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Highlights:

Machine learning allows for highly accurate downscaling of GGCM outputs
Increasing detail of climate features improves prediction accuracy

Feature importance ranks in the order climate > cultivar > soil and topography
Approach is scale-free and does not require prior assumptions on feature importance

It enables the development of robust downscaling tools with low user bias
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Abstract

Global gridded crop models (GGCMs) are essential tools for estimating agricultural crop yields
and externalities at large scales, typically at coarse spatial resolutions. Higher resolution
estimates are required for robust agricultural assessments at regional and local scales, where the
applicability of GGCM s is often limited by low data availability and high computational
demand. An approach to bridge this gap is the application of meta-models trained on GGCM
output data to covariates of high spatial resolution. In this study, we explore two machine
learning approaches — extreme gradient boosting and random forests - to develop meta-models
for the prediction of crop model outputs at fine spatial resolutions. Machine learning algorithms
are trained on global scale maize simulations of a GGCM and exemplary applied to the extent of
Mexico at a finer spatial resolution. Results show very high accuracy with R?>0.96 for
predictions of maize yields as well as the hydrologic externalities evapotranspiration and crop
available water with also low mean bias in all cases. While limited sets of covariates such as
annual climate data alone provide satisfactory results already, a comprehensive set of predictors
covering annual, growing season, and monthly climate data is required to obtain high
performance in reproducing climate-driven inter-annual crop yield variability. The findings
presented herein provide a first proof of concept that machine learning methods are highly
suitable for building crop meta-models for spatio-temporal downscaling and indicate potential

for further developments towards scalable crop model emulators.

Keywords: meta-model, extreme gradient boosting, random forests, maize yield, agricultural

externalities, climate features
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1 Introduction

In recent years, global gridded crop models (GGCMs) - combinations of a crop model
and global sets of gridded data - have become essential tools for estimating crop yields and
agricultural externalities under a wide range of environmental and management conditions (e.g.
Miller et al., 2017). Besides the direct provision and interpretation of model outputs for crop
yields alone (e.g. Rosenzweig et al., 2014) or their joint evaluation with externalities such as
crop water use (Liu et al., 2013; Elliott et al., 2014), GGCMs provide base layers of input data
for agro-economic or integrated assessment models (IAMs; Miiller and Nelson, 2014) e.qg. for

land use change analyses and optimization (e.g. Havlik et al., 2011).

The present global standard resolution of input data is 0.5° x 0.5° corresponding to
approx. 50 km x 50 km near the equator. This is foremost determined by climate data, which are
rarely available at higher resolutions at a global scale. Further common input data are
management information and in most cases soil data and topography (Miller et al., 2017). The
latter two are available at increasingly fine resolutions well below 1 km (Hengl et al., 20174,
Jarvis et al., 2008), while management is typically reported at national or subnational
administrative levels (e.g. Sacks et al., 2010; Mueller et al., 2012). In few cases, simulations are
run at the sub-grid level accounting for some heterogeneity in soil and topography (Skalsky et
al., 2008; Balkovic et al., 2014). Regardless of the spatial resolution, each simulation unit is

treated as a homogenous field in the crop model.

While this spatial resolution provides sufficient detail for robust assessments at macro
scales such as the country level, there is increasing concern that GGCM estimates and hence

impact assessments at coarse resolutions often miss actual on-ground conditions. As only
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average or dominant characteristics present within each grid are considered for simulations,
assumptions and data may not match actually farmed land (e.g. Folberth et al., 2016) and
farming practices (e.g. Reidsma et al., 2009). In addition, they may omit farm-level
heterogeneity present at the sub-grid level (Ewert et al., 2011), which is essential for local to

regional decision-making and stakeholder information (Rosenzweig et al., 2018).

Applying gridded crop models at very high spatial resolutions on the other hand increases
computational demand substantially and is often limited by data availability as outlined above.
Foremost climate data at suitable temporal resolutions for crop models - which is typically a
daily time step (Muller et al., 2017) - are hardly available at fine spatial resolutions. The
presently highest resolving global daily dataset known to the authors has 0.25° x 0.25° (Ruane et
al., 2015), while regional products may have resolutions of up to 0.11° x 0.11° (Haylock et al.,
2008). Temporally coarser data e.g. with a monthly time step, however, are available at very fine

resolutions up to <1 km (e.g. Wang et al., 2016; Fick and Hijmans, 2017).

An approach lending itself to address these issues in an efficient and flexible way is the
use of meta-models built from coarser GGCM simulations. This allows for deriving estimates of
crop yields and associated agricultural externalities at high, virtually scale-free, spatial
resolutions without requirements for setting up high-resolution crop model infrastructures
including their comprehensive data requirements. There is no scientific literature on crop meta-
model development for spatio-temporal predictions across scales known to the authors. The
potentially most closely related field is the recently evolving crop model emulator development
at the grid cell level. Examples are the development of regressions along climate change

trajectories as such (e.g. Blanc and Sultan, 2015; Blanc, 2017) or the use of global crop model

5
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simulations with artificial alterations of climate variables to retrieve estimates of climate change
impacts for assessment studies based on regressions along temperature, precipitation, and CO>
concentrations (Ruane et al., 2017; Rosenzweig et al., 2018). The production of high-resolution
crop yield surfaces in contrast is foremost accomplished using simplified crop model algorithms
(e.g. HASA/FAO, 2012) or purely statistical approaches (e.g. Mueller et al., 2012). Common to
all referenced approaches is that they (a) are based on narrow sets of a priori selected covariates
based on modelers’ assumptions and (b) do not allow for or have not been tested for the joint
evaluation of agricultural productivity and externalities. Crop model emulators are in addition
typically parameterized at the grid level, which renders them spatially determined and scale-

depended.

The presently most flexible approaches for data-driven development of models with high
accuracy can be found in the field of machine learning. Machine learning is a collective term for
a wide range of data analysis and data-driven forecasting techniques. The most advanced
techniques are characterized by the ability to digest large amounts of covariates (herein syn.
features, syn. predictors) to provide predictions for both numeric and categorical variables with
algorithms of high complexity and flexibility, which determine the relevance of provided
covariates themselves (e.g. Witten et al., 2016). Examples of methodologic approaches are
neural networks, various forms and derivatives of regression trees, as well as clustering
techniques. While simpler methods such as multiple linear or lasso regressions are typically
computationally faster and straightforward to interpret, they show typically a substantially lower
performance. Within agricultural sciences, applications are to date mostly limited to processing

and analyzes of remote sensing data (e.g. Duro et al., 2012; Ali et al., 2015). Few exceptions are
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the development of crop nutrient response models for studying yield responses in sub-Saharan
Africa based on field trial data (Hengl et al., 2017b) and the use of data mining tools for

identifying crop growth limitations (Delerce et al., 2016).
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Figure 1. Schematic representation of the downscaling approach presented in this study.
Machine-learning derived meta-models trained on global crop model outputs and
covariates at a comparably low spatial resolution are used for producing regional

estimates of corresponding variables at a higher spatial resolution.

In this study, we evaluate machine learning as an approach for building crop meta-
models. The focus is on the feasibility to use low-resolution global crop simulations of maize

yield potential for predictions at a high resolution, here exemplary the extent of Mexico, as
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depicted schematically in Figure 1. Non-nutrient and pest limited yield potentials (Lobell et al.,
2009) with and without sufficient water supply were selected as a target variable as they allow
for a thorough evaluation of climate-related covariates without inference from soil nutrient
trajectories. Two of the presently most flexible and in recent competitions best performing
(Fernandez-Delgado, 2014; Chen and Guestrin, 2016) machine learning approaches for numeric
predictions, extreme gradient boosting and random forests, are tested and compared against crop
model simulations carried out at the finer resolution. Objectives of the study are to (a) evaluate
the meta-model performance in downscaling the low-resolution global yield simulation to high-
resolution predictions in the study region of Mexico, (b) identify most important covariates
required by the meta-model, and (c) test the approach for predictions of selected agricultural
externalities across scales. To provide an exemplary application case, machine learning model
predictions are performed at a very high spatial resolution (1 km x 1 km) in major producing
areas and benchmarked against reported inter-annual yield variability, a key performance
indicator for climate change impact assessments (Mdller et al., 2017). Finally, an outlook

provides suggestions for further steps to extend the models’ capabilities.

2 Methods and Data

2.1 Gridded crop model description

Crop simulations were carried out using a gridded version of the Environmental Policy
Integrated Climate model (EPIC). EPIC was initially developed to assess the impacts of
management on crop yields (Williams, 1995). It has constantly been updated to cover additional

processes such as effects of elevated atmospheric CO> concentration on plant growth (Stockle et
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al., 1992), detailed soil organic matter cycling (lIzaurralde et al., 2006, Izaurralde et al., 2012),
and an extended number of crop types and cultivars (e.g. Kiniry et al., 1995; Gaiser et al., 2010)
among others (see Gassman, 2004). More details of the crop growth model are provided in

Supplementary Text S1.

The gridded version of EPIC used here, EPIC-ITASA (Balkovi¢ et al., 2014), runs the
EPIC model for a given set of simulation units derived from intersecting homogenous response
units (soil and topography), administrative borders, and climate grids (Skalsky et al., 2008).

Thereby, each simulation unit is treated as a representative, homogenous field.

2.2 Study regions, delineation of simulation units, and simulation period

Simulations and meta-model predictions were performed (a) at the global scale at a
coarse spatial resolution and (b) for Mexico at a finer resolution. The latter was selected as an
exemplary study region as it encompasses the three major climates tropic, temperate, and (semi-
)arid and has a large coverage of maize harvest areas. The basic spatial resolutions at the two
scales were grids of 5 (global) and 0.5 (Mexico), respectively, serving also as basic references
for spatial harmonization of all underlying input data (topography, soil, and land cover).
Individual pixels were aggregated to homogeneous response units (HRUs) based on slope,
altitude and soil classes. HRU provide aggregated spatial units which are expected to be
homogenous in their bio-physical response and relatively stable over time. The basic bio-
physical drivers assumed for an HRU are hardly adjustable by farmers, which allows for
analyzing impacts of the same management practices employed across a variety of natural

conditions. Intersecting HRUs with administrative units (countries globally and states for
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Mexico) and the climate grids of 0.5° x 0.5° and 0.25° x 0.25° resolution at the global and
Mexican scale, respectively, resulted in final simulation units with a total number of 1.3 x 10°
globally and 2.3 x 10° for Mexico. Spatially explicit inputs for EPIC on topography and soil were
then calculated as mean (altitude) or majority (slope, soil) values across all pixels within the
simulation unit. Additional evaluations were carried out for the Mexican state of Jalisco, which is
the top rainfed maize producing state in the country according to Servicio the Informacion

Agroalimentaria y Pesquera (SIAP, 2018b).

Simulations were performed for the years 1980-2010 based on climate data coverage
(Section 2.3.1) and evaluated for the period 1990-2009 as the crop model equilibrates during the
first simulation years and the global simulations used for training machine learning models did

not provide outputs for the year 2010 in regions with growing seasons crossing years.

2.3 Crop model input data

2.3.1 Climate data

Gridded climate data were obtained from the publicly available AQMERRA climate
dataset (Ruane et al., 2015) at spatial resolutions of 0.5° x 0.5° for global simulations and
predictions and 0.25° x 0.25° for the study region of Mexico. AQMERRA covers the period
1980-2010 and combines data from the Modern-Era Retrospective Analysis for Research and
Applications (MERRA,; Rienecker et al., 2011), station data, and remotely sensed datasets and
has been bias corrected using stations from agricultural land only. The high-resolution version
was obtained from the providers’ website directly, the coarser resolution was provided through

the Global Gridded Crop Model Intercomparison (GGCMI) project (Elliott et al., 2015).

10
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Although higher resolution monthly climate data would be available for the study region (e.g.
Wang et al., 2016) allowing for higher resolution meta-model predictions, these would not allow

for benchmarking against EPIC simulations requiring daily climate data.

2.3.2 Soil data

Soil data were retrieved from the Harmonized World Soil Database v1.2 (HWSD;
FAO/INASA/ISRIC/ISS-CAS/IRC, 2012) at both spatial scales. For each grid cell at 5 (global)
or 0.5” (Mexico) resolution, the dominant soil type of the largest soil mapping unit was selected
as the representative soil type. Soil characteristics considered in EPIC and the machine learning
approaches are depth, texture, coarse fragment content, bulk density, soil organic carbon content,
pH, electric conductivity, cation exchange capacity, base saturation, and carbonate content

(Table 1).

2.3.3 Topography

For the global setup, elevation data were adopted from GTOPO30 (USGS, 2002)
calculating the mean elevation in each simulation unit. Slope classes were obtained from the
Global Agro-ecological Zones Assessment for Agriculture (GAEZ; Fischer et al., 2012). For the
high-resolution setup constructed for Mexico, both elevation and slopes were derived from the

SRTM 4.1 database provided by CIAT-CSI (Jarvis et al., 2008).

2.3.4 Land use

Global low-resolution simulations were carried out for all simulation units presently

containing cropland according to at least one of the datasets Global Land Cover 2000 database

11
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(Global Land Cover 2000 database, 2003) or SPAM (You et al., 2017). For Mexico, simulations
were done for all simulation units and MIRCA2000 was used for identifying simulation units
containing relevant maize harvest area, here defined as >5% of total area. Selected analyses were
restricted to these in order to evaluate model performance for the whole land and relevant

cropland only.

2.3.,5 Crop management

Maize was used as a model crop due to its extensive cultivation globally and in Mexico.
Default crop parameters from the EPIC model were used, which reflect a high-yielding variety
adapted to warm climate (Kiniry et al., 1995). Crop growing seasons were adopted at both scales
from Sacks et al. (2010) as provided by Elliott et al. (2015). PHU were calculated from planting
to harvest using long-term monthly climate data for the whole time-period covered by the

AgMERRA climate dataset (1980-2010) at each spatial resolution separately.

To obtain non-nutrient limited maize yield potentials (Lobell et al., 2009), mineral N
fertilizer was applied automatically by the EPIC model based on plant stress to avoid plant
growth limitations due to nutrient deficits, which may cause trends in yields over time due to
nutrient mining. The maximum applied amount of fertilizer was set to 500 kg N ha yr, which
is commonly more than sufficient for maximizing maize yields (e.g. Folberth et al., 2013).
Simulations were carried out with water supply either from precipitation only (rainfed) or with
sufficient supplementary irrigation water supply (fully irrigated). Irrigation water was applied

based on plant stress analogously to fertilizer with an annual maximum volume of 2000 mm.

12
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Other management practices were kept at a basic level with four operations in each season: field

cultivation, planting, harvest, and stover removal.

2.4 Machine learning framework

We test two state-of-the-art tree-based ensemble methods, extreme gradient boosting and
random forests. Ensemble methods employ a collection of learning algorithms to achieve better
predictive power than could be gained from any of these algorithms alone. For ensembles such as
extremegradient boosting and random forests, it is typical to use trees as building blocks to
allow for invariance to scaling of inputs andcomplex interactions between features. Since
ensembles have additional parameters responsible for aggregation of learning algorithms, they
have more flexibility in fitting training data than single-algorithm approaches do. Thus,
ensembles are more prone to overfitting. Overfitting is prevented through out-of-bag error
monitoring, n-fold cross-validation, correction of the ensemble by regularization that makes the
training procedure more conservative, and testing on the holdout dataset covering 25% of
observations (see below). Both extreme gradient boosting and random forests are insensitive to
multiple correlation of covariates with respect to prediction accuracy and overfitting. The
quantification of variable importance, however, may be affected if covariates are strongly

correlated (see Section 2.4.3).

Crop model simulation data (serving here as observations) for building machine learning
models was randomly split into training and validation sets containing 75% and 25% of samples,
respectively, which is a common split ratio in machine learning. About 19.5 x 10° samples

(simulation units x simulation years) were used for model training and 6.5 x 10° for validation.
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Machine learning models were built separately for the two water management scenarios, rainfed
or sufficiently irrigated, within the statistical computing software R (R Development Core Team,

2008) using the packages specified in the following sections.

To streamline the presentation of results, the main body of the paper focuses on results
from extreme gradient boosting. The evaluation of the random forests models is presented in the

Sl and discussed within the main body where relevant.

2.4.1 Extreme gradient boosting

Similar to other boosting methods, extreme gradient boosting is an ensemble learning
technique that sequentially builds the model: each tree is fit on a modified version of the original
training data set. l.e., every new tree uses information from previously grown trees. This is the
key difference to random forests (see below). Extreme gradient boosting generalizes boosting
methods by allowing minimization of an arbitrary differentiable loss function. In this study, we
employed the R package XGBoost for extreme gradient boosting, a highly efficient realization of
the gradient boosting approach that showed the best performance in recent machine learning
challenges (Chen and Guestrin, 2016). Being a learning algorithm with high flexibility, extreme
gradient boosting is prone to overfitting, especially, if training data are scarce, which is not the
case here. Typically, parameter tuning is done by performing an exhaustive grid search along
parameter dimensions using the default parameters as the reference point. This was here not
considered meaningful due to the vast amount of training data, rendering a full grid search
computationally inefficient and unneeded, due to extremely low error obtained already in a

limited grid search. l.e., we tuned only key parameters for shrinkage and learning (eta,

14
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max_depth, nrounds; Table S1). In our case, the default parameter values resulted in stable but
improvable performance with R?=0.94 for the test dataset. This suggested to increase the
maximum tree depth and local variation of the learning rate (eta). The grid search resulted in
R?=0.99 for both training and test data with eta=0.15 or 0.30 and max_depth=15 or 20. The
lowest RMSE in both training and test data was obtained with eta=0.15 and max_depth=20 in a
five-fold cross validation (Table S2). Although this parameter set results in a marginal overfit, it
also showed the best performance in regression metrics and mean absolute error (MAE; not
shown), the main performance indicators used herein (see section 2.5.1). It was hence selected
for performing the predictions. Extending the grid search to by increasing the rounds of tree
building (nrounds) from 60 to 100 provided only a negligible increase in performance (Table
S2). Resulting parameters were hence eta=0.15, max_depth=20, and — to ensure very high

accuracy - nrounds=100.

Since extreme gradient boosting may produce negative predictions even if the training
data does not have them, the lower boundary was set to zero and all predictions below corrected
to this value. This was the case for rainfed crop yields in 0.1% of samples with predictions of up
to -0.19 t ha! in the validation set and 0.02% of the predictions for Mexico with up to -0.08 t ha-
! Irrigated crop yield predictions were affected in the validation set only with up to -0.09 t hat in

<0.01% of samples.

2.4.2 Random forests

In contrast to boosting methods, tree ensembles build a number of models in parallel

from which average predictions are derived. Bagging is a basic approach to introduce an
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ensemble that consists of a number of decision trees trained on random subsets of data
(bootstrapped training samples). Random forests (Breiman, 2001) employ not only bagging (row
sub-sampling) but also column sub-sampling, i.e., every time a split in a tree is examined for a
random subset of candidate features drawn from the full set of features. This effectively de-
correlates the trees. As reported in a recent meta-study of machine learning algorithms
(Fernandez-Delgado, 2014), random forests was identified as the best family of classifiers. In
this study, random forests models were constructed using the R package h20, which serves as a

link to the H20O.ai machine learning cluster environment (The H20.ai team, 2017).

As random forests are less prone to overfitting, global parameters were tuned to achieve a
reasonable balance between performance and computational demand, which increases linearly
with number of trees and tree depth. Major parameters to adjust in random forest are number of
trees (ntrees), maximum tree depth (max_depth), and a number of features considered for each
split decision (mtries). The latter is per default one third of total features for numeric predictions.
Starting from the default values ntree=50, max_depth=20, and mtries=[number of features]*0.3,
we found an increase in performance in terms of regression coefficients and MAE of the test
dataset up to max_depth=30 with negligible improvements if ntree was increased from 50 to 80
(Figure S1). Further increasing the parameter values provides a marginal increase, but would not
justify the increase in computational demand, which is already at any point substantially higher
than for extreme gradient boosting (see also section 4.4). Increasing or decreasing the parameter
mtries from about 33% of feature number as a default to 20% or 50% affected model
performance only marginally as well with no changes in R? or slope and changes by +0.01 t ha'

in intercept and MAE.
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2.4.3 Feature importance

Both methods determine feature importance internally. To obtain an overall summary of
the importance of predictors, the residual sum of squares (for regression) or the Gini index (for
classification; Breiman et al. 1984) are used. For ensembles of regression trees, the total amount
by which the residual sum of squares is decreased by splits over a fixed feature is calculated and
then average over all trees. Larger values point to predictors that are more important. Likewise,
in the case of ensembles of classification trees, the total amount that the Gini index is reduced
due to splits is cumulated over a given feature and averaged over all trees. For both machine
learning methods, we present the relative importance of each feature as percentage. Due to
differences in the estimation of feature importance, it is not feasible to compare importance
across different algorithms quantitatively. In addition, multiple correlated features, which can be
expected here at least among soil characteristics or (monthly) climate variables, are known to
bias the quantification of feature importance (Tolosi and Lengauer, 2011). E.g., if two features
included in an extreme gradient boosting model are perfectly correlated, each of them will
receive 50% of the actual importance. For these reasons, we focus in the evaluation of feature

importance foremost on the ranking of features rather than their quantitative contributions.

2.4.4 Machine learning features and feature engineering

Table 1. Features and target variables used in machine learning experiments. Several statistics
were calculated for each climate variable VAR in the first section of the table as listed in
the second section. Averages were calculated for the temperature indices TMX and TMN,

sums for all others. Total number of features is 247, the maximum number used in model

17
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training is 151 (Table 2). The attributes transient and static in the section headings refer

to the temporal dimension.

Abbreviation

| Variable description

Climate variables (VARSs; transient)

TMX Maximum temperature [°C]
TMN Minimum temperature [°C]
GDD Growing degree days [°C]
RAD Solar radiation [MJ m?]
PET Potential evapotranspiration [mm]
PRCP Total precipitation [mm]
WET Wet day frequency [d]
CMD Climatic moisture deficit (PRCP-PET) [mm]

Temporal aggregates and derivatives of climate variables (transient)
VAR_X Monthly value for month X {1:12} since planting (e.g. “TMX 1)
VARsd_X Standard deviation of mean value in month X {1:12} (e.g. “TMXsd 17)
VARavYRcal Average of climate variable in calendar year (January to December)
VARsumYRcal Sum of climate variable in calendar year (January to December)
VARavYRgs Average of climate variable in growing season year (12 months from planting)
VARsumYRgs Sum of climate variable in growing season year (12 months from planting)
VARsKYRgs Skew of climate variable in growing season year (12 months from planting)
VARavGS Average of climate variable in growing season (planting month to harvest)
VARsumGS Sum of climate variable in growing season (planting month to harvest)
VARSkGS Skew of climate variable in growing season (planting month to harvest)

Soil and site variables (static)
DEPTH Total soil depth [m]
SAND Sand content in topsoil [%]
CLAY Clay content in topsoil [%]
PH pH in topsoil [-]
SB Sum of bases in topsoil [cmol kg™]
CEC Cation exchange capacity in topsoil [cmol kg™]
EC Electric conductivity in topsoil [mmho cm™]
ROK Coarse fragment (rock) content in topsoil [%]
BD Bulk density in topsoil [g cm]
CARB Carbonate content in topsoil [%]
0oC Organic carbon content in topsoil [%]
PAW Total plant available water capacity [m® m]
HG Soil hydrologic group (water infiltration potential) [-]
SLP Hill slope [%]
Cultivar and growing season variables (static)
PHU Potential heat units/growing degree days from planting to maturity [°C]
LVP Length of vegetation period. Average days from planting to maturity [d]
Target variables (transient)

YLDG Maize crop yield [t ha'!]
CAW Crop available water [mm]
GSET Growing season evapotranspiration [mm]
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Features are based on crop model input data, i.e. soil, climate and management
specifications as described in Section 2.3. Daily climate data were in a first step aggregated to
monthly sums or averages depending on the variable. For each simulation unit, the month of
planting was designated as month 1 to harmonize the order of months from planting globally.
Subsequently, annual and growing season values were calculated for (a) the growing season
months (based on the static length of reported vegetation period (LVP)), (b) the calendar year,
and (c) a year starting from the planting month (Table 1). This process is referred to as feature

engineering, i.e. the specification of model features beyond raw data based on expert knowledge.

Soil variables were foremost adopted for the topsoil, which has the largest impact on crop
growth. Only variables with high importance for water availability, depth, plant available water
capacity (PAW; difference of water contents at field capacity and wilting point), and hydrologic
soil group (HG) refer to the whole soil profile. Additional characteristics considered potentially
relevant for the meta-models were hill slope as a site characteristic and PHU and LVP as cultivar

characteristics.

Models were built for three target variables: maize crop yield (yield hereafter), growing
season ET (GSET), and crop available water (CAW). The latter is a balance of initial soil
humidity at the beginning of the growing season, growing season precipitation and irrigation

water if provided, surface runoff, and percolate.

To evaluate the importance of raw and engineered climate features, the machine learning
models were trained with various feature subsets (Table 2). Soil and site data, PHU, and LVP
were considered in all scenarios to evaluate the importance of climate variables only. Annual

climate data can be considered the most general feature set. Growing season climate considers
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the mean or sum of climatic conditions experienced by the crop. Monthly data in turn account for
intra-seasonal variability and climate effects in certain growth stages. The complete climate
feature set takes all aspects into account and solely lets the algorithm select the most relevant
features. Thereby, months beyond the sixth from planting were excluded to keep the number of
features at a reasonable extent, considering that maize cultivars hardly require >180 days to

reach maturity.

Table 2. Climate feature subsets used in the analyses. Besides indicated climate features (see

Table 1 for details), soil and site data, PHU, and LVP were considered in all training sets.

Feature subset Climate features considered Number of features
annual climate VARavYRcal, VARsumYRcal 23

growing season climate | VARavGS, VARsUumGS 23

monthly climate VAR_X (with X < 6) 63

complete climate all features except VAR X with x > 7 151

2.5 Performance metrics and model evaluation

2.5.1 Machine learning model performance compared to crop model simulations

Model performance was assessed using linear regression of (a) meta-model predictions
against the validation subset of global EPIC simulations and (b) downscaling predictions against
the high-resolution benchmark simulations for Mexico. Mean absolute error (MAE) was used as
a metric for mean model bias. Nash-Sutcliffe efficiency (NSE) was used as an indicator for the

accuracy of inter-annual yield variability.

The coefficient of determination R? was calculated according to
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- (1)

where i is the number of the sample point (one simulation year-location) considered, n is
the total number of sample points across simulation units and years, Yref is the reference crop

yield, @ s the fitted yield, and & is the arithmetic mean of reference samples.

MAE was calculated as

booO > hhe ?)

where Ypred,i is the machine learning model predicted value for data point i and Yy, is the

corresponding EPIC simulated reference value.

NSE is a common metric for model performance over time, used especially in hydrology
(Nash and Sutcliffe, 1970). It is calculated using the same variables as the prior metrics but

separately for each simulation unit over time according to

6YOp = ¢ 3)

where Ypredt 1S the yield estimated by the meta model for year t and Yrert the
corresponding reference. NSE can range from -co to +1 with NSE>0 indicating that model
predictions are more useful than the mean of reference data. As NSE is sensitive to both absolute
values and their temporal dynamics, it was in addition calculated for zero-centered yield values
(sample mean removed) in order to assess inter-annual yield variability alone, which is
considered a vital GGCM evaluation characteristic for climate (change) impact assessments (e.g.

Miiller et al., 2017).
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Evaluations were partly carried out at the level of major Koeppen-Geiger climate regions
(Figure S2) following the rules of Peel et al. (2007). Koeppen-Geiger regions were identified for
each 0.25° x 0.25° climate grid for the 31-year climatology of the AQMERRA dataset 1980-

2010.

2.5.2 Model performance compared to regional statistics

The EPIC model itself and the global gridded EPIC-1IASA framework have been
evaluated and validated thoroughly at various scales from the agricultural plot (Kiniry et al.,
1995; Gassmann et al., 2004; lzaurralde et al., 2006) to regional (Gaiser et al., 2010; Folberth et
al., 2012) and global assessments (Balkovi¢ et al., 2014; Miiller et al., 2017) finding good
agreement with reported yields. Here we provide a brief evaluation of model performance in
terms of inter-annual yield variability expressed as NSE (eq. (3)) for the top ten maize producing
municipios (second-level administrative units) of the major maize producing state Jalisco, where
crop management can be considered fairly stable and data quality reasonable. This also illustrates
an exemplary application of the machine learning framework. Reported maize yields were
obtained from SIAP (2018a). Crop yields are reported since the year 2003 at the second
administrative level, resulting in an evaluation period from 2003-2009 considering the time
period for crop model simulations (see Section 2.2). Besides the machine learning predictions
corresponding to the high-resolution input data for the crop simulations at the scale of Mexico
(see Section 2.3.1), predictions were also produced using monthly climate surfaces from
ClimateNA 5.60 (Wang et al., 2016) at a spatial resolution of 1 km x 1 km and a national soil
dataset (INEGI, 2004) besides HWSD to assess the impact of higher resolution climate data and

regional soil data products, a major application opportunity for the methodology presented
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herein. Maize planting dates recorded in the year 2017 were obtained from SIAP (2018b). All

yields were de-trended linearly to correct for changes in management intensity.

2.6 Computational framework

All computations, evaluations and plotting were done within the R software environment
(R Development Core Team, 2008). Machine learning models were built using the packages
specified in sections 2.4.1 and 2.4.2. Figures were produced using ggplot2 (Wickham, 2009).
Statistical analyses beyond linear regression were carried out with hydroGOF (Zambrano-

Bigiarini, 2017).

3 Results

3.1 Global scale model performance for crop yields

The global extreme gradient boosting meta-models for irrigated and rainfed maize yields
based on the full climate features show a near perfect fit and low mean bias in both cases (Figure
2a,b). Large over— and underestimations in predictions are rare. The first occur foremost at low
simulated yields, the latter at high ones with a negative trend beyond 12 t ha* (see Figure S3a,b
for residual plots). For rainfed yields, noticeable deviations in density distributions of EPIC
simulated and extreme gradient boosting predicted yields occur below 2 t ha* and around 6-7 t

ha! (Figure 2c). The density distributions are nearly identical for irrigated yields (Figure 2d).
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438  Figure 2. Hexbin and regression plots for EPIC simulated and extreme gradient boosting
439 predicted crop yields in the validation dataset (25% of total samples) for (a) rainfed and
440 (b) irrigated conditions and corresponding density distributions for (c) rainfed and (d)
441 irrigated conditions. Red dashed and grey solid lines in (a) and (b) show 1:1 line and

442 regression, respectively. See section 3.4 and Sl for random forest models.
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3.2 Performance of crop yield predictions for Mexico

3.2.1 General performance and patterns

The accuracy of rainfed and irrigated yield predictions for Mexico at a high spatial
resolution (Figure 3a,b) is nearly up to that of the global validation data with 97% of variance of
EPIC simulated yields explained by the extreme gradient boosting models in both cases. Slopes
of the linear regressions are lower and the intercepts are higher than at the global scale indicating
biases at the lower and upper bounds of simulated yields. MAE increases by up to 0.5 t ha™* but
is still considerably low concerning the mean of crop yield estimates. Overestimations by >100%
occur in both water management scenarios with a cluster of data points around 3.5 t ha™* of EPIC
simulated yields. These are related to remaining nitrogen stress in few simulations (0.5% of
samples) due to extreme soil-climate combinations on which the automatic fertilizer application
of up to 500 kg N yr* does not suffice to fulfill plant requirements caused by vast losses of N in

runoff. Removing these simulations has no discernible effect on model performance (Figure S4).

The distributions of rainfed yield estimates and predictions exhibit a bimodal pattern with
over- and underestimation especially at the lower bound where the peak is shifted by about 1 t
hat (Figure 3c). This is to a lesser extent also the case for the distributions of irrigated yield
estimates and predictions (Figure 3d). In addition, irrigated yields predicted by the extreme
gradient boosting model exhibit clustering, i.e. with overestimation peaks around 4, 5.5, and 10 t

ha! and valleys at 3 and 12 t ha'*, while EPIC simulated yields show a smoother distribution.

Using the more parsimonious climate feature sets decreases model performance (Table

S5) similar to the global scale validation data (Table S4). The largest decrease occurs for the
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most set of growing season climate data, while again hardly any difference is found when using

the monthly climate features.
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Figure 3. Same as Figure 2 but comparing the high-resolution downscaled predictions and

benchmark EPIC simulations for Mexico.

Comparing low-resolution simulations, high-resolution simulations, and high-resolution

machine learning predictions at the scale of a single state of Jalisco for rainfed maize yields in
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the year 2000 shows that the machine learning predictions can fairly well reproduce the
heterogeneity seen in the high-resolution simulations (Figure 4a,c). Notable differences are
apparent in the region west of -104.5° and north of 20°, where the predictions are about 20%
lower than the simulation results and parts of the southern and northern state where predictions
are up to 40% higher (Figure 4d). Overall, the distributions of yields agree fairly well (Figure
4b), but the predictions omit moderate and very high yields, indicating peaks around 7.5 and 9 t
ha! and a valley at 10.5 t ha, which are not present in the simulations. Still, yield predictions

and simulations are correlated with R?=0.87 (Figure S5a).
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Figure 4. Examples of rainfed maize yields for the year 2000 in the state of Jalisco from (a)
high-resolution EPIC simulation, (c) high-resolution machine learning prediction, and (e)
global low-resolution simulation. (b) Shows the corresponding density distributions for
which yield estimates from the low-resolution simulations have been resampled to the
higher resolution to obtain at consistent sample sizes. (d) and (f) show the relative
differences of (c) and (e) compared to (a), respectively. Regressions and statistics are
presented in Figure S5a,b. The rectangular grid represents the 0.25° x 0.25° climate grid.
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487 Expectedly, low-resolution EPIC estimates (Figure 4e) agree only with respect to large-
488  scale patterns. Substantial overestimation by up to 60% occur in the central parts and

489  underestimation by up to 30% foremost in the west but also scattered at the subgrid level (Figure
490  4f). The yield distribution is biased towards higher yield estimates (Figure 4b) and the coefficient
491  of determination is R?=0.64 (Figure S5b). The arithmetic means at the state level are 9.06 t ha™!
492  for the high-resolution simulations, 8.85 t ha™ for the predictions, and 10.15 t ha™* for the low-
493  resolution simulations, corresponding to an overestimation by 11.98% for the low-resolution

494  simulations and an underestimation by 2.31% for the extreme gradient boosting predictions.

495  Hence, despite remaining differences, the high-resolution predictions reproduce the

496  corresponding simulations quite robustly compared to the EPIC outputs derived from more

497  granular input data.

498  3.2.2 Reproduction of inter-annual crop yield variability

499 NSE is greater than zero in around 20-30% of all simulation units for predictions of

500 rainfed yields by the model based on calendar year climate features alone (Figure 5a-c). The
501  model trained with the full set of climate features in contrast shows a substantially better

502  performance, especially in tropic climates. If simulated and predicted yields are zero-centered
503 and only present cropland is considered, NSE performance turns out substantially better for both
504  feature sets (Figure 5d-f) and again to a very high degree for the extreme gradient boosting

505 model trained on the full climate feature set.

506
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Figure 5. Violin plots of Nash-Sutcliffe Efficiency disaggregated by major Koeppen-Geiger

climate regions (see section 2.5) for the feature subsets using calendar year climate

variables only or all climate features. (a-c) All simulation units of Mexico with raw data

or (d-f) only simulation units with >5% maize harvest area and zero-centered yield

variability. Percentages indicate the fraction of simulation units with NSE>O0.

Complementary statistics are provided in Table S6. The extent of the y-axis was limited

to -5 for better readability.
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With sufficient irrigation water supply, NSE performance is overall lower while the
patterns remain quite similar, resulting in only few simulation units with NSE>0 for the model
based on annual climate data (Figure S6a-f). A key difference to rainfed yield estimates is the
lower performance in (semi-)arid regions, where inter-annual yield variability decreases

substantially if sufficient water is supplied.

At a higher level of spatial aggregation — here the arithmetic mean for major Koeppen-
Geiger climate regions —, inter-annual dynamics are well represented when considering all
simulation units (Figure 6a-c). Similar to the distributions presented above (Figure 5),
performance is best in tropic climates and poorest in (semi-)arid regions, but NSE is in all cases
well above zero and MAE < 0.25 t ha™. If only present cropland is considered (Figure 6d-f),
performance decreases marginally in tropic and temperate climates, while it improves
substantially in (semi-)arid climate where mostly highly arid simulation units are now neglected
and predominantly simulation units with erratic rainfall remain (not shown). Foremost the latter
climate region shows that the yield predictions can quite well reflect both yield peaks and

valleys.

If sufficient irrigation water is supplied, the agreement with EPIC simulations in terms of
NSE decreases substantially in temperate climate if all simulation units are considered but
remains very similar in tropics and (semi-)arid climate (Figure S7a-c). For present cropland
alone, the agreement in terms of NSE decreases most in (semi-)arid climate compared to rainfed
yield estimates, followed by temperate regions. Predictions for the tropics still show very good

agreement.
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Figure 6. Inter-annual dynamics of mean rainfed yields for each Koeppen-Geiger climate region

of Mexico (see section 2.5) considering (a-c) all simulation units or (d-f) only simulation

units intersecting with substantial maize harvest areas (see section 2.3.4).

3.3 Feature importance and the role of feature engineering

With rainfed water supply only, the sum of precipitation during the growing season

(PRCPsumGS) is the by far most important predictor (Figure 7a), followed by calendar year

precipitation PRCPsumYRcal, PHU, and LVP. Temperature, radiation, and soil-related features

are of moderate to minor importance. Soil variables matter only with respect to water
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545  availability, driven by depth and PAW, which is a composite of texture, SOC, and depth. Other
546  soil variables, which are mostly related to nutrient availability, matter less due to the estimation
547  of yield potentials. With sufficient irrigation, the temporally static cultivar and management
548  characteristics PHU and LVP are the most important features, followed by the annual growing
549  degree day sum GDDsumYRcal and a wider set of transient climate features, which are

550 expectedly related to temperature and solar radiation (Figure 7b). Precipitation and ET-related
551  features do not occur among the top ranking features except for CMD_4. Among the soil

552  characteristics, again depth and PAW are the most relevant features.

553 Comparing the variable importance of different subsets of features for model training
554  (Figure S8; see Table 2 for feature subsets) shows that for rainfed water supply, precipitation-
555  and cultivar-related features are consistently the most important predictors (Figure S8a,c,e).

556  Beyond, the ranking of features depends on the feature set with PET derivatives exhibiting rather
557  low importance among climate features. Notably, soil characteristics beyond depth and PAW are
558 typically lowest ranking if occurring at all. With sufficient irrigation water supply, PHU and

559  LVP are consistently the most important features (Figure S8b,d,f) followed predominantly by
560  temperature and radiation indices. As for rainfed yield estimates, depth and PAW occur in all
561  feature set as moderately higher-ranking covariates. Precipitation- and PET-related features are
562  only present in the parsimonious models with 23 features in total, except for CMD_4 in the

563  model based on monthly features.
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Figure 7. Feature importance for the extreme gradient boosting models for (a) rainfed and (b)

irrigated conditions. Only top 20 features (see Table 1 for details) are shown. The x-axis

is log(x+1) transformed for better readability.

3.4 Random forests models compared to extreme gradient boosting

Statistical coefficients for the random forests predictions in the global validation dataset

are highly comparable to those from extreme gradient boosting (Table S4) with a marginal

tendency towards lower slopes and higher intercept and slope under rainfed conditions.

Predictions for Mexico in turn (Table S5) result typically in slightly higher intercepts and MAE

as well, but higher R? especially for the parsimonious feature sets under irrigated conditions.

NSE statistics in contrast are almost consistently poorer. For the full set of climate

covariates under rainfed water management, the numbers of simulation units with NSE>0 are in
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all cases lower or virtually equal (Table S8; c.f. Table S6). Most notable difference are apparent
for the models trained on the full climate feature set in tropic regions. This is even more
pronounced for irrigated conditions, where the number of simulation units with NSE<O is up to

40% lower than the extreme gradient boosting predictions (Table S9; c.f. Table S7).

Accordingly, predictions aggregated to Koeppen-Geiger regions show also a poorer fit,
but differences are here less pronounced and apparent foremost in NSE statistics (Figure S12 and
Figure S13). This is most evident under rainfed conditions in (semi-)arid regions if all simulation
units are considered (Figure S12a-c). Under irrigated conditions, NSE is even negative in (semi-
)arid climates, no matter whether all simulation units are considered or present cropland only,

(Figure S13a,d) and in temperate climate if all simulation units are considered (Figure S13b).

Variable importance remains structurally similar among feature subsets and water supply
regimes (Figure S14) compared to extreme gradient boosting (Figure 7; Figure S8) concerning
the overall ranking of features with some predictors moving up or down a few positions. A
striking differences, however, is that random forests rank also variables indicating distributions,
I.e. standard deviation, among the more important features, while extreme gradient boosting

predictions are foremost relying on sums and averages.

3.5 Reproduction of reported inter-annual yield variability

The evaluation of inter-annual yield variability for the top producing municipios in
Jalisco (Figure S15) shows that NSE is positive in the majority of municipios and hence
satisfactory in all crop yield predictions from both EPIC and the extreme gradient boosting

models. Lowest median performance was found for the global simulations (EPIC global),
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followed by the high-resolution EPIC simulations at the scale of Mexico (EPIC high-res) with a
slight tendency towards higher NSE. Interestingly, the median NSE for extreme gradient
boosting predictions (Predicted high-res) is higher than for the EPIC simulations at the same
resolution. This is mainly due to one municipio with rather poor performance in the simulations,
while the predictions (Predicted high-res) do not achieve very high performance in other
municipios where EPIC simulations result in up to NSE=0.8. The overall best rendition of inter-
annual yield variability is produced by the machine learning predictions using 1k-resolution
monthly climate surfaces (Predictions 1k) and more so if a national soil data product is used
(Predictions 1k CRU x INEGI) with a median NSE of 0.42 as opposed to 0.20 in the high-
resolution EPIC simulations (EPIC high-res). The CRU x HWSD combination in contrast results

in a lower median but higher maximum NSE.

4 Discussion and Conclusions

4.1 Model performance for downscaling of yield estimates

Performance of the meta-models for spatio-temporal downscaling of crop yield estimates
is exceptionally high in terms of linear regression statistics, and mean bias for both machine
learning methods (Table S4; Table S5). While the results are highly comparable among the two
methods, extreme gradient boosting shows moderately better results especially for inter-annual
yield variability (cf. Tables S6-9), which is of ample importance for climate impact studies (e.g.
Mdiller et al., 2017). In essence, substantial deviations of predictions from EPIC simulations
occur only for very low yields. Even here, this applies foremost to their absolute magnitude

while inter-annual yield variability is typically still very well reproduced although this is not an
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618 implicit goal of the machine learning model optimization. In addition, the high skill in
619  reproducing irrigated yields stands out, as crop yield variability is known to be more strongly
620 dominated by variability in precipitation than temperature in most regions (e.g. Frieler et al.,

621  2017).

622 Our results can hardly be compared to existing literature, as the spatio-temporal

623  downscaling of crop model outputs via meta-models has not yet been addressed to the authors’
624  knowledge. Within the closely related, recently emerging field of crop model emulators, Blanc
625 and Sultan (2015) and Blanc (2017) developed polynomial models to predict yields for various
626  crops under climate change using unique parameterizations for the statistical models at the grid
627  cell level. Besides weather and soil data, they include CO- as an additional dimension. These
628  structural differences (a) grid-cell level in the references vs scale-free approach here and (b) no
629  CO- dimension in the present study render the comparison of results difficult. The authors of the
630 cited studies conclude that the statistical models provide reasonable results in the longer term.
631  However, the visual comparison of inter-annual yield variability for the Corn Belt during the
632  historic time period in Blanc and Sultan (2015) and the regional predictions presented in this
633  study suggest that the polynomial models may be suitable at the global scale and for longer term
634  assessments but not for regional impact studies. A similar statistical approach has been employed
635 by Oyebamiji et al. (2015) for a single GGCM finding that 62-93% of crop yield variability

636  produced by the GGCM can be explained by their multiple tier statistical model, which was as
637  well parameterized at the grid cell level. This indicates that so far no other methodologic

638  approaches can provide as accurate and flexible crop meta-models as the ones presented herein,
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which are also virtually scale-free, free from a priori assumptions on relevant features, and truly

data-driven.

The very high accuracy of the machine learning models also allowed for detection of an
anomaly in the high-resolution EPIC simulations for Mexico, in which the automatic fertilizer
application failed due to extreme combinations of climate and soil (see Figure 3a,b and
associated text). This indicates that the method should also be tested for quality control of crop

model simulations.

4.2 Feature engineering and feature importance

The evaluation of different feature subsets shows that even very basic features from
annual climate provide robust results when it comes to general regression metrics. This
highlights that these features should contain sufficient information for providing at least long-
term mean crop yield and agricultural externalities surfaces. Monthly climate data are essential,
in contrast, to provide predictions of very high accuracy (Table S4, Table S5) and to capture
inter-annual crop-climate response accurately as reflected in the EPIC model (Figure 6). This can
be expected as crop growth processes are typically non-linear (Bonhomme, 2000) and crops’
sensitivity to temperature and water supply can shift throughout the growing season. That is, for
instance, the case for drought stress susceptibility of maize yield formation, which is largest
during the second half of the growth cycle for maize (e.g. Gaiser et al., 2010) and is reflected in

the EPIC model within the calculation of an actual HI based on water stress (see section 2.1).

The feature importance of models for rainfed yield prediction is quite straightforward

with precipitation and other water-related features strongly dominating (Figure 7a). Static
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variables PHU and LVP follow thereafter, rendering water availability the main driver for inter-
annual yield variability, while especially PHU — a composite of growing season length and long-
term temperatures — may rather serve as a proxy for the overall yield potential and thermal
growth conditions. If monthly climate statistics are considered, the third and fourth months have
the largest influence on rainfed yield predictions. This relates to the aforementioned non-linearity
of crop growth requirements and the crop’s higher sensitivity during the second half of the

growing season.

If sufficient water is supplied (Figure 7b), temperature- and solar radiation-related
features come to the fore. In the first case, these are not minimum or maximum temperatures
indices as such, but again growth effective temperature sums (here GDD). This corresponds
directly to the estimation of phenologic development in the EPIC model (see section 2.1), which
is driven by HU accumulation, while very high and very low temperatures cause stresses to the
crop, which is over large areas typically of minor importance compared to water deficits (e.g.
Schauberger et al., 2017). It is striking, however, that among the transient climate features, not
the growing season sum of GDD (GDDsumGS) is the most important feature, but annual GDD
(GDDsumYRcal). An explanation is that growing season features were calculated for the months
of the average length of vegetation period (feature LVP). Hence, GDDsumGS may in some years
exceed or fall below the actual PHU requirement, while GDDsumYRcal is a more robust annual

temperature index.

The low importance of soil covariates can be expected due to the simulation of yield
potentials. As shown in an earlier study (Folberth et al., 2016), the EPIC model itself is rather

insensitive to soil data if yield potentials are simulated, even more so with sufficient irrigation.
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Hence, the only soil covariates of relevance here relate to water availability, i.e. soil depth and
PAW. Nutrient-related soil covariates in turn may even outweigh the importance of climate
features if no or little nutrients are supplied exogenously as nutrient supply can affect crop yields
by more than an order of magnitude (e.g. Folberth et al., 2013). Still, the spatial detail in Figure
4a,b shows that despite the low importance of soil and site covariates, yield patterns are very
well reproduced at the sub-climate grid (0.25° x 0.25°) level. This indicates that the soil and site
signal is sufficiently represented in the crop yield meta-model despite the comparably low
ranking of soil and site features (Figure 7). An increase in the importance of soil and site features
was found for the meta-model to predict crop available water (Supplementary Text S2), where
various hydrologically relevant covariates such as slope and soil hydrologic group rank higher
than for crop yield predictions or GSET (Figure S11). This emphasizes that approaches free from
assumptions on feature importance are required at least when moving away from crop yield

predictions towards agricultural externalities.

4.3 Predictions of agricultural externalities

Agricultural externalities were assessed supplementary (Supplementary Text S2) to
evaluate the potential of machine learning algorithms to predict these as well, which is an
essential advantage of integrated crop growth models compared to purely statistical methods of
crop yield estimation. The very good results for GSET show that this is in principle feasible. The
slightly lower performance for CAW in turn indicates that there are limits under extreme
conditions: The very high values that are underestimated here (Figure S9c,d) occur in simulation
units with moderate to high precipitation, low slopes, and soils with high infiltration potential

(not shown). Capturing also such combinations may require an extension of the training data set
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(see section 4.6). Overall, however, the results show that the computational framework used for
yield predictions can flexibly be transferred to other crop model outputs. Limitations can still be
expected for agro-environmental externalities that occur intermittently with daily peaks such as

emissions of certain greenhouse gases.

4.4 Differences and advantages of employed machine learning approaches

Differences between the applied machine learning algorithms have been touched upon
above and are here summarized and complemented. In this study, random forests were found to
have lower performance in predictions with respect to inter-annual yield variability but showed
overall similar predictive accuracy, while also the importance of features for crop yield
predictions remained comparable (see section 3.4). From a practical point, however, the
computational cost of random forests is far higher than that of extreme gradient boosting. In the
case of the full climate feature set, it was here about nine hours versus one on the same 32 core
cluster (Figure S16). Even if the number of trees was reduced, which may not cause substantial
trade-offs in accuracy (Figure S1), the time requirement can be assumed at least four times
higher. While common gradient boosting methods may show low computational performance
due to sequential tree building, the extreme gradient boosting approach has markedly high
efficiency due to parallelization as already evaluated in its original publication (Chen and

Guestrin, 2016).

Although the quantification of prediction uncertainty is beyond the scope of this study, it
is worth mentioning that for random forests there are established methods to quantify prediction

intervals and hence uncertainties associated with predictions (e.g. Meinshausen, 2006) for which

41



725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

no readily applicable methods have been developed for gradient boosting. Provided that the
meta-model predictions show very high accuracy but outliers still occur, this may become of
great importance for applications of downscaled yield estimates e.g. in land use change studies as
well as in the quantification of trade-offs and benefits of (potential) meta-model error and
improved coverage of landscape heterogeneity. We can hence conclude that within the scope of
this study, the extreme gradient boosting approach appears most suitable, but still the selection of

the most appropriate method needs to be made on a per case basis of a specific study.

4.5 Model performance benchmarked against reported local yields

The performance evaluation against reported yields for ten major producing municipios
(Section 3.5) shows that both EPIC and the extreme gradient boosting models perform
satisfactorily for major producing regions. Thereby, the use of high-resolution monthly climate
surfaces substantially improves the quality of yield predictions. Further targeted evaluations
beyond the scope of this paper will be required to assess under which circumstance the crop
model itself or the meta-model may perform better or poorer and what the impact of
uncertainties and spatial resolutions in climate, soil, management, and land use data as well as
crop model parameterization or meta-model error is as has been done before for single crop

models (Folberth et al., 2012a) and crop model ensembles (e.g. Angulo et al., 2014).

4.6 Outlook

The meta-models presented herein can readily provide robust estimates within the
domain of the training data, providing a solid proof of concept that machine learning bears great

potential for building readily applicable crop meta-models for spatio-temporal downscaling
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applications. It is likely, however, that regional and specific local conditions are not represented
within the global feature ranges and their combinations. In addition, crop cultivars are often
adapted to regional conditions, e.g. in terms of temperature requirements and maturity classes.
Here, we found that specific, extremely rare climate-soil combinations led to a systematic
underestimation of the growing season soil water balance CAW. An option to train a meta-model
for such conditions in a systematic way is to simulate artificial combinations of atmospheric,
soil, cultivar, and management conditions that go beyond the combinations inherently occurring
in the global database. This allows for covering an enhanced space of potentially prevailing plant
growth conditions at finer resolutions. A similar approach has recently been undertaken within
the GGCMI initiative (Elliott et al., 2015), altering atmospheric and management conditions in
each simulation unit (resp. 0.5° x 0.5° grid cell) along the dimensions COz, temperature,
precipitation, and N fertilizer (CTWN; Ruane et al., 2017) to develop crop model emulators for
climate change impact studies among others. This can hence serve as a blueprint for extending as
well the training data extent as well as its dimensionality for a wider range of applications and

environments.
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