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Abstract In this articlewe analyze the notions of amenability and paradoxical decom-
position from an algebraic perspective. We consider this dichotomy for locally finite
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extended metric spaces and for general algebras over fields. In the context of alge-
bras we also study the relation of amenability with proper infiniteness. We apply our
general analysis to two important classes of algebras: the unital Leavitt path algebras
and the translation algebras on locally finite extended metric spaces. In particular, we
show that the amenability of a metric space is equivalent to the algebraic amenability
of the corresponding translation algebra.

Keywords Amenability · Paradoxical decompositions · Følner nets · Coarse spaces ·
Unital K-algebras · Leavitt path algebras · Translation algebras
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1 Introduction

Given a group �, von Neumann defined in Section 1 of [53] the notion of allgemeiner
Mittelwert auf � in terms of a mean (i.e., a finitely additive probability measure) on
� which is left invariant under the action of � on itself. This property of the group
eventually came to be called amenability [27]. Its absence was recognized by vonNeu-
mann as a fundamental reason behind phenomena like the Banach–Tarski paradox—a
paradoxical decomposition of the unit ball in R

3. In fact, there is, for any group �,
a complete dichotomy between amenability and the existence of paradoxical decom-
positions of � in a natural sense, and the Banach–Tarski paradox may be essentially
attributed to the fact that the (discrete) group SO(3) of isometries of the ball contains a
subgroup which is isomorphic to the free group F2 on two generators, whose evident
paradoxicality implies that of the former. By contrast, the group SO(2) of isometries
of the unit disc, like any other abelian group, is amenable, and thus not paradoxical.
Later, Følner gave an equivalent characterization of amenability by the existence of a
net {�i }i∈I of non-empty finite subsets of the group that, under the left translations of
the group on itself, becomes more and more invariant in a statistical sense (cf., [37]).
More precisely, one has that � is amenable if and only if there exists a net {�i }i∈I of
non-empty finite subsets with

lim
i

|γ�i ∪ �i |
|�i | = 1, for any γ ∈ �,
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Amenability of coarse spaces and K-algebras 259

where |·| denotes the cardinality of the subset. These so-called Følner nets thus provide
a good way to approximate an amenable infinite structure with finite substructures,
opening the door to a wide range of applications. Moreover, thanks to its simplicity,
Følner’s characterization also lends itself to various generalizations, as we shall see
below. Since then, the concept of amenability has become central in many areas of
mathematics like ergodic theory, geometry, the theory of operator algebras, etc. Some
classical references on this topic are [47,51,54].

This paper studies amenability and paradoxical decompositions from an algebraic
perspective. To provide a source of inspiration, we start with a review of amenabil-
ity for metric spaces, a concept defined by Block and Weinberger in [19] through a
natural generalization of Følner’s characterization to (uniformly) locally finite metric
spaces—similar ideas go as far back as the work of Ahlfors ([4, II]) under the term
Ausschöpfungen einer offenen Fläche (exhaustions of an open surface). More pre-
cisely, a locally finite metric space (X, d) is said to be amenable if there exists a net
{Fi }i∈I of finite non-empty subsets such that

lim
i

|NR Fi |
|Fi | = 1, for any R > 0,

where NR Fi := {x ∈ X : d(x, Fi ) ≤ R}, the R-neighborhoodof Fi (cf.,Definition 2.1
andRemark 2.2). One of the key results in this setting, shown byCecherini-Silberstein,
Grigorchuk and de la Harpe in [23], states that in analogy with the well-known result
for groups, the amenability of a metric space is equivalent to its non-paradoxicality,
and also equivalent to the existence of an invariant mean, in a suitable sense (cf.,
Definitions 2.8 and 2.9). For the convenience of the reader, we present a direct proof of
the most interesting implication among them, namely that non-paradoxicality implies
amenability, by adapting a proof in the group setting given in [40] (cf., Theorem 2.17).
The key idea in it is a local-to-global technique that involves a variant ofHall’smarriage
theorem for sets of arbitrary cardinalities. A linearization of this technique will be
applied later to prove a corresponding implication in the case of algebras over a field,
which is the second main object of study in this article.

Let us fix a field K. Elek introduced in [32] the notion of amenability for finitely
generated unital algebras over K, and proved some essential results in the case where
the algebra has no zero-divisors. The main definition he used also resembles Følner’s
characterization, with subsets replaced by linear subspaces, and cardinalities replaced
by dimensions. We generalize this notion to K-algebras of arbitrary dimensions and
single out a more restrictive situation brought about by the additional requirement that
the Følner net is exhaustive, which we term proper amenability.

Definition 1 (cf., Definition 3.1 and Remark 3.2) Let K be a field. An K-algebra A
is said to be (left) algebraically amenable if there exists a net {Wi }i∈I of finite-K-
dimensional linear subspaces of A such that

lim
i

dimK(aWi + Wi )

dimK(Wi )
= 1, for any a ∈ A.
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If the net {Wi }i∈I can be chosen to satisfy the additional condition that for any a ∈ A,
there is i ∈ I such that

a ∈
⋂

j≥i

W j ,

then A is said to be (left) properly algebraically amenable.

Following Elek’s pioneering work, a number of authors have dealt with amenability
for algebras from different perspectives, such as Bartholdi [15], Cecherini-Silberstein
and Saimet-Vaillant [25], and D’Adderio [26] (building on work of Gromov [39]).
Special attention has been paid by Elek to the case of division algebras over a field,
see [30,33,34]. In particular, the notion of amenability for division algebras plays
an important role in the study of infinite dimensional representations of a finite-
dimensional algebra over a finite field undertaken in [30].

The fundamental result of Elek in [32] is the equivalence, for finitely generated
unital K-algebras without zero-divisors, among three characterizations of algebraic
amenability analogous to those in the cases of groups and metric spaces: algebraic
amenability à la Følner as given in Definition 1, the non-existence of paradoxical
decompositions, and an analogue of von Neumann’s invariant means called invariant
dimension measures. The definitions of the latter two notions enlist the involvement of
linear bases of the algebra. We offer here generalizations of these notions (cf., Defini-
tions 4.1 and 4.5) and of Elek’s theorem to encompass all K-algebras regardless of the
size of the generating set or the existence of zero-divisors or a unit. Notably, invariant
dimension measures in our definition exhibit delicate deviations from von Neumann’s
invariant means on a group, owing to the fact that the lattice of subspaces of an algebra
is not distributive, unlike the lattice of subsets of a group. For the sake of brevity, here
we state the generalized theorem only for countably dimensional K-algebras.

Theorem 2 (cf., Theorem 4.6 and Corollary 4.7) Let A be a countably dimensional
K-algebra over a field K. Then the following are equivalent:

(1) A is algebraically amenable.
(2) There is a linear basis of A that cannot be paradoxically decomposed.
(3) There exists an invariant dimension-measure on A associated to some linear

basis.

By removing the requirement of finite generation, unitality, and having no zero-
divisor, we can greatly expand the scope of examples subject to the study of
amenability. Of foremost interest to us in this paper are two classes of algebras asso-
ciated to geometric data:

(1) Leavitt path algebras constructed from directed graphs (Definition 5.6): These
algebraswere introduced in [3] and [11] as generalizations of the classical algebras
studied byLeavitt in [42,43]. They also provide natural purely algebraic analogues
of the widely studied graph C∗-algebras (see e.g. [48]). The class of Leavitt path
algebras has interesting connections with various branches of mathematics, such
as representation theory, ring theory, group theory, and dynamical systems. We
refer the reader to [2] for a recent survey on this topic.
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Amenability of coarse spaces and K-algebras 261

(2) Translation algebras constructed from (locally finite) metric spaces (Defini-
tion 6.1):
These algebras were introduced by Roe as an intermediate step between coarse
metric spaces and a class of C∗-algebras now known as the (uniform) Roe C∗-
algebras, as part of his far-reaching work on coarse geometry and the index theory
for noncompact manifolds and metric spaces (cf., [49]). Their geometric nature
enable them to serve as an important bridge between coarse geometry and the field
of operator algebras, as well as a rich source of examples. We will further explore
their connections to the theory of C∗-algebras in relation to amenability-type
properties in [7].

Typically speaking, these algebras carry zero-divisors, and the translation algebras
even have uncountable dimensions.

As corollaries of Theorem 2, we observe that properly infinite unital algebras are
always non-amenable. Recall that a unital algebraA is said to be properly infinite if the
unit isMurray–vonNeumann equivalent to twomutually orthogonal idempotents. This
condition itself expresses a formof paradoxicality, one that is generally strictly stronger
than the notion of paradoxical decompositions used in Theorem 2. This Murray–von
Neumann kind of paradoxical decomposition, along with some other forms of non-
amenability, are discussed in [24, Section 4.5]. Indeed, there are division algebras
which are non-amenable, and a division algebra cannot be properly infinite (cf. [33]).
However, proper infiniteness and algebraic non-amenability coincide for the two main
classes of examples we study.

Theorem 3 (cf., Corollary 5.11 and Theorem 6.3) Let K be a field. If A is either

(1) a unital Leavitt path K-algebra of a finite graph, or
(2) a translation K-algebra (associated to a locally finite extended metric space),

then A is algebraically amenable if and only if it is not properly infinite.

In fact, in both cases, we pinpoint the necessary and sufficient properties of the
underlying geometric data that give rise to the algebraic amenability of these algebras
(cf., Theorems 5 and 5.10).

One novel aspect of our treatment is the careful distinction, in both the geometric
setting and the algebraic setting, between the notion of amenability and the somewhat
more restrictive notion of proper amenability, which, as described in Definition 1,
asks for a Følner net that is exhaustive. In the group case as well as the case of
ordinary metric spaces, these two concepts coincide (Corollary 2.19). However, subtle
differences emerge once we engage extended metric spaces, that is, we allow the
distance between two points to be infinite. A typical way for this to happen is for an
infinite space to admit a finite coarse connected component (i.e., a finite cluster of
points having finite distances among each other but infinite distances to the rest of
the space), as this finite subset would immediately constitute a Følner net by itself,
which is enough to witness amenability but not enough for proper amenability. In
this sense, proper amenability ignores any Følner net that comes cheaply from an
“isolated finite substructure”. It turns out such a typical way is, in fact, the only way
to separate the two notions in this context (Corollary 2.20). In the algebraic setting,
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the distinction between the two concepts appears more pronounced, as they possess
somewhat different permanence properties (cf., Proposition 3.6, Example 3.7 and
Proposition 3.8). Nevertheless, we show that the disagreement between the two notions
is always caused by the existence of a finite-dimensional (one-sided) ideal—again a
prototypical “isolated finite substructure” in the relevant setting.

Theorem 4 (cf., Theorem 3.9) Let A be an infinite dimensional K-algebra over a
field K that is algebraically amenable but not properly algebraically amenable. Then
A has a finite-dimensional left ideal.

It follows from this theorem that algebraic amenability and proper algebraic
amenability also agree for algebras without zero-divisors.1 The distinction between
the two concepts eventually plays a role in the aforementioned generalization of Elek’s
result in Theorem 2, even though the statement of the theorem does not mention proper
algebraic amenability.

Although we only focus on the algebraic and the coarse geometric aspects of
amenability in the present article, a major underlying motivation comes from their
connections to the Følner property in the context of operator algebras. Such connec-
tions will be explored in [7], where we will investigate the close relationship between
algebraic amenability and the existence of Følner nets of projections for operator
algebras on a Hilbert space. We remark that Følner nets of projections are relevant in
single operator theory [45], operator algebras (see, e.g., [9,12,18,18]) as well as in
applications to spectral approximation problems (see, e.g., [14,20,44] and references
cited therein).

We conclude the article with some results connecting the two main objects of study
in the paper—locallyfinite (extended)metric spaces and algebras over afield—through
precisely the construction of the translation algebra of a locally finite (extended)metric
space. With the help of the equivalent characterizations of amenability in both con-
texts, we obtain the satisfactory result that (proper) amenability of the metric space is
equivalent to (proper) algebraic amenability of the corresponding translation algebra.

Theorem 5 (cf., Theorems 6.3 and 6.4) Let (X, d) be a locally finite extended metric
space and let Ku(X) be its translation K-algebra of a field K. Then (X, d) is amenable
(respectively, properly amenable) if and only if Ku(X) is algebraically amenable
(respectively, properly algebraically amenable).

In the case where the field K is the complex numbers C, suitable completions of
the translation algebras, the so-called uniform Roe C∗-algebras, will be considered
in [7], where further equivalences involving the Følner property of these C∗-algebras
will be established.
Contents The paper is organized as follows. In Sect. 2, we begin by addressing the
notion of amenability for locally finite extended metric spaces. We will recall in this
context the relation to paradoxical decompositions and existence of invariant means

1 In fact, Elek’s original definition in [32] corresponds formally to our definition of proper algebraic
amenability, instead of algebraic amenability. For general algebras with possible zero-divisors, we prefer
to assign the term “algebraic amenability” to the concept without the exhaustion requirement because of its
central role in Theorem 2.
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Amenability of coarse spaces and K-algebras 263

in Theorem 2.11. Finally, we will completely clarify the relation between amenability
and proper amenability for extended metric spaces in Sect. 2.1.

In Sect. 3, we analyze amenability issues in the context of algebras over a field
K, and give a complete analysis of the difference between algebraic amenability and
proper algebraic amenability (see Proposition 3.6 and Theorem 3.9). If the K-algebra
has no zero-divisor, then algebraic amenability and proper algebraic amenability coin-
cide (see Corollary 3.10).

Then we proceed in Sect. 4 to develop the relation between algebraic amenability,
paradoxical decompositions and existence of dimension measures on the lattice of
subspaces for general K-algebras (i.e., not necessarily countably dimensional). This
extends previous results by Elek in [32] in the context of countably dimensional
algebras without zero-divisors. In this general setting, and due to the fact that the
lattice of subspaces of an algebra is not distributive, the notion of additivity and
invariance of dimension measures are captured by inequalities instead of equalities
(see Definition 4.5 for details). Finally, we give examples of how to produce algebras
that are not algebraically amenable using the dimension measure.

In the last two sections, we apply our general theory to two vast classes of exam-
ples: the Leavitt path algebras and the translation algebras. In Sect. 5, we prove that
algebraic non-amenability and proper infiniteness coincide for the class of all unital
Leavitt path algebras (see Theorem 5.10). Using the construction of path algebras, we
also give simple examples where left and right algebraic amenability differ from each
other. In Sect. 6, we prove the same result for the class of translation algebras asso-
ciated to locally finite extended metric spaces. In fact, we also establish equivalences
between the algebraic amenability of the translation algebra and the amenability of the
underlying metric space (see Theorem 6.3), and the analogous equivalence for proper
amenability (see Theorem 6.4).
Notations Given sets X1, X2 we write their cardinality by |Xi |, i = 1, 2 and their
disjoint union by X1 � X2. We put N0 = {0, 1, 2, . . .} = N � {0}.

2 Amenable metric spaces

In this section we will study locally finite metric spaces from a large scale geometric
point of view. There are many interesting examples, of which the most prominent is
the case of a finitely generated discrete group endowed with the word length metric.
More generally, one can always equip any (countable) discrete group with a right- (or
left-)invariant proper metric and obtain a metric space. The dependence on the right-
invariant proper metric is a rather mild one, if one is only interested in the “large-scale”
behavior of themetric space.More precisely, different right-invariant propermetrics on
the same group induce metric spaces that are coarsely equivalent, see, e.g., Section 1.4
in [46]. Many important properties of groups are “large-scale” in nature. Examples
include amenability, exactness, Gromov hyperbolicity, etc. In this section, we will
focus on the first property in this list. Amenability has been well studied in coarse
geometry (see, e.g., [46] or [21, Section 5.5]), so we will only emphasize the aspects
which are important for establishing parallelism with the algebraic amenability for K-
algebras that we are going to investigate in the next sections. For the sake of simplicity,
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264 P. Ara et al.

we will focus on locally finite metric spaces, i.e., those where any bounded set has
finite cardinality.2

We start by recalling the definition of amenability for locally finite metric spaces.
Our initial approach will make use of Følner sets. Let (X, d) be a metric space and A
be a subset of X . For any R > 0 define the following natural boundaries of A:

• R-boundary: ∂R A := {x ∈ X : d(x, A) ≤ R and d(x, X\A) ≤ R};
• outer R-boundary: ∂+

R A := {x ∈ X\A : d(x, A) ≤ R};
• inner R-boundary: ∂−

R A := {x ∈ A : d(x, X\A) ≤ R}.
It is clear from the preceding definitions that ∂R A = ∂+

R A � ∂−
R A. Next we introduce

the notion of amenability of metric spaces due to Block and Weinberger (cf., [19,
Section 3]).

Definition 2.1 Let (X, d) be a locally finite metric space.

(i) Let R > 0 and ε ≥ 0. A finite non-empty set F ⊂ X is called an (R, ε)-Følner
set if it satisfies |∂R F |

|F | ≤ ε.

We denote by Føl(R, ε) the collection of (R, ε)-Følner sets.
(ii) The metric space (X, d) is called amenable if for every R > 0 and ε > 0 there

exists F ∈ Føl(R, ε).
(iii) The metric space (X, d) is called properly amenable if for every R > 0, ε > 0

and finite subset A ⊂ X there exists a F ∈ Føl(R, ε) with A ⊂ F .

Remark 2.2 Since with regard to the relation of set containment, Føl(R, ε) is mono-
tonically decreasing with respect to R and monotonically increasing with respect to
ε, we may also employ nets to simplify the quantifier-laden “local” condition used in
the above definition:

(i) Amenability of (X, d) is equivalent to the existence of a net {Fi }i∈I of finite
non-empty subsets such that

lim
i

|∂R Fi |
|Fi | = 0, for all R > 0.

(ii) Proper amenability of (X, d) requires, in addition, that this net {Fi }i∈I satisfies
X = lim inf i Fi , where lim inf i Fi :=⋃ j∈I

⋂
i≥ j Fi .

Example 2.3 For a finitely generated discrete group � equipped with the word length
metric both notions are equivalent to Følner’s condition for the group (see e.g., [46,
Proposition 3.1.7]).

2 Recall that a metric space is locally finite if and only if it is discrete and proper, the latter meaning that
any closed ball is compact (see, e.g., [21, Section 5.5]). We avoid this terminology because we use the term
“proper” in a different sense in this article.
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Remark 2.4 With the convention that for any x ∈ X , d(x, ∅) = ∞, it is immediate
that any finite set is properly amenable. Using the notation

N+
R A := {x ∈ X : d(x, A) ≤ R} and N−

R A := {x ∈ X : d(x, X \ A) > R},

we get the relations ∂R(N+
R A) ⊂ ∂+

2R A and ∂R(N−
R A) ⊂ ∂−

2R A. This shows that for
both of the concepts of amenability in Definition 2.1, the use of the R-boundary may
be replaced by either the outer or the inner R-boundary.

Remark 2.5 From a coarse geometric point of view, the notion of (proper) amenability
as defined above is better behaved when we restrict to metric spaces that are uniformly
locally finite (some authors call them metric spaces with bounded geometry) in the
sense that for any R > 0, there is a uniform finite upper bound on the cardinalities of
all closed balls with radius R, i.e.,

sup
x∈X

|BR(x)| < ∞, (2.1)

where BR(x) := {y ∈ X : d(x, y) ≤ R} denotes the closed ball centered at x with
radius R. The reason is that, for this class of metric spaces, amenability is preserved
under coarse equivalence, and this gives us a natural way to generalize the definition to
non-discretemetric spaces (satisfying a suitable notion of bounded geometry), c.f. [28,
Proposition 3.D.32 andDefiniton 3.D.33] or [19, Corollary 2.2 and Theorem 3.1]. This
also holds true for proper amenability, with essentially the same argument (perhaps
more easily seen with the aid of Lemma 2.6 below). However, for the results we are
going to present, we generally do not require our metric space to be uniformly locally
finite.

The following lemma shows that the definition of proper amenability can be already
characterized in terms of the cardinality of the Følner sets.

Lemma 2.6 Let (X, d) be an infinite locally finite metric space. Then X is properly
amenable if and only if for every R > 0, ε > 0 and N ∈ N there exists an F ∈
Føl(R, ε) such that |F | ≥ N.

Proof The “only if” part is clear: for any N ∈ N just take a finite A ⊂ X with |A| = N .
To show the reverse implication let R > 0, ε > 0 and a finite A ⊂ X be given. By
assumption there is a finite F ⊂ X such that

|F | ≥ 2|∂R A|
ε

and
|∂R F |
|F | ≤ ε

2
.

Putting F̃ := F ∪ A (which contains A) we have

|∂R F̃ |
|F̃ | ≤ |∂R F |

|F | + |∂R A|
|F | ≤ ε

2
+ ε

2
= ε

and the proof is concluded. 
�
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As in the group case, the notion of amenability for metric spaces comes with an
important dichotomy in relation to paradoxical decompositions. To formulate it, we
first need to introduce an important tool in the study of coarse geometry.

Definition 2.7 Let (X, d) be a locally finite metric space. A partial translation on X
is a triple (A, B, t) consisting of two subsets A and B of X together with a bijection
t : A → B such that the graph of t given by

graph(t) := {(x, t (x)) ∈ X × X : x ∈ A}

is controlled, i.e., supx∈A d(x, t (x)) < ∞. We denote the corresponding domain and
range of t by dom(t) := A and ran(t) := B.

The set of all partial translations of X is denoted as PT(X).

Note that PT(X) forms a subsemigroup of the inverse semigroup of partially defined
bijective maps X (see, e.g., [36]). More explicitly, the composition of any two partial
translations t, t ′ ∈ PT(X), denoted by t ◦ t ′, is defined to be the partial translation
satisfying

dom(t ◦ t ′) = {x ∈ dom(t ′) | t ′(x) ∈ dom(t)
}

and (t ◦ t ′)(x) = t (t ′(x)) for any x ∈ dom(t ◦ t ′). Note that the graph of t ◦ t ′ is also
controlled since

sup
x∈dom(t◦t ′)

d
(
x, (t ◦ t ′)(x)

) ≤ sup
x∈dom(t ′)

d(x, t ′(x)) + sup
x∈dom(t)

d(x, t (x)) < ∞.

Definition 2.8 A mean μ on a locally finite metric space (X, d) is a normalized,
finitely additive map on the set of all subsets of X ,μ : P(X) → [0, 1]. The measureμ

is called invariant under partial translations ifμ(A) = μ(B) for all partial translations
(A, B, t).

Definition 2.9 Let (X, d) be a locally finite metric space. A paradoxical decompo-
sition of X is a (disjoint) partition X = X+ � X− such that there exist two partial
translations ti : X → Xi for i ∈ {+,−}.
Remark 2.10 Applying aBernstein-Schröder-type argument, onemay slightlyweaken
the condition of having a paradoxical decomposition: it suffices to assume that there are
two disjoint (non-empty) subsets X ′+, X ′− ⊂ X such that there exist partial translations
t ′i : X → X ′

i for i ∈ {+,−}. Here we do not require their union to be X , in contrast
with Definition 2.9. Indeed, assume we can find (X ′+, t ′+, X ′−, t ′−) as above. We may
then write X = X ′+ � X ′− � X̃ . Now we define X̂ = ⋃∞

k=0(t
′+)k(X̃), where (t ′+)0 is

viewed as the identity map. This is a disjoint union because X̃ is disjoint from the
image of t ′+. Note also that t ′+ maps X̂ and X\X̂ into themselves, respectively, and
X̂ = X̃ � t ′+(X̂). By the injectivity of t ′+, we have t ′+(X \ X̂) = X ′+ \ t ′+(X̂) = X ′+ \ X̂ .
This allows us to construct a paradoxical decomposition (X+, t+, X2, t2) in the sense
of Definition 2.9 by setting X+ = X ′+� X̃ (which is equal to (X ′+ \ X̂)� X̂ ), X2 = X ′−,
t+ =
(

t ′+|X\X̂

)
� Id X̂ and t2 = t ′−.
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The following result gives some standard characterizations of amenable metric
spaces thatwill be used later (see, e.g., [23, Theorems 25 and 32];we give an alternative
proof of the implication (2)⇒(1) in themore general context of extendedmetric spaces;
see in Theorem 2.17).

Theorem 2.11 Let (X, d) be a locally finite metric space. Then the following condi-
tions are equivalent:

(1) (X, d) is amenable.
(2) X admits no paradoxical decomposition.
(3) There exists a mean μ on X which is invariant under partial translations.

Remark 2.12 Deuber, Simonovits and Sós in [29] considered the exponential growth
rate3 on locally finite metric spaces and they showed that this growth condition char-
acterizes paradoxicality completely. It can be regarded as a Tarski-alternative-type
theorem for locally finite metric spaces and it also served as an inspiration for the
proof of the Tarski alternative (see [23, Theorem 32]).

It is interesting to note that the notions of paradoxicality and invariant means have
been recently introduced and studied for arbitrary Boolean inverse monoids in [41].

2.1 Amenability versus proper amenability for extended metric spaces

In many ways, the amenability for metric spaces generalizes the corresponding notion
for groups, with certain properties paralleling those of the latter. However, caution
should be taken when one tries to understand amenability for metric spaces from its
similarity with groups. For example, amenability for metric spaces does not pass to
subsets in general. As an example consider the free groupFn , n ≥ 2,with a ray attached
to it. In this sense there is also a parallelism with the notion of Følner sequence in the
context of operator algebras as considered in [9, Section 4].

In this subsection we complete the analysis of amenability in relation to proper
amenability in themetric space context.We shall see that going beyond ordinarymetric
space (meaning the distance of any two points is finite) helps us better understand some
aspects of amenability. For this we consider extended metric spaces (X, d) as coarse
spaces, i.e., spaces where the metric is allowed to take the value ∞,

d : X × X → [0,∞].

For now let us stay assured that the additional complexity brought about by such a
generalization is rather mild. Indeed, observe that the property that two points have
finite distance defines an equivalence relation, which decomposes X uniquely into a
disjoint union of equivalence classes X = ⊔i∈I Xi , such that each (Xi , d|Xi ×Xi ) is
an ordinary metric space, while d(Xi , X j ) = ∞ for any different i, j ∈ I . Each Xi

is called a coarse connected component of X . Note that if (X, d) is a locally finite
extended metric space, then each component Xi is countable although the total space

3 It is also called doubling condition in the survey of Elek and Sós [35] and in [23].
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X need not be countable in general. As in the usual metric space situation we also
have here that if X is finite, then it is properly amenable by taking F = X . As we
will show later (Corollaries 2.19 and 2.20), it turns out that the notions of amenability
and proper amenability are equivalent if the extended metric space contains only one
coarse connected component (i.e., in the metric space case), but not in general.

Remark 2.13 Definitions 2.1, 2.7, 2.8 and 2.9 generalize directly to extended metric
spaces. So does the Bernstein-Schröder-type argument in Remark 2.10.

Remark 2.14 We will justify here that the characterization of proper amenability in
terms of the cardinality of the Følner sets given in Lemma 2.6 is still true in the
extended metric space context. Note first that if F ⊂ X = ⊔i∈I Xi is a finite set
(and denoting by Fi the corresponding subset in each coarse connected component
Xi ) we have that d(x, F) = min{d(x, Fi ) : i ∈ I }. Therefore, the R-boundary of F
decomposes as R-boundaries in each coarse connected components:

∂R(F) =
⊔

i∈I

∂R(Fi ).

(Note also that if Fi = ∅, then ∂R(Fi ) = ∅). Therefore we can reason in each coarse
connected component as in the proof of Lemma 2.6.

Proposition 2.15 Let (X, d) be a locally finite extended metric space. Then X is
amenable if at least one of its coarse connected components is amenable. The converse
is true in the case where there are only a finite number of coarse connected components.

Proof The first statement is trivial. For the second, assume that X = ⊔N
i=1 Xi is

a union of finitely many coarse connected components Xi , and that all the coarse
connected components are non-amenable. We have to show that X is non-amenable.
Since all coarse connected components Xi are non-amenable, it follows from Theo-
rem 2.11 that each component Xi has a paradoxical decomposition. Since there is only
a finite number of components, these paradoxical decompositions can be assembled
to a paradoxical decomposition of X , hence X is non-amenable, as desired. 
�

The second part of Proposition 2.15 cannot be generalized to extendedmetric spaces
with an infinite number of coarse connected components, as the following example
shows.

Example 2.16 We construct a locally finite extended metric space (X, d), with an
infinite number of coarse connected components, such that neither of the connected
components of X is amenable, but X is properly amenable. Let Y be the Cayley graph
of the free non-Abelian group F2 of rank two. For each n ∈ N, let Yn be the graph
obtained by attaching n new vertices v1, . . . , vn and n new edges e1, . . . , en to Y , in
such a way that ei connects vi with vi+1 for i = 1, . . . , n −1, and en connects vn with
e, being e the neutral element of F2 (seen as a vertex of Y ). Note that Yn is the graph
obtained by attaching a trunk of length n to Y . Let Xn be the metric space associated to
the connected graph Yn , and observe that all the metric spaces Xn are non-amenable.
Let X be the extended metric space having the metric spaces Xn as coarse connected
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components. Then clearly X is properly amenable, because we can use the long trunks
to localize the Følner sets of X of arbitrary large cardinality.

We also remark that Theorem 2.11 given in [23] stays true in the case of extended
metric space.

Theorem 2.17 Let (X, d) be a locally finite extended metric space. Then the following
conditions are equivalent:

(1) (X, d) is amenable.
(2) X admits no paradoxical decomposition.
(3) There exists a mean μ on X which is invariant under partial translations.

Proof The proofs of the implications (1) ⇒ (3) and (3) ⇒ (2) are standard and apply
equally well to the extended metric space situation (see, e.g., [23, §26 and part III]).

The implication (2) ⇒ (1) is more interesting. Hereby we present a direct proof
for the sake of completeness, adapting ideas from Kerr and Li in [40, Theorem 3.4,
(vi) ⇒ (v)] to the setting of extended metric spaces (see also [40]). This proof should
also serve as a motivation for the proof of Proposition 4.4 in the context of algebraic
amenability.

We suppose that (X, d) is not amenable and would like to show that X has a
paradoxical decomposition. By Remark 2.10, it suffices to show that there are two
disjoint subsets X ′+, X ′− ⊂ X such that there exist partial translations t ′i : X → X ′

i for
i ∈ {+,−}. By the negation of Definition 2.1, there is ε0 ∈ (0, 1) and R0 > 0 such
that, for any finite non-empty set F ⊂ X , one has the following estimate for the outer
R-boundary: |∂+

R0
F | > ε0|F | and, hence, |N+

R0
F | > (1+ ε0)|F |. Since, for any finite

set F ⊂ X , we also have

N+
2R0

(F) ≥ N+
R0

(
N+

R0
F
)

≥ (1 + ε0)|N+
R0

F | ≥ (1 + ε0)
2|F |,

we can choose a radius Rd := n R0 for some n ≥ log1+ε0
(2) + 1 satisfying the

following local doubling condition: for any finite non-empty set F ⊂ X , we have

|N+
Rd

F | > 2 |F |.

In the next step of the proof we will essentially use Zorn’s lemma to produce a
paradoxical decomposition (a “global doubling”) of X . Consider the set � of set-
valued maps ω : X × {+,−} → P(X) (the power set of X ) such that for any y =
(x, j) ∈ X ×{+,−} we have ω(y) ∈ P (BRd (x)

)
and for any finite set K ⊂ X ×{+,−}

we have
∣∣∣∣∣∣

⋃

y∈K

ω(y)

∣∣∣∣∣∣
≥ |K |.

Note that the set � is not empty since the set-valued map given by ω(y) := BRd (x)

for any y = (x, j) ∈ X ×{+,−} is an element of �. In fact, we only need to verify the
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preceding inequality: for any finite set K ⊂ X × {+,−}, we write K = K+ × {+} �
K− × {−} and calculate that

∣∣∣∣∣∣

⋃

y∈K

ω(y)

∣∣∣∣∣∣
=
∣∣∣N+

Rd
(K+ ∪ K−)

∣∣∣ ≥ 2|K+ ∪ K−| ≥ |K+| + |K−| = |K |.

The set � may also be partially ordered in the following natural way

ω ≤ ω′ if ω(y) ⊂ ω′(y) for any y ∈ X × {+,−}.

Since any descending chain has a non-empty lower bound given by pointwise inter-
section we obtain by Zorn’s lemma a minimal element ωm ∈ �. Note that, by the
definition of �, we already have |ωm(y)| ≥ 1 for any y ∈ X × {+,−}.

We claim that |ωm(y)| = 1 for any y ∈ X × {+,−}. Suppose this is not the case.
Then there is y0 ∈ X × {+,−} such that ωm(y0) has two distinct elements x+, x−.
By the minimality of ωm , there exist, for l ∈ {+,−}, finite sets Kl ⊂ X × {+,−} not
containing y0 and such that

∣∣∣∣∣∣
(ωm(y0)\{xl}) ∪

⎛

⎝
⋃

y∈Kl

ωm(y)

⎞

⎠

∣∣∣∣∣∣
≤ |Kl |.

(Note that, otherwise, one could remove xl from ωm(y0) to specify a new element in
� strictly smaller than ωm .) Define, for l ∈ {+,−}, the set

Zl := (ωm(y0)\{xl}) ∪
⎛

⎝
⋃

y∈Kl

ωm(y)

⎞

⎠ .

Using the identity (ωm(y0)\{x+})∪(ωm(y0)\{x−}) = ωm(y0) aswell as the preceding
inequality, we obtain the following contradiction:

|K+| + |K−| ≥ |Z+| + |Z−| = |Z+ ∪ Z−| + |Z+ ∩ Z−|

≥
∣∣∣∣∣∣
ωm(y0) ∪

⎛

⎝
⋃

y∈(K+∪K−)

ωm(y)

⎞

⎠

∣∣∣∣∣∣
+
∣∣∣∣∣∣

⋃

y∈(K+∩K−)

ωm(y)

∣∣∣∣∣∣
≥ 1 + |K+ ∪ K−| + |K+ ∩ K−| = 1 + |K+| + |K−|.

Therefore |ωm(y)| = 1 for any y ∈ X × {+,−}.
To finish the proof, we define, for any l ∈ {+,−}, the map tl : X → X which assigns

to each x ∈ X the unique element in ωm(x, l). Note that it follows now from the
definition of � that ωm(y) ∩ ωm(y′) = ∅ if y �= y′. Consequently, both t+ and t− are
injective and they have disjoint images, which we denote by X+ and X−, respectively.
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Since by definition ωm(x, l) ⊂ BRd (x) we have

sup{d(x, tl(x)) : x ∈ X} ≤ Rd ,

hence the maps t+, t− are controlled and the quadruple (X+, t+, X−, t−) satisfies the
condition in Remark 2.10 and, hence, a paradoxical decomposition can be obtained
from them. 
�

Thenext proposition is the key to our results on the relationship between amenability
and proper amenability for extended metric spaces.

Proposition 2.18 Let (X, d) be a non-empty locally finite extended metric space, and
assume that all the coarse connected components of X are infinite. Then X is amenable
if and only if X is properly amenable.

Proof Suppose that X = ⊔i∈I Xi is amenable, where Xi are the coarse connected
components of X . By Remark 2.14, it is enough to check that for R > 0 and ε > 0 the
sets in Føl(R, ε) have unbounded cardinality. Suppose this is not the case, i.e., there
is R0 > 0, ε0 with 1 > ε0 > 0 and N0 ∈ N such that Føl(R0, ε0) has an element
F0 of maximal cardinality N0. Write F0 = ⊔i∈I0 F0,i , where F0,i , i ∈ I0, are the
(non-empty) coarse connected components of F0, so that F0,i = F0 ∩ Xi �= ∅ for
i ∈ I0, and I0 is a finite subset of I . Set

R1 := maxi∈I0{diam(F0,i ) + dist(F0,i , Xi\F0,i )},

where diam(F0,i ) = max {d(x, y) : x, y ∈ F0,i } is the diameter of F0,i . Observe that
Xi\F0,i is non-empty by our hypothesis that all the coarse connected components of
X are infinite.

Choose R > R0 + R1, and ε > 0 such that

ε < min
{
ε0,

1

|F0|
}
.

Since X is amenable, there exists F ∈ Føl(R, ε). We claim that F �⊂ F0. Indeed, if
F ⊂ F0, then by the choice of R1 we have F0,i ⊂ ∂R Fi for all i ∈ I0 such that the
coarse connected component Fi of F is non-empty. Let I ′

0 be the (non-empty) subset
of I0 consisting of those i ∈ I0 such that Fi �= ∅. Then we obtain

|∂R F |
|F | ≥

∑
i∈I ′

0
|F0,i |

∑
i∈I ′

0
|F0,i | = 1 > ε0 > ε,

hence F /∈ Føl(R, ε), proving our claim. Write F =⊔ j∈J0 Fj , where J0 is finite, and
{Fj : j ∈ J0} are the (non-empty) coarse connected components of F . It follows that
for some coarse connected component Fj0 of F , we have Fj0 �⊂ F0.

For k ∈ I0 ∪ J0, set F0,k = F0 ∩ Xk and Fk = F ∩ Xk . (Note that some F0,k or
some Fk might be empty.)

We consider next two cases:

123



272 P. Ara et al.

(a) If ∂R(F) �= ∅, then

1

|F | ≤ |∂R(F)|
|F | ≤ ε <

1

|F0|

and so, N0 = |F0| < |F |. Hence F ∈ Føl(R0, ε0) with |F | > N0, which is a
contradiction to the maximality of N0.

(b) If ∂R(F) = ∅ we have two possibilities, for each j ∈ J0:
(i) If Fj ∩ F0, j �= ∅, then F0, j ⊂ Fj by using our assumption that ∂R(F) = ∅.
(ii) Fj ∩ F0, j = ∅.
Assume that condition (ii) holds for some j0 ∈ J0. Then F̃ := F0 � Fj0 satisfies

|∂R0(F̃)|
|F̃ | ≤ |∂R0(F0)| + |∂R0(Fj0)|

|F0| + |Fj0 |
= |∂R0(F0)|

|F0| + |Fj0 |
<

|∂R0(F0)|
|F0| ≤ ε0,

where the equality follows from the fact that ∂R(F) = ∅. Thus F̃ is a (R0, ε0)-
Følner set with |F̃ | > N0 and we have a contradiction.
If case (i) occurs for all j ∈ J0, then J0 ⊂ I0 and F0, j ⊂ Fj for all j ∈ J0.
Writing F̃ = F0 ∪ F , we have that |F̃ | > |F0| = N0, because F �⊂ F0. Setting
I ′′
0 := I0\J0, we get, using that ∂R0 Fj = ∅ for all j ∈ J0,

|∂R0 F̃ |
|F̃ | =

∑
j∈J0 |∂R0 Fj | +∑i∈I ′′

0
|∂R0 F0,i |

|F̃ |
=
∑

i∈I ′′
0

|∂R0 F0,i |
|F̃ | ≤ |∂R0 F0|

|F0| ≤ ε0,

so that F̃ is a (R0, ε0)-Følner set of cardinality strictly larger than N0, which is
again a contradiction.

In either casewe get a contradiction to themaximality of N0 and the proof is concluded.

�

As an immediate consequence of Proposition 2.18, we obtain the following result.

Corollary 2.19 Let (X, d) be a locally finite metric space. Then (X, d) is amenable
if and only if (X, d) is properly amenable.

We can now obtain the characterization of the amenable but not properly amenable
extended metric spaces. This should be compared to Theorem 3.9 in the algebraic
setting.

Corollary 2.20 Let (X, d) be a locally finite extended metric space with infinite car-
dinality. Then X is amenable but not properly amenable if and only if X = Y1 � Y2,
where Y1 is a finite non-empty subset of X, Y2 is non-amenable and d(x, y) = ∞ for
x ∈ Y1 and y ∈ Y2.
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Proof Assume first that X = Y1�Y2, where Y1 is a finite non-empty subset of X , Y2 is
non-amenable and d(x, y) = ∞ for x ∈ Y1 and y ∈ Y2. Observe that Y1 is the disjoint
union of some coarse connected components of X , and Y2 is the disjoint union of the
rest of the coarse connected components of X . Clearly Y1 is a finite non-empty subset
of X such that ∂R(Y1) = ∅ for all R > 0. Hence X is amenable. One can easily show
that, if X is properly amenable, then Y2 is also properly amenable, contradicting our
hypothesis. Indeed, given and R > 0, ε > 0 and N > 0, take a subset F of Y2 such
that

|∂R(Y1 � F)|
|Y1 � F | ≤ δ,

where δ satisfies 0 < δ(1 + δ) < ε, and |F | ≥ max{N ,
|Y1|
δ

}. Then F is a (R, ε)-
Følner subset of Y2 with |F | ≥ N , as desired. Hence, X is amenable but not properly
amenable.

Suppose now that X is amenable but not properly amenable.We first show that there
are only a finite number of finite components. Indeed, if X1, X2, . . . , is an infinite
sequence of finite coarse connected components, then

⊔n
i=1 Xi are Følner (R, 0)-

subsets of unbounded cardinality in X , and so X is properly amenable by Remark 2.14,
giving a contradiction. Hence there is only a finite number of finite coarse connected
components X1, . . . , X N . Let Y1 =⊔N

i=1 Xi , and let Y2 = X\Y1. Then all the coarse
connected components of Y2 are infinite. If Y2 is amenable, then it is also properly
amenable by Proposition 2.18, and so X is also properly amenable, contradicting
our hypothesis. Hence Y2 is non-amenable. Since X is amenable by hypothesis, we
conclude that Y1 �= ∅. This concludes the proof. 
�

3 Algebraic amenability

In this section we will analyze from different points of view a version of amenability
for K-algebras, where K is a field. Our definition will follow existing notions in the
literature (see Section 1.11 in [38] and [25,32]), but we aim to generalize previous
definitions and results in a systematical fashion. To simplify terminology, we will
often not mention K explicitly. For instance, we may call K-algebras just algebras,
and K-dimensions just dimensions.

Definition 3.1 Let A be a K-algebra.

(i) LetF ⊂ A be a finite subset and ε ≥ 0. Then a nonzero finite-dimensional linear
subspace W ⊂ A is called a left (F , ε)-Følner subspace if it satisfies

dim(aW + W )

dim(W )
≤ 1 + ε, for all a ∈ F . (3.1)

The collection of (F , ε)-Følner subspaces of A is denoted by Føl(A,F , ε).
(ii) A is left algebraically amenable if for any ε > 0 and any finite set F ⊂ A, there

exists a left (F , ε)-Følner subspace.
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(iii) A is properly left algebraically amenable if for any ε > 0 and any finite set
F ⊂ A, there exists a left (F , ε)-Følner subspace W such that F ⊂ W .

We may also define right Følner subspaces, right algebraic amenability and proper
right algebraic amenability by replacing A with Aop in the above definitions. Since
the two situations are completely symmetric, we will stick with the left versions of
the definitions. For simplicity we are going to drop the term “left” for the rest of
this section. Any algebra satisfying dim(A) < ∞ is obviously properly algebraically
amenable by taking W = A.

Remark 3.2 There are some slightly different, but equivalent, ways to define (proper)
algebraic amenability. For example, since for any ε > 0 and any finite set F ⊂ A, an
(F , ε)-Følner subspace also satisfies

dim(span(FW + W ))

dim(W )
≤ 1 + |F |ε,

we may equivalently define algebraic amenability for A as saying that for any ε > 0
and any finite setF ⊂ A, there exists a nonzero finite-dimensional linear subspace W
such that

dim(span(FW + W ))

dim(W )
≤ 1 + ε.

Since with regard to the relation of set containment, Føl(A,F , ε) is monotonically
decreasing with respect to F and monotonically increasing with respect to ε, we may
also employ nets to simplify the quantifier-laden “local” condition used in the above
definition:

(i) Algebraic amenability of A is equivalent to the existence of a net {Wi }i∈I of
finite-dimensional linear subspaces such that

lim
i

dim(aWi + Wi )

dim(Wi )
= 1, for all a ∈ A.

(ii) Proper algebraic amenability of A requires, in addition, that this net {Wi }i∈I

satisfies A = lim inf i Wi , where lim inf i Wi :=⋃ j∈I
⋂

i≥ j Wi .

Remark 3.3 (i) The notion given by Elek in Definition 1.1 of [32] in fact corresponds
toproper algebraic amenability, aswill becomeevident in the next proposition (see
also Definition 3.1 in [25]). Nevertheless, since the main results in Elek’s paper
restrict to the case of algebras with no zero divisors, amenability and algebraic
amenability are equivalent (see Corollary 3.10 below).

(ii) In Definition 4.3 of [15], Bartholdi uses the name exhaustively amenable instead
of properly amenable.

Notice that although the definitionworks forK-algebras of arbitrary dimensions, the
property of algebraic amenability is in essence a property for countably dimensional
algebras, as seen in the next proposition.
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Proposition 3.4 A K-algebra A is (properly) algebraically amenable if and only if
any countable subset in A is contained in a countably dimensional K-subalgebra that
is (properly) algebraically amenable.

Proof For the forward direction, we assume A is (properly) algebraically amenable
and let C ⊂ A be an arbitrary countable subset. Using the fact that a subalgebra
generated by a countable set or a countably dimensional linear subspace is countably
dimensional, we define an increasing sequence {Bi }∞i=0 of countably dimensional K-
subalgebras in A as follows:

• We let B0 be the subalgebra generated by C.
• SupposeBi has been defined. Let {ek}∞k=1 be a basis ofBi . By the (proper) algebraic
amenability of A, for each positive integer k, we may find a finite dimensional
linear subspace Wk ⊂ A that is ({e1, . . . , ek}, 1

k )-Følner (and contains {e1, . . . , ek}
in the case of proper algebraic amenability). We define Bi+1 to be the subalgebra
generated by the countably dimensional linear subspace Bi + W1 + W2 + . . ..

Now define the countably dimensional subalgebra B =⋃∞
i=0 Bi . It is routine to verify

that B is (properly) algebraically amenable.
Conversely, in order to check (proper) algebraic amenability of A, we fix ε > 0

and an arbitrary finite subset F ⊂ A. By assumption, F is contained in a countably
dimensional subalgebra that is (properly) algebraically amenable, which is enough to
produce the desired (F , ε)-Følner subspace. 
�

Just as in the case ofmetric spaces in Sect. 2, we are interested in the distinctions and
relations between amenability and proper amenability. For example, when A is finite
dimensional, then the two notions clearly coincide. The general situation bears strong
similarity to the case of metric spaces. To begin with, we present a few more ways to
characterize proper algebraic amenability (for infinite dimensional algebras). The first
half of the following proposition should be considered as the algebraic counterpart of
what we already showed in Lemma 2.6 in the context of metric spaces.

Proposition 3.5 Let A be an infinite dimensional K-algebra. Then the following con-
ditions are equivalent:

(1) A is properly algebraically amenable.
(2) For any ε > 0, N ∈ N and any finite set F ⊂ A there exists an (F , ε)-Følner

subspace W such that

dim(W ) ≥ N .

When A is unital, they are also equivalent to

(3) For any ε > 0 and any finite set F ⊂ A there exists an (F , ε)-Følner subspace
that contains 1A.

Proof The implication (1) ⇒ (2) is immediate from the definition, since F ⊂ W
implies dim(W ) ≥ dim(span(F)), while the latter may be made arbitrarily large
since A is infinite dimensional.
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Next we show the converse: (2) ⇒ (1). Given any ε > 0 and any finite set F ⊂
A, we may obtain from (2) a finite-dimensional linear subspace V ⊂ A such that
dim(V ) ≥ 4|F |

ε
and

dim(aV + V )

dim(V )
≤ 1 + ε

2
, for all a ∈ F .

Define W := V + span(F), a finite-dimensional linear subspace that contains F .
Moreover, for all a ∈ F ,

dim(aW + W )

dim(W )
≤ dim(aV + V ) + dim(span(aF ∪ F))

dim(V )
≤ 1 + ε

2
+ ε

2
≤ 1 + ε.

This proves (1) by definition.
Now assume A is unital. The implication (1) ⇒ (3) is trivial from the definition,

while (3) ⇒ (2) is also easy in view of Remark 3.2, after observing that 1A ∈ W
implies dim(span(FW + W )) ≥ dim(span(F)). This shows that (3) is equivalent to
(1) and (2). 
�

Anotable difference between algebraic amenability and proper algebraic amenabil-
ity lies in their behaviors under unitization.Recall that for a (possibly unital)K-algebra,
the unitization ofA, denoted by Ã, is defined to be the unital algebra linearly isomor-
phic to A ⊕ K, with the product defined by (a, λ)(b, μ) = (ab + μa + λb, λμ) for
any (a, λ), (b, μ) ∈ A ⊕ K. The element (0, 1) now serves as the unit 1Ã. Observe
that when A already has a unit, then Ã ∼= A × K as an algebra.

Proposition 3.6 Let A be a K-algebra. Then

(1) Ã is algebraically amenable if A is algebraically amenable.
(2) Ã is properly algebraically amenable if and only if A is properly algebraically

amenable.

Proof Let π : A ⊕ K → A be the projection onto the first coordinate and
ι : A → A ⊕ K be the embedding onto A × {0}. We also assume that A is infi-
nite dimensional, as otherwise there is nothing to prove.

To prove (1), we assume A is algebraically amenable. Then for any ε > 0 and any
finite subset F ⊂ Ã, we pick an (π(F), ε)-Følner subspace W inA. Then ι(W ) ⊂ Ã
is (F , ε)-Følner because for any (a, λ) ∈ F , (a, λ) · ι(W ) + ι(W ) = ι(aW + W ).
Thus Ã is algebraically amenable.

As for (2), we first observe that the “if” part is proved similarly as above, except
for that we also use the fact that dim(ι(W )) = dim(W ) and apply Proposition 3.5.

Conversely, suppose Ã is properly algebraically amenable. For any ε > 0
and any finite subset F ′ ⊂ A, we pick an (ι(F ′), ε)-Følner subspace W ′ in
Ã such that ι(F ′) ⊂ W ′. Then for any a ∈ F ′ and (b, μ) ∈ W ′, we have
ι(a) · (b, μ) = ι(ab + μa) ∈ ι(ab) + W ′, and thus

π
(
ι(a) · W ′ + W ′) = a · π(W ′) + π(W ′).
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Since Ker(π) = K · (0, 1), we have

dimK(a · π(W ′) + π(W ′))
dimK(π(W ′)) = dimK

(
π
(
ι(a) · W ′ + W ′))

dimK(π(W ′))

∈
{
dimK

(
ι(a) · W ′ + W ′)

dimK(W ′) ,
dimK

(
ι(a) · W ′ + W ′)− 1

dimK(W ′) ,
dimK

(
ι(a) · W ′ + W ′)− 1

dimK(W ′) − 1

}

⊂
[
1, 1 + dimK

(
ι(a) · W ′ + W ′)− dimK(W ′)

dimK(W ′) − 1

]

⊂
[
1, 1 + ε

(
1 + 1

|F ′| − 1

)]
.

Since without loss of generality, we may assume |F ′| ≥ 2, thus π(W ′) is (F ′, 2ε)-
Følner and contains F ′. This shows that A is properly algebraically amenable. 
�

The following example exhibits the difference between algebraic amenability and
proper algebraic amenability, and also demonstrate that the converse of (1) in Propo-
sition 3.6 is false (see also Theorem 3.2 in [45] for an operator theoretic counterpart).

Example 3.7 LetA be a K-algebra with a non-zero left ideal I of finite K-dimension.
Then A is always algebraically amenable, since I is an (A, ε = 0)-Følner sub-
space. Therefore an easy way to construct an amenable K-algebra that is not properly
amenable is to take a direct sumof a finite dimensional algebra and a non-algebraically-
amenable algebra (e.g., the group algebra of a non-amenable group; seeExample 3.12).
In particular, ifA is a non-amenable unital algebra, then Ã ∼= A⊕ K is algebraically
amenable but not properly algebraically amenable. Moreover, this is the only way in
which a unitization Ã can be algebraically amenable but not properly algebraically
amenable, as we will show in Corollary 3.11.

The next result refers to two-sided ideals.

Proposition 3.8 Let A be a K-algebra with a non-zero two-sided ideal I of finite
K-dimension. Then, A is properly algebraically amenable if and only if the quotient
algebra A/I is.

Proof Let π : A → A/I is the natural projection, then for any ε > 0 and any finite
set F ⊂ A, V �→ π−1(V ) defines a map from Føl(A/I, π(F), ε) to Føl(A,F , ε)

with dim(π−1(V )) ≥ dim(V ).
On the other hand for any ε > 0 and any finite set F ′ ⊂ A/I such that

dim(span(F ′)) > 0,W �→ π(W )defines amap fromFølπ
−1(span(F ′))(A, π−1(F ′), ε

K )

to Føl(A/I,F ′, ε) with

dim(π(W )) = dim(W ) − dim(I ),

where

K = 1 + dim(π−1(span(F ′)))
dim(π−1(span(F ′))) − dim(I )

,
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and FølV (A,F ′′, ε′) is the set of all W in Føl(A,F ′′, ε′) such that V ⊆ W , for any
finite-dimensional subspaceV ofA. Indeed, forW inFølπ

−1(span(F ′))(A, π−1(F ′), ε
K ),

we have

dim(π(aW + W ))

dim(π(W ))
= dim(aW + W ) − dim(I )

dim(W ) − dim(I )

= dim(aW + W )

dim(W )
· dim(W )

dim(W ) − dim(I )
+
(
1 − dim(W )

dim(W ) − dim(I )

)

=
(dim(aW + W )

dim(W )
− 1
)( dim(W )

dim(W ) − dim(I )

)
+ 1

≤ ε

K

( dim(W )

dim(W ) − dim(I )

)
+ 1,

and it is easily seen that

1

K

( dim(W )

dim(W ) − dim(I )

)

=
( dim(π−1(span(F ′))) − dim(I )

2dim(π−1(span(F ′))) − dim(I )

)( dim(W )

dim(W ) − dim(I )

)
≤ 1,

giving the result. 
�
Next we show that the only situation where algebraic amenability and proper alge-

braic amenability differ is when the K-algebra contains a non-zero left ideal of finite
K-dimension, as demonstrated by the following theorem. This situation is similar to
what is known for Hilbert space operators (cf., [45, Theorem 4.1]).

Theorem 3.9 Let A be an infinite dimensional K-algebra that is algebraically
amenable but not properly algebraically amenable. Then there exists a nonzero ele-
ment a ∈ A with

dim(A · a) < ∞.

Proof Since the algebra A is fixed we will denote for simplicity the collection
Føl(A,F , ε) of Følner (F , ε)-subspaces of A by Føl(F , ε). Since A is algebraically
amenable, we know that for any ε > 0 and any finite set F ⊂ A the collection
Føl(F , ε) �= ∅. Hence we may define

NF ,ε := sup{dim(W ) | W ∈ Føl(F , ε)} ∈ N ∪ {∞}.

On the other hand, as A is not properly algebraically amenable, by condition (2) of
Proposition 3.5, there exist ε0 > 0 and finite setF0 ⊂ A such that NF0,ε0 < ∞. Since
NF ,ε is increasing with respect to ε, without loss of generality we may assume that
ε0 · NF0,ε0 < 1.

For any ε ∈ (0, ε0] and finite set F ⊂ A containing F0, we claim that

Føl(F , ε) = Føl(F , 0).
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Indeed, the inclusion⊇ is clear. On the other hand, for any W ∈ Føl(F , ε) and a ∈ F ,
we have

dim(aW + W ) ≤ (1 + ε) dim(W ) ≤ dim(W ) + εNF ,ε

≤ dim(W ) + ε0 · NF0,ε0 < dim(W ) + 1.

Since dim(aW + W ) ≥ dim(W ) and from the fact that dimensions are in N0 we
conclude that dim(aW + W ) = dim(W ).

Observe that a non-zero finite-dimensional linear subspace W ofA is (F , 0)-Følner
iffF ·W ⊂ W . For any finite setF ⊂ A containingF0, since by what we have shown,
{dim(W ) | W ∈ Føl(F , 0)} is a non-empty finite subset of N, we have

Følmax(F , 0) := {W ∈ Føl(F , 0) | dim(W ) ≥ dim(W ′), ∀W ′ ∈ Føl(F , 0)}

is not empty. Furthermore for any finite set F ′ ⊂ A containing F , and for any W ∈
Følmax(F , 0) and W ′ ∈ Følmax(F ′, 0), we claim that W ′ ⊆ W . Indeed, if this were
not the case, then W + W ′ would be a member of Føl(F , 0) with dimension strictly
greater than dim(W ), contradicting the definition of Følmax(F , 0). Notice that by
setting F ′ = F , this claim implies that Følmax(F , 0) contains only one element,
which we now denote as WF .

Consider the decreasing net {dim(WF )}F∈J indexed by

J := {F ⊂ A : |F | < ∞, F0 ⊂ F}.

Since its range is contained in the finite set Z ∩ [1, dim(WF0)], we see that
limF∈J dim(WF ) exists and is realized by some member WF1 . It follows that
WF = WF1 for any finite F ⊂ A containing F1, and thus a · WF1 ⊆ WF1 for
any a ∈ A, i.e., WF1 is a non-zero left ideal with finite K-dimension. Consequently,
if we pick any a ∈ WF1 , then

dim(A · a) ≤ dim(WF1) < ∞

and the proof is concluded. 
�
Corollary 3.10 Let A be a K-algebra without zero-divisor, then A is algebraically
amenable if and only if it is properly algebraically amenable.

Proof We only need to prove the case when A is infinite-dimensional. Since A has
no zero-divisor, for any non-zero a ∈ A and finite subset F ⊂ A, we have

dim(span(F) a) = dim(span(F)).

This clearly contradicts the conclusion of Theorem 3.9, and thus its hypothesis cannot
hold. 
�
Corollary 3.11 Suppose that A is a non-algebraically amenable algebra such that
its unitization Ã is algebraically amenable. Then A is a unital algebra.
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Proof By Proposition 3.6 (2), Ã is not properly algebraically amenable and so, by
Theorem 3.9, Ã contains a nonzero finite-dimensional left ideal I . Since A is not
algebraically amenable, we must have I ∩ A = {0}, and it follows that I is one-
dimensional and that I ⊕A = Ã. Let (b, 1) ∈ Ã, where b ∈ A. Then (a, 0)(b, 1) ∈ I
implies that a(−b) = a for all a ∈ A, so that e := −b is a right unit for A. In
particular, e is idempotent and A = Ae. If

(1 − e)A = {a − ea : a ∈ A}

is nonzero, then any nonzero finite-dimensional linear subspace of (1 − e)A is an
(F , 0)-Følner subspace for every finite subset F of A, and so A is algebraically
amenable, contradicting our assumption. Therefore (1−e)A = 0 andA is unital with
unit e. 
�
Example 3.12 ([15, Corollary 4.5]) The group algebra KG is algebraically amenable
if and only if it is properly algebraically amenable if and only if G is amenable.

4 Paradoxical decompositions and invariant dimension measures of
K-algebras

Elek showed that, analogous to the situation for groups, there is a dichotomy between
algebraic amenability and a certain kind of paradoxical decomposition defined for
algebras (cf., [32, Theorem 2]). However, in his paper, the conditions of countable
dimensionality and the non-existence of zero-divisors are required.

We remark here that these conditions can be removed if one replaces Elek’s def-
inition [corresponding to proper algebraic amenability as in Definition 3.1 (ii)] with
algebraic amenability as in Definition 3.1 (i). By Theorem 3.9 the assumption of no
zero-divisors happens to have the effect that the properness for algebraic amenability
comes for free. We will state and prove this general version of Elek’s theorem below.

We recall some definitions, adapted to our needs.Whenworkingwith a zero-divisor
r , it is useful to restrict attention to subspaces A where r acts non-degenerately. More
precisely, if A is a linear subspace ofA, we say that r |A is injective if the map a �→ ra
given by left multiplication by r is injective on A. Equivalently, A ∩ r.ann(r) = {0},
where

r.ann(r) = {x ∈ A : r x = 0}

is the right annihilator of r .
The following definition of paradoxicality is equivalent to the one given by Elek in

[32]. We prefer this formulation because it is formally closer to the usual condition
for actions of groups, (cf., [54, Definition 1.1]).

Definition 4.1 Let A be a K-algebra. Let {ei }i∈I be a basis of A over K and S a
subset of A. A paradoxical decomposition of {ei }i∈I by S consists of two partitions
(L0, L1, . . . , Ln) and (R0, R1, . . . , Rm) of {ei }i∈I , i.e.

{ei }i∈I = L0 � L1 � . . . � Ln = R0 � R1 � . . . � Rm,
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together with elements g1, . . . , gn, h1, . . . , hm ∈ S, such that

L0 ∪ g1L1 ∪ . . . ∪ gn Ln ∪ R0 ∪ h1R1 ∪ . . . ∪ hm Rm

is a disjoint union and linearly independent family in A.
If such a paradoxical decomposition exists, we say {ei }i∈I is paradoxically decom-

posed by S.

Note that, in particular, gi |Ai and h j |B j are injective, where Ai is the linear span of
Li and B j is the linear span of R j .

Remark 4.2 (i) The slight formal inhomogeneity with L0 and R0 can be fixed by
adding the unit 1A into S, whenA is unital. This way, we may write L0 as 1AL0,
and R0 as 1AR0. When A is not unital, we can still fix it by considering S as a
subset of Ã and adding 1Ã into it.

(ii) Following [32, Definition 1.2], we may also present a variant of the above defini-
tion involving only one partition. Namely, we define a one-partition paradoxical
decomposition of {ei }i∈I byS so that it consists of a partition {ei }i∈I = T1�. . .�Tk

and elements g1, . . . , gk, h1, . . . , hk ∈ S with the property that

g1T1 ∪ . . . ∪ gk Tk ∪ h1T1 ∪ . . . ∪ hk Tk

is a disjoint union and linearly independent family inA. Though this is seemingly
a more restrictive notion, the existence of this one-partition version is equivalent
to that of a general paradoxical decomposition, provided that S contains the unit
(of A or Ã). Indeed, starting from a general paradoxical decomposition

(
(L0, . . . , Ln), (R0, . . . , Rm), (g1, . . . , gn), (h1, . . . , hm)

)
,

we may define a one-partition paradoxical decomposition by setting Ti j := Li ∩
R j , gi j := gi , and hi j := h j for i = 0, . . . , n and j = 0, . . . , m, with the
understanding that g0 = h0 = 1A or 1Ã.

(iii) The relation to Elek’s definition in [32] is thus as follows: a unital countably
dimensional algebra is paradoxical in the sense of [32, Definition 1.2] if and only
if for any (countable) basis {ei }i∈I of A, there is a paradoxical decomposition of
{ei }i∈I by A.

The following lemma generalizes [32, Lemma 2.2].

Lemma 4.3 Fix λ > 1. Then a K-algebra A is not algebraically amenable if and
only if there exists a finite subset F ⊂ A, such that for any nonzero finite dimensional
linear subspace W ⊂ A, we have

dim(FW + W )

dim(W )
> λ.
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Proof By inverting the condition in Remark 3.2, we see that A is not algebraically
amenable if and only if there exists ε > 0 and finite subset F ⊂ A, such that for any
nonzero finite dimensional linear subspace W ⊂ A, we have

dim(FW + W )

dim(W )
> 1 + ε.

This proves the “if” part. For the “only if” part, we observe that ε can be taken to be
arbitrarily large: we set

F (n) = {a1 · · · am | m ∈ {1, . . . , n}, ak ∈ F0, ∀k ∈ {1, . . . , m}}.

Then by induction we have

dim(F (n)
0 W + W )

dim(W )
> (1 + ε)n .

For our purpose, we fix F ′ = F (�log1+ε λ�+1), so that

dim(F ′W + W )

dim(W )
> λ.

Replacing F by F ′ proves the “only if” direction. 
�
The following is a key proposition of this section. It generalizes Proposition 2.2

in [32] to arbitrary K-algebras which may have zero-divisors, have no unit, or have
uncountable dimensions. To prove this, we adapt ideas from [40, Theorem 3.4, (vi)⇒
(v)] (see also [40]) in the context of groups and metric spaces to the algebraic setting.

Proposition 4.4 Assume that A is a K-algebra which is not algebraically amenable.
Then there exists a finite subset F ⊂ A such that for any basis {ei }i∈I of A, there is
a paradoxical decomposition of {ei }i∈I by F .

Proof By Lemma 4.3, there exists a finite subset F ⊂ A, such that for any nonzero
finite dimensional linear subspace W ⊂ A, we have

dim(FW + W )

dim(W )
> 2.

Such a local doubling behavior of F can be seen as a local form of paradoxicality,
which we will now exploit to produce a paradoxical decomposition for any basis
{ei }i∈I of A. To this end, we define F+ = F � {∗}, where ∗ is an abstract element,
for which we prescribe a multiplication ∗ · ei = ei for any i ∈ I (thus ∗ behaves like a
unit). Define � to be the set of maps ω : I × {0, 1} → P(F+) (the power set of F+)
with the property that for any finite subset K ⊂ I × {0, 1},

dimK

(
spanK

( ⋃

(i, j)∈K

⋃

a∈ω(i, j)

a · ei

))
≥ |K |.
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Notice that � is nonempty: the constant function with value F+ lives in � because of
the local doubling behavior of F .

Our goal is to “trim down” the above constant set-valued function to a singleton-
valued function in �. For this purpose, we use the natural partial order on � given by
pointwise inclusion:ω ≤ ω′ ifω(i, j) ⊂ ω′(i, j) for any (i, j) ∈ I ×{0, 1}. Since any
descending chain in � has a non-empty lower bound given by pointwise intersection,
by Zorn’s Lemma, we can find a minimal element ω0 ∈ �.

We claim that |ω0(i, j)| = 1 for any (i, j) ∈ I × {0, 1}. Firstly, since

dimK

(
spanK
( ⋃

a∈ω0(i, j)

a · ei

))
≥ |{(i, j)}| = 1 ,

we only need to show |ω0(i, j)| ≤ 1. Then, suppose this were not the case: then
there exists an index (i, j) ∈ I × {0, 1} and two distinct elements a0, a1 ∈ ω0(i, j).
Notice that the minimality of ω0 implies that for l ∈ {0, 1}, we can find a finite subset
Kl ⊂ I × {0, 1} not containing (i, j), such that

dimK

(
spanK

(( ⋃

(i ′, j ′)∈Kl

⋃

a∈ω0(i ′, j ′)
a · ei ′
)

∪
( ⋃

a∈ω0(i, j)\{al }
a · ei

)))
≤ |Kl |,

since otherwise if no such Kl exists, we would be able to remove al from ω0(i, j) to
produce a new element in � strictly smaller than ω0.

Now because of the simple fact that (ω0(i, j)\{a0}) ∪ (ω0(i, j)\{a1}) = ω0(i, j),
we would see that, if we denote

Wl := spanK

(( ⋃

(i ′, j ′)∈Kl

⋃

a∈ω0(i ′, j ′)
a · ei ′
)

∪
( ⋃

a∈ω0(i, j)\{al }
a · ei

))

for l ∈ {0, 1}, then

|K0| + |K1| ≥ dimK(W0) + dimK(W1)

= dimK(W0 + W1) + dimK(W0 ∩ W1)

≥ dimK

(
spanK

(( ⋃

(i ′, j ′)∈K0∪K1

⋃

a∈ω0(i ′, j ′)
a · ei ′
)

∪
( ⋃

a∈ω0(i, j)

a · ei

)))

+ dimK

(
spanK
( ⋃

(i ′, j ′)∈K0∩K1

⋃

a∈ω0(i ′, j ′)
a · ei ′
))

≥ |K0 ∪ K1 ∪ {(i, j)}| + |K0 ∩ K1|
= |K0 ∪ K1| + 1 + |K0 ∩ K1|
= |K0| + |K1| + 1,

which gives a contradiction. Hence we have proved our claim that |ω0(i, j)| = 1 for
any (i, j) ∈ I × {0, 1}.
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Thus we may define φ : I ×{0, 1} → F+ such that ω0(i, j) = {φ(i, j)}. It follows
from the defining property of � that φ satisfies

dimK

(
spanK
( ⋃

(i, j)∈K

φ(i, j) · ei

))
= |K |

for any finite subset K ⊂ I × {0, 1}, i.e., {φ(i, j) · ei }(i, j)∈I×{0,1} is a linearly inde-
pendent family in A.

To conclude the proof, we define, for each a ∈ F+,

La = {ei | i ∈ I, φ(i, 0) = a}
Ra = {ei | i ∈ I, φ(i, 1) = a}.

Therefore we have two finite partitions

{ei }i∈I = L∗ �
⊔

a∈F
La = R∗ �

⊔

a∈F
Ra

such that
(

L∗ ∪
⋃

a∈F
aLa

)
∪
(

R∗ ∪
⋃

a∈F
a Ra

)

is a disjoint union and linearly independent family in A. Thus we have produced a
paradoxical decomposition of {ei }i∈I by F in the sense of Definition 4.1. 
�

Now we define a suitable notion of invariant dimension-measure for K-algebras,
an analogue of invariant mean for amenable groups. Note that the lack of distributivity
in the lattice of subspaces of a vector space makes it necessary to give up some of the
properties one would expect for this concept.

Definition 4.5 LetAbe aK-algebra and {ei }i∈I be aK-linear basis ofA. Adimension-
measure onA associated to {ei }i∈I is a function μ from the set of linear subspaces of
A to [0, 1] which satisfies the following properties:

(i) μ(A) = 1.
(ii) If A, B are linear subspaces inAwith A∩B ={0}, thenμ(A ⊕B)≥μ(A) +μ(B).
(iii) For every partition L1�L2�. . .�Lm of {ei }i∈I , we have

∑m
k=1 μ(span(Lk)) = 1.

Let S be a subset of A. We say μ is S-invariant if

(iv) For any s ∈ S and any linear subspace A ⊂ A such that s|A is injective, we have
μ(s A) ≥ μ(A).

Note that if μ is a dimension-measure on A and A ⊆ B are subspaces of A, then,
by property (ii), it follows that μ(A) ≤ μ(B).

We can now state the following generalization of [32, Theorem 1].

Theorem 4.6 Let A be a K-algebra. Then the following conditions are equivalent:
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(1) A is algebraically amenable.
(2) For any finite subset F ⊂ A, there is a basis of A that cannot be paradoxically

decomposed by F .
(3) For any countably dimensional linear subspace W ⊂ A, there is a basis of A that

cannot be paradoxically decomposed by W .
(4) For any countably dimensional linear subspace W ⊂ A, there exists a W -

invariant dimension-measure on A (associated to some basis).

Proof The implication (2)⇒ (1) follows from Proposition 4.4. The implication
(3)⇒ (2) is immediate by setting W = span(F).

To show (4)⇒ (3), we fix an arbitrary countably dimensional linear subspace W ⊂
A. By (4), there is a basis {ei }i∈I ofA and a W -invariant dimension-measure μ onA
associated to {ei }i∈I . Suppose there were a paradoxical decomposition

(
(L0, . . . , Ln), (R0, . . . , Rm), (g1, . . . , gn), (h1, . . . , hm)

)

of {ei }i∈I by W . Put Ak := span(Lk) and Bl := span(Rl). We have
∑n

k=0 μ(Ak) =
1 =∑m

l=0 μ(Bl) (by (iii) in Definition 4.5). Also gk |Ak and hl |Bl are injective for all
k, l and so μ(gk Ak) ≥ μ(Ak) and μ(hl Bl) ≥ μ(Bl) for all k, l (by (iii)), so that we
get

1 ≥ μ(A0 ⊕ g1A1 ⊕ . . . gn An ⊕ B0 ⊕ h1B1 ⊕ . . . ⊕ hm Bm)

≥ μ(A0) +
n∑

k=1

μ(gk Ak) + μ(B0) +
m∑

l=1

μ(hl Bl)

≥
n∑

k=0

μ(Ak) +
m∑

l=0

μ(Bl) = 2,

which is a contradiction.
Finally, to show (1)⇒ (4) we construct, for an arbitrary countably dimensional

linear subspace W ⊂ A, a dimension-measure μ onA associated to some basis. This
involves two cases:

Case 1: A is properly algebraically amenable. By Proposition 3.4, there is a countably
dimensional subalgebra B ⊂ A that is properly algebraically amenable and
contains W . Let {Wi }∞i=1 be an increasing sequence of finite-dimensional
subspaces of A such that B = ∪∞

i=1Wi , and such that

lim
i→∞

dim(aWi + Wi )

dim(Wi )
= 1

for all a ∈ B. Let ω be a free ultrafilter on N, and let {ei }∞i=1 be a basis for B
obtained by successively enlarging basis of the spaces Wi (cf. [32, Proposition
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2.1]). We then enlarge {ei }∞i=1 to a basis {ei }i∈I of A, where N ⊂ I . For a
linear subspace A of A, set

μ(A) = lim
ω

dim(A ∩ Wi )

dim(Wi )
.

Obviously, we have μ(A) = 1 and 0 ≤ μ(A) ≤ 1 for every subspace A.
Moreover, properties (ii) and (iii) in Definition 4.5 clearly hold, so we only
need to check (iv).
To prove (iv) we first show that for any a ∈ W and any linear subspace A we
have

μ(A) = lim
ω

dim((Wi + aWi ) ∩ A)

dim(Wi )
. (4.1)

Write Ti = (Wi +aWi )∩A. Then Ti ∩Wi = A∩Wi , so that Ti = (Wi ∩A)⊕T ′
i

with T ′
i ∩ Wi = {0}. Hence

dim(Ti )

dim(Wi )
= dim(Wi ∩ A)

dim(Wi )
+ dim(T ′

i )

dim(Wi )
.

Since dim(T ′
i )/ dim(Wi ) → 0, we obtain the result.

We now show (iv). Let a ∈ W be such that a|A is injective. Then we have

μ(a A) = lim
ω

dim((Wi + aWi ) ∩ a A)

dim(Wi )
≥ lim

ω

dim(aWi ∩ a A)

dim(Wi )

≥ lim
ω

dim(a(Wi ∩ A))

dim(Wi )
= lim

ω

dim(Wi ∩ A)

dim(Wi )
= μ(A),

where in the second equality we have used that a|A is injective.
Case 2: A is algebraically amenable but not properly algebraically amenable. By

Theorem 3.9, we only need to build a dimension-measure in the case where
A has a nonzero finite-dimensional left ideal I . This is easily taken care of
by defining

μ(A) = dim(I ∩ A)

dim(I )

for each linear subspace A ⊂ A.

This concludes the proof of Theorem. 
�
For countably dimensional (or equivalently, countably generated) K-algebras, the

statement of the previous theorem can be somewhat simplified:

Corollary 4.7 Let A be a countably dimensional K-algebra. Then the following con-
ditions are equivalent:

(1) A is algebraically amenable.
(2) There is a basis of A that cannot be paradoxically decomposed by A.
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(3) There exists an A-invariant dimension-measure on A (associated to some basis).

Proof This is immediate after we set W = A in the statement of Theorem 4.6. 
�
Remark 4.8 If μ is as build before, and a is a non-zero-divisor in A, then one gets
μ(a A) = μ(A) (cf., [32]). The reason is that, in this case, we have

dim(a−1Wi + Wi ) ≤ dim(Wi + aWi ),

where a−1Wi = {x ∈ A : ax ∈ Wi }, because left multiplication by a induces an
injective map from a−1Wi + Wi into Wi + aWi . Therefore we get

lim
i

dim(a−1Wi + Wi )

dim(Wi )
= 1.

Hence, for any linear subspace A of A, we can show

μ(A) = lim
ω

dim((a−1Wi + Wi ) ∩ A)

dim(Wi )

just as in the proof of Eq. (4.1).
Moreover, we have

dim(a(a−1Wi ))

dim(Wi )
≥ dim(Wi ∩ aWi )

dim(Wi )
→ 1

and thus,

μ(B) = lim
ω

dim(a(a−1Wi ) ∩ B)

dim(Wi )

for any linear subspace B of A. We obtain

μ(A) = lim
ω

dim((a−1Wi + Wi ) ∩ A)

dim(Wi )
≥ lim

ω

dim(a−1Wi ∩ A)

dim(Wi )

= lim
ω

dim(a(a−1Wi ) ∩ a A)

dim(Wi )
= μ(a A).

This proves our claim. 
�
Recall the usual Murray–von Neumann equivalence∼ and comparison� for idem-

potents of an algebra, defined as follows: for idempotents e, f in A, write e ∼ f if
there are x, y ∈ A such that e = xy and f = yx ; write e � f if there are x, y ∈ A
such that xy ∈ eAe and f = yx . These relations naturally extends to the infinite
matrix algebra M∞(A) := ⋃∞

n=1 Mn(A) where the Mn(A) embeds into Mn+1(A)

block-diagonally as Mn(A) ⊕ 0.

123



288 P. Ara et al.

An idempotent e in an algebraA is said to be properly infinite if there are orthogonal
idempotents e1, e2 in eAe such that e1 ∼ e ∼ e2. Equivalently, e is properly infinite
if e � e ⊕ e. A (nonzero) unital algebra A is said to be properly infinite in case 1 is a
properly infinite idempotent.

As an application of the dichotomy shown in Theorem 4.6, we present a method of
producing non-algebraically amenable K-algebras:

Corollary 4.9 A properly infinite unital K-algebra is not algebraically amenable.

Proof IfA is properly infinite, it contains elements u, v, u′, v′ satisfying the relations

uu′ = vv′ = 1A, vu′ = 0 = uv′.

Suppose that there exists a {u, u′, v, v′}-invariant dimensionmeasure onA (associated
to some basis). Notice that the first set of identities imply that u′|A and v′|A are
injective. Thus by invariance, we have

1 = μ(A) ≤ μ(u′A) ≤ 1,

which implies μ(u′A) = μ(A) = 1, and similarly μ(v′A) = μ(A) = 1.
On the other hand, for any a, b ∈ A with u′a = v′b, we have b = vv′b =
vu′a = 0 by the second identity. It follows that u′A ∩ v′A = 0, and thus
μ(u′A + v′A) ≥ μ(u′A) + μ(v′A) = 2, which is an impossible value for μ. This
proves our claim. 
�

5 Leavitt algebras and Leavitt path algberas

In this section we study the amenability of Leavitt algebras and Leavitt path algebras
(see below for the specific definitions). Classical Leavitt algebras were invented by
Leavitt ([42,43]) to provide universal examples of algebras without the invariant basis
number property. As such, they cannot be algebraically amenable, by a result of Elek
[32, Corollary 3.1(1)]. Leavitt path algebras provide a wide generalization of classical
Leavitt algebras, inmuch the samewayas graphC∗-algebras generalizeCuntz algebras
(see e.g. [48] for an introduction to the theory of graph C∗-algebras).

5.1 Leavitt algebras

Extending results by Aljadeff and Rosset [6] and Rowen [50], Elek proved in [32] that
any finitely generated unital algebraically amenable K-algebra A has the Invariant
Basis Number (IBN) property, that is, any finitely generated free A-module has a
well-defined rank. This is equivalent to the condition

An ∼= Am as left A-modules �⇒ n = m,

for any positive integers n, m. We will use the observation in Corollary 4.9 to obtain
a proof of the IBN property of general unital amenable algebras.
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Definition 5.1 Let K be a field.

(i) Let n, m be integers such that 1 ≤ m < n. Then the Leavitt algebra L(m, n) =
LK(m, n) is the algebra generated by elements Xi j and Y ji , for i = 1, . . . , m and
j = 1, . . . , n, such that XY = 1m and Y X = 1n , where X denotes the m × n
matrix (Xi j ) and Y denotes the n × m matrix (Y ji ).

(ii) The algebra L∞ = LK,∞ is the unital algebra generated by x1, y1, x2, y2, . . .
subject to the relations y j xi = δi, j1.

The algebras L(m, n) are simple if and only if m = 1 [43, Theorems 2 and 3]. The
algebra L∞ is simple [10, Theorem 4.3].

The following is well-known (cf. [2] or [42]):

Proposition 5.2 Let A be a (nonzero) unital algebra over a field K.

(1) A does not satisfy the IBN property if and only if there is a unital homomorphism
L(m, n) → A for some 1 ≤ m < n.

(2) A is properly infinite if and only if there is a unital embedding L∞ → A.

Proof (1) By definition, if an algebraA does not have the IBN property, then there are
m, n with 1 ≤ m < n such thatAm ∼= An , and this isomorphism of free modules will
be implemented bymatrices X ′ ∈ Mm×n(A) and Y ′ ∈ Mn×m(A) such that X ′Y ′ = Im

and Y ′ X ′ = In . We thus obtain a unital homomorphism L(m, n) → A. The converse
is trivial.

(2) IfA is properly infinite, we may inductively find an infinite sequence e1, e2, . . .
of mutually orthogonal idempotents such that ei ∼ 1 for all i . This enables us to define
a homomorphism L∞ → A which is injective because L∞ is simple. The converse
is obvious. 
�

Note that L∞ is properly infinite but does have the IBN property.

Proposition 5.3 If A is a unital algebraically amenable algebra, then A has the IBN
property.

Proof Suppose that A does not have the IBN property. Then there are integers m, n
with 1 ≤ m < n and there is a unital homomorphism L(m, n) → A. Now Mn(A) ∼=
Mm(A) is properly infinite, so that by Corollary 4.9, Mn(A) is not algebraically
amenable. If A were amenable then Mn(A) ∼= A ⊗ Mn(K) would be amenable too
([25, Proposition 4.3(2)]). Therefore A is not algebraically amenable, showing the
result. 
�
Corollary 5.4 A unital K-algebraA that unitally contains the Leavitt algebra L(m, n)

for some 1 ≤ m < n is not algebraically amenable. 
�

5.2 Leavitt path algebras

In general, a non-algebraically amenable algebra need not be properly infinite, as the
non-commutative free algebra shows. We now show that, within a certain class of
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algebras, the class of Leavitt path algebras, both properties are indeed equivalent.
Note that this class of algebras includes the algebras L(1, n) and L∞ as distinguished
members. (The algebras L(m, n), with 1 < m < n are not included in the class of
Leavitt path algebras, but they areMorita-equivalent toLeavitt path algebras associated
to separated graphs [8].) We refer the reader to [2] and the references therein for more
information about Leavitt path algebras.

We recall some definitions needed here.

Definition 5.5 A (directed) graph E = (E0, E1, r, s) consists of two sets E0 and E1

together with range and source maps r, s : E1 → E0. The elements of E0 are called
vertices and the elements of E1 edges.

A vertex v is called a sink if it emits no edges, that is, s−1(v) = ∅, the empty
set. The vertex v is called a finite emitter if s−1(v) is finite; otherwise it is an infinite
emitter. A finite emitter which is not a sink is also called a regular vertex. For each
e ∈ E1, we call e∗ a ghost edge. We let r(e∗) denote s(e), and we let s(e∗) denote
r(e).

The Leavitt path algebras are built on top of these directed graphs.

Definition 5.6 Given an arbitrary graph E and a field K, the Leavitt path K-algebra
LK(E) (or simply L(E)) is defined to be theK-algebra generated by a set {v : v ∈ E0}
of pairwise orthogonal idempotents together with a set of variables {e, e∗ : e ∈ E1}
which satisfy the following conditions:

(1) s(e)e = e = er(e) for all e ∈ E1.
(2) r(e)e∗ = e∗ = e∗s(e) for all e ∈ E1.
(3) (The “CK-1 relations”) For all e, f ∈ E1, e∗e = r(e) and e∗ f = 0 if e �= f .
(4) (The “CK-2 relations”) For every regular vertex v ∈ E0,

v =
∑

e∈E1,s(e)=v

ee∗.

In a sense, the definition of a Leavitt path algebra treats the graph as a dynamical
system: its multiplication is based on the ways one can traverse the vertices of the
graph via the edges. This naturally brings into the picture notions such as paths and
cycles.

Definition 5.7 A (finite) path μ of length n > 0 is a finite sequence of edges μ =
e1e2 · · · en with r(ei ) = s(ei+1) for all i = 1, · · ·, n − 1. In this case, μ∗ = e∗

n · · · e∗
2e∗

1
is the corresponding ghost path. The set of all vertices on the path μ is denoted by μ0.
Any vertex v is considered a path of length 0.

A non-trivial path μ = e1 . . . en in E is closed if r(en) = s(e1), in which case μ is
said to be based at the vertex s(e1). By cyclically permuting the edges of a closed path
μ = e1 . . . en , we obtain a closed path ek . . . ene1 . . . ek−1 based at the vertex s(ek) for
any k = 1, . . . , n. A closed path μ as above is called simple provided it does not pass
through its base more than once, i.e., s(ei ) �= s(e1) for all i = 2, ..., n.

The closed path μ is called a cycle based at v if s(e1) = v and it does not pass
through any of its vertices twice, that is, if s(ei ) �= s(e j )whenever i �= j . A nontrivial
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cyclic permutation of a cycle based at a vertex v is then a cycle based at a different
vertex. Cyclic permutation thus induces an equivalence relation on the set of all cycles
based at vertices. An equivalence class of it is called a cycle. Note that it is meaningful
to talk about the set of vertices of a cycle, which we denote by c0. A cycle c is called
an exclusive cycle if it is disjoint with every other cycle; equivalently, no vertex v on
c is the base of a different cycle other than the cyclic permutation of c based at v.

The following lemma was shown in the row-finite case in [13, Lemma 7.3]. We
include the identical proof for completeness.

Lemma 5.8 Let E be an arbitrary graph and let K be a field. If v ∈ E0 belongs to a
non-exclusive cycle, then v is a properly infinite idempotent in LK(E).

Proof Wewould like to show that v � v⊕v. To this end, let e1 . . . em and f1 . . . fn be
two different closed simple paths in E based at v. Then there is some positive integer
t such that ei = fi for i = 1, . . . , t − 1 while et �= ft . Thus, we have s(et ) = s( ft )

but et �= ft . We observe

v = s(e1) � r(e1) = s(e2) � . . . � r(et−1) = s(et ),

and similarly r(et ) � r(em) = v and r( ft ) � r( fn) = v. Since et e∗
t and ft f ∗

t are two
mutually orthogonal idempotents below s(et ), we have

v � s(et ) � et e
∗
t ⊕ ft f ∗

t ∼ e∗
t et ⊕ f ∗

t ft = r(et ) ⊕ r( ft ) � v ⊕ v.

Therefore v is properly infinite. 
�
Belowwe summarize some additional basic terminologies and properties for graphs

and Leavitt path algebras. For this we follow the book in preparation [1].

Remark 5.9 Let E be a directed graph.

(1) If there is a path from a vertex u to a vertex v, we write u ≥ v. This defines a
pre-order on E0. As we have shown above, u ≥ v implies u � v in LK(E). Since
all vertices on a cycle are equivalent with regard to the pre-order ≥, it induces a
pre-order on the set of all cycles, so that for any cycles c1 and c2, we have c1 ≥ c2
if and only if there is path from a vertex of c1 to a vertex of c2.

(2) Let C be the set of all cycles in E . Let C/∼ be the partially ordered set obtained
by antisymmetrization of the pre-order≤ onC , so that c ∼ c′ if and only if c ≤ c′
and c′ ≤ c. Note that the exclusive cycles are precisely those cycles c such that
[c] = {c}, and that C/∼ is a finite set if E has a finite number of vertices.

(3) The Leavitt path algebra LK(E) is unital if and only if |E0| < ∞, in which case
the unit is given by

∑
v∈E0 v.

(4) Every finite path μ = e1 · · · en induces the elements μ = e1 · · · en and μ∗ =
e∗

n · · · e∗
1 in LK(E). By a simple induction, we see that the Leavitt path algebra

LK(E) is linearly spanned by terms of the form λρ∗, where λ and ρ are paths
such that r(λ) = r(ρ).
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(5) The graph E is called acyclic if it contains no cycle, and finite if both E0 and E1

are finite sets. A finite acyclic graph clearly contains finitely many paths. Thus
by (4), we see that LK(E) is finite-dimensional. In fact, in this case, LK(E) is a
finite direct sum of matrix algebras over K (cf., [2, Theorem 3.1]).

(6) A subset H of E0 is called hereditary if, whenever v ∈ H and w ∈ E0 satisfy
v ≥ w, then w ∈ H . A hereditary set is saturated if, for any regular vertex
v, r(s−1(v)) ⊆ H implies v ∈ H . For X ⊆ E0, we denote by X the heredi-
tary saturated closure of X . To compute X , one can first compute the tree of X ,
T (X) := {w ∈ E0 : w ≤ v for some v ∈ X}, which is the smallest heredi-
tary subset of E0 containing X , and then, setting �0(T (X)) := T (X), compute
inductively

�n(T (X)) := {y ∈ E0
reg : r(s−1(y)) ⊆ �n−1(T (X))} ∪ �n−1(T (X))

for n = 1, 2, . . ., where E0
reg is the set of regular vertices. It is easy to see

X =⋃∞
n=0 �n(T (X)).

(7) We shall use the following constructions from [52]. A breaking vertex of a hered-
itary saturated subset H is an infinite emitter w ∈ E0\H with the property that
1 ≤ |s−1(w)∩r−1(E0\H)| < ∞. The set of all breaking vertices of H is denoted
by BH . For any v ∈ BH , we define an idempotent vH ∈ LK(E) by

vH := v −
∑

s(e)=v,r(e)/∈H

ee∗.

Given a hereditary saturated subset H and a subset S ⊆ BH , (H, S) is
called an admissible pair. Given an admissible pair (H, S), I (H, S) denotes
the ideal generated by H ∪ {vH : v ∈ S}. Then we have an isomor-
phism LK(E)/I (H, S) ∼= LK(E/(H, S)). Here E/(H, S) is the quotient
graph of E in which (E/(H, S))0 = (E0\H) ∪ {v′ : v ∈ BH \S} and
(E/(H, S))1 = {e ∈ E1 : r(e) /∈ H} ∪ {e′ : e ∈ E1, r(e) ∈ BH \S} and
r, s are extended to (E/(H, S))1 by setting s(e′) = s(e) and r(e′) = r(e)′. Thus
when S = BH , we can identify the quotient graph E\(H, BH ) with the subgraph
E/H of E , where (E/H)0 = E0\H and (E/H)1 = {e ∈ E1 : r(e) /∈ H}. It
was shown in [52] that the graded ideals of LK(E) are precisely the ideals of the
form I (H, S) for some admissible pair (H, S), though we will not make use of
this.

(8) A subgraph E ′ of E is called full if (E ′)1 = {e ∈ E1 : s(e), r(e) ∈ (E ′)0}. For a
subset X ⊂ E0, we define a full subgraph M(X) so that

M(X)0 = {w ∈ E0 : w ≥ v for some v ∈ X}.

If X = {v} for some v ∈ E0, we also write M(v) = M({v}). Also define

H(v) = E0\M(v)0,
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which is hereditary by design. Note that any edge e is in a cycle if and only if
r(e) /∈ H(s(e)) if and only if r(e) ∈ M(s(e))0. It follows that if v belongs to a
cycle, then H(v) is a hereditary saturated subset of E . 
�

Theorem 5.10 Let E be a nontrivial directed graph and let K be a field. Let H be the
smallest hereditary saturated subset of E0 that contains all the cycles of E. Order the
vertices and the cycles by the preorder defined in Remark 5.9 (1). Then we have the
following three sets of equivalent conditions:

• The following are equivalent:
(A1) LK(E) is not algebraically amenable.
(B1) E0 is finite, E0\H = ∅, and every maximal cycle is non-exclusive.
(C1) LK(E) is unital and properly infinite

• The following are equivalent:
(A2) LK(E) is algebraically amenable but not properly algebraically amenable.
(B2) E0 is finite, E is not acyclic, E0\H consists of a nonzero number of finite

emitters, and every maximal cycle is non-exclusive.
(C2) LK(E) = LK(E ′) ⊕ LK(E ′′) for some directed graphs E ′ and E ′′ such

that LK(E ′) has nonzero finite dimension and LK(E ′′) is not algebraically
amenable.

• The condition
(A3) LK(E) is properly algebraically amenable

holds if and only if one or more of the following conditions hold:
(B3a) E is acyclic;
(B3b) E0 is infinite;
(B3c) E0\H contains at least one infinite emitter;
(B3d) E has an exclusive maximal cycle.

Proof Write (B3) for the inclusive disjunction (B3a)∨(B3b)∨(B3c)∨(B3d). We first
observe that it suffices to show (B1) ⇒ (C1), (B2) ⇒ (C2), and (B3) ⇒ (A3). Indeed,
by Corollary 4.9, we have (C1)⇒ (A1), while by Example 3.7 and Proposition 3.8, we
have (C2) ⇒ (A2). Notice that the three conditions (A1), (A2) and (A3) are mutually
exclusive,while the three conditions (B1), (B2) and (B3) exhaust all possible situations.
It thus follows from basic logic that the three converse implications also hold, i.e., we
have the full cycles

• (B1) ⇒ (C1) ⇒ (A1) ⇒ (B1),
• (B2) ⇒ (C2) ⇒ (A2) ⇒ (B2), and
• (B3) ⇒ (A3) ⇒ (B3).

We proceed now with the proofs of the three essential implications we need.
(B1) ⇒ (C1): The unitality of LK(E) follows directly from the finiteness of E0 by

Remark 5.9(3). Now let [c1], . . . , [cn] be the maximal elements of C/∼, and pick a
vertex vi in each cycle ci . Since each ci is non-exclusive, by Lemma 5.8, each vi is a
properly infinite idempotent, that is, vi ⊕ vi � vi . Since 1 =∑v∈E0 v, to show that
1 is properly infinite, it suffices to check that v � p := ∑n

i=1 vi for all v ∈ E0. Set
X = {v1, . . . , vn}. By our assumption, E0 = H = X and E0 is finite; thus there is
some k such that E0 = �k(T (X)). We show by induction on r ∈ N0 that v � p for
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all v ∈ �r (T (X)). For r = 0, we have that v ∈ T (X) and thus v ≤ vi for some i ,
which implies that v � vi ≤ p. If v ∈ �r (T (X))\�r−1(T (X)), then v is a regular
vertex and, for any e ∈ s−1(v), we have r(e) ∈ �r−1(T (X)), and thus r(e) � p by
the induction hypothesis. Hence

v =
∑

e∈s−1(v)

ee∗ ∼
⊕

e∈s−1(v)

r(e) � p⊕|s−1(v)| � p,

because p is properly infinite. This shows that v � p for all v ∈ �r (T (X)), completing
the induction step. Therefore 1 ⊕ 1 � 1, i.e., LK(E) is properly infinite.

(B2) ⇒ (C2): Define E ′ = E/H and E ′′ = M(H) (cf., Remark 5.9(7) and (8)).
It follows from the assumptions that E ′ has finitely many vertices and edges while
BH = ∅. By our notation in Remark 5.9(7), I (H, ∅) denotes the ideal of LK(E)

generated by {v : v ∈ H}. We claim that there is an isomorphism LK(E ′′) ∼= I (H, ∅).
To see this, for each v ∈ E0, we let Pmin(v, H) be the set of minimal finite paths from
v into H , i.e.,

Pmin(v, H) = {path μ = e1 · · · en : s(e1) = v, r(en) ∈ H, s(ek)

/∈ H for k = 1, . . . n}.

By convention, if v ∈ H , then Pmin(v, H) = {v}. Note that Pmin(v, H) is non-empty
precisely when v ∈ M(H)0. Since each vertex in E0\H is regular, there are only
finitely many edges that may appear in the paths in Pmin(v, H) for any v ∈ E0. By
minimality, these paths cannot contain cycles; thus the set Pmin(v, H) is finite for
each v ∈ E0. Also note that for any two different paths μ, ν ∈ Pmin(v, H), we have
μ∗ν = 0 in LK(E). Thus we may define, for any v ∈ E0, an idempotent

v̂ =
∑

μ∈Pmin(v,H)

μμ∗ ∈ I (H, ∅).

We may readily verify by Definition 5.6 that the prescription

v �→ v̂ for v ∈ (E ′′)0 and e �→ ŝ(e) e r̂(e) for e ∈ (E ′′)1

defines a (non-unital) graded homomorphism LK(E ′′) ↪→ LK(E) with image in
I (H, ∅). This map is injective by [52, Theorem 4.8]. On the other hand, by [52,
Lemma 5.6], we have

I (H, ∅) = span({μν∗ : μ and ν are paths with r(μ) = r(ν) ∈ H})
= span

({(
ŝ(μ) · μ · r̂(μ))(̂r(ν) · ν∗ · ŝ(ν)

) : r(μ) = r(ν) ∈ H
})

,

which shows that the image of the above embedding contains I (H, ∅). Therefore we
have an isomorphism LK(E ′′) ∼= I (H, ∅). (We point out that another way of realizing
I (H, ∅) as a Leavitt path algebra is by using the hedgehog graph, cf. [1, Definitions
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2.5.16 and 2.5.20].) Since (E ′′)0 is finite, we see that I (H, ∅) is unital as an algebra,
with unit p = ∑v∈M(H)0 v̂. It follows that p is a central idempotent in LK(E), and
that

LK(E ′) = LK(E/H) ∼= LK(E)/I (H, ∅) = (1 − p)LK(E),

and thus

LK(E) ∼= LK(E/H) ⊕ I (H, ∅) ∼= LK(E ′) ⊕ LK(E ′′).

Since E/H is a finite graph with no cycle, by Remark 5.9(5), we see that LK(E ′) has
finite dimension. On the other hand, by our construction of the graph E ′′, it inherits
all the maximal cycles of E , which are all non-exclusive, and (E ′′)0 is equal to the
smallest hereditary saturated subset (with respect to E ′′) containing all the cycles. Thus
E ′′ satisfies (B1). Since we have already proved (B1) ⇒ (C1) ⇒ (A1), we conclude
that LK(E ′′) is not algebraically amenable.

(B3a)∨(B3b)∨(B3c)∨(B3d) ⇒ (A3): We first observe that when (B3a) holds and
(B3b) fails, i.e., when E is finite and acyclic, Remark 5.9 (5) tells us that LK(E) is
finite dimensional and thus properly algebraically amenable.

Apart from this easy case, LK(E) is always infinite-dimensional, so by Proposi-
tion 3.5, it suffices to show that, given any ε > 0, any N ∈ N, and any finite subset F
of LK(E), we can find an (F , ε)-Følner subspace W in LK(E) with dim(W ) ≥ N .
Since each element of LK(E) is a linear combination of terms of the form λρ∗, where
λ and ρ are paths such that r(λ) = r(ρ), without loss of generality we can assume
that F consists of elements of this form, say F = {λ1ρ∗

1 , . . . , λrρ
∗
r }.

First, we assume (B3b) holds, i.e., E0 is infinite. Then we can find a subset X ⊂ E0

with |X | = N and X ∩ {s(ρ1), . . . , s(ρr )} = ∅. Put W = span(X). It then follows
that λ jρ

∗
j W = 0 for j = 1, . . . , r . Hence W is an (F , 0)-Følner subspace with

dim(W ) ≥ N .
Next, we assume (B3c) holds but (B3b) fails, i.e. E0 is finite and E0\H contains

at least one infinite emitter. Let v be a maximal element among all infinite emitters
of E0\H . Then M(v) contains no cycle and includes only finitely many vertices with
no infinite emitter, and thus it also has only finitely many edges. By Remark 5.9(5),
there are only finitely many paths in E ending in v. Since s−1

E (v) is infinite, there is
Y ⊂ s−1

E (v) such that |Y | = N and any e ∈ Y is not contained in any of the paths ρi ,
for i = 1, . . . , r . Define W to be the linear span of the finite set

{τe ∈ LK(E) : τ is a path ending in v, e ∈ Y }.

Notice that dim(W ) ≥ |Y | = N . We claim that λiρ
∗
i W ⊂ W for i = 1, . . . , r . Indeed,

since e is not an edge in ρi , the only way that the product (λiρ
∗
i )(τe) is nonzero is

that τ = ρiτ
′ for some path τ ′ ending in v, whence

(λiρ
∗
i )(τe) = λiτ

′e ∈ W.

This shows our claim. Hence W is an (F , 0)-Følner subspace with dim(W ) ≥ N .
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Finally, we assume (B3d) holds but both (B3b) and (B3c) fail, i.e., E0 is finite,
E0\H consists of regular vertices, and there is an exclusive maximal cycle, which
we denote by c. Let v0 be a vertex in c and let μ0 be the representative of c based
at v0. The subgraph M(v0) of E has the unique cycle c, and every vertex in M(v0)

connects to it via paths. We claim that every vertex v ∈ M(v0)
0 is regular in M(v0).

Indeed, by Remark 5.9(8), every vertex in c only emits one edge in M(v0). On the
other hand, any v ∈ M(v0)

0\H is regular even in E by our assumption. It remains to
show that any v ∈ M(v0)

0 ∩ H\c0 is regular. For this we let X ⊂ H consist of all the
vertices of maximal cycles of E . Then by Remark 5.9(6), H = X =⋃∞

k=0 �k(T (X)).
It is clear by the maximality of the cycles that M(v0)

0 ∩ T (X) = c0. Hence for any
v ∈ M(v0)

0 ∩ H\c0, there is some k ∈ N0 such that v ∈ �k+1(T (X))\�k(T (X));
thus v is a regular vertex (even in E) by the definition of �k+1(T (X)). This proves
the claim. Now for each v ∈ E0, we let Pmin(v, v0) be the set of minimal finite paths
from v to v0, i.e.,

Pmin(v, v0) = {path μ = e1 · · · en : s(e1) = v, r(en) = v0,

s(ek) �= v0 for k = 1, . . . n},

By convention, Pmin(v0, v0) = {v0}. Note that Pmin(v, v0) is a subset of all paths in
M(v0) for each v ∈ E0 and is non-empty precisely when v ∈ M(v0)

0. Since every
vertex v ∈ M(v0)

0 is regular in M(v0), there are only finitely many edges that may
appear in the paths in Pmin(v, v0) for any v ∈ E0. By minimality, these paths cannot
contain cycles; thus the set Pmin(v, v0) is finite for each v ∈ E0. Thus the union
P =⋃v∈E0 Pmin(v, v0) of all minimal paths ending in v0 is also finite. Note that any
path ending in v0 can be written uniquely as γμk

0 for some γ ∈ P and k ∈ N0. For
each k ∈ N0, define a linear subspace Wk of LK(E) by

Wk = span({γμk
0 : γ ∈ P})

Thus for any different k, l ∈ N0, we have dim(Wk) = |P| and the collection of
subspaces {Wk} is independent. Let N1 ∈ N be such that N1|μ0| is greater than the
length of each path among λ1, . . . , λr , ρ1, . . . , ρr , where |μ0| is the length of μ0. For
any j ∈ {1, . . . , r}, γ ∈ P and k ∈ N with k ≥ N1, we claim that

λ jρ
∗
j γμk

0 ∈
k+N1∑

l=k−N1

Wl .

Indeed, this is trivial when ρ∗
j γμk

0 = 0. If ρ∗
j γμk

0 �= 0, since |γμk
0| > |ρ j |, we have

γμk
0 = ρ jτ for some path τ ending in v0. Hence λ jρ

∗
j γμk

0 = λ jτ = θμl
0 for some

θ ∈ P and l ∈ N. If |γ | > |ρ j |, then s(τ ) /∈ c0 and thus l = k. Otherwise we have the
estimates

k|μ0| − |ρ j | ≤ l|μ0| ≤ k|μ0| + |λ j |.
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In either case, we have k − N1 ≤ l ≤ k + N1. This proves the claim. Now let N2 ∈ N0
be such that N2 > N + N1 and

2N1
N2−N1

≤ ε, and define

W =
N2∑

k=N1+1

Wk .

Then dim(W ) = |P|(N2 − N1) ≥ N and for any j ∈ {1, . . . , r}, we have

dim(λ jρ
∗
j W + W )

dim(W )
≤ dim(

∑N2+N1
k=1 Wk)

dim(
∑N2

k=N1+1 Wk)
= |P|(N2 + N1)

|P|(N2 − N1)
≤ 1 + ε.

Hence W is an (F , ε)-Følner subspace with dim(W ) ≥ N .
Therefore any of the conditions (B3a), (B3b), (B3c) and (B3d) implies that LK(E)

is properly algebraically amenable. 
�
We highlight the following trivial consequence of Theorem 5.10:

Corollary 5.11 Let E be a graph with finitely many vertices and let K be a field. Then
the (unital) Leavitt path algebra LK(E) is not algebraically amenable if and only if it
is properly infinite.

Remark 5.12 It is well-known ([32, Proposition 3.1]) that a finitely generated K-
algebra of subexponential growth is amenable. On the other hand, it has been shown
in [5] that, for a finite graph E , the Leavitt path algebra LK(E) either has exponential
growth or has polynomially bounded growth.Moreover, by [5, Theorem 5 (1)], LK(E)

has polynomially bounded growth if and only if every cycle of E is an exclusive cycle,
and in this case a precise formula for the Gelfand–Kirillov dimension of LK(E) is
obtained ([5, Theorem5 (2)]). Comparing this with Theorem5.10, we see that there are
finite graphs such that LK(E) is algebraically amenable and has exponential growth
(just consider the graph E of Example 5.15).

Since LK(E) admits an involution (see for instance [52]), left and right amenability
is equivalent for these algebras.Moreover the above proof shows thatwe can “localize”
amenability in certain parts of the graph (in analogy with the metric space situation,
cf., Sect. 2.1). We provide a simple example that shows that the situation is quite
different when we consider the usual path algebras.

Definition 5.13 Given an arbitrary graph E and a field K, the path K-algebra KE is
defined to be the K-algebra generated by a set {v : v ∈ E0} of pairwise orthogonal
idempotents together with a set of variables {e : e ∈ E1} which satisfy s(e)e = e =
er(e) for all e ∈ E1.

In other words, the path algebra is linearly spanned by all paths in E , with the
multiplication given by concatenation of paths (or zero if two paths cannot be con-
catenated).
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Example 5.14 Let E be the following graph:

•w

z

y

•v

x

Let A be the corresponding path algebra KE . We claim that A is left properly alge-
braically amenable but not right algebraically amenable.

To this end, we first observe, by checking on all paths in E , that for any a ∈ A, we
have av = vav = κv for some κ ∈ K, while wa = waw and vaw = xbw for some
b ∈ wAw. Since v + w = 1, we have the linear decomposition

A = wAw ⊕ vAw ⊕ vAv = wAw ⊕ xAw ⊕ Kv.

Define the following linear maps:

λ : A → wA = wAw, a �→ wa;
ρ : A → Aw, a �→ aw;
φ : wAw → xAw, a �→ xa.

Then λ and ρ are surjections with kernels vA and Av (= Kv), respectively, while
φ is a bijection. Also observe that the subalgebra wAw is isomorphic to the free
algebra on two generators, and hence not algebraically amenable as it cannot carry
an invariant dimension measure. In particular, both wAw and xAw have countably
infinite dimension.

To see thatA is left properly algebraically amenable, we choose an arbitrarily large
finite-dimensional subspace W of xAw and note that AW = A(vW ) = KvW = W ,
i.e., W is an (A, 0)-Følner subspace.

It remains to show that A is not right algebraically amenable. Since wAw is not
algebraically amenable, by Lemma 4.3, there exists a finite subset F0 ⊂ wAw such
that for any finite-dimensional subspace W ⊂ wAw, we have dim(WF0 + W ) ≥
3 dim(W ). Without loss of generality, we may assume w ∈ F0. Now define

F = F0 ∪ {x, v}.

Given an arbitrary nontrivial finite-dimensional subspace W ⊂ A, we would like to
show that dim(WF + W ) ≥ 2 dim(W ).

First, if W = Kv, then WF + W = Kx ⊕ Kv, which has dimension 2, as desired.
Now if W �= Kv, or equivalently, Ww �= 0, then notice that

dim(W ) = dim(ρ(W )) + dim(ker(ρ) ∩ W )

= dim(Ww) + dim(Kv ∩ W )
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= dim(λ(Ww)) + dim(ker(λ) ∩ Ww) + dim(Kv ∩ W )

= dim(wWw) + dim(vA ∩ Ww) + dim(Kv ∩ W )

= dim(wWw) + dim(xAw ∩ Ww) + dim(Kv ∩ W ).

Similarly, we have

dim(WF + W ) = dim(WF0 + W x + Wv + W )

= dim(w(WF0 + W x + Wv + W )w)

+ dim(xAw ∩ (WF0 + W x + Wv + W )w)

+ dim(Kv ∩ (WF0 + W x + Wv + W ))

= dim(wWwF0) + dim(xAw ∩ (WwF0 + W x)) + dim(vWv)

≥ dim(wWwF0) + dim((xAw ∩ Ww)F0) + dim(vWv)

= dim(wWwF0) + dim(φ−1(xAw ∩ Ww)F0) + dim(vWv)

≥ 3 dim(wWw) + 3 dim(φ−1(xAw ∩ Ww)) + dim(vWv)

= 3 dim(wWw) + 3 dim(xAw ∩ Ww) + dim(vWv)

= 3 dim(Ww) + dim(vWv).

Here we used the fact that φ is a bijection and preserves multiplication from
the right. Depending on whether v ∈ W and whether Wv = 0, the pair
(dim(vWv), dim(Kv ∩ W )) may take value among (0, 0), (1, 0) and (1, 1). In any
case, since dim(Ww) ≥ 1 by our assumption, we have

dim(WF + W )

dim(W )
≥ 3 dim(Ww) + dim(vWv)

dim(Ww) + dim(Kv ∩ W )
≥ 3 dim(Ww) + 1

dim(Ww) + 1
≥ 2

as desired. Therefore A is not algebraically amenable. 
�
The next example is similar to the above. It shows that having a maximal exclusive

cycle is not enough to guarantee the (right) amenability of path algebras (compare
with Theorem 5.10).

Example 5.15 Let E be the following graph:

•w

z

y

•v

x t

Here we also have that the path algebra A := KE is left properly algebraically
amenable but not right algebraically amenable, despite the existence of an exclusive
maximal cycle. Since the proof is similar to the one in the previous example, we only
give a sketch, leaving the details to the reader.

123



300 P. Ara et al.

In this case, we have a linear decomposition

A = wAw ⊕ vAv ⊕ vAw ∼= wAw ⊕ K[t]v ⊕ xAw ⊕ t xAw ⊕ t2xAw ⊕ · · · .

For the left algebraic amenability, we can use a proper Følner net inside K[t]v. On the
other hand, for the right algebraic non-amenability, we again take F0 ⊂ wAw as in
the previous example and set F = F0 ∪ {x, v}. Given an arbitrary finite-dimensional
subspace W ⊂ A, if dim(Av ∩ W ) ≥ 3

5 dim(W ), then

dim(WF) ≥ dim((Av ∩ W ) · {x, v}) = 2 dim(Av ∩ W ) ≥ 6

5
dim(W ).

Otherwise, we have dim(Ww) = dim(W/(Av ∩ W )) = dim(W ) − dim(Av ∩ W )

> 2
5 dim(W ). Note thatWw is contained in a finitely generated free rightwAw-module

wAw ⊕ xAw ⊕ t xAw ⊕ t2xAw ⊕ · · · ⊕ tk xAw for some k ∈ N0. Thus by iterating
the argument we used in the previous example (where we had Ww ⊂ wAw ⊕ xAw),
we can show

dim(WF) ≥ dim(Ww · F0) ≥ 3 dim(Ww) >
6

5
dim(W ).

Thus A is not right algebraically amenable. 
�

6 Translation algebras on coarse spaces

To conclude we will illustrate the close relation between amenability for metric spaces
and algebraic amenability for K-algebras, in view of the natural bridge between the
two settings—the construction of translation algebras (see, e.g., [49, Chapter 4]). Let
us recall this construction.

Let (X, d) be a locally finite extended metric space as in Sect. 2 and K an arbi-
trary field. We denote by K[X ] the K-linear space generated by the basis X , and by
EndK(K[X ]) the algebra of K-linear endomorphism of K[X ]. For the sake of clarity,
we denote by δx the basis element of K[X ] corresponding to a point x ∈ X . We also
sometimes think of an element T ∈ EndK(K[X ]) as a matrix indexed by X , and define
Txy ∈ K as its entry at (x, y) ∈ X × X , so that T (δy) =∑x∈X Txyδx for any y ∈ X .

For any partial translation t on X (cf. Definition 2.7), we define Vt ∈ EndK(K[X ])
by

Vt (δx ) :=
{

δt (x) if x ∈ dom(t)

0 if x /∈ dom(t).
(6.1)

Note that for any two partial translations t and t ′ on X , we have Vt Vt ′ = Vt◦t ′ . In
other words, t �→ Vt gives a representation of the semigroup PT(X).

Definition 6.1 The translation K-algebra Ku(X) is the (unital) K-subalgebra of
EndK(K[X ]) generated by Vt for all the partial translations t on X .
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Any subset A ⊂ X gives rise to an idempotent VIdA in Ku(X), where IdA is the
identity map on A. For the sake of simplicity, we denote this idempotent by PA. In
particular, PX is equal to the unit of EndK(K[X ]). Note that we have the identities

Vt−1Vt = Pdom(t) and Vt Vt−1 = Pran(t)

for any partial translation t on X . Moreover, any element in Ku(X) can be linearly
spanned by the generators Vt .

Given a matrix T ∈ EndK(K[X ]) it is useful to consider its propagation as defined
by

p(T ) := sup
{

d(x, y) : x, y ∈ X and Txy �= 0
}
.

It is clear that every element in the translation K-algebra has finite propagation and
that for any A ⊂ X we have p(PA) = 0.

Remark 6.2 One can easily see that whenever we have a decomposition of an extended
metric space X into a finite disjoint union X1� . . .� Xn with infinite distance between
each pair of subspaces, then the associated idempotents PX1 , . . . , PXn are central and
mutually orthogonal, and add up to the unit, which induces a direct sumdecomposition

Ku(X) ∼=
n⊕

i=1

Ku(Xi ).

Theorem 6.3 Let (X, d) be a locally finite extended metric space and let Ku(X) be its
translation K-algebra. Let n ≥ 2 be a natural number. Then the following conditions
are equivalent:

(1) (X, d) is amenable.
(2) Ku(X) is algebraically amenable.
(3) Ku(X) is not properly infinite.
(4) Ku(X) does not contain the Leavitt algebra LK(1, n) as a unital K-subalgebra.

Proof (1) ⇒ (2): Consider ε > 0 and a finite set F ⊂ Ku(X). We may assume that
any element inF has propagation at most R > 0. Since (X, d) is amenable, and using
the conventions in Definition 2.1, there exists a (finite, non-empty set) F ∈ Føl(R, ε).
We first show that we may assume that F is contained in a single coarse component of
X . Indeed, write F = ⊔N

i=1 Fi , where Fi , i = 1, . . . , N , are the coarse components
of F . We then have

∑N
i=1 |∂R(Fi )|/|F | ≤ ε. Suppose that |∂R(Fi )|/|Fi | > ε for all i .

Then we have

N∑

i=1

|∂R(Fi )|
|F | =

N∑

i=1

|Fi |
|F | · |∂R(Fi )|

|Fi | >
( N∑

i=1

|Fi |
|F |
)
ε = ε,

a contradiction. Thus, by replacing F with some of the its coarse components, we may
assume that F is contained in a coarse component of X . It follows from the definition
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of propagation that whenever d(Y, Y ′) > R, then any T ∈ F satisfies PY T PY ′ = 0.
Now we define the following linear subspace in Ku(X) (in fact a subalgebra),

W := PFKu(X)PF ⊂ Ku(X),

which satisfies that dim W = |F |2.
We analyze next for any T ∈ F the subspace T W as follows. To simplify

expressions we will use the standard notation for the commutator of two operators:
[T, B] := T B−BT . Using the notation of R-boundaries and neighborhoods of Sect. 2
we have

1 = PF + PX\F = (PN−
R F + P∂−

R F ) + (P∂+
R F + PX\N+

R F )

as well as

PN−
R F T PX\F = PX\F T PN−

R F = PX\N+
R F T PF = PF T PX\N+

R F = 0.

Then we have

T PF = (PF + P∂+
R F + PX\N+

R F )T PF

= PF T PF + P∂+
R F T (PN−

R F + P∂−
R F ) + 0

= PF T PF + 0 + P∂+
R F T P∂−

R F ,

and similarly

PF T = PF T PF + P∂−
R F T P∂+

R F .

Hence
[T, PF ] = P∂+

R F T P∂−
R F − P∂−

R F T P∂+
R F , (6.2)

and

T W = {T PF B PF : B ∈ Ku(X)}
= {PF T B PF + [T, PF ] B PF : B ∈ Ku(X)}
= {PF T B PF + P∂+

R F T P∂−
R F B PF − P∂−

R F T P∂+
R F B PF : B ∈ Ku(X)}

(6.3)

⊆ W + P∂+
R FKu(X)PF + P∂−

R FKu(X)PF . (6.4)
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Therefore we have the following estimates for any T ∈ F :

dim(T W + W )

dim(W )
≤

dim(W ) + dim(P∂+
R FKu(X)PF ) + dim(P∂−

R FKu(X)PF )

dim(W )

≤ 1 + |F | |∂+
R F | + |F | |∂−

R F |
|F |2

= 1 + |∂R F |
|F | ≤ 1 + ε.

This shows that Ku(X) is algebraically amenable.
(2) ⇒ (3): This implication follows from Corollary 4.9.
(3)⇒ (4): Suppose that for some n ≥ 2 the Leavitt algebra L(1, n) unitally embeds

intoCu(X). Then, any two distinct pairs of generators Xi , Yi , X j , Y j , i �= j , of L(1, n)

implement the proper infiniteness of Ku(X).
(4) ⇒ (1): Assume that (X, d) is not amenable. Then by Theorem 2.17 X is para-

doxical, i.e., there is a partition X = X+ � X− and partial translations t± : X → X±.
The corresponding generators of the translation algebra Vt± , Vt−1±

satisfy

Vt+ Vt−1+
+ Vt− Vt−1−

= 1, Vt−1±
Vt± = 1 and Vt−1±

Vt∓ = 0.

This shows that L(1, 2) unitally embeds into the translation K-algebra. The result
then follows from the fact that L(1, n) unitally embeds into L(1, 2) (see [22, Theorem
4.1]). 
�

We also have an analogous result for proper amenability. We will use the following
terminology. Given two algebras A and B, we say that A is a finite-dimensional
extension of B in case there is a finite-dimensional two-sided ideal I of A such that
A/I ∼= B.4

Theorem 6.4 Let (X, d) be a locally finite extended metric space and let Ku(X) be its
translation K-algebra. Let n ≥ 2 be a natural number. Then the following conditions
are equivalent:

(1) (X, d) is properly amenable.
(2) Ku(X) is properly algebraically amenable.
(3) Ku(X) is not a finite-dimensional extension of a properly infinite K-algebra.

Proof (1) ⇒ (2): Assume that (X, d) is properly amenable and recall the proof of
the implication (1) ⇒ (2) in Theorem 6.3. For R > 0, ε > 0 and N ∈ N, we can
choose by Lemma 2.6 a (finite, non-empty) set F ∈ Føl(R, ε

2 ) with |F | ≥ 2N . Let
F =⊔i∈I Fi be the decomposition of F into its coarse components. Let

I ′ :=
{

i ∈ I : |∂R Fi |
|Fi | ≤ ε

}

4 This is in agreement with the non-universal convention of calling the algebraA above an extension of B
by I .
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and let F ′ := ⊔i∈I ′ Fi . We observe that |F ′| ≥ 1
2 |F | ≥ N . Indeed, if this were not

true, then

|∂R F |
|F | ≥

∑
i∈I\I ′ |∂R Fi |

|F | >

∑
i∈I\I ′ ε|Fi |

|F | = ε|F \ F ′|
|F | >

ε 1
2 |F |
|F | = ε

2
,

a contradiction to F ∈ Føl(R, ε
2 ). For each i ∈ I ′, let Wi := PFi Ku(X)PFi . Then as

in the proof of the implication (1)⇒ (2) in Theorem 6.3, we have dim Wi = |Fi |2 and
for any T with propagation no more than R, we have dim(T Wi + Wi ) ≤ |Fi |(|Fi | +
|∂R Fi |) ≤ |Fi |2(1 + ε). Hence if we let W =∑i∈I ′ Wi , we have

dim(W ) =
∑

i∈I ′
dim(Wi ) =

∑

i∈I ′
|Fi |2 ≥

∑

i∈I ′
|Fi | = |F ′| ≥ N

and for any T with propagation no more than R

dim(T W + W )

dim(W )
=
∑

i∈I ′ dim(T Wi + Wi )∑
i∈I ′ dim(Wi )

≤
∑

i∈I ′ |Fi |2(1 + ε)∑
i∈I ′ |Fi |2 = 1 + ε

Hence, by Proposition 3.5, we have that Ku(X) is properly algebraically amenable.
(2) ⇒ (3): Suppose that Ku(X) is a finite-dimensional extension of a properly

infinite K-algebra, that is, there is a finite-dimensional two-sided ideal I of Ku(X)

such thatKu(X)/I is properly infinite. By Corollary 4.9,Ku(X)/I is not algebraically
amenable, and thus not properly algebraically amenable, either. By Proposition 3.8, it
follows that Ku(X) is not properly algebraically amenable.

(3) ⇒ (1): Assume that Ku(X) is not a finite-dimensional extension of a properly
infinite K-algebra. In particular, itself is not properly infinite. Then Theorem 6.3
implies that (X, d) is amenable.Now suppose that (X, d)were not a properly amenable
metric space. Corollary 2.20 shows that there would be a partition X = Y1�Y2, where
Y1 is a finite non-empty subset of X , Y2 is non-amenable and d(x, y) = ∞ for
x ∈ Y1 and y ∈ Y2. As in Remark 6.2, this would induce a direct sum decomposition
Ku(X) ∼= Ku(Y1) ⊕ Ku(Y2), with Ku(Y1) being finite-dimensional. In particular,
Ku(X) would be a finite-dimensional extension of Ku(Y2), the latter being properly
infinite, again by Theorem 6.3. This would contradict our assumption. 
�
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