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Abstract 16 

The differential responses of co-occurring species in rich communities to climate change - 17 

particularly to drought episodes - have fairly been unexplored. Species Distribution Models 18 

(SDMs) are used to assess changes in species suitability under environmental shifts, but whether 19 

they can portray population and community responses is largely undetermined, especially in 20 

relation to extreme events. Here we studied a shrubland community in SE Spain since this region 21 

constitute an ecotone between the Mediterranean biome and subtropical arid areas, and it has 22 

recently suffered its driest hydrological year on record. We used four different modelling 23 

algorithms (Mahalanobis distance, GAM, BRT and MAXENT) to estimate species’ climatic 24 

suitability before (1950-2000) and during the extreme drought. For each SDM, we correlated 25 

species’ climatic suitability with their remaining green canopy as a proxy for species resistance 26 

to drought. We consistently found a positive correlation between remaining green canopy and 27 

species’ climatic suitability before the event. This relationship supports the hypothesis of a 28 

higher vulnerability of populations living closer to their species’ limits of aridity tolerance. 29 

Contrastingly, climatic suitability during the drought did not correlate with remaining green 30 

canopy, likely because of the exceptional episode led to almost zero suitability values. Overall, 31 

our approach highlights climatic niche modelling as a robust approach to standardizing and 32 

comparing the behavior of different co-occurring species facing strong climatic fluctuations. 33 

Although many processes contribute to resistance to climatic extremes, the results confirm the 34 

relevance of populations’ position in the species’ climatic niche for explaining sensitivity to 35 

climate change.  36 

 37 

Key words: climatic suitability, SDMs, extreme climatic events, drought resistance, niche, 38 

dieback. 39 
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Introduction 41 

The climatic trends observed over the last decades are promoting vegetation shifts (Parmesan 42 

and Yohe 2003), phenological changes (Zavaleta and others 2003) and modifications to 43 

disturbance regimes (Mouillot and others 2002; Allen and others 2015), as well as altering the 44 

interactions between these processes (Franklin and others 2016). However, the adjustment of 45 

populations to changing climatic conditions may be more influenced by the extremes of climatic 46 

variability than by average climate trends. For instance, mortality and recruitment processes – 47 

which shape species' distributions and ranges – may be largely conditioned by pulses of extreme 48 

climatic conditions such as extreme drought events (del Cacho and Lloret 2012; Greenwood and 49 

others 2017).  50 

Vegetation mortality and die-off processes associated with climatic warming have often been 51 

observed at ecotones corresponding to the rear edge of species’ distributions (Allen and 52 

Breshears 1998; Bigler and others 2006; Jump and others 2006; Lesica and Crone 2016), 53 

supporting the assumption that a decline in plant populations may be more significant at their 54 

equatorial latitudinal or lowland altitudinal margins (Thomas and others 2004). Translated into 55 

the perspective of a plant community, marked by the coexistence of species that have adapted 56 

differently to environmental conditions, mortality processes would have a greater influence on 57 

the populations of species located close to their tolerance limits, to the benefit of other species 58 

that find the new environment more suitable (Martínez-Vilalta and Lloret 2016). This hypothesis 59 

implicitly correspond to the biogeographic paradigm that species perform better in their 60 

geographical center of distribution than they do in the margins (Centre-Periphery hypothesis, 61 

see Sexton and others 2009; but see Dallas and others 2017), with the further assumption that 62 

geographical and environmental spaces are mostly concordant (Pironon and others 2015).  63 

Species Distribution Models (SDMs) have been used to test the relationship between species’ 64 

climatic niche and their physiological or demographic performance (Serra-Diaz and others 2013; 65 

Pironon and others 2015; van der Maaten and others 2017). These are statistical models that 66 
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relate the location of species occurrences to the environmental data on these sites (Franklin 67 

2010). The SDM approach is based on the assumption that species occurrence portrays the 68 

environmental and biotic conditions that are suitable for species to survive and reproduce (i.e. 69 

the realized niche; Pulliam 2000; Soberón 2007; Peterson and others 2011), and so model 70 

outputs are interpreted as a species-specific index of relative suitability or habitat suitability. 71 

Accordingly, SDMs have been widely used under average climatic conditions (climatic norms) to 72 

predict past or future distributional changes of species (Elith and Leathwick 2009). However, it 73 

is not yet known whether these models are able to capture the impact of extreme climatic 74 

events (e.g. droughts), especially in relation to community dynamics.  75 

In the Mediterranean basin, vegetation has developed different strategies for dealing with 76 

variable rainfall, such as shallow roots and deciduous summer leaves (Valladares and others 77 

2004; Zunzunegui and others 2005). Nevertheless, these adaptive syndromes may not be 78 

enough under the predicted scenarios of increased climatic extremes (IPCC 2013). In this 79 

context, the southeast of the Iberian Peninsula has recently experienced the driest year on 80 

record (AEMET 2014), causing an extensive vegetation die-off event in areas dominated by 81 

shrubland (Esteve-Selma and others 2015). This Iberian region represents the ecotone between 82 

the Mediterranean biome and subtropical shrublands of arid lands (Esteve-Selma and others 83 

2010). This recent drought-induced mortality event therefore offers the possiblity to assess 84 

community dynamics in relation to biogeographical paradigms at the limits – in this case, the 85 

aridity margin -  of the biome's distribution, which are areas considered to be very sensitive to 86 

climate change (Guiot and Cramer 2016). 87 

In this study, we use a shrubland community at the arid southern limit of the Mediterranean 88 

biome to assess the differential response of coexisting species to an extreme drought event 89 

according to species’ climatic suitability, as determined from SDMs. Specifically, we test whether 90 

populations living close to the edge of their species’ climatic niche (i.e. lower suitability values 91 

compared to the niche's optimal value) are more vulnerable to such extreme events than 92 



5 
 

populations living closer to their niche center. We use the remaining green canopy of species 93 

after the drought event to examine the correlation between drought-induced die-off and 94 

species’ climatic suitability, considering both the historical suitability, as inferred from historical 95 

climatic series, and the drought episode suitability, as reflected by the conditions during the 96 

drought event. Given the considerable amount of uncertainty existing with respect to the 97 

various SDM techniques, which use model-specific algorithms (Araújo and New 2007), we also 98 

test whether the relationship between species' die-off and their climatic suitability depends on 99 

the SDM algorithm applied. For this purpose, we applied four SDMs with highly contrasting 100 

approaches (Mahalanobis distance, Generalized Additive Models –GAM–, Boosted Regression 101 

Trees –BRT–, and Maximum Entropy approaches –MaxEnt–) to determine species suitability, 102 

that was later correlated to species' die-off. 103 

Material and methods 104 

Study area 105 

The study was carried out in two semi-arid shrubland areas in the province of Murcia (southeast 106 

of the Iberian Peninsula) (Figure 1), Campo de Cagitán (38° 06’ N, 1° 32’ W) and Oro Mountain 107 

(38° 11’ N, 01° 30’W), 10 km apart but with similar soil characteristics and climatic conditions. 108 

The Campo de Cagitán site was covered by a small expanse of scrubland embedded in an 109 

agricultural matrix, and the Oro Mountain site was occupied by shrubland close to an open pine 110 

forest on a hill slope. The overall sampled area amounted to 19 hm2.  111 

The potential vegetation comprises an open forest of Pinus halepensis L. and a sclerophyllous 112 

shrubland (garrigue) dominated by Quercus coccifera L., Pistacia lentiscus L., Olea europea L., 113 

Rhamnus lycioides L. and Juniperus oxycedrus L., along with a highly diverse range of small 114 

shrubs, such as Thymus hyemalis Lange and Helianthemum spp. (Braun-Blanquet and Bolòs 115 

1957). The current landscape in these regions is a highly fragmented cropland that is either in 116 

use or recently abandoned, with small patches of forest or shrubland interspersed between the 117 

crops. The steep slopes in some areas preclude the presence of agricultural crops but they are 118 
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instead covered by scrublands, often containing the tussock grass Stipa tenacissima L. (which 119 

was cultivated for fibers until the 1960s) and occasional open pine forests.  120 

The region is included within the Mesomediterranean thermoclimatic belt and the 121 

Mediterranean xeric bioclimatic region (Rivas-Martínez and others 2011), characterized by 122 

annual mean temperatures of 18.5 °C and an annual rainfall of 200-350 mm. Precipitation in the 123 

area is low and mainly concentrated in the fall, with great variability between years. During the 124 

hydrological year 2013-2014 the Region of Murcia suffered the worst drought on record since 125 

1941, demonstrating the extreme conditions of the event. During the drought event a mean 126 

regional rainfall of 146.5 mm was recorded; this corresponds to just 46% of the average value 127 

for the period 1971-2000 (Figure 1, AEMET 2014). This episode led to high mortality and 128 

defoliation in different forests and shrublands (Esteve-Selma and others 2015). 129 

Field sampling 130 

In March 2015, a set of ten 50m2 replicate plots were established in the study region, three in 131 

the Campo de Cagitán and seven in the Oro Mountain, according to the shrubland surface area 132 

available on each site. This sampling design reflects the region's highly fragmented habitat, 133 

which prevented us from establishing ten replicates in a single location. 134 

Sampling plots were established with the following criteria: 1) shrubland with no signs of recent 135 

disturbance, with high species richness, different life forms, and low S. tenacissima density; and 136 

2) low pine presence, in order to avoid wetter microenvironments caused by the shade of tree 137 

canopies, which could affect the moisture in the air and soil. Each plot consisted of two linear 138 

transects of 25 meters long by 1 wide. On each plot, we recorded the total number of individuals 139 

per woody species, estimated their size by measuring two perpendicular diameters crossing at 140 

the center of each individual and visually estimated the proportion of remaining green canopy 141 

(RGC) per individual. A total of 22 species were sampled (Table 2). RGC levels were visually 142 

estimated as a proxy for the species response to drought(die-off) as the percentage of green 143 

leaves present relative to the amount in healthy individuals found in the study area (Sapes and 144 
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others 2017). To ensure that the green cover loss resulted from the drought of the previous 145 

year, we avoided individuals with signs of older decay (e.g., stumps, decomposed stems, 146 

branches with no thin tips). To determine the reliability of the visual RGC estimate, we also 147 

measured the length (cm) of the segments occupied by green leaves and dry leaves (including 148 

segments with no leaves) along a linear path from the tip to the base of two representative 149 

branches of ten individuals per species, on every plot where a species was present. Then, a 150 

directly measured RGC value was calculated per individual as [branch length with green leaves 151 

(cm)/total branch length (cm)]*100. When ten individuals per species were not found within a 152 

given plot, we measured the closest individuals to the sampled transects until ten replicates 153 

were attained. Pearson’s correlation between direct and visually estimated values of RGC was 154 

calculated for plants from each species, always resulting in values higher than 0.7 155 

(Supplementary material Appendix 1 Table 1). These analyses support the use of visual estimate 156 

of RGC as a proxy for die-off (Sapes and others 2017, see Supplementary material Appendix 3). 157 

Considering this high correlation and the limited number of individuals with real measures of 158 

defoliation (10 per species and plot), we used the visually estimated RGC (made for every 159 

individual) for the statistical analyses. 160 

The variables described above were then scaled to the landscape level. First, we calculated the 161 

following information for each plot: average percentage of visually estimated RGC for each 162 

species; species frequency (the number of plots where each species was found over the total 163 

number of plots) and the average size of each species (as the product of the two diameters 164 

measured in the plants), since RGC could be affected by species size or relative abundance 165 

(Lloret and others 2016; Sapes and others 2017). The values of species' RGC and size were then 166 

averaged across plots. Finally, to account for the different species’ strategies in relation to leaf 167 

longevity and annual seasonality (Valladares and others 2004), all the species were classified 168 

into one of the following foliar strategies: 1-evergreen, 2- semi-deciduous, 3-summer deciduous, 169 

and 4-retamoid or leafless species. 170 
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Climatic suitability modelling  171 

For the 22 sampled species, we built SDMs using four different algorithms - Mahalanobis 172 

distance, GAM, BRT, and MaxEnt - to assess the robustness of the potential relationships 173 

between visual estimates of RGC and the climatic suitability output of these models. These 174 

models represent four highly differentiated modelling methods: distance-based models 175 

(Mahalanobis distance), regression-based models (GAM), decision tree-based methods (BRT) 176 

and a machine-learning technique based on the principle of maximum entropy (MaxEnt). 177 

Therefore, they represent a gradient of complexity, where some models such as Mahalanobis 178 

distance only consider linear relationships between predictors (Franklin 2010) whereas others 179 

such as MaxEnt and BRT can include high-order interaction terms (Elith and others 2008; Phillips 180 

and Dudík 2008).  181 

The geographical occurrence data for each species were obtained from GBIF (Global Biodiversity 182 

Information Facility: <www.gbif.org>). Occurrence data were filtered in order to remove 183 

taxonomic and geographic inconsistencies and reduce dense local sampling by randomly 184 

thinning species' records to one observation per 1x1 km grid cell. We considered the whole 185 

distributional range of species; thus, the available number of occurrences was considerably 186 

different from one species to the next, ranging from 200 to 6,000 after filtering. For each set of 187 

filtered occurrences, 70% of presences were reserved for fitting the model (training data) and 188 

the other 30% for the validation set (testing data), according to the number of environmental 189 

predictors selected in our models and following the rule described by Huberty 1994 for 190 

determining the optimum partitioning of training and test data. To improve the models' 191 

performance accuracy (Barbet-Massin and others 2012), 100,000 random background points 192 

were simulated for each species to fit both GAM and MaxEnt algorithms, and a random set of 193 

pseudo-absences equivalent to the number of each species occurrences was simulated for BRT. 194 

Since Mahalanobis distance works without simulated absences, no background points were 195 

used in this case. The background extension was delineated in order to represent the current or 196 
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past available geographical space for the selected species (M dimension sensu Soberón 2007). 197 

In our case, the geographical region used to establish species background was the 198 

Mediterranean basin. 199 

Six climatic variables representative of Mediterranean climate were used as predictors to 200 

calibrate the suitability models: isothermality (mean diurnal temperature range/temperature 201 

annual range), temperature seasonality, mean temperature of wettest quarter, mean 202 

temperature of driest quarter, annual precipitation and precipitation seasonality, all of them 203 

with 1 by 1 Km resolution. These variables were selected from the 19 bioclimatic variables 204 

available in Worldclim.org (version 1.4) for the period 1950-2000 (Hijmans and others 2005), 205 

according to the knowledge of the species’ ecological requirements and in order to reduce 206 

variables’ collinearity. Pearson correlation and variation inflation factor (VIF) among variables 207 

were always less than 0.75 and 5, respectively. Additionally, we used monthly precipitation and 208 

maximum, minimum and mean temperature records over the 2013-2014 period from between 209 

68 and 114 weather stations of the Spanish Meteorological Agency (AEMET) to elaborate the 210 

climatic layers during the drought event (also in 1 by 1 km resolution), following Ninyerola and 211 

others (2000), and using the ‘biovars’ function (dismo package; Hijmans and others 2016). To 212 

minimize differences in the climatic interpolation methods between Worldclim and Ninyerola 213 

and others (2000), only latitude, longitude and elevation were used as explanatory variables for 214 

climatic data. In addition, we applied MESS analysis between these two data set over the Spanish 215 

territory (where AEMET data are available) during the 1950-2000 period to assess dataset 216 

dissimilarities, showing the high concordance and comparability of both climatic interpolation 217 

methods over the entire extension and particularly over the study region (Supplementary 218 

material Appendix 1 Figure A1). Finally, species’ historic climatic suitability (HCS) was estimated 219 

projecting the models over the climatic layers for the period 1950-2000, whereas species’ 220 

climatic suitability during the drought event (episode climatic suitability, ECS) was estimated by 221 

projecting the calibrated models over the climate layers of the anomaly period 2013-2014. 222 
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For the four implemented SDM algorithms, model settings were selected following 223 

recommendations from the literature, and partial dependence plots and predictive maps were 224 

assessed to exclude those settings that produced unreliable response curves or distribution 225 

maps. The final selected settings and main literature are showed in Table 1. To make all the 226 

model outputs comparable (between 0 and 1 probability values), log raw output transformation 227 

was applied for MaxEnt models (Phillips and Dudík 2008) and distance transformation into p-228 

values was applied for Mahalanobis distances (Clark and others 1993). Each model's predictive 229 

performance was assessed by comparing model predictions with testing data, using the Area 230 

Under Receiver Operating-characteristic Curve (AUC, Fielding and Bell 1997) and the Boyce index 231 

(Boyce and others 2002; Hirzel and others 2006). These evaluation methods are considered a 232 

reliable approach for our models and allowing comparison among them, since all the models 233 

were fitted with the same species data set and environmental extension of layers (Hirzel and 234 

others 2006; Franklin 2010). Finally, multivariate environmental similarity surface (MESS, Elith 235 

and others 2010) analyses were carried out to measure the similarity between historical climate 236 

and the extreme drought period in the occurrence locations; these analyses allowed to identify 237 

extrapolation for predictions during the anomalous period as areas with high climatic 238 

dissimilarities. 239 

Statistical analyses 240 

Generalized Linear Models (GLM) with normal distributions were performed to assess the 241 

relationship between SDM-inferred HCS and ECS for each species and their die-off recorded in 242 

the field. The visually estimated species RGC was used as a response variable whereas HCS, ECS, 243 

the interaction between HCS and ECS, species size (logarithmically transformed), species 244 

frequency, and species foliar category were introduced as explanatory variables. Difference 245 

between HCS and ECS was discarded as an explanatory variable in the models, due to the high 246 

correlation with ECS which produced same models results. 247 
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The final models were selected according to stepwise selection based on AIC (Akaike Information 248 

Criterion). In addition, Phylogenetic Generalized Linear Models (PGLS) using Phylomatic 249 

distances (Webb and Donoghue 2005) were performed in order to assess the potential effect of 250 

phylogenetic species relationships in the selected model (Freckleton and others 2002). This PGLS 251 

was finally discarded from the final analyses since phylogeny was not significant in any case 252 

(lambda =0). Finally, consistency in the climatic suitability estimates (HCS, ECS) obtained from 253 

each of the four implemented SDMs was tested by pairwise comparisons, using Pearson 254 

correlation tests. All statistical analyses were carried out with R version 3.3.2 (R Core Team 255 

2016). 256 

Results 257 

All the four SDMs algorithms developed showed high performance accuracy values with AUC 258 

values higher than 0.75 and Boyce index’ values being always positive and higher than 0.5 (Elith 259 

and others 2002; Hirzel and others 2006; Supplementary material Appendix 1 Figure A2). 260 

Particularly AUC mean values were 0.96±0.02 and Boyce index mean values were 0.93±0.07 261 

MESS analyses showed that precipitation seasonality exhibited high dissimilarity between 262 

extreme event climatic data and training predictor data near the coastal region. However, the 263 

values corresponding to the drought episode were never outside training boundary values for 264 

the study locations (Supplementary material Appendix 1 Figure A3). Climatic suitability dropped 265 

dramatically during the drought episode for all species, irrespective of the SDM method, as 266 

shown by the comparison between the respective HCS and ECS values (Figure 2, Supplementary 267 

material Appendix 1 Table A2).  268 

For the majority of SDM algorithms the stepwise GLM model selection determined that the most 269 

parsimonious models explaining species’ RGC were those including HCS, foliar category and 270 

species size as explanatory variables. Only in the case of Mahalanobis distance did the stepwise 271 

GLM model selection fail to remove any explanatory variables from the saturated model. There 272 

was some variation in the significant variables associated with RGC in the different SDM 273 
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algorithms. All the selected variables were significant in BRT, while in MaxEnt HCS and foliar 274 

category were significant, in GAM foliar category was significant and HCS was only marginally 275 

significant, and in Mahalanobis only HCS and foliar category were marginally significant (Table 276 

3). 277 

In all cases RGC was positively related to HCS (Figure 2 and 3). Foliar categories 3 (summer 278 

deciduous species) and 4 (leafless species) presented a significant, negative correlation with RGC 279 

in BRT, GAM and MaxEnt models, while in the Mahalanobis distance model, foliar category 3 280 

was only marginally significant. Finally, species size was only significantly negatively related with 281 

RGC in BRT models (Table 3). Species frequency, ECS or the interaction between HCS and ECS 282 

were not significant in any model (Table 3). 283 

The values of species’ HCS varied from model to model. BRT predicted the highest suitability 284 

values for a given species and MaxEnt the lowest ones. This pattern was consistent for almost 285 

all species (Supplementary material Appendix 1 Figure A4). For all species, the majority of 286 

pairwise Pearson correlations between the HCS values inferred from the different SDM 287 

algorithms were significant, with correlation values ranging between 0.45 and 0.78 288 

(Supplementary material Appendix 1 Figure A5). However, the correlation between 289 

Mahalanobis distance and BRT was not significant (Supplementary material Appendix 1 Figure 290 

A5). In contrast, most pairwise correlations between models were not significant for ECS, likely 291 

due to the extremely low ECS values exhibited by most species; in this case, when a significant 292 

correlation was found, the relationship was driven by a single outlier value (Supplementary 293 

material Appendix 1 Figure A6). 294 

Discussion 295 

We found a clear relationship between field measurements of species performance under an 296 

extreme drought episode and the historical climatic suitability (HCS) of species derived from 297 

SDMs. Within the studied community, co-occurring species living closer to their climatic 298 

tolerance limit -identified by low HCS values compared to the optimal value of the distribution 299 
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range- proved more vulnerable to the extreme drought episode. This climatic limit corresponds 300 

to the aridity margin of species' climatic niche (Supplementary material Appendix 2). These 301 

results are consistent with the relationship observed between the decay of shrubland and 302 

woodland species and the decrease in climatic suitability in other semi-arid areas in Spain (Sapes 303 

and others 2017) and Southwestern North America (Lloret and Kitzberger 2018). This 304 

relationship is also consistent with other studies which suggest that species' sensitivity to 305 

climate change is related to niche characteristics such as mean niche position and niche breadth 306 

(Thuiller and others 2005; Broennimann and others 2006). Species in the climatic niche margins 307 

are generally assumed to exhibit lower survivorship and recruitment and higher extinction risk 308 

because of the less favorable environmental conditions (Weber and others 2016). Precisely in 309 

these situations of the environmental space closest to the physiological tolerance limits of the 310 

species, the effect of climate variability is probably more severe (Zimmermann and others 2009), 311 

promoting species’ decline or range shifts at the trailing edge of species distribution (Bigler and 312 

others 2006; Walther and others 2009). 313 

Species’ drought responses and climatic suitability 314 

Studies that compare habitat suitability with different species’ performances (population 315 

density, growth, recruitment, fecundity, etc.) along the species distribution gradient are scarce 316 

and still not fully conclusive with respect to general biogeographic paradigms (Centre-Periphery 317 

hypothesis, Wright and others 2006; Sexton and others 2009; Thuiller and others 2010; Abeli 318 

and others 2014; Csergő and others 2017). Likely species interaction, local variables or 319 

adaptation mechanisms underlie the limited evidence of the relationship between species’ 320 

performance and climate suitability (Sexton and others 2009, 2014; Dallas and others 2017; 321 

Lloret and Kitzberger 2018). Our results throw some light in this sense as they support the 322 

relationship between species’ performance when climatic conditions are extreme and 323 

climatically-based descriptions of their suitability (i.e. HCS).  324 
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We also expected that populations experiencing higher displacement of climatic suitability 325 

during the extreme event (low ECS) would experience greater leaf loses and higher mortality 326 

rates. However, contrary to our expectations, we found that species' suitability during the 327 

extreme episode (ECS) did not significantly explain species leaf loses in the studied community. 328 

Our extremely low ECS levels observed for all species probably made it impossible to obtain 329 

contrasted values of ECS among them. These low values indicate that the climatic episode was 330 

extreme enough to displace all the studied populations far from their climatic optimum, even 331 

for those species that were closer to this optimum during the historical period (Figure 2). In 332 

addition to the exceptionality of the extreme event, the extremely low ECS values may derive 333 

from 1) the averaged climatic data used for calibrating the models, which does not reflect the 334 

variability or annual extremes during the considered 50-year period and 2) the limited ability of 335 

models to predict suitability under climatic scenarios that are highly different from the period 336 

used to fit the models (Elith and others 2010), as shown by the low MESS values, particularly for 337 

precipitation seasonality –bio15- (although these were not negative in the study site) 338 

(Supplementary material Appendix 1 Figure A3). This situation may also amplify the differences 339 

between different algorithms and species’ prevalence data in the predictions (Thuiller 2004; 340 

Pearson and others 2006), as supported by the low correlations between the ECS predicted by 341 

the different models (Supplementary material Appendix 1 Figure A6). 342 

In addition to HCS, foliar categories were also significant in explaining the observed species’ RGC, 343 

suggesting that leaf strategy and seasonal senescence play a major role in understanding species 344 

performance under strong drought conditions, at least in Mediterranean type ecosystems. Our 345 

results show that summer-deciduous and leafless species always present significantly lower 346 

values of RGC. This result is in part expected due to the general strategy in Mediterranean 347 

species of dropping leaves during the dry, hot season to limit evapotranspiration and water loss 348 

(de la Riva and others 2016a). In the Mediterranean basin this semideciduous mechanism 349 

typically appears in combination with shallow roots and low water potentials as an anisohydric 350 
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syndrome, in contrast to species with hydrostable syndromes, which present sclerophyllous 351 

leaves, more sensitive stomatal control and deeper roots (Zunzunegui and others 2005; de la 352 

Riva and others 2016b). Thus, estimates of RGC as a proxy of drought resistance can be 353 

misleading if these foliar strategies are not considered (Lloret and others 2016). In addition to 354 

foliar strategies, other physiological features and local factors may modulate the interspecific 355 

variability of responses to a given drought episode. For instance, species-specific resistance to 356 

hydraulic failure and carbon economy (McDowell and others 2008; Anderegg and others 2012; 357 

Adams and others 2017) and mutualistic and antagonistic biotic interactions (Lloret and others 358 

2012; Valladares and others 2014).  359 

SDM algorithms and demographic performance 360 

Despite all these potential sources of variability, the four different SDM algorithms used in our 361 

approach highlighted the positive relationship between climatic suitability (HCS) and resistance 362 

to drought (RGC). These results were consistent across species, as shown by the high correlation 363 

between the different models' HCS values (Supplementary material Appendix 1 Figure A5). The 364 

agreement holds despite the wide variety of the modeling approaches. However, the ‘simplest’ 365 

models (Mahalanobis distance and GAM) showed the lowest performance explaining species’ 366 

RGC compared to ‘complex’ ones (BRT and MaxEnt). This difference in algorithm performance 367 

highlight the importance of the interactions between climatic variables and non-linear 368 

relationships when assessing species’ responses to climate, and thus, supporting the use of 369 

SDMs versus simpler approaches based on univariate or multivariate correlations of 370 

demographic performance with climatic variables. Moreover, algorithms that are generally 371 

calibrated to produce smoother response curves, such as GLMs and GAMs, would be more 372 

accurate to predict habitat suitability under new conditions (Elith and others 2010; Merow and 373 

others 2014), while models based on presence-only data are more appropriate for predicting 374 

the lowest suitability values in these scenarios (Pearson and others 2006). There is no general 375 

agreement, however, about the most accurate algorithm in relation to situations of range shift 376 
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because even simpler models can lead to erroneous outputs (Elith and others 2010; Merow and 377 

others 2014). We therefore urge ecologists to assess the degree of model complexity needed to 378 

use SDMs as a proxy of ecological mechanisms, such as defoliation in this case.  379 

Caution should also be taken when interpreting SDM predictions, given the assumptions that 380 

these kind of models implicitly include (Pearson and Dawson 2003). Among other limitations, 381 

these models commonly use only climatic predictors with a broad resolution (~1 km2), 382 

disregarding other meaningful abiotic factors, and they are also unable to capture microclimatic 383 

effects at small spatial scales (Franklin and others 2013; Lenoir and others 2013; D’Amen and 384 

others 2017). Microsite factors could be particularly important for our study, given that soil 385 

features and depth, slope and orientation are especially relevant to species survival under 386 

extreme drought (Colwell and others 2008; Hamerlynck and McAuliffe 2008). Furthermore, 387 

SDMs assume that species respond homogeneously to climate change across their range, not 388 

including intra-specific genetic variability and phenotypic plasticity, which may also favor 389 

species' local adaptation under unfavorable conditions (Benito Garzón and others 2011; Lloret 390 

and García 2016).  391 

The drought episode experienced in the Region of Murcia in 2013-2014 was extraordinary in 392 

historical terms, but these climatic situations are expected to become more frequent in the 393 

future (Sheffield and Wood 2008). The ability of plant communities to withstand these events 394 

and subsequently recover their green canopy will depend on both physiological traits related to 395 

the adaptive syndromes of Mediterranean species (Peñuelas and others 2001) and the balance 396 

between demographic processes such as mortality, growth, and recruitment (Lloret and others 397 

2012). Under drier climatic scenarios, leafless and semi-deciduous species with shallow roots 398 

(xerophytic malacophyllous) would be expected to be to take more advantage of scarce and 399 

irregular rainfalls than sclerophyllous species with deeper roots. This is consistent with the 400 

particularly high HCS values obtained for malacophyllous species (Figure 2 and 3). These 401 

potential changes in species dominance within the community will likely lead to less productive 402 
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shrublands dominated by smaller species (Valladares and others 2004). Since species' climatic 403 

suitability is broadly related to both physiological and demographic species performance 404 

(Martinez-Meyer and others 2013), indexes describing climatic suitability can provide rough 405 

estimates of species' vulnerability to extreme climatic episodes. While community resistance 406 

and resilience could minimize ecological changes, the recurrence of these extreme drought 407 

events could lead these Mediterranean communities to cross thresholds beyond which they 408 

could collapse (Vicente-Serrano and others 2013; Valladares and others 2014). This depletion of 409 

resilience in semi-arid shrubland communities could promote transitions to desert-like 410 

ecosystems, as has been predicted by some climate change scenarios for southern areas of 411 

Europe (Guiot and Cramer 2016). Accordingly, this study shows the impact of extreme drought 412 

events even on communities supposedly well adapted to drought conditions (Lázaro and others 413 

2001; Sapes and others 2017).  414 

Conclusion 415 

This study confirms the role of population position within its species climatic niche in explaining 416 

populations' vulnerability to extreme climatic events. In the studied semi-arid shrubland, species 417 

closer to their climatic tolerance limit were more vulnerable to extreme drought. Thus, the 418 

predicted recurrence of severe drought events could reduce the community resilience, 419 

increasing the risk of desertification in these arid lands. Our study empirically concurs with the 420 

trends foreseen by theoretical models, based on predicted suitability and correlations with 421 

drought response. This concurrence supports the use of SDMs to assess the impact of climate 422 

change on plant communities, particularly in extreme climatic conditions. This approach, which 423 

links species performance with regional biogeographic patterns, can probably be applied to 424 

other processes heavily determined by strong climatic fluctuations. 425 
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Table captions 651 

Table 1 Main settings used in the different SDM modeling approaches. 652 

Table 2 Main species information and attributes used in statistical analyses. See methods for 653 

details about foliar strategy, RGC (Remaining Green Canopy), Size and Frequency. 654 

Table 3 Results of GLMs explaining remaining green canopy as a function of foliar strategy, size, 655 

frequency, HCS (Historical Climatic Suitability), ECS (Episode Climatic Suitability) and the 656 

interaction between the latter two (HCS:ECS) calculated from four different SDMs (Mahalabonis 657 

distance, GAM, BRT, MaxEnt). AIC stepwise selection was applied to obtain the final models. 658 

Significant or marginally significant P values are highlighted in bold.  659 
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 660 

Method Key reference and main settings 

Mahal 

Mahalanobis distance 

adehabitatHS package (Calenge 2015). Modification of the original function 

mahasuhab in order to obtain distance and probability values from other layers 

not used to calculate variables’ mean vector. This function makes it possible to 

determine probability values, assuming that under multivariate normality, 

squared Mahalanobis distance is approximately distributed as Chi-square with n-

1 degrees of freedom, which makes it possible to calculate p-value maps (Clark 

and others 1993). 

GAM  

Generalized Additive 

Models 

mgcv package v.1.8-16 (Wood 2011). Weighted background number: 100,000 

points. The optimal number of edf for each variable was selected between 1 and 

4 by cross-validation, using gam function. The number of knots for those species 

where response curves being biologically counterintuitive was also reduced. 

BRT 

Boosted Regression Tree 

gbm package v. 2.1.1 (Ridgeway 2007). Pseudoabsence number equivalent to 

presence species data. Tree complexity of 5 for those species with more than 250 

occurrences and 3 for those species with less than 250. The learning rate of 0.005 

was chosen because it made it possible to achieve at least 1,000 trees in every 

case, following Elith and others (2008).  

MaxEnt 

Maximum entropy 

MaxEnt v. 3.3.1 (Phillips and Dudík 2008) used with default setting with the 

exception of: 100,000 background points, 10-fold cross-validation, regularization 

multiplier of 3, and threshold feature unselect in order to produce smoother 

response curves. 
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Family Species Code Life form Foliar strategy RGC (%) Size (cm2) Frequency 

Anacardiaceae  Pistacia lentiscus PLE Microphanerophyte Evergreen 25.33 0.0828 0.5 

Asparagaceae Asparagus horridus AHO Chamaephyte Leafless 15.00 0.0291 0.1 

Asteraceae Artemisia barrelieri ABA Chamaephyte Semideciduous 44.29 0.0043 0.9 

 Artemisia campestris ACA Chamaephyte Semideciduous 13.33 0.0115 0.1 

Boraginaceae  Lithodora fruticosa LFR Nanophanerophyte Semideciduous 47.27 0.0291 0.1 

Chenopodiaceae Salsola genistoides SGE Nanophanerophyte Leafless 6.67 0.0795 0.2 

Cistaceae Cistus albidus CAL Nanophanerophyte Semideciduous 77.50 0.0452 0.2 

 Cistus clusii CCL Nanophanerophyte Semideciduous 44.77 0.0456 0.9 

 Helianthemum syriacum HSY Chamaephyte Semideciduous 61.39 0.0018 0.3 

Cupressaceae Juniperus oxycedrus JOX Microphanerophyte Evergreen 56.69 0.5503 0.6 

 Juniperus phoenicea JPH Microphanerophyte Evergreen 60.00 0.0736 0.1 

Fagaceae Quercus coccifera QCO Microphanerophyte Evergreen 33.10 0.0091 0.7 

Lamiaceae Rosmarinus officinalis ROF Nanophanerophyte Semideciduous 53.00 0.2353 1.0 

 Sideritis leucantha SLE Nanophanerophyte Semideciduous 44.77 3.0292 0.2 

 Teucrium capitatum TCA Chamaephyte Semideciduous 68.00 2.0186 0.6 

 Thymus hyemalis THY Chamaephyte Semideciduous 45.28 0.3894 1.0 

Leguminosae Anthyllis cytisoides ACY Nanophanerophyte Semideciduous 21.46 0.3779 0.6 

 
Dorycnium 

pentaphyllum 
DPE Nanophanerophyte Semideciduous 21.54 0.5769 0.5 

 Ononis fruticosa OFR Nanophanerophyte Semideciduous 10.11 0.4742 0.4 

Poaceae Stipa tenacissima STE Hemicryptophyte Evergreen 61.89 0.0088 1.0 

Rhamnaceae Rhamnus lycioides RLY Microphanerophyte Semideciduous 8.75 0.0560 0.3 

Timeleaceae Daphne gnidium DGN Nanophanerophyte Semideciduous 15.00 0.0045 0.2 
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 665 
 

MAHALANOBIS DISTANCE GAM BRT MAXENT 
 

AIC 197.97 
 

AIC 196.10 
 

AIC 187.33 
 

AIC 194.15 
 

 
R2 adj 0.32 

 
R2 adj 0.33 

 
R2 adj 0.55 

 
R2 adj 0.39 

 

 β Std.Error P.value β Std.Error P.value β Std.Error P.value β Std.Error P.value 

INTERCEPT  

(FOLIAR.STR 1) 
0.000 0.000 0.939 0.000 0.000 0.610 0.000 0.000 0.324 0.000 0.000 0.051 

HCS 0.382 0.213 0.096 0.362 0.196 0.083 0.561 0.157 0.003 0.446 0.199 0.039 

FOLIAR.STR 2 0.062 0.299 0.838 -0.317 0.241 0.207 -0.317 0.198 0.130 -0.364 0.234 0.139 

FOLIAR.STR 3 -0.435 0.230 0.081 -0.563 0.210 0.016 -0.618 0.172 0.002 -0.706 0.223 0.006 

FOLIAR.STR 4 -0.254 0.254 0.336 -0.688 0.218 0.006 -0.690 0.173 0.001 -0.628 0.199 0.006 

LOG(SIZE) -0.244 0.212 0.271 -0.318 0.201 0.133 -0.373 0.167 0.039 -0.330 0.1934 0.107 

FREQUENCY 0.369 0.225 0.125          

ECS 27.618 18.640 0.162          

HCS:ECS -27.360 18.590 0.165          
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Figure captions 668 

Figure 1 Study region within the Iberian Peninsula (Murcia region: black shading in the inset, 669 

upper left map) and monthly temperature (lines) and precipitation (bars) data during the 670 

historical 1950-2000 period (light grey bars and dots) and the 2013-2014 hydrological year 671 

(anomaly period; dark grey bars and triangles).  672 

Figure 2 Averaged proportion of Remaining Green Canopy (RGC) in shrub species with foliar 673 

strategies 1 and 2 (top graph) for the ten studied plots. Species’ RGC values are sorted in 674 

increasing order (x-axis) and error bars are shown. Red and blue dots represent foliar strategies. 675 

The lower graph shows the Historical Climatic Suitability (HCS) and the drought Episode Climatic 676 

Suitability (ECS) values for each species. Blue and red dots represent median suitability values 677 

of HCS and ECS, respectively, and the error bars correspond to the range between maximum 678 

and minimum suitability values predicted by the four applied SDM algorithms (see text for 679 

details). 680 

Figure 3 Partial residual plot of RGC (Remaining Green Canopy) in relation to HCS (Historical 681 

Climatic Suitability) obtained for each SDM model. Β (standardized estimate value) and P values 682 

for HCS in these models are shown in the left corner of each plot. Species codes are shown in 683 

Table 2. 684 
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