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Abstract 

Digestate from biowaste was assessed as a potential source of bioproducts of commercial and 

industrial interest through solid-state fermentation. The targeted bioproducts were hydrolytic enzymes 

(cellulases and proteases from autochthonous microbiome), biosurfactants (sophorolipids produced 

from Starmella bombicola) and biopesticides (produced from Bacillus thuringiensis). Low cellulase 

production was observed within the range of 0.5-1.5 FPU g-1DM while protease production showed 

two discrete peaks of 66±8 and 65±3 U g-1DM at 3.5 and 48h, respectively. Low sophorolipids 

production was also obtained, with a maximum yield of 0.02 g g-1DM using hygienised digestate 

supplemented with external sugar and fat sources. Biopesticides produced by B.thuringiensis were 

successfully at 72h of operation, reaching a maximum spore production of 8.15±0.04 (107) CFU g-1 

DM and 2.85±0.22(107) CFU g-1 DM using sterile and hygienised digestate, respectively. These 

biopesticides could contribute to the substitution of chemically produced pesticides, moving towards a 

sustainable digestate management in a circular economy scheme. 

 

 

Keywords: solid state fermentation, digestate, valorisation, bioproducts, biopesticide. 
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1. Introduction 

In the last years, the EU has developed legislation that affected the waste management of organic 

materials. The Landfill Directive 199/31/EC aims to divert waste disposal from landfills and the 

Waste Directive 2008/98/EC aims to develop a new waste management hierarchy that promotes the 

use of wastes as secondary raw materials. In this context, anaerobic digestion (AD) is a widely used 

technology that can produce biogas, which contributes to the substitution of fossil fuels, providing a 

highly efficient method for resource recycling that allows to close the production cycle. However, the 

sustainability of AD processes will depend on the ability of the plant operator to properly manage the 

digestate remaining after the AD process (Dahlin et al., 2015). 

Digestate is a heterogeneous material produced in large amounts during the anaerobic digestion 

process (Dahlin et al., 2017; Monlau et al., 2015). Nearly 95% of the digestate produced in Europe 

can be used as organic fertiliser reducing the needs of for chemically produced fertilizers (Fuldauer et 

al., 2018; Saveyn & Eder, 2013). Digestate obtained from source selected biowaste is conventionally 

sent to composting or to direct soil application, however its use is currently limited due to nutrient 

content, quality of the digestate (Paavola & Rintala, 2008), possible land contamination and, in some 

countries, the lack of fertile land (Fuldauer et al., 2018).  In this sense, a more sustainable approach is 

proposed by the DECISIVE project (www.decisive2020.eu) in terms of digestate management, 

considering this waste as a feedstock for further biotransformation through solid-state fermentation in 

a circular economy context. 

Solid-state fermentation (SSF) is defined as a process that takes place in a solid matrix in absence or 

near absence of free water (Thomas et al., 2013). SSF is an attractive technology that allows the use of 

solid substrates for biotransformation into value-added bioproducts (El-Bakry et al., 2015).  

Hydrolytic enzymes (El-Bakry et al., 2015), biosurfactants (Jiménez-Peñalver et al., 2016; Vishal and 

Aniruddha, 2012), aromas (Martínez et al., 2017), biopesticides (Ballardo et al., 2017; Monlau et al., 

2015) or bioplastics (Castilho et al., 2009) have been successfully produced by SSF using different 

organic wastes. Conventionally, these bioproducts are produced in established and highly controlled 

conditions using specific microorganisms, defined substrates and carried out under sterile conditions 

which imply high operational costs. In order to reduce these costs, authors have developed a SSF 
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process carried out using non sterile and heterogeneous solid substrates for the production of 

hydrolytic enzymes (Abraham et al., 2003; Cerda et al., 2016; Cerda el al., 2017a), biopesticides 

(Ballardo et al., 2017) and biosurfactants (Jiménez-Peñalver et al., 2016). These authors reported 

robust and reproducible processes working at laboratory, bench and pilot scale (Abraham et al., 2017; 

Ballardo et al., 2017; Cerda et al., 2017b; Martínez et al., 2018). A first approach to biowaste 

digestate valorisation via SSF has been recently proposed by Mejias et al (2018) for cellulase and 

xylanase production using Trichoderma reesei, which is a well-known cellulase producer. However, 

these authors found low productivities mainly due to the poor nutritional quality of digestate. Thus, it 

seems interesting to further assess the potential of digestate as a source for the production of different 

specific bioproducts. Developing bio-based products represents economic and environmental benefits 

such as the replacement of chemically produced or fossil fuels derived materials, which is of great 

relevance in the circular economy concept. 

In this context, the main goal of this work is to assess the potential of digestate without any 

pretreatment as a source of value added bioproducts by means of solid-state fermentation. A screening 

of bioproducts with industrial interest was carried out to achieve this goal. This first screening will 

provide information for the potential selection of the most suitable bioproduct to be obtained from 

digestate and to be further optimised. The selected targeted bioproducts were hydrolytic enzymes 

(cellulases and proteases), biosurfactants (sophorolipids) and biopesticides (derived from Bacillus 

thuringiensis). To the best of our knowledge, this is the first work targeting biowaste digestate as a 

source of value added bioproducts within a biorefinery concept. 

 

2. Materials and Methods 

2.1 Raw material 

Digestate was kindly provided by a biowaste treatment plant (Granollers, Spain). This material was 

obtained from the anaerobic digestion of source selected biowaste. The process consisted in a 

mechanical pretreatment to reduce impurities followed by a mesophilic wet anaerobic digestion 

followed by a solid/liquid separation stage carried out using a screw press. Initial characterization of 

the digestate is presented in Table 1. Given the variability of biowaste digestate, standard deviation in 
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this table corresponds to the average of more than 10 samples analysed during a year and collected 

from the municipal waste treatment plant. In this plant, digestate is further composted. 

Table 1 

Once digestate was received in the facilities, the material was subjected to an hygienisation process as 

required by the European Regulation 142/2011. This process consisted in maintaining the residue for 

1h into a previously heated oven at 70ºC. In order to avoid moisture losses, digestate was covered 

during the hygienisation process. After this process, the material remained stored in a cold room at 

4ºC for a maximum of 15 days.  

 

2.2 Experimental set-up 

This setup consisted of 12 lines, each one able to carry out 3 independent fermentations using specific 

reactors (0.45 L). These reactors were cylindrical polyvinylchloride packed-bed reactors (13x7cm) 

each one provided with one mass airflow-meter with the exhaust gases outlet connected to carbon 

dioxide and oxygen sensors. The reactors were submerged in thermostatic baths in order to keep the 

temperature stable in a fixed value. The temperature depended on the process carried out and the 

optimum temperature of the specific microorganisms.  

Airflow, temperature and oxygen content were continuously monitored in all fermentations. Using the 

on-line measurements of the oxygen content and airflow, the specific oxygen uptake rate (sOUR) was 

calculated according to Ponsá et al. (2010) for continuous monitoring in order to provide accurate 

information on biological activity. Monitoring was performed by a self-made acquisition and control 

system based on Arduino® and self-made software. 

 

2.3 Bioproducts  

Digestate was assessed as a source for the production of selected bioproducts through solid-state 

fermentation. In all experiments, raw digestate was used without any pretreatment as the main 

objective of this work is to evaluate the possibilities of digestate as obtained. Two of the main 

concerns when working with digestate are the low porosity of the material and the high moisture 

content (Paavola & Rintala, 2008). For these reasons, sponge cloth (Spontex®) pieces were added as 
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bulking agent in all fermentations. Sponge cloth is an inert material that provided adequate porosity 

and moisture levels to the solid mixture hence promoting the oxygen transfer through the solid matrix 

(Rodríguez-Couto, 2012; Ruggieri et al., 2009). 

The targeted bioproducts were: hydrolytic enzymes (cellulases and proteases), biosurfactants 

(sophorolipids) and biopesticides derived from Bacillus thuringiensis (Bt). Hydrolytic enzymes are 

bioproducts obtained from a wide spectrum of microorganisms (El-Bakry et al., 2015) and often by 

the autochthonous microorganisms present in the waste (Abraham et al., 2013; Cerda et al, 2017a). 

The latter studies showed that it is possible to obtain hydrolytic enzymes using non sterile substrates 

thus reducing sterilisation related operational costs. Therefore, in the present study the potential of 

hydrolytic enzymes production from autochthonous microorganisms was assessed using hygienised 

digestate as the substrate. Different cases are those related to biopesticides and biosurfactants: these 

are specific bioproducts that require the inoculation of specific microorganisms (Ballardo et al., 2017; 

Jiménez-Peñalver et al., 2016). Therefore, the effect of the sterile and hygienised digestate was 

assessed. The main objective of these activities was to study the potential synergetic/antagonist effect 

that the autochthonous microorganisms may have on the externally added strain. Experimental 

conditions were selected on the basis of previous studies where we observed that some combinations 

did not produce a significant amount of bioproducts. This is the case, for instance, of sophorolipids 

production with no sterilisation. 

A complete experimental methodology is detailed in the following section for each bioproduct. 

 

2.3.1 Hydrolytic enzymes production using autochthonous microbiome 

a) Procedure 

Fermentations were performed using hygienised digestate as the substrate and sponge cloth 

(Spontex®) as the bulking agent in a ratio of 95:5 (w/w). The fermentations were carried out in 

triplicates in 0.45 L reactors with a total weight of 120 g of material in each reactor. The processes 

were performed at 37ºC using a fixed airflow of 20 mL min-1 during 96 h as previously reported by 

Abraham et al. (2013). 



 

 

7 

 

Sampling was performed at 0, 24 and 48h of fermentation by removing 3g of the content of each 

reactor. During the process, protease and cellulase activity and biological activity measured as sOUR 

were continuously monitored in addition to routine analysis, among them dry matter, moisture content 

and pH. 

 

b) Specific analytical methods 

Extraction for cellulase determination was done by mixing fermented solids with 0.05 M citrate buffer 

(pH 4.8) in a ratio 1:15 (w/v), shaking for 30 minutes. Extract was then centrifuged at 10000 rpm 

during 10 min and filtered to 0.45 µm. Supernatant was used for cellulase assay. Total cellulase 

activity was measured using filter paper assay (FPase), recommended by IUPAC (Ghose, 1987). 

Results were expressed as FPU g-1 DM, where one unit of FPase (FPU) was defined as the amount of 

enzyme that releases 1 µmol of reducing sugars from Whatman filter paper per minute. 

Extraction for protease determination was carried out by mixing the fermented solid with 50 mM 

HCl-Tris (tris(hydroxymethyl)aminomethane) buffer, pH 8.10, in a ratio 1:5 (w:v) for 45 min and the 

extract was separated by centrifugation at 10000 rpm for 10 min at 4ºC and further filtration through 

0.45 µm (Abraham et al., 2013). Supernatant was used as crude enzyme extract. Alkaline protease 

activity was determined using a method previously described by Alef and Nannipieri (1995). One unit 

of protease activity was defined as 1 μg of tyrosine released under the assay conditions. 

 

2.3.2 Biosurfactants production using Starmella bombicola as inoculum 

a) Inoculum preparation 

Starmerella bombicola ATCC 22214 was obtained from the American Type Culture Collection 

(Manassas, USA). The microorganism was preserved at −80ºC according to the provider's 

recommendations, and a new agar slant was cultivated when needed. S. bombicola growth conditions 

for inoculum preparation were performed according to the methodology presented by Jimenez-

Peñalver et al. (2016). 

 

b) Procedure  
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Digestate is a material with low sugar (0.18%) and fat content (5%) (Table 1), which are the two main 

mandatory substrates for an efficient sophorolipids production as reported by Jimenez-Peñalver et al, 

(2016) and Vishal and Aniruddha, (2012). In order to tackle the nutritional requirements, external 

sugar and/or fat sources were considered using glucose and oleic acid as model substrates. 

Additionally, considering the high operational costs associated to a sterilization process,the use of 

sterile (121ºC, 20 min) and hygienised digestate (70ºC, 1 h) was also assessed. Specifically, in a first 

stage four combinations were assessed using sterile digestate: i) digestate (D), ii) digestate 

supplemented with glucose 1% (DG), iii) digestate supplemented with oleic acid 10% (w/w) (DA) and 

iv) digestate supplemented with glucose 1% and oleic acid 10% (w/w) (DGA). Digestate sterilisation 

process was performed in an autoclave at 121ºC for a period of 20 min. 

In a second stage, the most successful combinations from the first stage were tested using hygienised 

digestate: i) digestate supplemented with glucose 1%(w/w) (DG_s) and ii) digestate supplemented 

with glucose 1%(w/w) and oleic acid 10% (w/w) (DGA_s). Digestate hygienisation was performed by 

maintaining the material at 70ºC in an oven for a period of 1h. 

All experiments were carried out in triplicates in 0.45 L reactors according to the methodology 

described by Jimenez-Peñalver et al. (2016) and are summarised in Table 2. A total of 100 g of 

mixture were assessed under controlled conditions of airflow (20 mL min-1) and temperature (30ºC) 

for a period of 5 days. In all experiments, sponge cloth (Spontex®) was added in a 5% (w/w) ratio as 

the bulking agent. Sampling was performed at the end of the fermentation by removing 3g of the 

content of each reactor. Specific and routine measurements were performed with the collected 

samples. 

Regarding mixing, some authors (Jimenez-Peñalver et al. 2016) showed that intermittent mixing at 3, 

5 and 7 days increased sophorolipids production in 25% compared to static conditions, when using 

different wastes. Hence, this strategy was implemented in the present work, selecting 96h instead of 

72h due to the lag phase observed in our system. 

Table 2 

c) Specific analytical methods 
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Sophorolipids were extracted from the fermentation mixture according to Jimenez-Peñalver et al. 

(2016). Sophorolipids yield is defined as grams of sophorolipids per g of total dry mass of 

fermentation. In the text, the yield is also reported as grams of sophorolipid per 100 g of substrate 

mixture for comparison with yields reported in the literature. 

Water-soluble sugar content was measured in the supernatant using the anthrone method (Scott & 

Melvin, 1953).  

 

2.3.3 Biopesticides production using Bacillus thuringiensis as inoculum 

a) Inoculum preparation 

B. thuringiensis var. Kurstaky NRRL HD-73 (CECT 4497) (Bt) used in this study was acquired from 

the “Colección Española de cultivos tipo" (Valencia, Spain). The strain was rehydrated and stored at -

80 ºC in cryovials with 10% (v/v) glycerol according to provider's recommendation. Bt growth 

conditions for inoculum preparation were carried out according to the methodology presented by 

Ballardo et al. (2017). 

 

b) Procedure  

Ballardo et al (2017) have already proven that B. thuringiensis is able to grow in a complex matrix of 

different substrates (soy fibre, OFMSW, among others) without any nutrient supplementation, and 

then no supplementation was planned for biopesticide production experiments. 

Fermentations were carried out in 0.45 L reactors using a mixture of digestate as substrate and sponge 

cloth (Spontex®) as the bulking agent (BA) in a 5% (w/w) ratio. The total weight of the inoculated 

solid matrix was 120 g of mixture per fermentation. Due to the nature of the substrate two sets of 

experiments were performed: one using sterile digestate and another without sterilization. Bt-

containing inoculum with a concentration of 107 CFU mL-1 was added in a 10% (w/w) ratio to the 

solid matrix. These fermentations were carried out in triplicates at 30ºC using a constant airflow of 20 

mL min-1 during 96 h. Samples of 3 g of each reactor were collected at 0, 12, 24, 48 and 96 h of the 

fermentation time to ascertain the evolution of viable Bt cells and spores.  
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c) Specific analytical methods 

Viable cell count and spore count were performed according to Ballardo et al. (2016). Briefly, viable 

cells were extracted from the solid phase using Ringer solution in a 1:9 (w/v) ratio stirred at 130 rpm 

for 20 min. Serial dilutions were prepared, plated in Petri dishes and incubated at 30ºC for 20h. After 

that, manual counting of viable cells was performed. For spore count, the diluted sample was 

maintained at 80ºC at 10 min and then placed in a cold bath for 5 min. After that, the same procedure 

for viable cells was followed. All the counts were done in triplicate and were expressed as colony 

forming units per gram of dry matter (CFU g DM-1). Images of sporulated and vegetative forms of Bt 

were observed by using an OLYMPUS optical microscope BH-2 with an objective of  x100. Bt cells 

and spores were visually identified. In previous experiments, Ballardo et al. (2016) gram stain was 

used to differentiate and identify Bt in the mixture, and malachite green was used as a differential 

stain for bacterial endospores. After a large number of experiments, it was noted that these last 

staining procedure was not necessary to identify Bt cells and spores. 

 

2.4 Dynamic respiration index 

Dynamic respiration index (DRI) is an index that reflects the stabilisation of organic wastes. This 

parameter was determined according to the methodology described by Ponsá et al. (2010). Briefly, 

DRI can be calculated from oxygen and air flow data from a given time through Equation (1) derived 

from a steady state mass balance: 

 

��� = ���,	
��,��×�×��.��×��×�����

�����×��.�×��
  Equation (1) 

 

where, DRI is the dynamic respiration index expressed in mg O2 g-1 DM h-1; ���,� − ��,��, the 

difference in oxygen content between airflow in and out the reactor at a given time; F is the 

volumetric airflow under normal conditions, mL min-1; 60, the conversion factor, min h-1; 1000a, the 

conversion factor, mg g-1; 1000b, the conversion factor mL L-1; 22.4, the volume occupied by one mol 

of ideal gas under normal conditions, L; DM, the dry matter of sample loaded in the reactor, g.  
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DRI when is measuring the biological activity of a sample in a specific moment of fermentations is 

named as specific oxygen uptake rate (sOUR) with the same units. 

2.5 Routine methods 

Moisture content, total and volatile solids, pH and electrical conductivity were determined according 

to standard procedures (Composting Council, 2001). Cellulose, hemicellulose and lignin content were 

determined by the method of Van Soest et al. (1991) using the Ankom 200 Fiber Analyzer incubator 

(Ankom Technology, Macedon, NY).  

 

2.6 Statistical analysis 

All experimental data has been analysed using pairwise comparisons were based on the Tukey test (p 

< 0.05). Statistics were performed with MINITAB™ V17. If some experimental value exceeded a 

95% of confidence, it was marked with an asterisk in Figures. 

 

3. Results and Discussion 

3.1 Hydrolytic enzymes production 

Results of digestate characterisation (Table 1) showed in that it contains significant amounts of 

protein and lignocellulosic material, hence it was hypothesized that digestate could have potential as a 

source for proteases and cellulases production. 

The average sOUR profile obtained in the SSF for hydrolytic enzymes production is presented in 

Figure 1. The initial biological activity observed in the fermentations reflected that digestate presented 

a considerable content of aerobically biodegradable organic matter (Barrena et al., 2006). Maximum 

sOUR was found at 10h of fermentation with a value of 2.6±0.2 mg O2 g-1 DM h-1. After that peak, 

biological activity decreased to a value of near 2.2 mg O2 g-1 DM h-1 which remained stable until the 

end of the fermentation. This is a typical behaviour of organic wastes under aerobic biodegradation 

that never reach a sOUR near to zero. 

Figure 1 
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Cellulase production ranged between 0.5-1.5 FPU g-1DM, which is in the lower range reported at 

laboratory scale at similar conditions (Cerda et al., 2017a) and even lower when compared with SSF 

using sterile substrates or adding a single strain (Dhillon et al., 2012; El-Bakry et al., 2015). 

Figure 1 also shows that there is no clear correlation between maximum biological activity measured 

as sOUR and maximum cellulase activity. This is not in agreement with the reported by Cerda et al. 

(2017a), who found that the moment of maximum cellulase and sOUR activities consistently matched. 

Despite these findings, these authors also observed that there was not a direct correlation between 

cellulase production and any other relevant parameter, indicating a highly complex process with 

different microorganisms and/or metabolites working together in a synergetic or antagonistic manner 

(Cerda et al., 2017a; Eichorst et al., 2013).  

Digestate presented a significant initial cellulase activity when compared with the rest of the 

fermentation (1.57±0.52 FPU g-1DM). This is probably associated with the previous anaerobic 

digestion process. The produced enzymes could remain immobilized in the solid substrate and hence, 

obtaining a high initial enzymatic content in the digestate. 

In general, there is a consistent decline in cellulase production, followed by a slight recovery at the 

end of the fermentation, which could indicate shifts in the microbial population or even in the 

substrate structure (Cerda et al., 2017b; López-González et al., 2014). This can be explained by a 

change between anaerobic conditions (in which is obtained the digestate) and aerobic conditions (in 

SSF). However, this should be confirmed by specific microbial analysis and characterisation.  

During the performance of the SSF the substrate structure is altered, i.e, the generation of more 

accessible and simple hydrolysates. These hydrolysates can be of any origin such as proteins, lipids or 

carbohydrates and therefore do not imply an improvement of the cellulase production. The low 

cellulase production can be attributed to the fact that during the fermentation the pH achieved values 

between 8-9 and cellulase production conventionally occurs at acid pH (4-6) (Dhillon et al., 2012; El-

Bakry et al., 2015; Li et al., 2013). Another aspect to take into consideration is the extraction ratio of 

cellulases.  Several options for a further study on cellulase production can be assessed such as the 

optimisation of the extraction ratio or even the extracting agent (Pirota et al., 2013), the adaptation of 

the native microorganisms using a sequential batch operation strategy (Cerda et al., 2017a) or the 
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inoculation with specific strains. Another unexplored alternative could be direct enzyme extraction 

followed by stabilization of the exhausted solid by means of composting as proposed by Marin et al. 

(2018). 

Figure 1 also shows the protease production profiles. Two discrete enzymatic peaks were observed, 

one at the beginning and another at the end of the fermentation. Both peaks reported a protease 

production of nearly 65 U g-1DM.  Again, as proteases are produced by anaerobic and aerobic 

microorganisms it is possible that going from one condition to another one can be reflected as two 

peaks of proteases production. A similar production profile was reported by Novelli et al. (2016), 

observing many protease activity peaks when using several fungi strains as mixed inoculum. These 

authors attributed this profile to underlying adaptations in the molecular and physiological machinery 

of the microbiome present in the substrate mixture.  

The obtained values of proteases production are in the lower range of those reported in literature using 

different substrates. Abraham et al. (2013) used the same SSF configuration for protease production 

using soy fibre, coffee husk and hair waste with values of 310.33±9.17, 89.01±0.59, and 141.75±17.6 

U g-1 DM, respectively. 

It is likely that the pH observed during the fermentation (8.7-9) promoted protease production as 

stated by several authors (Abraham et al., 2013; El-Bakry et al., 2015; Soares et al., 2005). Moreover, 

proteases hydrolytic capacity is also boosted by alkaline conditions. The release of protease to the 

solid media at suitable hydrolytic conditions could have induced the hydrolysis of other enzymatic 

components, such as the produced cellulases, hence affecting cellulase production yield. 

Summarizing, in this first screening digestate was not found suitable as a substrate for cellulase and 

protease production using only autochthonous microbiome. Further optimisation must be performed 

in order to increase the production yields. One of the difficulties of using digestate as a substrate is the 

low biodegradable matter content, therefore, one alternative to boost microbial activity can be the use 

of a biodegradable co-substrate such as the organic fraction of municipal solid wastes. 

Another interesting alternative to be assessed is the development of different operational strategies 

such as working in a sequential batch configuration thus allowing the adaptation of the autochthonous 
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microbiome as reported by Cerda et al. (2017a). Another approach would be to work with specific 

strains to overproduce, by instance, proteases, as successfully reported by El-Bakry et al. (2016). 

 

3.2 Biosurfactant production 

In a first set of experiments the incorporation of external fat and sugar sources were considered. The 

addition of glucose (G) and oleic acid (A) to sterile digestate was carried out under specific conditions 

summarized in Table 2. S. bombicola was inoculated in all cases since the beginning of the 

experiment. In all fermentations, pH slightly increased from 8.8 to an average value of 9.2±0.2. It is 

known that pH drops to acidic values when S. bombicola metabolises the nutrients and synthesizes the 

sophorolipid. Due to the high buffering capacity of digestate, lowering the pH prior to fermentation 

was discarded since high amounts acidic solutions would be required. 

Figure 2a shows the sOUR profiles of the first set of fermentations, using respectively D, DG, DA and 

DGA. A lag phase was present in all fermentations, however, this was of particular relevance in those 

fermentations using an external fat source (DA and DGA). After 96 hours, mixing was performed, 

generating an increase of sOUR in the DA from 1 to 1.5 mg O2 g-1 DM h-1. Mixing increased the 

bioavailability of substrates to the yeast and, therefore, more oxygen and fats were consumed 

(Jiménez-Peñalver et al., 2016).  

Figure 2 

Figure 2a shows positive results in terms of biological activity when external sources of fats and 

sugars were added. sOUR of DGA fermentation presented a substantial increase, where the three 

substrates were used, achieving a maximum value of 3.8 mg O2 g-1 DM h-1 at 76 h of operation. After 

that peak, sOUR showed a slow decrease, reaching at the end of the fermentation a value of 3 mg O2 

g-1 DM h-1. In spite of the good results, obtained in terms of biological activity, no sophorolipids 

production was observed. This fact can be attributed to different aspects of the fermentation such as 

the pH observed during the process (Thomas et al., 2013). S. bombicola cultivation is associated with 

a strong pH drop for optimal sophorolipid production, where the pH should be kept at 3.5 after a 

spontaneous decrease (Göbbert et al., 1984). Additionally, in order to attain the proper growth and 

sophorolipids production, this yeast requires a high initial sugar concentration (100 g L-1 or more) 
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which was not provided in the presented fermentations (Rosa & Lachance, 1998; Vishal and 

Aniruddha, 2012). Therefore, the addition of an external sugar source was considered. In this sense, 

there is no consensus among reported research on the subject, observing that while Vishal and 

Aniruddha, (2012) reported positive effects, Jimenez-Peñalver et al. (2016) obtained no improvements 

on sophorolipids production. It is also possible that the sterilization process may have some impact in 

the substrate structure that made the substrate more accessible for the microorganisms present during 

the fermentation. It also has to be considered that sterilization of large amounts of solids is a complex 

process that may only reduce biodiversity but not completely eliminate microorganisms initially 

present. For that reason, it is possible that the surviving microorganisms would be able to thrive in the 

substrate, competing S. Bombicola thus hindering the production process. However, in our experience, 

the use of short times (2-5 days) of fermentation makes very difficult to observe the growth of 

opportunistic microorganisms, especially when the inoculation of a specific strain is performed. 

Additional fermentations were carried out using hygienised digestate at the conditions described in 

Table 2. These results are presented in Figure 2b. 

The highest sOUR in both fermentations was found at 20h of operation with values of nearly 3.4 mg 

O2 g-1 DM h-1 for DGA_s and DG_s. After that time, both fermentations decreased their biological 

activity. Although sOUR peak was similar for both conditions, showing similar easiness of 

biodegradability, DGA_s kept higher sOUR values showing a higher microbial activity due to a 

higher biodegradable OM content (Ponsá et al., 2010).  The only positive result obtained from these 

series of experiment was in DGA fermentation, where the sophorolipid production yield was 0.020 g 

g-1 DM, which is a low value when compared with that reported by Jimenez-Peñalver et al., (2016). 

These authors reported a yield of 19.1 g g-1 DM using winterization residue and molasses as the 

substrate and S. Bombicola as the inoculum. Moreover, the obtained yield using digestate 

supplemented with sugar and fat sources was lower than that obtained by Vishal and Aniruddha, 

(2012) which observed 38 g g-1 DM using wheat bran supplemented with oleic acid and glucose.  

The overall results of this part of the work indicate that sophorolipids production using digestate as 

the main substrate is not a suitable option without exhaustive optimisation. These optimisations must 

meet the nutritional requirements for the proper S. Bombicola growth (acid pH) and sugar and fat 
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content for sophorolipids production. A potential alternative to achieve these goals could be the use of 

residual streams derived from a productive process, thus promoting waste valorisation and circular 

economy. 

 

3.3 Biopesticide production 

Figure 3 shows the results of the SSF carried out using digestate as sole substrate under sterile (Figure 

3a) and non-sterile conditions (Figure 3b) for biopesticide production using Bt. 

In fermentations using sterile digestate (Figure 3a), the maximum sOUR was obtained at nearly 9h of 

operation reaching a value of 0.80±0.08 mg O2 g-1 DM h-1 and decreased afterwards until the end of 

the process. Bt inoculation generated a rapid start-up of the process, generating 2-fold increase on the 

biological activity reflected as sOUR when compared with sterile digestate non inoculated with Bt 

(data not shown). Also, the differences among the triplicates were minimal (s.d<5%), which indicates 

that the process is reliable and reproducible as reported by other authors in similar processes 

(Abraham et al., 2017; Cerda et al., 2017b).  

Figure 3 

Figure 3a also shows the viable cell and spore counts during the fermentations. Viable cell count in all 

replicates showed an initial increase in the first 48h until values of 8.49±2.12 (108) CFU g-1DM. After 

that period, viable cell count decreased until values of 9.09±0.81(107) CFU g-1DM. These results are 

very positive, because they reflect the ability of Bt of not only surviving in a complex solid matrix 

based on digestate, but to thrive and achieve an almost 3-fold increase the initial viable cell count. It is 

likely that the decrease in viable cell count is related to changes in the solid environment, highly 

attributed to a depletion of substrate, hence leading to the bacteria to create their resistant form, i.e 

spores. Digestate has a low content of readily metabolizable compounds, then it seems plausible to 

assume that in a non-sterile fermentation this material would be quickly depleted. Martinez et al. 

(2017) showed that when using a high soluble sugar content substrate (30% d.b) such as sugar beet 

molasses in a non-sterile SSF, the sugar content was reduced in nearly 80% in 24h. 

In this sense, the fermentations started with no spore presence in the solid matrix, being only detected 

from the first sampling at 24 h of fermentation, reaching a maximum at 72 h with a value of 
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8.15±0.04 (107) CFU g-1DM. After that period, spore count remained almost stable until the end of the 

fermentation. One hypothesis to explain why spore count remains stable at 72 h could be that a 

steady-state may be reached, where part of the spores produced can germinate if a favourable 

microenvironment is created in the reactor, while other viable cells start the sporulation process due to 

stressful situations in other non-favourable microenvironment.  

Other studies using different substrates working at similar conditions observed a final cell count of 6.6 

∙1010 CFU g-1 DM (Devi et al., 2005), 1.0∙1010 CFU g-1 DM (Zhuang et al., 2011) and 6.2∙1011 CFU g-1 

DM (Ballardo et al., 2016), which are higher than those obtained in the present study using digestate 

as the substrate. On the other hand, spore counts reported by the same authors ranged between 107-109 

CFU g-1 DM, which indicates that the results obtained in this work are in the middle range of those 

reported in other publications. It has to be considered that the substrates used by Devi et al., (2005) 

and Ballardo et al., (2016) were wheat bran and soy fibre, respectively. These materials present low 

variability in their composition and were (in the case of Devi et al., (2015)) supplemented with 

external carbon and nitrogen sources.   

This is of great importance considering that it is during the sporulation stage that Bt is able to produce 

the insecticidal crystal (Cry or Cyttoxins)(Bravo et al., 2011). In this context, it can be stated that 

digestate presents a limited amount of nutrients that provokes Bt sporulation in a short time. 

Figure 3b presents the results obtained using non-sterile digestate. Biological activity observed in this 

case increased faster and was overall higher than under sterile conditions, which is likely related to the 

higher presence of microbial populations in the reactors. Maximum sOUR was found at 4h with an 

average value of 2.53±0.83 mg O2 g-1 DM h-1. The non-sterility of the fermentation implied a higher 

number of microorganisms able to colonize the solid matrix, which generated an overall increase on 

biological activity and higher deviation among replicates.  

In contrast with that observed in the experiments using sterile digestate, Bt was not able to thrive onto 

the hygienised digestate in the same magnitude than when using sterile digestate. In this sense, a 

maximum of cell growth was observed at 24h with a viable cell count of 1.11±0.10 (108) CFU g-1 

DM, representing a 1.34-fold increase of the initial cell count. After that moment, viable cells 

decreased until the end of the fermentation until values of 6.02±0.56 (107) CFU g-1 DM. As for the 
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spore production, the fermentation started with no spore content detected in the digestate and only 

became accountable after the first 24h of operation, when the viable cell started to decrease. Spore 

counts reached its maximum at 72h of fermentation, with a value of 2.85±0.22 (107) CFU g-1 DM.  

Previous research performed at the same conditions using soy fibre and biowaste as substrates, 

presented a higher viable cell count of 3.8∙1011 CFU g-1 DM (Ballardo et al., 2016) but a spore count  

of 2.1∙107 CFU g-1 DM (Ballardo et al., 2017), which is in the range of that obtained in the present 

work. In is possible that the substrates used by these authors had more available nutrients and hence 

providing a more suitable environment for the growth of Bt. The same authors confirmed that the final 

cell and spore counts depended on the initial inoculum added to the solid matrix. In this sense, they 

stated that when Bt was added in a 7%, 9% and 12% to the substrate (biowaste) the final viable cell 

counts obtained were 9.9∙105 CFU g-1 DM, 1.1∙107 CFU g-1 DM and 2.5∙107 CFU g-1 DM, respectively 

(Ballardo et al., 2017). All these values are lower than the observed in the present work, showing that 

unfavourable conditions for Bt growth promote its sporulation. 

More interestingly, from the present study it can be stated that it is possible the use of digestate as a 

sole substrate for biopesticide production. Bt was able to grow and to sporulate onto the solid matrix 

using hygienised digestate at a controlled temperature. This will be of great importance looking 

towards the development of the productive process and the assessment of its associated costs. 

The use of digestate as a substrate for bioconversion into a value-added product will contribute to 

close the organic matter cycle, hence optimising its management into a circular approach. The 

positive outcomes obtained in this work open new alternatives for the valorisation of digestate as a 

substrate for biopesticide production. Further studies have to be performed in order to validate these 

results at a larger scale (bench or pilot) to assess the process technical, economic and environmental 

feasibility. Moreover, different biopesticide production could be assessed by using other 

microorganisms such as other bacteria or even fungi.    

 

4. Conclusions 
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Digestate was assessed as a substrate for bioproducts via SSF, approaching a new waste management 

strategy. In spite several production strategies have been tested, hydrolytic enzymes and biosurfactant 

production reported low production yields. Further studies are required to enhance productivities. 

The best results were obtained for Bt-produced biopesticide. This microorganism was able to grow 

and to sporulate using hygienised digestate (non-sterile) as a sole substrate. Spore production obtained 

was in the middle range of the values reported in other references. Further studies will be performed 

for optimisation, scale -up and field tests on biopesticide action. 

 

E-supplementary data for this work can be found in e-version of this paper online 
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Table 1. Average digestate characterisation. Standard deviation corresponds to the average of more 

than 10 samples analysed during one year.  

Parameter Units Digestate (n=10) 

Moisture  % (wb) 

 

75.60±5.11 

Dry Matter  % (wb) 

 

24.40±5.11 

Organic Matter  % (db) 

 
63.00±1.62 

pH (1:5) - 8.31±0.07 

Carbon  % (db) 34.14±2.38 

Nitrogen  % (db) 4.32±0.33 

Hydrogen  % (db) 2.89±0.25 

Sulphur  % (db) 0.33±0.14 

C/N ratio - 11.85±0.70 

Dynamic respiration index   mgO2 g-1DM h-1 1.38±0.38 

Protein  % (db) 16.95 ± 0.50 

   

Hemicellulose  % (db) 10.06±0.90 

Cellulose  % (db) 10.42±1.25 

Lignin  % (db) 17.54±1.96 

Soluble sugars  

 

% (db) 0.18±0.16 

 

Fats  % (db) 5.05±0.04 
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Table 2. Experimental description of solid-state fermentation trials for sophorolipids production. 

Operational Conditions Solid mixture for SSF 

Experiment 1: Sterile digestate 

Airflow: 20 mL min-1 

Temperature: 30°C 

Time: 5 days 

Sterile digestate: 121ºC, 20 min 

Substrate: Digestate 

               Digestate + Glucose 1% (DG) 

Digestate+OleicAcic 10% (DA) 

Digestate+Glucose1%+OleicAcid 10% (DGA) 

Inoculum: S. Bombicola 

Experiment 2: Hygienised digestate 

Airflow: 20 mL min-1 

Temperature: 30°C 

Time: 5 days 

Hygienised digestate: 70ºC, 1h 

Substrate: Digestate + Glucose 1% (DG_s) 

                Digestate + Glucose 1% + Oleic Acid 10% (DGA_s) 

Inoculum: S. Bombicola. 
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Figure captions 

 

Figure 1. Operational profiles of SSF carried out in triplicates using digestate as substrate in a 0.45 L 

reactor for hydrolytic enzymes production. Cellulase (circles) and protease (squares) production and 

sOUR profiles (s.d<10%) are presented. Experimental points with an asterisk indicates high deviation 

(p>0.05). 

 

Figure 2. Average sOUR profiles during SSF carried out in triplicates using 0.45 L reactors for 

sophorolipids production. Figure 3a shows the effect of the addition of external sugar and/or fat 

sources to sterile digestate using:  digestate (D), digestate and glucose (DG), digestate and oleic acid 

(DA) and digestate with glucose and oleic acid (s.d<5%). Figure 3b shows the effect of the use of 

hygienised digestate (non-sterile) supplemented with: glucose (DG_s) and using glucose and oleic 

acid (DGA_s) (s.d<5%).  

 

Figure 3. sOUR and viable cell (circles) and spore (triangles) count profiles obtained in 0.45 L SSF 

reactors using a) sterile and b) non-sterile digestate as substrate for biopesticide production. 

Experimental points with an asterisk indicates high deviation (p>0.05). 
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Figure 1. 
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Figure 2. 
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Figure 3. 
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