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A B S T R A C T

The extreme degree of openness of contemporary urban systems with regard to both economy and population
creates a serious challenge for the study of urban energy metabolism. A novel tool based on Multi-Scale
Integrated Analysis of Societal and Ecosystem Metabolism (MuSIASEM) is proposed to overcome these chal-
lenges. It consists of an end-use matrix, a coherent multi-level integrated characterization of the uses of different
forms of energy carriers (electricity, heat, fuels) for the various tasks performed in the city, including private and
public mobility, tourism, commercial and residential activities. The end-use matrix integrates quantitative data
referring to different dimensions (i.e. energy, human activity, land use, value added) and hierarchical (economic
sectors and functional elements at lower levels) and spatial scales (i.e. individual buildings, neighborhoods, and
the city as a whole). The end-use matrix provides information on both extensive (flows) and intensive variables
(flow/fund ratios or benchmarks). Benchmarks are important for policy-making and allow a meaningful com-
parison of energy performance across hierarchical levels within the urban system, and among different urban
systems. The approach is illustrated for Barcelona, a global city characterized by an important service sector.

1. Introduction

Since ancient times cities have been the center of the economy and
power of nations (Braudel, 1979). They specialize in consuming goods
and services while concentrating the command and control over the rest
of the territory, shaping and guiding the process of economic devel-
opment (Jacobs, 1984). On the flipside, though, this specialization
makes cities highly dependent on activities taking place in the near or
distant periphery, such as agriculture, mining, and ecological services.
Recent globalization has reshaped cities worldwide by generating an
international division of labor. Notably global cities in post-industrial
societies have almost fully externalized manufacturing (secondary
sector) to less developed countries and have become ‘purely dissipative
systems’ (Dyke, 1988), expressing activities mainly in the service,
government and residential sectors (Sassen, 2010). Due to improved
and cheap transport services and global cities being attractors of ac-
tivities generating high value added, an increasingly large share of
urban activities is performed by people living outside the city (Miralles-
Guasch and Tulla Pujol, 2012). Thus, globalized cities are not only
‘made of’ residents, but also an important number of commuters and
tourists. The extreme degree of openness of contemporary urban

systems with regard to both economy and population creates a serious
challenge for the study of urban energy metabolism and the develop-
ment of local energy and climate policies: Who is consuming energy in
the city to do what?

From a thermodynamic perspective, cities represent dissipative
systems, constantly importing and exporting energy and matter across
their boundaries (Dyke, 1988; Prigogine and Nicolis, 1977). A city “can
only survive as long as it is a center of inflow of food, fuel and other
commodities and sends out products and waste” (Prigogine and Nicolis,
1977, p. 4). The openness of cities and their dependence on processes
taking place outside their borders has also been described as ‘entropy
debt’ (Dyke, 1988; Straussfogel and Becker, 1996). Therefore, the idea
that cities are metabolic systems (Wolman, 1965) is consistent with the
thermodynamic perspective. The metabolism of human society is not a
new notion. It has been used to characterize the processes of energy and
material transformation in society required for its continued existence
(Cottrell, 1955; Lotka, 1956, 1922; Ostwald, 1911, 1907; Soddy, 1926;
White, 1943; Zipf, 1941). Overviews of the application of the concept
have been provided by, among others, Martínez-Alier (1987) and
Fischer-Kowalski and Hüttler (1998).

While thermodynamic considerations indisputably provide a sound
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general framework for understanding cities and their evolution, op-
erational representations of urban metabolism and corresponding in-
dicators of sustainability are yet to be developed (Filchakova et al.,
2007). A similar concern has been expressed by Zhang et al. (2015):
“Practical methods of analysis need to be improved. Future analysis
should focus on establishing a multilevel, unified, and standardized
system of categories to support the creation of consistent inventory
databases”. This challenge requires the exploration of new transdisci-
plinary approaches, as emphasized by Dijst et al. (2018): “the need to
come to a better understanding of the different disciplinary perspectives
on urban metabolism through identifying and analyzing the flows and
drivers”.

This paper presents the results of an exploratory application of
Multi-Scale Integrated Analysis of Societal and Ecosystem Metabolism
(MuSIASEM) to urban energy metabolism, using the city of Barcelona as
a case. The aim of the work is to show that, despite the challenges posed
by the extreme degree of openness of urban systems, it is possible to: (i)
generate a coherent multi-level integrated characterization of the uses
of different forms of energy carriers for the various tasks performed in
the city (i.e. private or public mobility, tourism, commercial activities,
residential activities), and (ii) integrate quantitative data referring to
different dimensions (i.e. energy, human activity, land use, value
added) and hierarchical/spatial scales (i.e. individual apartments,
neighborhoods, districts and the city as a whole). We discuss the pros
and cons of the proposed approach and illustrate the importance of the
analysis for guiding practical decision support and help local govern-
ments achieve sustainable development goals.

The contents of this paper are organized as follows. Section 2 pro-
vides the theoretical framework of the proposed approach and the de-
scription of the construction of the end-use matrix. In Section 3, the
end-use matrix is further explored for the case study of Barcelona. The
conclusions are presented in Section 4, together with a reflection on
further research needs and complementary approaches, as well as
policy implications.

2. Methodology

2.1. MuSIASEM and the energy end-use matrix

MuSIASEM has been specifically developed for studying the com-
plex metabolic pattern of social-ecological systems at different hier-
archical levels, scales and dimensions of analysis (economic, social,
demographic, ecological, etc.) (Giampietro et al., 2013, 2012, 2009,
2006; Giampietro and Mayumi, 2010, 2000, 1997; Pastore et al., 2000;
Ramos-Martín et al., 2007). It provides a quantitative representation of
the metabolic pattern of the system under study in relation to two non-
equivalent views: internal viability (inside view) and external feasibility
(outside view). Internal viability refers to the functions (tasks) ex-
pressed by the system needing a pertinent combination of structural
elements capable of metabolizing specific input flows required to ex-
press these tasks. Internal viability is analyzed with the end-use matrix
(Velasco-Fernández, 2017; Velasco-Fernández et al., 2018). External
feasibility concerns the interaction of the system as a whole with its
context. Indeed, the ability to sustain the metabolic pattern of the
whole depends on the existence of an adequate supply of inputs (e.g.
energy, water, minerals) and an adequate sink capacity for absorbing
wastes and emissions. In MuSIASEM, external feasibility is assessed by
the ‘environmental pressure matrix’ (requirement of primary sources
and primary sinks from the local environment) and ‘externalization
matrix’ (the primary sources, primary sinks and end-uses embodied in
imports from outside the system boundaries) (Ripa and Giampietro,
2017; Ripoll-Bosch and Giampietro, 2018). We focus here only on the
analysis of the end-use matrix.

The energy end-use matrix is a tool for analyzing in a coherent way
how different energy carriers (electricity, fuel, process heat) are used to
perform different end-uses (e.g. inside the household, industry,

transport sectors). In particular, the end-use matrix identifies which
types of energy carriers are used, how much, where, when, by whom
and to what purpose (why). Besides energy, the end-use matrix con-
siders additional dimensions of analysis, such as human time allocation,
land use, and value added, thus providing an integrated characteriza-
tion (Velasco-Fernández, 2017; Velasco-Fernández et al., 2018). The
end-use matrix has previously been studied at the national level
(Velasco-Fernández et al., 2018), but not yet at the urban level.

2.2. Construction of the urban end-use matrix: defining constituent
components

The identity of the city depends on the specific mix of its functional
and structural elements whose maintenance and reproduction is re-
quired to preserve ‘the whole’. Therefore, the first step in the con-
struction of the end-use matrix for an urban system is the definition of
the city's constituent components associated with the definition of ‘why
energy is used’ (‘final causes’). The functions (or categories of socio-
economic activities) of the energy transformations are needed for the
maintenance and reproduction of the city's constituent components.
Constituent components are defined in relational analysis (Rosen,
1991) as the parts that are essential to preserve the identity of a self-
producing system (that what has to be reproduced). In MuSIASEM,
following Georgescu-Roegen's flow-fund scheme (Giampietro et al.,
2012), the size of the constituent components is measured by looking at
the size of the fund elements making up the constituent components.
The two funds used for this task are: Human Activity (in hours per year)
and Area of Built Environment (in square meters).

Human activity relates to the time spent inside the city boundaries.
In quantifying this human activity (in hours per year), it is important to
not only assess the total hours/year in relation to the chosen categories
of functional activity (what is done and how), but also to further char-
acterize the constituent component: Who is allocating these hours?
Notably for urban systems, this information is essential to understand
the why, the final cause of the functional activity. Indeed, because of the
extreme openness of urban systems, the elaboration of the end-use
matrix at city level introduces a novel feature in the MuSIASEM ac-
counting, that is, the distinction between activity of residents, com-
muters (people entering the city to work on a daily basis), and tourists
(people visiting for short periods).

The second fund element is the controlled area of built environment
or ‘useful surface’, defined as available area devoted to end-uses (in
m2). It is composed of ‘land uses’ (e.g. streets, parks, the port) and
‘building uses’ (internal area of buildings). This component allows a
spatially explicit analysis in regard to the chosen subdivision. In this
particular study, administrative areas (neighborhoods or ‘barrios’ in
Spanish) have been selected as constituent component.

Note that the decision of how to define constituent components is an
exercise that is normative by definition. Hence it would require a co-
production process with the users of the analysis (Giampietro, 2018).

2.3. Construction of the urban end-use matrix: functional characterization

The identification of the constituent components is necessarily
linked to the functional characterization of the system. In this way we
can identify the functions required for their reproduction. We use the
definition of categories of human activity expressed inside the system
boundaries to identify a taxonomy of functions stabilizing the activities
of residents, commuters and tourists and maintaining and reproducing
the spatial patterns found in barrios. This step involves the translation of
the implications of final causes (what a desirable city should be and
should do) into the definition of a set of functional elements capable of
expressing the required tasks. This is illustrated in Fig. 1 for the city of
Barcelona. Note that the primary sector is not included in Fig. 1, it
being virtually completely externalized outside the city boundaries—a
feature common to all service cities.
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As shown in Fig. 1, the function ‘Services and Government’ maps
onto eight functional elements (education, healthcare, offices, com-
merce, bars, restaurants & hotels, transport, other). Hence, at the level
of functional elements we identify typologies of processes associated to
specific tasks. Note that in order to express the expected tasks, func-
tional elements must be linked to structural types, that is, typologies of
organized structures needed to express the task. For example, the
functional element ‘transport’, defined at hierarchical level n-3, can be
further sub-divided into functional elements at level n-4. These lower-
level functional elements (e.g. private mobility) in turn map, at level n-
5, onto structural elements (e.g. cars, motorbikes, vans, trucks, buses).

A parallel accounting of the profile of allocation of human activity
in the service sector is introduced in the end-use matrix. This represents
another important novelty compared to earlier work. Indeed, for many
of the activities taking place in the service sector there is a simultaneous
requirement of human activity both on the supply side (e.g. people
working in a restaurant or bus drivers) and the demand side (e.g. cus-
tomers of the restaurant or passengers riding on the bus). Changes in
human activity may entail a non-linear change in the feasibility of the
dynamic equilibrium between the human activity needed to consume
goods and services and that required for the production of goods and
services (Zipf, 1941). Therefore, at the urban level, we analyze the si-
multaneous investment of two distinct types of human activity: ‘Outside
paid work’ (e.g. passengers in a bus, customers having lunch in a res-
taurant, or taking a guided tour) and ‘Paid work’ (e.g. workers as bus
drivers, waiters, tour guides). These two sets of accounting categories
are shown in Fig. 1. The category ‘Outside paid work’ is further sub-
divided into: Residential, Mobility, Use of services and government
(henceforth Use of SG), and Other outdoor activities. The category ‘Paid
Work’ is split into: Services and Government (SG), Port, Construction
and Manufacturing (CM), Energy Sector.

This novelty allows the simultaneous characterization of unpaid

human activities in the economy (e.g. residential, use of services, part
of the mobility) and the hours of human activity related to a service
(the hours of the worker and the users). This is illustrated in Fig. 1. It is
important to note that, human activity being a fund, the accounting of
the hours of human activity must preserve closure across hierarchical
levels of analysis: the size of the system (expressed in hours) must re-
main the same when accounted across different categories of human
activity referring to different levels of analysis (from n to n−4).

2.4. Construction of the urban end-use matrix: data arrays, extensive and
intensive variables

Each element in the dendrogram of functional and structural ele-
ments illustrated in Fig. 1 is associated with a data array that is shown
in Table 1. The data array consists of extensive variables (funds and
flows) and intensive variables (flow/fund rations). Variables are de-
fined in Table 2. The two fund coordinates (human activity and useful
surface) are used to map the size of constituent components introduced
in Section 2.2, and as external referents to contextualize the assessment
of flows. That is, energy flows are expressed in relation to a specific
category of human activity.

In this study, four different flows are considered; three relate to
energy carriers (Giampietro and Sorman, 2012) and one to monetary
flows, following the classification by Velasco-Fernández et al. (2018):
(i) energy throughput electricity; (ii) energy throughput heat; (iii) en-
ergy throughput fuels; (iv) gross value added.

In the accounting any flow of energy carrier (a quantity per year in
MJ or kWh) or money must always be associated with a defined size of
fund element metabolizing it. In this way the intensive metabolic
characteristics of the fund element can be defined, namely the pace
(e.g. MJ of fuels per hour of human activity) and the density of the
flows (e.g. kWh of electricity per m2 of useful surface). The use of

Fig. 1. Dendrogram of functional categories across hierarchical levels for the Barcelona case study.

Table 1
Data array used in the analysis. Variables are defined in Table 2.

Ext. var. Intensive variables Extensive variables

HA US EMRelec EMRheat EMRfuel EJP EMDelec EMDheat EMDfuel EUSP ETelec ETheat ETfuel GVA

Funds Flow/Fund Flow
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intensive variables is essential to establish an accounting scheme across
different hierarchical levels. These ratios can not only be used to
compare qualitative aspects of the metabolic pattern among hier-
archical levels of a given city, but also to compare different cities or
evaluate the performance of an activity against reference values
(benchmarks). Regarding the calculation of benchmarks (e.g. con-
sumption of energy carriers per hour of a service) we can either con-
sider the metabolic rate in relation to the human activity of the workers
or that of the users, thus generating a more detailed characterization of
its performance.

2.5. Data sources

Data from a large number of diverse sources are needed to imple-
ment the end-use matrix, including throughput of energy carriers, value
added, useful surfaces and human activity. Generally, these data come
from distinct disciplines, often using different classifications, definitions
and units of analysis, and are often not sufficiently disaggregated to fit
the defined organization of the system. This poses a serious challenge to
transdisciplinary analysis but, at the same time, is an indispensable step
to analyze the urban system in all its complexity. Intensive variables
can be calculated from extensive variables (top-down assessment).
However, where data on extensive variables are difficult to obtain,
benchmarks for intensive variables from similar systems or elements
can be used to estimate extensive variables (bottom-up estimation).

The sources of data for this exploratory analysis were diverse and
involved meetings with relevant actors in the city administration of
Barcelona. General socio-economic data, value added and useful surface
data were obtained mainly from the statistical office of the city council
(Ajuntament de Barcelona, 2016, 2012). The Local Energy Agency of
Barcelona provided valuable data on energy carriers for households,
services and mobility, which were then complemented with energy data
from other sources. Human activity data were derived from two distinct
sources: the time use survey of Catalunya (IDESCAT, 2012) and the
statistics on number of workers (Ajuntament de Barcelona, 2012). A
detailed list of sources and an explanation of the calculations is avail-
able in Giampietro et al. (2018).

3. Results and discussion

3.1. Disclaimer

In this section we validate the energy end-use matrix for the city of
Barcelona. It is important to realize that the main purpose of this paper
is the exploration of a new approach to operationalize the concept of
urban metabolism. We do not pretend providing robust numerical re-
sults for actual use in local policy making. At present, the sole goal of
this work is to illustrate the possibility of organizing, in a coherent way,
the various pieces of quantitative (including spatially explicit) in-
formation required to characterize, monitor and control urban energy
performance. Generation of data useful for decision-making would re-
quire the fulfillment of three additional conditions: (i) construction of

the end-use matrix in a participatory way, involving the users of the
analysis in the choice of final causes and the corresponding relevant
categories for the functional and structural elements; (ii) involvement
of local experts to double check the robustness of data and assumptions;
(iii) carrying out the analysis in an iterative way, starting with a pre-
liminary set of results where the numbers included in the multilevel
end-use matrix should be considered place-holders and then going
through the activities described in the previous two points to improve
the robustness and the quality of the analysis.

3.2. Description of the urban system and system boundaries

Barcelona is the second most populated city in Spain (after Madrid)
and the capital of the region Catalonia. With a population of 1.6 million
inhabitants in 2012 and occupying 102 km2, it is also one of the most
densely populated cities in Europe.

Barcelona is divided in 10 administrative districts and 73 neigh-
borhoods or barrios (Ajuntament de Barcelona, 2012). Barrios are het-
erogeneous in size, age, type of construction, availability of services,
demography, income and other characteristics. The city of Barcelona is
in turn part of a larger administrative unit, the metropolitan area of
Barcelona (AMB), which besides Barcelona includes also the urban
agglomerations around the city. The AMB had 3.3 million inhabitants in
2012 (Àrea Metropolitana de Barcelona, 2012). The system boundary
chosen for the validation of the end-use matrix is the administrative
domain of the city of Barcelona and the reference year is 2012.

The main economic sector of Barcelona is the service sector both in
monetary terms (88,7% of the value added) and in number of workers
(84,5%) (Ajuntament de Barcelona, 2012). The manufacturing sub-
sector is progressively losing importance in the economy of the city
(Barceló and Solà, 2014). Logistics has a strategic importance, with the
port of Barcelona being one of the most important ports in Spain and
the Mediterranean Sea, both in terms of passengers and volume of
goods. Relying on its natural gas import facilities, the port houses a
combined cycle power plant (850MW), which is the only large-scale
electricity generation plant inside the boundaries of the city. Fishery is
not a significant economic activity (Port de Barcelona, 2012).

3.3. Human activity

The fact that Barcelona is surrounded by other smaller urban ag-
glomerations, a characteristic shared by many cities, poses serious land
constraints and creates an intense daily commuting between munici-
palities (see Table 3). Indeed, tourists and commuters play an important
role in shaping the identity of Barcelona and its economy. Their roles
are expressed in their contribution to the overall human activity in the
city, as shown in Fig. 2. For example, the paid work in Barcelona is
equally distributed between residents and commuters, and a significant
share of services (leisure, commerce and education) is used by tourists
(22%).

Table 2
Description of the variables used in the analysis (intensive variables are averages per year).

Indicator Definition Unit

HA Human Activity time invested in the end-use per year h
US Useful Surfaces quantity of area devoted to the end-use km2

EMRi Exosomatic Metabolic Rate ETi/HA: amount of energy carrier i metabolized per hour of work allocated to the end-use kWh/h or MJ/h
EJP Economic Job Productivity GVA/HA: value added per hour invested in the end-use €/h
EMDi Exosomatic Metabolic Density ETi/US: amount of energy carrier i metabolized per quantity of area devoted to the end-use kWh/m2 or MJ/m2

EUSP Economic Useful Surfaces Productivity GVA/US: value added per area of end-use €/m2

ETi Energy Throughput Amount of energy throughput metabolized in the form of energy carrier i (electricity, heat or fuel) by
the end-use.

kWh/year or MJ/year

GVA Gross Value Added Value of goods and services produced by the end-use €/year
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3.4. Energy end-use matrix of Barcelona

In Fig. 3 we first show a simplified energy end-use matrix for Bar-
celona. On the other hand, Fig. 4 represents the complete energy end
use matrix, including US, VA and the corresponding flow/fund ratios.
As described in Section 2.4, the information in the end-use matrix is
organized in the form of data arrays, with each row describing the
profile of inputs required to express a specific function. The top-row
refers to Barcelona as a whole (level n), whereas the other rows de-
scribe lower-level functional compartments (levels n-1 and n-2). As
shown in Fig. 3, the largest share of ‘paid work’ activity in Barcelona is
allocated to the ‘services & government’ (SG) sector: 1.5× 109 h
compared to 0.3×109 h allocated to ‘manufacturing & construction’
(MC). The SG sector presents the highest metabolic rate for electricity
(EMRel) compared to the other ‘paid work’ sectors, thereby making SG
the dominant electricity (ETel) consumer in absolute terms, but the
lowest for heat. Indeed, despite the large share of human activity in SG,
the ES and MC sectors are the largest overall heat consumers (ETheat).
Comparing the EMRs of Barcelona's MC sector (EMRel = 1.7 kWh/h,
EMRheat = 24MJ/h, EMRfuel = 0 MJ/h) with the average of Europe
(EMRel = 16 kWh/h, EMRheat = 103MJ/h, EMRfuel = 7.1MJ/h)
(Velasco-Fernández, 2017), we may conclude that the city is doing
relatively well. However, the relatively low rate of energy carrier
consumption is due to the specific composition of Barcelona's MC
sector, consisting mainly of construction (which is characterized by the
lowest EMRs in the MC sector) and manufacturing of vehicles (mainly
assembling).F

In the specific case of Barcelona, the port deserves attention. It ex-
hibits relatively high metabolic rates (EMRs) and high economic job
productivity, due to the use of heavy machinery and relatively low
requirement of human labor typical of logistic ports (compared to ports
with shipyards). The relevance of this infrastructure for the city is dif-
ficult to assess both in monetary and biophysical terms since it carries
out international shipping both for exports and imports of energy, food

and products, providing benefits and services to the whole foreland and
hinterland. All the same, as the port is an important node of an inter-
national transport network it is an essential component of the city of
Barcelona, facilitating the externalization of the functions of the pri-
mary and secondary sectors at worldwide scale.

As concerns the energy sector, the port houses the only relevant
power plant (a combined cycle thermoelectric plant) producing elec-
tricity. The plant is used as a peak producer, and relies on imported
natural gas. Other large power plants are located outside the city
boundaries and local photovoltaics produce only a mere 0.2% of elec-
tricity (Observatori de l’Energia de Barcelona, 2013). Considering that
the plant consumes all of the heat energy consumed in Barcelona's
energy sector (11.8×103 TJ) and has an efficiency of 58%, it produces
1896 GWh or approximately 25% of the total electricity consumed in
the city.

3.5. Example of lower-level analysis

An example of lower-level analysis is shown in Fig. 5 for the Ser-
vices and Government sector. It describes the metabolic pattern of its
immediate lower-level (level n-3) elements: education, healthcare, of-
fices, commerce, hotels, bars and restaurants, transport and other. At
this level we can define the characteristics of functional and structural
elements in relation to more specific definitions of activities developed
inside the sub-sector. As we have already seen, the SG sector, including
both services to people and companies, is the largest sector in Barcelona
in terms of ETelec, ETfuel, value added (VA) and HA. As shown in Fig. 5,
‘Offices’ is its main subsector in terms of HA and VA, and also has the
highest EJP (except transport) and EUSP (value added per area of end-
use). However, it has relatively low EMRs compared to the other sub-
sectors.

The Barcelona city council has presented a strategic plan that aims
at further boosting its transformation in global city. The 22@ area,
formerly an industrial area is projected to become “a system of innova-
tion- cutting edge companies, universities and training centres, and centres of
research and transfer of technology” (Ajuntament de Barcelona, 2018)
with the final aim of making Barcelona the “capital of innovation”
(Europa Press, 2017). The creation of new office buildings, increasing
economic activity, recruiting unemployed people and/or attracting
more workers to the city (no substitution of economic activities, but net
increase), will increase energy consumption no matter how efficient
new infrastructures will be. The effect on the urban energy metabolism
of replacing an abandoned industrial area with services can be

Table 3
Million trips (one way) made in a working day inside Barcelona and from or to
Barcelona (IERMB, 2013).

Trips (one way) Internal From or to Barcelona

Active (walking, bike) 2.85 0.07
Public transport 1.45 0.88
Private transport 0.66 0.77

Fig. 2. Tracking the amount of investment of human activity (in hours) of the constituent components. LCE = leisure, commerce and education. LCE + hotels = Use
of SG.
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anticipated by an analysis based on the end use matrix.

3.6. Digging deeper into the end-use matrix: consumption versus production
in the service sector

Another important feature of the end-use matrix is that the func-
tional categories can be expanded depending on the need for detail in
relation to decision-making. For example, when dealing with transport
(mobility) (Fig. 6) we can further distinguish between ‘Private Mobility’

and ‘Public Transport’ (see Fig. 1). All the same, the effect of policies
aimed at reducing private mobility in favor of public transport (a re-
distribution of human activity across the two subcategories) must be
studied in relation to changes in the generic function ‘Mobility’, both in
the paid work sector (service provision) and outside of the paid work
sector (service consumption). The latter is illustrated in Fig. 6.

Indeed, for the service sector the amount of human activity of the
users (e.g. bus passengers) is as important as that of the workers pro-
viding the service (e.g. bus drivers). For this reason, we have

Fig. 3. Simplified end-use matrix characterizing each function with the Energy Throughput (ET), hours of Human Activity (HA) and their metabolic ratios (EMR).

Fig. 4. Energy end-use matrix of the levels n, n-1 and n-2 of Barcelona.

Fig. 5. Example of an end-use matrix from the Services and Government Sector of Barcelona.

L. Pérez-Sánchez et al. Energy Policy 124 (2019) 13–22

18



established a parallel accounting of the hours of human activity allo-
cated to services including the human activity of both users (in the
outside paid work sector) and workers (paid work sector) (see Fig. 1).
This parallel accounting permits a comprehensive evaluation of the
services not only in terms of labor force and capitalization (e.g. the
power capacity and the type of devices required for providing the ser-
vices based on the energy consumed per hour of paid work), but also in
relation to the quality of the service (i.e. time spent by in using the
service). The same rationale can be applied to other types of services.
For instance, the analysis of the number of hours of paid work per user
is a useful indicator for analyzing the quality of caring services (e.g.
hospitals, nursing homes) and education (e.g. schools). In this way it
becomes possible to generate diverse indicators of material standard of
living for the city.

Returning to mobility, an assessment of distances (shown in Fig. 6)
is another interesting feature. In the specific case of Barcelona, private
motorized mobility consumes about two thirds of the total fuels in
mobility. Active modes of transport (walking or cycling) are those
where most time is spent, but less kilometers are covered (after taxis).

3.7. Spatially explicit analysis—neighborhoods

For the residential sector (subsector of the Outside Paid Work sec-
tor—see Fig. 1), a spatially explicit analysis by barrios was explored
through the construction of an end-use matrix characterizing the re-
sidential sector for each barrio (a total of 73 barrios in Barcelona).
Preliminary results are shown in Fig. 7, showing graphs exploring
correlations of EMR and EMD with four variables (e.g. family income,
building use per inhabitant, multi-story index, and year of construction)
characterizing the barrios. While barrios are heterogeneous among each
other, they are internally sufficiently homogeneous in terms of socio-
economic conditions and built environment to assume that their
average characteristics enable an identification of factors affecting en-
ergy use. Note that for this analysis the assessment of energy end-use is
calculated as the thermal equivalent of the overall gross energy re-
quirement using the partial substitution method (Giampietro and
Sorman, 2012). This is a reasonable step given that, according to the
data provided by Local Agency of Energy of the city, the relative con-
tribution of heat and electricity to the total energy consumption is al-
most the same in all barrios. In the residential sector, EMR (the overall
rate of energy consumption) may be assumed to be a proxy of the
material standard of living as it reflects the number of appliances me-
tabolizing energy inside the dwellings. EMD (the density of overall
energy consumption in residential useful surfaces) is a variable already
in use in technical assessments of energy efficiency of buildings. It in-
dicates the actual energy carrier consumption per m2 of the house
(Building Use, BU).

The results in Fig. 7 show that in our specific case of Barcelona the
EMR is correlated with Building Use per inhabitant and family income.
The shapes of the two graphs are similar as these two variables are
correlated among each other (wealthy people having bigger homes).

However, there is no evident relation between these two variables and
EMD. In addition to family income and area per capita, two other
variables have been considered: (i) year of construction of the build-
ings; (ii) the multi-story index of residential buildings (MSI) reflecting
the number of floors of the residential buildings. While our exploration
shows some trend for the majority of barrios there is a considerable
number of outliers having high EMD at low building use per inhabitant,
low family income and low MSI. These outliers, possibly due to the low
density of buildings, represent a low share of the population. Indeed,
there are many other factors that have to be considered in a spatially
explicit analysis of EMRi and EMDi.

This brief exploration of energy use in the residential sector by
barrios shows the possibility of incorporating spatially explicit analysis
in our approach, thus providing a holistic view of the different func-
tional compartments defined in the end-use matrix. Further multi-
variate analyses are required for specific case studies in order to provide
robust information for policy-making. Also, in order to better visualize
results, further work is need to develop user-friendly maps and graphs.

4. Conclusion and policy implications

Proper accounting of urban energy metabolism is of paramount
importance for policy making. Cities are open systems and heavily rely
on trade for their energy and food security and on flows of commuters
and tourists. This makes any analysis of urban energy metabolism ex-
tremely complex. We have shown for the city of Barcelona that the
various forms of energy carriers (electricity, heat, fuels) are used in
different combinations and at different rates for different purposes. This
multi-level analysis is useful for identifying the relevant factors that
determine the energy metabolism of the city: What activity is the lar-
gest consumer of what type of energy carrier? Is this consumption ne-
cessary and why? How does Barcelona express this function compared
to other cities? Is there room for improvement?

Achieving the general target of a 40% reduction of greenhouse gas
emissions by 2030, as proposed by the Covenant of Mayors (https://
www.covenantofmayors.eu/en/), is a major challenge for cities.
Strategies toward reaching this general target must necessarily be city-
specific and carefully consider the potential implications on the delicate
equilibrium of the many different functions carried out in the city
(residences, economic sectors, etc.) as well as the city's dependence on
trade (mining, agriculture, industry, transport) and movements of
people (e.g. tourists, commuters, immigrants). The quality of specific
technological solutions (energy performance) can only be assessed in
relation to an identified function or task (e.g. private mobility, re-
sidential, public mobility, construction). The more we move the ana-
lysis of the metabolic pattern to a lower level of analysis, the better we
can identify benchmarks that allow comparing ‘apples with apples and
oranges with oranges’ when studying the performance of different ci-
ties. On the other hand, general targets set for technical processes (e.g.
efficiency of buildings) or economic sectors (e.g. transport efficiency in
terms of kWh/ton-km) not necessarily reflect the impact of energy

Fig. 6. Special End-use Matrix describing the metabolic pattern associated with the final cause “Mobility” using categories of Human Activity defined in Outside Paid
Work”.

L. Pérez-Sánchez et al. Energy Policy 124 (2019) 13–22

19

https://www.covenantofmayors.eu/en/
https://www.covenantofmayors.eu/en/


savings at the local (sectoral) level on city-level performance. Different
cities express different functions, in different ways, using different types
of technologies and different mixes of primary energy sources. Policies
based on assessments or comparisons of aggregate levels of energy
consumption or emission risk missing this diversity.

A second important point to consider is that transformations of
energy in a city are complex. It is essential to acknowledge that not all
joules are the same. Energy carriers have different qualitative char-
acteristics (electricity vs fuels) and this difference must be maintained
in the accounting. In addition, an integrated analysis of the metabolic
pattern must include other dimensions beyond energy: global and local
emissions, economic cost reduction, labor requirement, effects on citi-
zens’ life quality, etc. Without considering all these dimensions, it is
easy to fall into a trap of flawed monitoring schemes, where an un-
planned collapse in economic activity may be interpreted as a suc-
cessful environmental policy reducing emissions or where targets are
achieved through “externalization” of energy intensive activities

This work is a step toward establishing a comprehensive multi-level
system of integrated accounting in the form of the end-use matrix to
provide standards and guidance that will help local governments in
developing strategies toward reduction of emissions. Constituent com-
ponents of the urban system and their size are defined using two fund
coordinates: (i) human activity (residents, commuters and tourists); and

(ii) useful surfaces (classified by area of neighborhoods). The metabolic
characteristics of the main sectors of the system (Paid Work: services
and government, port, manufacturing and construction, energy sector;
Outside Paid Work: residential sector, mobility, use of SG, other ac-
tivities) are defined in the form of benchmarks. Detailed analyses can be
performed at lower levels (sub-sectors), as has been shown for the
services and government sector of Barcelona. As regards mobility, the
accounting scheme also covers an assessment of the human activity of
the users of services, the identification of structural elements (private
cars, public transport, etc.) and other variables such as distance cov-
ered. The analysis of the residential sector, carried out at the level of
barrios, includes relevant factors affecting energy consumption, such as
family income, housing area, multi-store index and year of construc-
tion.

In conclusion, the end-use matrix represents a promising analytical
tool for overcoming the limits of conventional quantitative analysis by:
(i) moving away from a mono-scale, mono-dimensional quantitative
analysis toward a multi-scale multidimensional quantitative analysis;
(ii) moving away from predicative representations (deterministic re-
sults) toward impredicative representations (contingent results); (iii)
Moving away from analytical models providing representations chosen
by the analysts/experts, toward analytical tool-kits designed for co-
production of information with the users of the analyses. Indeed, a

Fig. 7. Exploring the effect of different factors on the metabolic characteristics of the residential sector at level n-5 (73 barrios).
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meaningful analysis of urban energy metabolism must necessarily be
based on a complex information space, linking diverse aspects at dif-
ferent scales and levels. The multi-level analysis provided by the end-
use matrix can bridge the analysis of structural elements at the lower
levels, characterized by technical aspects, to the analysis of the per-
formance of functional elements defined at the upper-hierarchical level
of the metropolitan area.

As regards the impredicative nature of the assessment, the definition
of the semantic structure of accounting and the set of logical rules
identifying functional and structural components is necessarily the re-
sult of a process of learning by doing. Starting out with available data
the consistency of the quantitative results can be checked against the
structure of accounting and expected relations. An iterative procedure
then helps achieving a sound crunching of numbers in the quantitative
analysis in two ways: (i) by identifying external referents—potential
sources of available data which refer to measurements of attributes
and/or characteristics of processes taking place in the city across dif-
ferent dimensions and levels of analysis; (ii) by generating redundancy
in the information space (generation of mutual information in the data
set). The various layers of relations across quantitative values thus
generate a “sudoku effect” in the data array that is useful to verify its
robustness (Giampietro and Bukkens, 2015). “Triangulations” in the
sudoku can also be used to estimate the value of a same variable from
different sources of data across different expected relations. In this way
it becomes possible to fill empty cells in the multi-layered matrix where
reliable data are missing or double check the robustness of estimated
data or rough statistics.

As regards co-production of information, societal multi-criteria
evaluation (SMCE) would lend itself particularly well for structuring
and organizing a participatory discussion with various stakeholders on
the quality of the assessment process and the policy relevance of the
results of the end-use matrix (Munda, 2004). In this process it is im-
portant to keep in mind that the representation of desirability found in
institutions (a procedural definition of desirability) is always a sub-set
of the virtually infinite universe of perceptions of desirability. Espe-
cially in relation to the analysis of roles and responsibilities, it is es-
sential to discuss who decides what is relevant when assessing bench-
marks and targets, and how this was decided.

Future work is aimed at integrating the urban energy end-use matrix
with an analysis of the environmental pressure matrix (inputs produced
and wastes dumped within the boundaries of the urban system) and an
externalization matrix (inputs imported from and wastes exported
outside the city boundaries) to visualize the dependence of urban en-
ergy consumption and emissions on trade (import) and reduce the risk
of incentivizing cost-shifting strategies (externalization). In addition, a
detailed analysis of household metabolism to characterize metabolic
patterns of household types is underway, as well as an extension of the
analysis to include also other elements of the urban energy-food-water
nexus.
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