytotoxic T lymphocytes (CTLs), and B cells
(17). In particular, duringHIV-1 infection, a robust CTL response
has been linked to a reduction of HIV-1 viral loads and a delay in
disease progression (18–26).

Beyond their intrinsic antiviral activity, recent evidence
demonstrates that several restriction factors also participate in
the modulation of HIV-1-specific cellular adaptive immunity,
highlighting the multifaceted nature of these proteins. The
connections of restriction factors with the cellular degradation
machinery and its pathways suggest that common mechanisms
might be shared by restriction factors to promote anti-HIV-1
cellular immunity. Here, we provide an overview of the cell-
intrinsic HIV-1 restriction activity of APOBEC3G, SAMHD1,
Tetherin, and TRIM5α proteins, focusing on their complex
interplay with innate and adaptive immune responses in the
context of HIV-1 infection. Besides, we briefly comment on
the potential of a similar interplay in the case of more
recently discovered anti-HIV-1 factors. In our view, a better
understanding of the molecular interactions between restriction
factors, viruses, and the protein degradation machinery might
help in developing novel therapeutic strategies to enhance innate
and adaptive immune responses against viral infections such as
HIV-1.

RESTRICTION FACTORS: INTRINSIC
ANTIVIRAL ACTIVITY AND MODULATION
OF INNATE AND ADAPTIVE IMMUNITY

APOBEC3G
APOBEC3G (A3G) proteins belong to the AID/APOBEC family
(apolipoprotein B mRNA editing enzyme, catalytic polypeptide-
like) of cytidine deaminase enzymes. AID/APOBEC family
members restrict a broad range of viruses including hepatitis B
virus (HBV) as well as endogenous and pathogenic retroviruses
(27–30). Interestingly, it was the interaction of the HIV-1
accessory protein Vif with A3G that led to the identification of
A3G as a restriction factor (31). Upon HIV-1 infection, A3G
and other APOBEC family members, such as APOBEC3F (A3F),
are encapsidated into budding virions. In newly infected cells,
during the reverse transcription of the viral RNA, A3G and A3F
catalyze cytosine-to-uracil deamination in the nascent viral DNA.
As a consequence, the proviral DNA harbors a high frequency
of G-to-A hypermutations leading to the introduction of amino
acid substitutions and premature STOP codons. Transcriptional
activation of A3G-edited provirus yields to the production of
defective proteins and non-functional viral particles, resulting
in a strong inhibition of HIV-1 replication (7, 8, 32). Although
the capacity to inflict G-to-A mutations has been considered as

the central mechanism of A3G- and A3F-mediated restriction,
A3G and A3F also exert deaminase-independent viral restriction
(33, 34).

The HIV-1 Vif protein has evolved to antagonize A3G
antiviral activity as well as other APOBEC family members
that restrict viral infection (34, 35). In brief, Vif binds to
A3G promoting the recruitment of the ElonginB/C-Cullin-5 E3
ubiquitin ligase complex leading to A3G poly-ubiquitination and
proteasomal degradation, which results in a lower rate of A3G
incorporation within the newly produced virions (36–38).

A3G is the most well-defined anti-HIV-1 protein of the
APOBEC3 (A3) group. In humans, the A3 group consists of seven
enzymes largely distributed in different cells and tissues, which
contribute to DNA/RNA metabolism and cellular maintenance
through their DNA/RNA deamination activities (32, 39, 40).
Specifically, A3G and A3F are highly abundant in multiple cell
types (41), but their expression in immune cells, predominantly
in activated T cells, monocytes, macrophages, and mature DCs,
strongly suggests that A3G and A3F exert diverse functions
in immunity (42). On the one hand, various inflammation
mediators like IFN-α increase A3G expression in monocytes,
macrophages, and plasmacytoid dendritic cells (pDCs), while
IFN-γ and IFN-β enhance A3G expression in macrophages (41,
43, 44), indicating that A3G and A3F are encoded by IFN-
stimulated genes and suggesting that these enzymes play a central
role in innate antiviral immunity. In fact, the expression of A3G is
induced by pathogen sensors such as Toll-like receptors (TLRs),
as well as by cytokines such as IL-2, IL-7, IL-15, and IL-27 (45).

On the other hand, A3G itself also promotes innate
and adaptive immunity. In particular, A3G-mediated cytidine
deamination is sensed by the cellular DNA repair machinery
driving the induction of stress responses and the activation of
NK cells (46). Also, mouse APOBEC3 (mA3) was reported to
act as a modulator of adaptive immunity eliciting both CTL
responses and the generation of neutralizing antibodies (nAbs)
against Friend retrovirus infection (47–49). However, how mA3
exacerbates CTL and nAbs production is not well-defined. In
human cells, Casartelli et al. demonstrated that the editing
activity of A3G favors the generation of HIV-1 antigenic peptides
(epitopes) by infected cells leading to enhanced activation of
HIV-1-specific CTL responses (50). In brief, in CD4+ T cells, the
A3G-mediated HIV-1 restriction was associated with enhanced
activation of HIV-1-specific CTL responses. The mechanism
proved to be dependent on the A3G-mediated editing of the viral
genome since A3G mutants with impaired editing activity failed
to induce CTL activation. Furthermore, introducing a premature
STOP codon in HIV-1 genome, mimicking A3G editing, led
to higher CTL activation most likely due to the generation of
additional viral epitopes processed by proteasomes and presented
by MHC class-I (MHC-I) molecules (50, 51) (Figure 1). These
results were further corroborated in the context of A3G (and
A3F) expression in DCs and CTL activation, suggesting that in
infected DCs, A3G- and A3F-mediated editing of viral genomes
might enhance the capacity of DCs to prime antiviral CTL
responses (52). Interestingly, although A3G editing activities
can positively influence CTL activation, they can also negatively
affect CTL responses by aiding to the emergence of CTL escape
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FIGURE 1 | Schematic representation of APOBEC3G, SAMHD1, Tetherin, and TRIM5α proteins shaping cellular innate and adaptive immune responses against

viruses with a focus on HIV-1 infection. Restriction factors link to protein degradation pathways and their connection to CD4+ T cell and CTL responses are depicted

by thick arrows. Question marks (?) and broken arrows represent questions and unresolved pathways. Restriction factors respective counteracting proteins are also

shown.

mutations (53, 54). The A3G-mediated effect on HIV-1 epitope
presentation to CTLs appears to be beneficial or detrimental
depending on the HLA allotype of the subject (55). Thus, a
precise calibration between A3G-derived antigen generation and
incorporation of epitope mutational changes is fundamental to
contribute to the activation of specific CTL responses against
HIV-1 infected cells via A3G. Remarkably, in patients under
effective antiretroviral treatment, CTL recognition of epitopes
derived fromA3G-mediatedmutated polypeptides and expressed
by defective proviruses probably shapes the repertoire of latently
infected cells (56).

Interestingly, studies of A3G in rhesus macaques revealed
that upon immunization with SIV antigens and CCR5 peptides
linked to the HSP70 protein there was a progressive increase
in A3G expression in memory CD4+ T cells (57, 58), eliciting
protection against the virus through induction of innate and
adaptive immunity. Similarly, immunization of rhesus macaques
with recombinant HLA constructs, linked with HIV-1 and SIV

antigens and HSP70, resulted in upregulation of A3G in CD27+
memory B cells (59), which might be associated with a protective
effect against infection. In humans, B cells express A3G that has
been postulated to be transmitted via exosomes to targets of
HIV-1 infection to exert its antiviral activity (31, 32, 60).

SAMHD1
SAMHD1 (Sterile Alpha Motif and Histidine Aspartate domain-
containing protein 1) is a deoxynucleotide triphosphohydrolase
that impairs HIV-1 reverse transcription by reducing the pool
of cellular dNTPs (5, 61, 62). Upon HIV-1 infection of CD4+ T
cells, the HIV-1 capsid is delivered into the cytoplasm allowing
reverse transcription of the viral RNA into DNA, a step that is
strictly dependent on the availability of the dNTPs. SAMHD1
hydrolyzes all four dNTPs to deoxynucleosides and inorganic
triphosphate thus controlling the pool of cytosolic dNTPs. As
a consequence, in myeloid cells, SAMHD1 prevents proviral
DNA formation and HIV-1 replication (4–6). In addition to its
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dNTPase activity, SAMHD1 also exhibits an RNase activity that
might as well participate in SAMHD1-mediated viral restriction,
for instance by targeting viral RNA for degradation before RT
occurs (63, 64). However, to what extent this RNase activity
contributes to HIV-1 restriction remains an open question (63,
65, 66).

HIV-2 and certain simian immunodeficiency virus strains
(SIVsm/SIVmac) encode an accessory protein, Vpx, to overcome
SAMHD1 restriction (67). Vpx interacts with the C-terminal
domain of SAMHD1 recruiting the Cullin-4 E3 ubiquitin
ligase complex, which destines SAMHD1 for poly-ubiquitination
and proteasomal degradation thus relieving SAMHD1-mediated
retroviral blockade (4, 6, 68). While Vpx from HIV-2 and most
SIVs efficiently oppose SAMHD-1, HIV-1 and its simian ancestor
infecting chimpanzees (SIVcpz) lack Vpx and are unable to
counteract SAMHD1 and are vulnerable to its action (4).

Some myeloid cells—monocytes, macrophages, and DCs—
and CD4+ T cells ubiquitously express SAMHD1 (4, 6, 69),
which regulates their cell cycle by controlling the availability of
the dNTP pools. Apart from being the substrates of SAMHD1,
dNTPs, mainly driven by the levels of dGTP, globally regulate
and equilibrate SAMHD1 structural states (61). However, the
high expression levels of SAMHD1 both in cells refractory
to HIV-1 such as monocytes and quiescent lymphocytes,
or in cells permissive to HIV-1 such as macrophages and
activated lymphocytes, argues for a posttranslational regulation
of SAMHD1 functions (70, 71). Indeed, the Cyclin-dependent
kinase 6 (CDK6) coupled with cyclin D3 was shown to control
CDK2-dependent SAMHD1 phosphorylation in proliferating
cells (72, 73). The phosphorylation of SAMHD1 alleviates its
capacity to hydrolyze dNTPs controlling the availability of dNTPs
for cellular DNA synthesis during the cell cycle and reverse
transcription of the viral RNA (72).

Given its ability to limit the intracellular dNTP pool,
SAMHD1 is tightly linked to the mechanisms of cell-cycle
progression, as dNTPs availability is crucial for cycling cells. In
addition, SAMHD1 may avoid the accumulation of nucleotides
that otherwise would trigger innate immune sensing leading to
undesired IFN-I secretion and chronic inflammation (66). In
fact, deficiency in SAMHD1 leads to increased IFN production,
upon viral DNA sensing by cGAS, and innate immune activation
causing autoimmune disorders in patients (74). This is illustrated
by mutations in SAMHD1 described as the cause of some cases
of the Aicardi-Goutières syndrome, a rare autoimmune disease
characterized by an IFN-stimulated gene expression signature
that resembles a congenital viral infection and overlaps clinically
and biochemically with the systemic lupus erythematosus (75).
Recently, Chen and colleagues also suggested that SAMHD1
may act as a negative regulator of the cell-intrinsic antiviral
responses (76). They described, in vitro and in vivo, how
SAMHD1 down-regulates innate antiviral immune responses
and inflammation by actively inhibiting NF-κB activation (by
reducing the phosphorylation of IκBα) and IFN-I induction (by
reducing IKKε-mediated IRF7 phosphorylation).

Owing to the inefficient capacity of HIV-1 to infect DCs,
mainly due to the restriction exerted by SAMHD1, it has been
proposed that HIV-1 might evade innate sensing (4, 77). In

this context, it has been shown that lentiviral transduction
of SAMHD1 in myeloid cells prevents the induction of IFN
responses as well as antigen presentation (78). The blockage
of HIV-1 by SAMHD1 might lower the capacity of DCs and
macrophages to detect cytosolic viral DNA preventing the
activation of the cGAS/STING pathway for IFN production and
innate antiviral immunity. Hence, SAMHD1 negative regulation
of the innate immune response would be used by HIV-1 as a
mechanism to bypass host innate immunity (66). However, this
function of SAMHD1 is rather indirect and numerous reports
demonstrated that HIV-1-infected DCs exhibit an intermediate
maturation phenotype, suggesting that HIV-1 cryptic replication
in DCs is sensed and engages intrinsic innate immune responses
(52, 77, 79).

Few studies have addressed the potential role of SAMHD1
in connecting innate and adaptive immune responses in HIV-1
infection. Ayinde et al. evaluated the contribution of SAMHD1 in
HIV-1 antigen presentation via MHC-I molecules by monocyte-
derived DCs (80). The authors demonstrated that SAMHD1
antiviral activity hampers HIV-1 replication while Vpx-mediated
depletion of SAMHD1 augments the presentation of viral
antigens by DCs, which leads to the activation of HIV-1-
specific CTL responses and the killing of infected DCs (80)
(Figure 1). Similarly, SAMHD1 retroviral restriction has been
associated with defects in virus-specific CD8+ T cell responses
in a lentiviral-infected mice model (78).

Several studies suggested that SAMHD1 may play a role in
HIV-1 pathogenesis and disease progression, albeit conclusive
evidence of a protective role are still lacking. While some authors
described an association between the reduction of SAMHD1
activity in DCs with the capacity to naturally suppress viral
replication in the absence of antiretroviral treatment (in so-called
elite controllers) (81), others reported an up-regulation (82) or
absence of differences in SAMHD1 expression levels in elite
controllers as compared to control groups (83).

Nonetheless, it is interesting to note that SAMHD1 restriction
activity might compete with the activation of innate and adaptive
immune responses. This is in agreement with observations in
autoimmune diseases and cancer where deregulation of dNTP
levels and defects in nucleic acids metabolism impair cellular
viability and trigger chronic stimulation of innate immune
responses [reviewed in (66)].

Tetherin/BST-2
Tetherin/BST-2 (Bone marrow stromal antigen 2) is an IFN-
inducible transmembrane protein that potently anchors budding
viral particles on the surface of infected cells, preventing the
release of HIV-1 and other enveloped viruses (9, 10). This
function is achieved by Tetherin’s unique topology, with the
presence of an N-terminal transmembrane domain and a C-
terminal glycosyl-phosphatidylinositol group, which allows one
end of the protein to be attached to the plasma membrane and
the other to the viral envelope. The retained virions are then
internalized and degraded via the endosomal/lysosomal pathway
(84, 85).

Tetherin exerts antiviral activity against a broad spectrum
of enveloped viruses. However, primate lentiviruses have
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evolved three different viral proteins to escape Tetherin
restriction in a species-specific manner. The HIV-1 Vpu protein
overcomes human Tetherin restriction by (i) promoting the
poly-ubiquitination of its transmembrane domain inducing
its proteasomal degradation, (ii) downregulating Tetherin’s
concentration on the cell surface, and (iii) sequestering Tetherin
in endosomal compartments leading to its lysosomal degradation
via a non-canonical autophagy dependent pathway (10, 86–
92). In contrast, in HIV-2 the Env protein circumvents human
Tetherin (93). In the case of most SIVs, the Nef protein targets
a five amino acid sequence in the N-terminal cytoplasmic
domain promoting simian Tetherin endocytosis and lysosomal
degradation (94–96). Interestingly, human Tetherin lacks this
five amino acid region conferring resistance to Nef antagonism.

Upon viral infection, most immune cells upregulate Tetherin
expression, which has a short and a long isoform. The short
isoform of Tetherin lacks 12 residues in its cytoplasmic tail
and is resistant to Vpu-driven counteraction. Meanwhile, the
longer version has been linked to the activation of the NF-
κB pro-inflammatory signaling cascade (97, 98). In fact, the
accumulation of tethered virions at the plasma membrane results
in the activation of the NF-κB signaling pathway with the
subsequent induction of pro-inflammatory responses (99–101),
unveiling Tetherin’s additional function as a viral sensor in
innate immunity beyond its direct restriction activity. Note
that Vpu abrogates Tetherin-mediated NF-kB activation (102).
In addition, Tetherin seems to be involved as a negative
regulator of innate immunity through an interaction with the
immunoglobulin-like transcript 7 (ILT7) inhibitory receptor.
In pDCs, the interaction of Tetherin with ILT7 impairs
TLR signaling inhibiting IFN-I and proinflammatory cytokine
production (103, 104).

Interestingly, Arias et al. elegantly demonstrated that
Tetherin enhances the susceptibility of HIV-1 infected cells
to antibody-dependent cellular cytotoxicity (ADCC) by
introducing mutations in Vpu that prevent Tetherin antagonism.
Consistently, RNA silencing of Tetherin expression decreased the
susceptibility of HIV-1-infected cells to ADCC (105) (Figure 1).
Remarkably, overexpression of BST-2 in response to IFN-α, but
also to IFN-β and IL-27 that upregulate Env expression at the
cell surface, sensitizes HIV-1-infected cells to elimination by
ADCC (106). Thus, a Tetherin-mediated increased sensitivity
of HIV-1-infected cells to ADCC may serve as a link between
innate and adaptive immunity to augment the susceptibility of
virus-infected cells to antibodies, with the potential to enhance
other immune responses to control viral replication in vivo.

It has been proposed that Tetherin-mediated virus
internalization might feed TLR containing compartments
with viral PAMPs, thus enhancing TLR activation (107) but
also providing antigens to compartments rich in MHC class-II
(MHC-II) molecules leading to antigen presentation of viral
peptides, thus affecting both innate and adaptive immune
responses. In line with this hypothesis, Li et al. provided evidence
that Tetherin promotes NK cell, and virus-specific CD4+ and
CD8+ T cell responses in a mouse model of Friend retrovirus
infection (108). Tetherin knockout mice showed weaker antiviral
responses compared to wild-type mice exemplified by a decrease

in IFN-γ production by NK cells, CD4+ and CD8+ T cells (108).
Indeed, Tetherin activity might improve DCs activation and
MHC-II antigen presentation in acute retroviral infection in vivo
(109). These findings further support the idea that Tetherin not
only functions as a restriction factor but also as a modulator of
cellular-mediated immunity against retroviruses. Although the
exact underlying molecular mechanism remains to be elucidated,
the authors propose that Tetherin promotes the endocytosis and
degradation of tethered viruses to induce an effective antiviral
cellular immune response (109) (Figure 1). However, whether
Tetherin-mediated virion endocytosis directly drives HIV-1
antigen degradation and presentation remains to be determined.

TRIM5α

Tripartite motif (TRIM) proteins constitute a large family of E3
ligases—with approximately 100 known TRIM genes in humans
(110)—implicated in many cellular processes including cell
differentiation, apoptosis, autophagy, carcinogenesis, antiviral
immunity, and innate signaling (111–114). TRIM proteins are
defined by an N-terminal RBCC structure, which consists of
an N-terminal RING E3 ligase domain (R), one or two B-
box domains (B), and a coiled-coil domain (CC). Following
the RBCC feature, the C-terminal domain(s) clusters the TRIM
proteins into subgroups, with the PRYSPRY (or B30.2) domain
being the most frequently found C-terminal domain among
TRIM family members. Importantly, the PRYSPRY domain
is responsible for the binding to the retroviral capsid and
determines the spectrum of retroviral restriction (115–117).

Several TRIM family members have antiretroviral activity
(114, 118), amongst which the TRIM5 gene exhibits one of
the strongest signatures of positive selection in the human
genome as a marker of antagonistic virus-host coevolution
and antiviral potency (1). The isoform α of TRIM5 (TRIM5α)
displays the most potent antiviral activity and a large cross-
species recognition pattern that underpins its importance
in the control of primate lentiviral infections (2, 119). Of
note, deletion or mutation of the TRIM5α RING domain
impairs TRIM5α capacity to restrict viral infections (120, 121).
TRIM5α is a cytosolic protein that functions in a cell-type
specific manner (122–124) and inhibits retroviral replication
in a species-specific fashion (115, 116, 122). For instance,
TRIM5α proteins from Old World monkeys, such as rhesus
macaques, restrict a broad range of retroviruses including
HIV-1, HIV-2, N-tropic murine leukemia virus (N-MLV), and
equine infectious anemia virus (EIAV). Nevertheless, they are
ineffective against infection with certain SIV strains (SIVmac)
(2, 125). Meanwhile, New World monkeys TRIM5α proteins
do not generally suppress HIV-1. The exception is found in
New World owl monkeys where the PRYSPRY domain of
TRIM5α has been replaced by a cyclophilin A binding domain
(TRIMCypA) that hampers HIV-1 infection very vigorously
(113, 119, 126, 127). It is widely assumed that human TRIM5α
(hTRIM5α) is unable to efficiently restrict HIV-1 although it
strongly restricts N-MLV and EIAV (2, 125, 128, 129). However,
recent studies indicate that changes in hTRIM5α expression
levels and some genetic polymorphisms may influence the
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susceptibility to HIV-1 infection in human cells (122, 130–
135), and may be associated with slow disease progression
(133, 134, 136). Moreover, some primary HIV-1 clinical isolates
harboring capsid mutations in response to CD8+ T cell
pressure have been reported to be more sensitive to hTRIM5α
inhibition compared to HIV-1 laboratory-adapted strains (137).
Interestingly, it has been proposed that C-type-lectin-receptor-
dependent uptake of HIV-1 might control the restriction by
hTRIM5α, dictating protection or infection of human DCs
subsets (122).

TRIM5α mediates its antiviral function through
complementary activities, even though some of the mechanistic
details remain to be elucidated. As a restriction factor, TRIM5α
directly binds to the incoming retroviral capsid through its
PRYSPRY domain, driving the premature uncoating of HIV-1
and impairing reverse transcription and genome translocation to
the nucleus, thereby abrogating retroviral integration (2, 3, 138–
140). This process requires the assembly of TRIM5α dimeric
and multimeric structures with the HIV-1 p24 protein hexamers
that constitute the capsid lattice (141–144). In addition, some
authors suggest that the proteasomal machinery recruited via
the TRIM5α E3 ubiquitin ligase activity may block retroviral
replication (145–148). As Tetherin, TRIM5α may also act
as a viral sensor by recognizing the HIV-1 retroviral capsid.
TRIM5α binding to a susceptible retroviral capsid increases
its E3 ubiquitin ligase activity, which catalyzes the synthesis
of unanchored K63-linked poly-ubiquitin chains that activate
the TAK1 kinase protein leading to downstream activation
of AP-1- and NF-κB-dependent cascades (149–152), which
may lead to the modulation of innate and adaptive immune
responses. Although TRIMCypA lacks the PRYSPRY domain, it
also activates the TAK1 pathway (149), suggesting that the E3
ubiquitin ligase activity (RING domain) is crucial for TRIM5α-
mediated immune signaling. Indeed, several reports highlight
the regulation of innate immunity by multiple TRIM proteins
(153, 154).

Evolution studies of TRIM orthologs in various species
revealed a remarkable paralleled co-evolution of genes encoding
TRIM proteins and the development of the innate and
adaptive immune systems (153, 155). This phenomenon may
be indicative of a role of TRIM proteins in innate immunity
and, directly or indirectly, in the establishment of the adaptive
immune responses (153). Interestingly, in immune cells, mRNA
expression profile studies of TRIMs led to the identification
of fifteen TRIM proteins expressed at high levels in T
and/or B cells (153). Similarly, the expression of a specific
subgroup of TRIM genes was significantly upregulated in
CD4+ T cells compared to macrophages and DCs (124). In
a mouse model, deletion of TRIM30—the mouse homolog
of hTRIM5α–enhanced the CD4+/CD8+ T cell ratio and,
upon TCR activation, reduced NF-κB activation and IL-2
production in CD4+ T cells compared to wild-type mice
(156). These data suggest that TRIM30 operates via the NF-
kB pathway as a modulator of CD4+ T cells function. Notably,
we recently showed that rhesus TRIM5α (rhTRIM5α) and
TRIMCypA expression in HIV-1-infected cells leads to enhanced
recognition and killing of infected cells by CD8+ T cells

(157) (Figure 1). Our results strongly indicate that non-human
TRIM5α variants play a role in restriction and increase CTL
activation linking innate and adaptive immune responses in
HIV-1 infection.

Recently Discovered Restriction Factors
Although limited information is available, the possibility that
recently discovered restriction factors may play a role in antiviral
cellular immunity beyond viral restriction should not be excluded
and be worth exploring.

In the case of the MARCH8 and MARCH2 (Membrane-
Associated RING-CH 8 or 2 proteins) E3 ubiquitin ligases
their enzymatic activity is critical for their antiviral function.
These factors drive Env down-regulation from the plasma
membrane and its intracellular sequestration to decrease
Env incorporation into newly produced HIV-1 virions (15).
In addition, MARCH2 was found to be upregulated upon
HIV-1 infection in Jurkat and THP-1 cells promoting Env
ubiquitination and its subsequent lysosomal degradation (16).
These observations suggest a possible activity for MARCH2 in
redirecting Env glycoproteins via the lysosomal route to antigen
presentation pathways. Another example could be found in
IFITMs (Interferon-inducible transmembrane proteins). IFITMs
are small membrane-associated cellular factors that inhibit the
replication of HIV-1 and other enveloped viruses at the entry
step (13). IFITMs do not block the internalization of viruses but
rather the virus-cell fusion process. Despite recent progress, the
fate of incoming virions and the mechanistic details of IFITMs
antiviral activity remain elusive. However, since IFITMs are
localized in endosomes and lysosomes, it is tempting to speculate
that they might be involved in targeting viruses for vesicular
degradation and MHC-II loading. Indeed, the N-terminal
domain of IFITM3 contains a Tyrosine Motif responsible for its
endocytosis and localization in endocytic vesicles and lysosomes
(158); meanwhile, the C-terminal motif of IFITM1 favors its
localization in LAMP1-positive lysosomes (159). Remarkably,
using the murine CMV (MCMV) model of infection, it has
been shown that although IFITM3 does not restrict MCMV
replication, IFITM3 deficiency leads to an impairment of cellular
immunity most likely due to an unbalanced release of cytokines
that drive lymphopenia including NK cell death and T cells
depletion (160). Besides, in the course of influenza virus infection
in mouse, IFITM3 expression in lung resident memory CD8+ T
cells facilitated their survival and protection from viral infection
during subsequent exposures (161). Overall, whether IFITMs also
tag HIV-1 and other viruses to degradation and viral antigens
production for antigen presentation and activation of T cells
remains to be determined. Further insights may improve our
understanding of these less characterized restriction factors,
and others such us MX-2, SERINC3/5, and Schlafen 11, and
their plausible function in the activation of antiviral cellular
immunity.

Taken together, restriction factors may participate in shaping
antiviral immunity working as a link between intrinsic cellular
defenses of innate immunity and adaptive immune responses to
control HIV-1 infection (Table 1 and Figure 1). Accumulating
evidence suggests a connection between restriction factors and
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TABLE 1 | Restriction factors and their impact on antiviral cellular immunity.

Restriction

factor

Impact on antiviral cellular immunity Virus References

APOBEC3G Enhances the recognition of HIV-1 infected T cells by NK cells through upregulation of

NKG2D-activating ligands

HIV-1 (46)

Enhances the ability of HIV-1 infected T cells to activate CTL recognition HIV-1 (50)

Increases the production of MHC-I viral antigens in DCs favoring CTL activation (52)

SAMHD1 Vpx-mediated SAMHD1 depletion in HIV-1 infected DCs increases viral antigen

presentation leading to the activation of HIV-1-specific CTL responses

HIV-1 (80)

Prevents virus-specific CD8+ T cell responses in vivo Lentivirus (78)

Reduced induction of SAMHD1 in DCs from Elite Controllers induces HIV-1-specific

CTL responses

HIV-1 (81)

TETHERIN Enhances the susceptibility of HIV-infected cells to elimination by ADCC HIV-1 (105, 106)

Promotes NK cell, CD4+ and CD8+ T cell responses against retrovirus infection in

vivo

Friend retrovirus (108)

Improves DCs activation and MHC class II antigen presentation via Tetherin-mediated

virion endocytosis

Friend retrovirus (109)

TRIM5α rhTRIM5α and TRIMCypA improve activation of HIV-1-specific CD8+ T cell responses HIV-1 (157)

cellular degradation pathways such as the ubiquitin proteasome
system, and the autophagy and endocytic routes, which may
establish a framework to shape HIV-1-specific cellular immunity.
In the following section, we will focus on recent studies
suggesting a fine-tuned interplay between the four canonical
restriction factors (A3G, SAMHD1, Tetherin, and TRIM5α) and
the protein degradation pathways for the production of class
I and class II viral antigens to activate HIV-1-specific T cell
immunity.

RESTRICTION FACTORS AND PROTEIN
DEGRADATION PATHWAYS

The Ubiquitin-Proteasome System (UPS)
The UPS participates in the ubiquitin-dependent, and
occasionally independent, degradation of cellular proteins
regulating antigen processing, transcriptional modulation, signal
transduction, among other cellular processes (162). Notably, in
the context of HIV-1 infection, the UPS aids in the degradation
and removal of viral proteins. Also, the UPS enhances the
ubiquitination of cellular factors that recognize viral structures
allowing the formation of high molecular complexes directed
for proteasomal degradation. Besides, the UPS contributes to
the regulation of signaling molecules involved in the activation
of innate immunity to combat the infection (163). However,
it is well-known that HIV-1, as well as many other viruses,
subvert the UPS machinery to favor viral replication and escape
from host immune surveillance (163–165). Indeed, HIV-1
manipulates the UPS to: (i) increase viral protein expression
levels, stability, and activities by posttranslational modifications
such as ubiquitination; (ii) recruit cellular E3 ligases to redirect
antiviral proteins for proteasomal degradation; and (iii) to
suppress the expression of host antiviral genes by controlling the
activity of cellular transcription factors such as AP-1, NF-κB, and
STATs, among others (68, 163, 166).

In general, in infected cells, proteins present in the cytoplasm
are degraded by the UPS generating short peptides. These epitope

precursors are then translocated in the endoplasmic reticulum
(ER) through the action of a specific transporter associated with
antigen processing (TAP) and further trimmed by ER-resident
amino-peptidases to generate epitopes. These epitopes are loaded
onto nascentMHC-I molecules to be displayed on the cell surface
for their recognition by epitope-specific CD8+T cells. The
connection between restriction factors and the UPS degradation
machinery for cellular immunity is clearly exemplified by the
A3G protein. A3G mediates G-to-A deamination in the HIV-
1 genome promoting the integration of hypermutated provirus.
Although the resultant proviruses fail to produce novel infectious
particles, they can express truncated or aberrant proteins that
undergo UPS-dependent degradation providing epitopes for the
loading ofMHC-Imolecules and contributing to the activation of
HIV-1-specific CTLs (50) (Figure 1). These A3G-derived HIV-1
peptides constitute a previously unrecognized source of HIV-
1 antigens (50, 56). Numerous studies have characterized the
involvement of the UPS in HIV-1 protein proteolysis and MHC-
I-restricted antigen presentation (51), for instance by targeting
to degradation HIV-1 Env protein lacking the signal sequence
for translocation to the ER (167) or ubiquitin-tagged HIV-
1 Nef and Gag proteins (167, 168). Remarkably, in HIV-1-
infected cells, following interactions with Vif, A3G is poly-
ubiquitinated and hence constitute itself a substrate for UPS-
mediated degradation (38), providing as a consequence epitopes
for MHC-I presentation. Indeed, A3G (and A3F)-specific CTL
responses have been observed in both HIV-1-infected patients
and SIV-infected rhesus macaques (169). Therefore, presentation
of A3G-derived epitopes might also be a hallmark of HIV-1-
infected cells targeted by the adaptive immune response.

In the case of TRIM5α, as well as other TRIM family proteins,
the UPS is essential for its antiviral activity, recruiting viral
components for proteasomal-mediated degradation. TRIM5α
has E3 ubiquitin ligase activity and can be auto-ubiquitinated
and rapidly degraded in a proteasome-dependent manner
in the presence of retroviral cores (147, 170). Also, it has
been shown that TRIM5α interacts with the proteasome
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subunit PSMC2 and in infected cells co-localizes with a
complex formed by proteasome subunits and HIV-1 (146,
171, 172). Intriguingly, although TRIM5α contains a RING
domain capable of ubiquitination and tagging viral proteins for
proteasomal degradation, no TRIM5α-mediated ubiquitination
of viral proteins has yet been detected. The functional link
between restriction capacity and TRIM5α-directed proteasomal
degradation was confirmed in the presence of proteasome
inhibitors, which prevented the HIV-1-induced degradation of
TRIM5α, blocked viral uncoating, and rescued HIV-1 reverse
transcription. These observations support a model in which
TRIM5α restriction of incoming retroviral capsids may depend
on the formation of a TRIM5α-viral protein complex promoting
TRIM5α autoubiquitination and delivery of the complex to the
proteasome for degradation (147, 157, 173). Interestingly, it
has been recently shown that several cellular deubiquitinating-
inhibitors (DIs) enhance the poly-ubiquitination of Gag proteins
and, consequently, increase Gag entry into the UPS and the
MHC-I presentation pathway (174). This observation could
lead to speculate that TRIM5α proteins may recruit HIV-1
components to the UPS enhancing viral antigenic peptides’
availability for MHC-I presentation and activation of CD8+ T
cell responses (157) (Figure 1). On the other hand, TRIM5α,
TRIM21, and TRIM25 poly-ubiquitination activities have been
recently shown to bridge viral degradation with the activation of
innate immunity (149, 175, 176).

The Autophagy Pathway
Macroautophagy (commonly called autophagy) is a vesicular
pathway of degradation that targets components residing in the
cytoplasm, membranes, or nucleus for lysosomal degradation. As
such, it contributes to the turnover of cytosolic organelles, lipids,
and damaged ormisfolded proteins. Interestingly, autophagy also
modulates innate and adaptive immune responses (177–180).
Indeed, autophagy regulates inflammatory responses by targeting
for instance mitochondria and inflammasomes to lysosomal
degradation (181). Pioneer work also revealed the implication
of autophagy in the presentation of viral antigens, in particular
by MHC-II molecules to CD4+ T cells (182–184). Additionally,
autophagy contributes to the MHC-I-restricted presentation
of nuclear antigens (185), primarily when viruses negatively
interfere with the classical pathway of MHC-I presentation (186).
Effectors of autophagy also participate in the recycling and
trafficking of MHC-I molecules (187, 188).

Several studies demonstrated that TRIM protein family
members are involved in the modulation of autophagy, both
as regulators and receptors (189). For example, TRIM23 has
been attributed to modulate the activity of central components
of the autophagy process (190). In the context of TRIM5α,
the impossibility to rescue viral infectivity in the presence
of proteasome inhibitors (138, 145, 147, 148, 170, 176)
suggests that the UPS might not be the only mechanism
participating in the TRIM5α-mediated viral restriction process.
In macrophages, it has been proposed that TRIM5α-mediated
viral restriction relies on targeting viral capsids to autophagy-
mediated degradation, involving direct interactions between
HIV-1 viral capsid and effectors required for the formation of

the autophagy initiation complex such as ULK1 and BECLIN-
1 (191–193). In Langerhans cells, TRIM5α might mediate the
assembly of an autophagy-activating complex targeting HIV-
1 for autophagy degradation and preventing the infection
of these cells. Therefore, it is tempting to speculate that
TRIM5α interactions with HIV-1 could lead to autophagy-
dependent processing of viral peptides and antigen presentation
to T cells (Figure 1). Indeed, Blanchet et al. have shown
that upon HIV-1 infection in human monocyte-derived DCs
the incoming viral particles are at least partially degraded
through an autophagy-dependent pathway leading to MHC-
II restricted presentation of HIV-1 epitopes to CD4+ T
cells (194). In contrast, it is interesting to note that in
HIV-1-infected DCs, autophagy does not contribute to the
presentation of MHC-II restricted HIV-1 antigens derived from
de novo synthesized viral proteins (195). Regardless, whether
TRIM5α-mediated restriction feeds the autophagy-dependent
antigen presentation pathway has not been investigated thus
far. Also, note that in macrophages discordant results were
reported showing no effect of the depletion of key autophagy
effectors (Beclin1, ATG5, and p62) using siRNA or CRISPR-
Cas9 knockout on hTRIM5α-, rhTRIM5α-, or TRIMCypA-
mediated restriction (196). These discrepancies potentially rely
on the complementary or redundant roles played by the UPS
and the autophagy machinery in protein degradation (197,
198). Therefore, it might be worth studying side by side the
contribution of proteasome- and autophagy-mediated TRIM5α
retroviral restriction in various cell types.

The Endo-Lysosomal System
The endo-lysosomal system is comprised of early and late
endosomes and lysosomes allowing the trafficking of plasma
membrane components and macromolecules destined to
lysosomal degradation. The endo-lysosomal pathway is essential
for plasma membrane protein turnover and other cellular
processes such as antigen presentation or receptor-mediated cell
signaling. It relies on the internalization of endocytosed proteins
that are initially transported to early endosomes. Then, these
proteins are either recycled back to the plasma membrane and
the trans-Golgi network or sequestered into early endosomes.
Once early endosomes mature into late endosomes, in a process
regulated by the ubiquitin ligase RING finger protein 26 (RNF26)
(199), they fuse with lysosomes for cargo protein acidification-
mediated degradation. Tagging proteins with ubiquitin also
allows the direct internalization of proteins toward lysosomal
degradation in a process mediated by the endosomal-sorting
complex required for transport (ESCRTs)-machinery (200, 201).

In the case of Tetherin, its restriction activity leads to the
accumulation of HIV-1 nascent virions at the cell membrane
of infected cells. Intriguingly, the fate of tethered virions is not
clear thus far. While some studies suggested that retained virions
may trigger cell-to-cell spread (202), others contradicted these
findings (203, 204). Of note, the N-terminal cytoplasmic tail of
human Tetherin not only promotes the activation of the NF-kB
signaling cascade but also serves as a binding site for clathrin-
mediated endocytosis and degradation of tethered virions (205).
Based on this knowledge, work from Li et al. proposed a
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model where Tetherin-mediated endocytosis may induce specific
cell-mediated immune responses against retroviral infection,
although the exact mechanism is still unknown (109). Tetherin’s
restriction activity in retrovirally infected antigen presenting
cells, such asmacrophages andDCs, prevents the egress of virions
from the plasma membrane. Since Tetherin’s ability to enhance
NK cell responses has been linked to its endocytic function,
tethered virions in pDCs could be internalized in endosomes
and recognized by TLR3 for the activation of NK cells (108).
Moreover, the endo-lysosomal degradation of viral particles may
result in increased viral peptide availability for MHC-II antigen
presentation to activate CD4+T cell-mediated responses. This
data would be in agreement with the mechanism observed in
DCs, where DC-SIGN-mediated endocytosis of virions targets
HIV-1 antigens to late endosomal/lysosomal compartments
leading to MHC-II-restricted antigen presentation (206). In fact,
ex vivo infected DCs from Tetherin wild-type mice display higher
MHC-II expression andmore potent stimulation of virus-specific
CD4+ T cells, NK cells, and cytokine production compared
to Tetherin knockout mice (207). Furthermore, Tetherin
enhances CD8+ T cell responses against Friend retrovirus
infection in vivo by antigen cross-presentation to MHC-I (108)
(Figure 1).

Overall, although it remains to be firmly established, a
fine-tuned interplay between restriction factors and protein
degradation pathways is probably of great benefit for both the
initiation of innate and adaptive immune responses, in particular
to promote viral antigen presentation for the activation of virus-
specific CD4+ and CD8+ T cell responses.

RESTRICTION FACTORS-BASED
THERAPEUTICS

The implementation of combined antiretroviral therapy (cART)
has been a fundamental breakthrough in the treatment of
HIV-1 infected individuals. cART maintains viral loads to
undetectable levels, limits the occurrence of viral resistance, and
drastically reduces the morbidity and mortality rate in HIV-
1 infected individuals. However, cART does not eliminate the
virus from the organism and patients need to adhere to life-
long therapy, which entails drug-related side effects. In addition,
treatment interruption results in a rapid viral rebound due to
the presence of a latent HIV-1 reservoir (208, 209). In light of
the studies reviewed here, the development of restriction factor-
based therapeutics could provide alternative therapeutic avenues
to control HIV-1 by synergizing intrinsic cellular sensing and
activation of antiviral immunity.

Type I Interferon Therapies
Therapeutic approaches to efficiently enhance the expression
and restriction activities of A3G, SAMHD1, Tetherin, and
TRIM5α have been proposed to control HIV-1 replication.
Restriction factors are generally encoded by IFN-inducible
genes, so the use of type I IFN (IFN-I) is being investigated
to increase their expression and promote cellular protection
from infection. For instance, IFN-α significantly induces

A3G expression in human primary resting CD4+ T cells,
macrophages, DCs, and endothelial cells in the brain restricting
HIV-1 infection (210–212). Overexpression of Tetherin upon
IFN-α stimulation overcomes Vpu-mediated antagonism and
decreases HIV-1 virion release in vitro (213). Similarly, IFN-
I treatment has been reported to regulate SAMHD1 function
(214, 215) in a cell-type specific manner (216). The viral
restriction imposed by SAMHD1 and induced by IFN signaling
is exerted primarily through its activation via dephosphorylation.
Thus, SAMHD1 dephosphorylation is per se a pharmacological
target of IFN-I treatment. IFN-α also increases rhTRIM5α
expression in rhesus monkey cells and hTRIM5α in human
cells, enhancing their ability to restrict HIV-1 and N-MLV,
respectively, (217).

A randomized controlled clinical trial evaluated the effect
of IFN-α on HIV-1 viremia in early infected individuals,
showing a significant decrease in HIV-1 load in IFN-α treated
patients (218). However, only few studies have analyzed the
effects of IFN-α treatment on the expression of restriction
factors in vivo and the relevance of these factors to control
HIV-1 infection. In rhesus macaques, intramuscular IFN-α2
administration upregulated the expression of IFN-stimulated
genes, including restriction factors, and delayed systemic SIV
infection. Nevertheless, prolonged IFN-α2 treatment caused
IFN desensitization and decreased antiviral gene expression,
enabling infection to progress thus highlighting the importance
of the timing of IFN-induced innate responses (219). In ART-
naïve HIV-1/HCV co-infected patients, IFN-α/ribavirin therapy
suppressed HIV-1 viremia which correlated with overexpression
of IFN-induced A3G, A3F, and Tetherin in patient-derived
CD4+ T cells (220, 221), indicating that IFN-induced expression
of restriction factors has a direct impact in inhibiting viral
replication. Currently, the use of IFNα-2 is being tested in
clinical trials for HIV-1 infected individuals (ID: NCT03588715;
ID: NCT02227277). Besides, other IFN-α subtypes, such as
IFNα-14, have shown potent antiviral efficacy by inducing the
expression of some restriction factors in a humanizedmicemodel
(222). Although the stimulation of restriction factors by type I
IFNs might be tempting as an experimental approach to block
HIV-1, prolonged exposure to type I IFNs has been associated
with persistent immune activation and disease progression
(223).

Specific Targeting by Small Molecules
Strategies to develop inhibitors or antagonists targeting HIV-
1 proteins involved in counteracting restriction factors are
currently being investigated with the common goal of enhancing
their suppressive activity against HIV-1. For example, structural
interactions between Vif-A3G and Vpu-Tetherin were used
as a guide for the design of small molecules to block HIV-
1 replication (224–227). Screening of compounds that inhibit
Vif-A3G interaction led to the discovery of several small
molecules that protected A3G from Vif-dependent degradation
(228, 229) or disrupted the assembly of the Vif-ubiquitin ligase
complex (230–232). A small molecule interfering with Vpu-
Tetherin association that enhances Tetherin expression and
potentiates its restriction capacity has also been described (225).
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Although a matter of debate (233), Vpu has been reported
to form ion channels that might be involved in blocking
Tetherin-mediated viral restriction (234, 235). Therefore, the
ion channel structure formed by Vpu could be bait for
the development of new antiviral agents to successfully
inhibit Vpu activity increasing Tetherin’s antiviral function
(236).

Small molecules mimicking Vpx action and blocking
SAMHD1 to induce innate immune signaling and increasing the
presentation of viral antigens by DCs are also under investigation
(78, 80, 237–239). Interestingly, multiple tyrosine kinase
inhibitors (240) and cyclin-dependent kinase (CDK) inhibitors
(241–243) impede SAMHD1 phosphorylation, promoting
its antiviral activities. In particular, the CDK4/6 inhibitor
Palbociclib potently restricts HIV-1 reverse transcription by
maintaining SAMHD1 constantly activated (243). In addition,
inhibitors of the Protein Kinase C theta have been proposed
as adjuvants of antiretroviral therapy because of their effect on
SAMHD1 activation and the consequent reduction of HIV-1
replication (244). Also note that topoisomerase inhibitors and
chemotherapeutic drugs, albeit indirectly, trigger SAMHD1
antiviral functions by inducing DNA damage, therefore
suppressing HIV-1 infection and limiting the size of the
viral reservoir (245). Moreover, small compounds mimicking
TRIM5α capsid interactions could be designed to block retroviral
infection in the early steps of the HIV-1 replication cycle (246).
In these lines, small molecules and peptides as HIV-1 capsid
inhibitors are currently being explored as a new family of
antiretroviral drugs (247).

A better identification and mapping of protein-protein
surfaces of interactions between restriction factors and their
respective antagonizing HIV-1 proteins could guide the design
of small molecules for novel therapeutic interventions.

Gene Editing: the Potential of Genetically
Engineered TRIM5α Proteins
Although potential therapeutic strategies for HIV-1 infected
individuals involving A3G, SAMHD1, or Tetherin have been
studied (248), all of them tackle HIV-1 replication in later entry,
post-reverse transcription, or post-integration events. Also, the
antiviral potency of A3G and Tetherin is limited by Vif and
Vpu proteins, respectively, (9, 10, 31, 37, 86, 88, 249, 250). In
contrast, TRIM5α restricts replication immediately after entry
and prior to integration. Of note, to date no HIV-1 accessory
proteins are capable of antagonizing hTRIM5α activity (251).
These unique features of TRIM5α activity make genetically
engineered TRIM5α-based proteins promising candidates for
the development of antiretroviral approaches and gene therapy
applications compared to other restriction factors.

In recent years, several studies have supported the feasibility
of exploiting TRIM5α as a target for HIV-1 gene therapy (251).
For instance, a single modification of the 332 residue to proline
in the PRYSPRY domain of the hTRIM5α, which increases the
affinity for the HIV-1 capsid, results in a hTRIM5α variant able
to strongly restrict HIV-1 infection in human cells (117, 252).
Similarly, an hTRIM5α mutant generated by PCR-based random

mutagenesis and functional screening also showed strong HIV-
1 restriction capacity (253). Interestingly, R332G-R335G double
mutations in hTRIM5α confer a degree of resistance to HIV-1
infection resembling that of rhTRIM5α. Follow-up investigations
demonstrated the ability of R332G-R335G hTRIM5α mutant to
potently inhibit highly diverse HIV-1 strains and clinical isolates
bearing CTL escape capsid mutations in human lymphocytes
(254). Although additional experiments in primary cells and
including other HIV-1 variants would be required, these studies
demonstrate the potential of hTRIM5α mutants as candidates for
HIV-1 gene therapy. In these lines, Richardson et al. determined
that hTRIM5αR323−R332 harboring five rhesus substitutions in the
PRYSPRY domain confer protein stability and protection from
HIV-1 in primary human CD4+ T cells in vivo (255). Chimeric
proteins could also be used for instance by replacing 11 amino
acids of the PRYSPRY domain of the rhesus macaque ortholog
into hTRIM5α, which efficiently restricted HIV-1 infection of
CCR5- and CXCR4-tropic HIV-1 clones in CD34+ cell-derived
macrophages in vitro, and in mouse-derived thymocytes in vivo
(256).

Previous studies have reported that the TRIMCyp fusion
protein resulting from swapping the TRIM5α PRYSPRY domain
by CypA retains the same function than TRIM5α, binding to the
incoming retroviral capsid and impairing reverse transcription
strongly restricting lentiviral infection (119, 126, 257). Neagu
et al. showed that hTRIMCyp successfully inhibits CCR5- and
CXCR4-tropic HIV-1 clones as well as primary isolates in CD4+
T cells and macrophages in vitro. Remarkably, they also found
that an experimental humanized mouse model engrafted with
human CD4+ T cells previously transduced with hTRIM5Cyp
lentiviral vectors potently restricted HIV-1 (258). Similar to the
TRIMCyp fusion construct, fusions between TRIM21 and CypA
(TRIM21Cyp) elicited strong anti-HIV effects and maintained
the antiviral properties of both TRIM5α and TRIM21 in human
cell lines and primary human T cells (259).

One potential constrain to these therapies is the development
of viral escape from TRIM5α restriction. As for cART, combining
TRIM5α modified proteins with other anti-HIV strategies
targeting various steps of HIV-1 replication might prevent HIV-
1 evasion. For instance, Anderson et al. analyzed the efficacy
of a combination anti-HIV lentiviral vector encoding a CCR5
shRNA (pre-entry), a human/rhesus macaque chimeric TRIM5α
(pre-integration), and a transactivation response element (TAR)
decoy (post-integration) to block productive HIV-1 infection and
to inhibit the formation of novel provirus. This combination
anti-HIV lentiviral vector was able to potently restrict HIV-
1 infection as well as to prevent viral escape mutations (260).
Later, Walker et al. evaluated the safety and efficacy of this anti-
HIV lentiviral vector in CD34+ HSCs in vivo in a humanized
murine model. Notably, they reported that mice containing
transduced CD34+ HSC with the anti-HIV lentiviral vector
presented selective survival advantage when challenged with both
R5-tropic BaL or X4-tropic NL4-3 HIV-1 strains (261). This
combination anti-HIV-1 lentiviral vector is currently in a phase
I/II clinical trial (ID: NCT02797470). The exploitation of the
novel CRISPR-Cas9 technology could also be a suitable tool
to precisely manipulate hTRIM5α gene to increase the affinity
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of hTRIM5α for the incoming retroviral capsid and enhance
antiviral potency (262, 263).

CONCLUDING REMARKS AND FUTURE
PERSPECTIVES

Cellular host restriction factors including APOBEC3G, Tetherin,
SAMHD1, and TRIM5α constitute a first barrier of the intrinsic
cellular response against HIV-1 and other viral infections. Recent
studies highlight the role of these restriction factors as versatile
actors at the interplay between innate and adaptive antiviral
immunity. Restriction factors can modulate NK cells, DCs,
and antiviral CD4+ and CD8+ T cell responses, although
the mechanistic details are still not fully understood. The
interactions between APOBEC3G, Tetherin, SAMHD1, and
TRIM5α with the intracellular protein degradation pathways,
including the UPS, the autophagy and endocytic pathways,
may serve as a bridge to promote antiviral cellular immunity.
Besides, some of the recently described restriction factors, in
particular MARCH2 and IFITMs, may follow similar pathways
of intracellular proteins degradation increasing the opportunities
to immune regulate antiviral responses. A deeper understanding
of the mechanisms underlying the immunomodulatory role of
restriction factors is essential if we aim to induce early restriction
and potent immune responses to control viral infections. In
this way, restriction factors might offer the opportunity to
design innovative therapeutic approaches to counteract retroviral
replication while promoting effective antiviral cellular immunity.
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