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Abstract 26 

Background and aims Biological fixation of atmospheric nitrogen (N2) is the main pathway for 27 

introducing N into unmanaged ecosystems. While recent estimates suggest that free-living N fixation 28 

(FLNF) accounts for the majority of N fixed in mature tropical forests, the controls governing this 29 

process are not completely understood. The aim of this study was to quantify FLNF rates and 30 

determine its drivers in the tropical pristine forest of French Guiana. 31 

Methods We used the acetylene reduction assay to measure FLNF rates at two sites, in two seasons 32 

and along three topographical positions, and used regression analyses to identify which edaphic 33 

explanatory variables, including carbon (C), nitrogen (N), phosphorus (P) and molybdenum (Mo) 34 

content, pH, water and available N and P, explained most of the variation in FLNF rates. 35 

Results Overall, FLNF rates were lower than measured in tropical systems elsewhere. In soils seasonal 36 

variability was small and FLNF rates differed among topographies at only one site. Water, P and pH 37 



explained 24 % of the variation. In leaf litter, FLNF rates differed seasonally, without site or 38 

topographical differences. Water, C, N and P explained 46 % of the observed variation. We found no 39 

regulatory role of Mo at our sites. 40 

Conclusions Rates of FLNF were low in primary rainforest on poor soils on the Guiana shield. Water 41 

was the most important rate-regulating factor and FLNF increased with increasing P, but decreased 42 

with increasing N. Our results support the general assumption that N fixation in tropical lowland forests 43 

is limited by P availability. 44 

  45 



Introduction 46 

Nitrogen (N) availability is a limiting factor for plant growth in a wide range of terrestrial ecosystems 47 

worldwide (LeBauer and Treseder 2008) and restricts the amount of carbon (C) that can be assimilated 48 

and stored in the terrestrial biosphere (Hungate et al. 2003; Penuelas et al. 2013; Zaehle et al. 2015). 49 

Globally, biological N fixation is the most important natural pathway for introducing previously inert N 50 

- namely N2 gas - , into unmanaged ecosystems (Galloway et al. 1995; Vitousek et al. 2013). Nitrogen 51 

is fixed by microorganisms, known as diazotrophs, that can reduce gaseous N (N2) into ammonia. 52 

Diazotrophs are divided in two groups: symbiotic and free-living. Symbiotic N fixers are generally found 53 

in root nodules and live in a mutualistic relationship with higher plants that allocate C to the N fixers 54 

in exchange for N. Free-living N fixers are hetero- or autotrophic bacteria or archaea inhabiting water, 55 

soil, rocks and leaf litter (Dynarski and Houlton 2018). Global terrestrial N inputs from biological N 56 

fixation have been estimated at 60 Tg y-1 (Vitousek et al. 2013), and biome-level comparisons suggest 57 

that tropical rain forests may fix more N than any other unmanaged ecosystem (Galloway et al. 2004; 58 

Reed et al. 2011). Until recently, a large proportion of tropical N fixation was attributed to symbiotic 59 

organisms due to the high abundance of leguminous trees (Losos and Leigh 2004), typically associated 60 

with symbiotic N fixers. The relative importance of symbiotic N fixation, however, has been questioned 61 

because it is facultative (Menge et al. 2009) and may decline to near zero in mature tropical rainforests 62 

(Barron et al. 2011, Batterman et al. 2013, Sullivan et al. 2014). In this context, N fixation by free-living 63 

organisms is thus increasingly considered to be more important, with recent estimates from multiple 64 

rain forests suggesting that a substantial amount of N is indeed fixed by free-living diazotrophs (e. g. 65 

Reed et al. 2007, Cusack at al., 2009, Černá et al. 2009, Barron et al. 2009, Wurzburger et al. 2012, 66 

Matson et al. 2014). 67 

Because of its relevance for ecosystem functioning, N fixation and its rate-controlling factors have been 68 

the focus of previous research. Nitrogen fixation is energetically expensive, requiring much ATP for 69 

both the reaction itself (Gutschick 1981) and for maintaining an oxygen-poor intracellular environment 70 

for nitrogenase, the enzyme responsible for N fixation (Robson and Postgate 1980). The oxygen-poor 71 

environment can be created, either by an upregulated respiration rate, or developing cellular 72 

structures that can limit the entry of oxygen (Robson and Postgate 1980). This regulation is needed 73 

because oxygen binds to nitrogenase and inactivates the enzyme. Free-living N fixation (FLNF) is 74 

thought to decrease as N availability increases in the environment (Hartwig 1998), because uptake of 75 

inorganic N is less costly than N fixation (Gutschick 1981; Menge et al. 2009)).  76 

Low phosphorus (P) availability has been reported to limit FLNF in several tropical environments (e.g., 77 

Pearson and Vitousek 2002; Reed et al. 2007), an observation often attributed to the diazotrophs’s 78 



high P requirement. Nonetheless, studies of P addition to tropical forests have reported contradictory 79 

responses. Some reported that FLNF in soils and plant litter increased in response to P additions 80 

(Benner et al. 2007; Reed et al 2007), while others found no effect (Pérez et al 2008; Barron et al. 81 

2009). Recent studies suggest that the stimulation of N fixation by P addition may be due to 82 

molybdenum (Mo) contamination of the commonly used superphosphate fertiliser (Barron et al. 2009, 83 

Wurzburger et al. 2012). Molybdenum is a rock-derived trace element required to produce the FeMo 84 

cofactor necessary for the functioning of the most common group of nitrogenases (Igarashi and 85 

Seefeldt 2003). Molybdenum is thus associated more with fundamental enzymatic requirements than 86 

with the high energy consumption of N fixation, but limitation of both Mo and P has been documented 87 

in some forests (Barron et al. 2009; Wurzburger et al. 2012; Reed et al. 2013).  88 

Energy in the form of external organic carbon (C) is another likely factor regulating the activity of free-89 

living N fixers. Like other heterotrophic microbes, diazotrophs rely on extracellular organic C for 90 

respiration, and C supply may be more limiting than nutrient availability in free-living fixers (Hofmockel 91 

and Schlesinger 2007), even though the C cost of FLNF is not well-quantified (Dynarski and Houlton 92 

2018). Lastly, seasonal variation in soil moisture can play a large role in the regulation of N fixation 93 

rates, because the rates are positively correlated with moisture content (Roskoski 1980). Seasonal 94 

differences in N fixation have indeed been observed, but the direction of these seasonal changes 95 

differed among studies. Studies conducted at different tropical sites have reported both higher (cf 96 

Reed et al. 2007) and lower (cf Matson et al. 2014) rates in the wet season compared to the dry season 97 

with likely factors besides moisture, such as changes in oxygen supply, causing the discrepancy in 98 

results. 99 

Lowland tropical forests found on highly weathered old soils are typically considered to be N-rich, 100 

because they can accumulate, recycle and export large quantities of N (Vitousek and Sanford 1986; 101 

Hedin et al. 2009; Brookshire et al. 2012). This open N cycle is also corroborated by enriched δ15N 102 

values of soils and plant tissues, due to high gaseous and leaching losses of depleted 15N sources 103 

(Amundson et al. 2003). Simultaneously, these lowland tropical forests have usually been described as 104 

P limited because of biogeochemical theory predicting that P limitation should be prevalent in old, 105 

strongly weathered soils (Walker and Syers 1976; Wardle et al 2004). There is also a wealth of indirect 106 

evidence including high N availability (Brookshire et al. 2012), high N:P ratios in leaves (Vitousek 1984) 107 

and correlations between forest properties and soil fertility at continental scale (Quesada et al. 2012; 108 

ter Steege et al. 2006. Locally, however, nutrient availability in tropical landscapes can vary with 109 

topography, but the magnitude and direction of this variation is variable and influenced by, e.g., terrain 110 

steepness and rainfall, leading to differences in physical denudation rates and solute transportation 111 



(Porder et al. 2005; Weintraub et al. 2015). Differences in soil type and redox status along 112 

topographical gradients may also affect nutrient availability (Tiessen et al. 1994).  113 

Here we present results from a study carried out in mature tropical rainforests of French Guiana, where 114 

we measured FLNF in both soil and leaf litter. The rolling hills of French Guianese tropical forests, part 115 

of the Guiana Shield and perched upon parent material that is amongst the oldest and most weathered 116 

in the world (Hammond et al 2005), are characterised as very poor in mineral nutrients (van Kekem et 117 

al 1996), with topography inducing spatially heterogeneous nutrient availabilities. We studied three 118 

distinct topographical positions at two different forest sites in the wet and dry season, with the aim of 119 

maximizing the range in soil nutrients and moisture. Our goals were (I) to determine and compare rates 120 

of FLNF in soils and leaf litter to other tropical forest studies, (II) to evaluate whether or not N fixation 121 

rates differed between sites or between seasons, and (III) to identify which environmental factors (or 122 

combination thereof) best explained the spatial and seasonal variation in N fixation rates. 123 

Materials and Methods 124 

Study sites 125 

The study was conducted at two primary forest sites in French Guiana, in the research stations of 126 

Paracou and Nouragues. Paracou is situated 15 km from the coast (5°15’N, 52°55’W), while Nouragues 127 

is located inland (4°05’N, 52°41’W). Annual rainfall quantities at both sites were similar, with Paracou 128 

receiving an average of 3100 mm year-1 for the period 2004 -2015 (Aguilos et al. 2018) and Nouragues 129 

receiving an average of 2990 mm year-1 (Bongers et al. 2001). Mean annual air temperature is near 26 130 

°C for both sites (Gourlet-Fleury et al. 2004; Bongers et al. 2001). The French Guianese climate is 131 

characterized by a wet and a dry season due to the north/south movement of the Inter-Tropical 132 

Convergence Zone. The region receives heavy rains from December to July and a dry period, typically 133 

characterized by less than 100 mm rainfall month-1, from August to November (Aguilos et al. 2018). 134 

Topography at both sites is undulating with maximum slopes of approximately 15°. The elevational 135 

difference between hill summits and valleys is 20-50 m over horizontal distances of 200-400 m. Soils 136 

at the Paracou site are schist soils with veins of pegmatite along the Bonidoro series, a Precambrian 137 

metamorphic formation (Epron et al. 2006). Soils at the Nouragues site are also derived from the same 138 

Bonidoro series, and consist of mainly Caraib gneiss (Bongers et al. 2001). This Precambrian geological 139 

substrate is particularly low in P content compared to the generally younger, nutrient-richer soils of 140 

western Amazonia (Hammond 2005; Grau et al. 2017) and therefore soils at both sites are classified as 141 

nutrient-poor Acrisols (FAO-ISRIC-ISSS 1998). Soils at Paracou range from loamy sand to sandy loam, 142 



while soils at Nouragues contain much more clay and span the range of sandy loam to silty clay 143 

according to the USDA texture classification chart (Fig S1). 144 

Experimental design 145 

To maximize the natural variation in soil nutrient availability the experimental plots encompassed a 146 

topographical gradient. At each forest site twelve plots were installed, distributed over four hillslopes, 147 

with each hillslope having three plots located at three topographical levels: (1) bottom, i.e. just above 148 

the creek running through the valley, (2) slope, i.e. the intermediate section of the elevation, and (3) 149 

top, i.e., where the slope evens out and becomes the hilltop. Each plot was of 20 x 20 m in size. In total, 150 

24 plots spread over two sites and three topographical categories per site were studied. Distances 151 

between the plots were 10 – 100 m and in each plot five soil and litter samples were collected. Four 152 

samples were collected at 2 m distance from each corner and a fifth sample was taken in the middle 153 

of the plot. A total of 120 sampling points (2 study sites, 3 topographical categories per site, 4 plots 154 

per category and 5 samples per plot) were sampled for both soil and leaf litter in both the wet and dry 155 

season (240 samples in total). Courtois et al (2018) have provided more detailed information on the 156 

experimental design. 157 

N fixation 158 

Nitrogen fixation rates were determined using the acetylene reduction assay (Hardy et al. 1968). 159 

Samples were collected in May and September 2016, in the wet and dry season, respectively. Samples 160 

of leaf litter were collected manually from the soil surface and soil samples were collected with a 2-cm 161 

diameter corer to a depth of 5 cm after removing all litter from the surface 162 

All samples were placed in clear 100 ml borosilicate jars. The jars were sealed with rubber septa and 163 

10 ml of air was replaced with 10 ml of acetylene gas (welding grade, Air Liquide) to create a 10 % 164 

headspace concentration by volume. The samples were then incubated in situ at ambient forest light 165 

(no direct sunlight) and temperature for 18 hours. Sample moisture was not manipulated in any way, 166 

but was determined after the incubation as the weight loss after oven drying at 70°C during 48h. 167 

After incubation, a subsample from the sample headspace was injected into a pre-evacuated 12 ml 168 

borosilicate vial (Labco Limited, Ceredigion, UK) and shipped to Ghent, Belgium for analysis. Ethylene 169 

concentrations were measured using laser-based photo-acoustic spectroscopy (ETD-300, Sensor 170 

Sense, The Netherlands). Parallel acetylene blanks (no leaf litter or soil) were created to assess 171 

background levels of ethylene in the acetylene gas (1.5 +- 0.4 nl ethylene ml-1 acetylene gas), which 172 

were subtracted from the sample ethylene concentrations. Controls for ethylene production in the soil 173 

or litter in the absence of acetylene gas were also assayed and were consistently below the detection 174 



limit of 0.01 nl ethylene ml-1 air. Soil and leaf litter samples that over the incubation time produced 175 

ethylene concentrations below the detection limit (0.01 nl ethylene ml-1 air) were recorded as half of 176 

this value. 177 

We converted the rate of ethylene production, expressed as nmol ethylene g-1 sample h-1, into N 178 

fixation rates, expressed as kg N fixed ha-1 y-1 using the densities of the soil (to a depth of 5cm) or leaf 179 

litter, and the theoretical ratio of 3 moles ethylene produced per mole N fixed (Benner et al. 2007; 180 

Cusack et al. 2009; Matson et al. 2014; Pearson and Vitousek 2001; Reed et al. 2007). The latter being 181 

based upon the conclusion that reducing 3 moles of acetylene to ethylene is equivalent to the 6 182 

electron transfer involved in the reduction of one mole of N2 to ammonium (Seitzinger and Garber 183 

1987). We attempted to measure uptake of 15N through the pool dilution assay (Furnkranz et al. 2008) 184 

in a subset of soil samples to gauge the actual ratio of moles ethylene produced per mole N fixed, but 185 

we failed to do so due to a combination of low soil FLNF rates and high background levels of N in these 186 

environmental samples. Other authors have reported encountering similar issues and could not 187 

measure 15N uptake in soil (Matson et al. 2014) or leaf litter (Menge et al. 2009) samples. Soil samples 188 

for determining bulk density to a depth of 5 cm were taken with Kopeck rings. The samples were oven 189 

dried at 105°C for 48 h and bulk density was calculated by dividing soil weight by Kopeck ring volume. 190 

Leaf litter was collected in a 0.5 m² wooden frame at five locations per plot and once per season for 191 

determining litter density. The litter was dried at 105°C for 48 h and the density was calculated by 192 

dividing weight by area (kg ha-1). 193 

Chemical analyses 194 

Total C, N, P and Mo contents in the soil and litter were determined on the same samples that were 195 

used for acetylene reduction. Ethylene production was first measured (see N fixation), and afterwards 196 

samples were oven dried at 70°C for two days and then ground in a ball mill (Retsch, Germany). Total 197 

C and N contents were determined by dry combustion with an elemental analyser (Flash 2000, Thermo 198 

Fisher Scientific, Germany). Total P (mg kg-1) and Mo (mg kg-1) contents were determined by the 199 

sequential digestion of the ground soil and litter samples in heated strong acid (69 % HNO3 and 30 % 200 

H2O2), followed by analysis on an iCAP 6300 Duo ICP optical emission spectrometer (Thermo Fisher 201 

Scientific, Germany). 202 

Soil texture and nutrient availability were determined on a composite sample made of three soil cores 203 

per sampling point, each core to a depth of 15 cm. Texture was determined on fresh soil using the 204 

hydrometric method (Gee and Bauder 1986). Soil particles were dispersed with sodium 205 

metaphosphate and the amounts of sand, silt and clay were determined using a hydrometer. Soil 206 

samples for measuring nutrient availability were collected in May and September 2015, sieved (2 mm) 207 



and split into three subsamples. The first subsample was extracted with 1M KCl in a 1:2.5 w:v ratio for 208 

pH measurement and determination of available N. On this extract pHKCl was measured with a pH 209 

meter (HI 2210-01, Hanna Instruments, USA), after which the extract was filtered through a 42µm filter 210 

and the filtrate’s concentration of NH4
+ and NO3

- was determined colorimetrically (SAN++ continuous 211 

flow analyser, Skalar Inc, The Netherlands). Available N (mg kg-1) was defined as the sum of the NH4
+ 212 

and NO3
- concentrations. The second subsample was used to determine the gravimetric water content 213 

by measuring weight loss after drying at 105 °C during 48 h. The third subsample was used to 214 

determine extractable P and Mo. Soils were oven dried at 60 °C for 48 h after which extractable P was 215 

determined with Bray-P acid fluoride extraction (Bray and Kurtz 1945). Available Mo was determined 216 

through resin extraction (Wurzburger et al. 2012). The samples were mixed with water in a 1:6 ratio 217 

and five 2 cm² strips of anion-exchange membrane (VWR Chemicals, USA) were added. This mixture 218 

was stirred for 24h and the strips were then rinsed and eluted with 10 % HNO3. Available P and Mo 219 

contents were determined with a iCAP 6300 Duo ICP optical emission spectrometer (Thermo Fisher 220 

Scientific, Germany). 221 

Literature comparison 222 

To compare the FLNF rate results we found to those of other authors we performed a database search 223 

similar to the search carried out by Dynarski and Houlton (2018). We searched Web of Science using 224 

the keywords nitrogen, free-living, asymbiotic, fixation, soil, leaf litter and tropical forest. From the 225 

resulting studies we selected those that were performed in natural terrestrial tropical ecosystems. For 226 

studies that presented results from multiple time points or seasons, we averaged the data over the 227 

course of the study period. Studies that did not report any measure of variance were assigned a 228 

standard error of ¼ of the mean. Reported rates of FLNF were converted to nmol ethylene produced 229 

g-1 dry substrate h-1 in order to compare N fixation rates between studies. When N fixation rates were 230 

presented on a per area basis we used the bulk density of the N fixation substrate (soil or leaf litter) 231 

and the ethylene: N2 conversion factor indicated in the study to convert to nmol ethylene produced g-232 

1 dry substrate h-1. When no conversion factor was indicated, we assumed the standard 3 : 1 conversion 233 

factor (Hardy et al. 1968). Results of this database search are summarised in supplementary 234 

information table S4 235 

Data analysis 236 

To assess the differences in N fixation rates and soil and leaf litter variables between sites and seasons 237 

we used linear mixed effects regression models (LMER), analysing soil and leaf litter data separately. 238 

We used site (Paracou or Nouragues), season (Wet or Dry) and topographical position (Bottom, Slope 239 

or Top) as fixed factors and plot identity as a random factor. The validity of the linear models’ 240 



assumptions (linearity, normality of residuals, no influential outliers, homoscedasticity) were 241 

evaluated with standard functions of R (R core team 2017, version 3.4.3), including diagnostic plots. 242 

Prior to analysis, data were log transformed if their distribution was right-skewed to improve normality 243 

of model residuals. Multiple comparisons within a factor were analysed using Tukey post hoc tests. We 244 

performed principal component analyses to visualize the correlations of previously standardised soil 245 

and leaf litter variables according to site, season and, if necessary, topography. We observed that a 246 

large proportion of our measured samples yielded ethylene production rates that fell below the 247 

detection limit (25 % of samples in soil). To investigate if there were site-specific or seasonal patterns 248 

in the occurrence of values below detection limit, we transformed our ethylene production rates into 249 

binomial data (1 for measured rate and 0 for below detection limit rate) and analysed the resulting 250 

data with binomial generalized linear model (GLM) with season and site as factors. 251 

To identify which set of physico-chemical variables significantly contributed to the observed variation 252 

in N fixation rates we performed a forward stepwise model selection, i.e. starting from a null model 253 

and retaining the predictor variable that led to the largest decrease in the Akaike information criterion 254 

(AIC), corrected for sample size (AICc). This process was iterated until no additional predictor reduced 255 

the model AICc by at least two units. This procedure was performed for the dataset as a whole, as well 256 

as for each combination of site and season that was shown to be significantly different in the mixed-257 

effects models (see above) in soil and in leaf litter. For these analyses the measurements of FLNF that 258 

were below the detection limit were excluded to assess which predictor variables participate in 259 

regulating the FLNF that were detectable and thus participate to the ecosystem scale N fixation. The 260 

potential predictor variables for both leaf litter and soil were standardised to a mean = 0 and standard 261 

deviation = 1 prior to the model fitting procedure to avoid potential issues in interpretation and 262 

numerical stability due to differences in magnitude between variables. Potential predictor variables 263 

were gravimetric water content, C:N ratio, N:P ratio, total carbon, total nitrogen, total phosphorus and 264 

total molybdenum. For soil we additionally included available nitrogen, phosphorus and molybdenum, 265 

soil pH and soil texture. We present the best-fit model for each data subset, based on this forward 266 

stepwise procedure.  267 

As an additional check of robustness we used an Akaike weight approach to assess the importance of 268 

predictor variables. We summed Akaike weights computed for all possible first-order models 269 

containing a given predictor, to obtain a measure of the relative variable importance for this predictor 270 

(Burnham and Anderson 2002). We did this for all abovementioned predictors. This approach yielded 271 

very similar results to the forward stepwise model selection, confirming the robustness of our analysis, 272 

but for readability reasons are not presented nor discussed in this paper. These results are, however, 273 

shown in supplements (Figs S2 and S3). All analyses were carried out with the software package R 274 



(version 3.4.3) using packages lme4 (Bates et al. 2015), MASS (Venables and Ripley 2002), ggfortify 275 

(Tang et al. 2016) and AICcmodavg (Mazerolle 2017) 276 



Results 277 

Rates of FLNF were on average 0.015 ±0.003 (standard error) nmol ethylene g-1 h-1 or 0.57 ±0.10 kg N 278 

ha-1 y-1 in soil and 0.25 ±0.04 nmol ethylene g-1 h-1 or 0.09 ±0.01 kg N ha-1 y-1 in leaf litter. Per unit mass, 279 

FLNF rates were thus, on average, tenfold higher in leaf litter than in the top 5 cm of the soil (Table 1). 280 

However, when reported per unit area, FLNF rates were lower in litter than soil, due to the huge 281 

difference in density between the sample types (Table 1). 282 

SOIL – N FIXATION Overall, soil FLNF rates did not differ between seasons (P=0.27). The effect of 283 

topography on soil FLNF rates differed between Paracou and Nouragues (Site x Topography interactive 284 

effect; P=0.021) (Fig 1 A & B). In Paracou, soil FLNF rates were 20 times higher (+/-SE = 6 to 65 times 285 

higher) in the bottom and slope plots than in the top plots (P=0.047 and P=0.009, respectively), but 286 

did not differ significantly between the bottom and slope plots. In Nouragues no differences were 287 

observed in the FLNF rates of the bottom, slope or top plots. A considerable proportion of the soil FLNF 288 

rates were below the detection limit (25 %, out of 230 samples). Although the LMER did not reveal a 289 

significant effect of season on the soil FLNF rates, season did affect the number of samples whose FLNF 290 

rates were below the detection limit (Fig S4 A & B), albeit differently in Paracou than in Nouragues 291 

(Site x Season interactive effect P=0.004). Whereas in Paracou the number of soil FLNF rates that were 292 

below the detection limit did not differ between wet and dry season, in Nouragues values below the 293 

detection limit occurred primarily in the dry season (18 out of 52 samples versus 2 out of 56 samples, 294 

in the dry and wet season, respectively, P<0.001). When conducting the LMER analysis on a subset of 295 

the Nouragues soil FLNF rates, excluding samples where FLNF rates were below the detection limit, we 296 

identified an effect of season (P=0.008), with the highest rates occurring in the dry season. (Fig S5 B). 297 

SOIL – ENVIRONMENTAL VARIABLES As each site had different soil FLNF rates relating to their 298 

topography, we performed a principal component analysis (PCA) for each site separately, allowing us 299 

to visualize site specific relationships among soil parameters. In Paracou, PC1 and PC2 explained 63.3 300 

% of the variation, with PC1 explaining 36.3 % of the variation and containing most of the 301 

topographically induced variation (Fig 2 A). Clay content correlated with total P and available N and 302 

was highest on the slopes. PC2, explaining 27 % of the variation, contained the seasonally-induced 303 

variation (Fig 2 A). Total C correlated with total N and was higher in the dry season, while total Mo 304 

correlated well with pH and was higher in the wet season. Available Mo correlated well with moisture 305 

and was also higher in the wet season. Available P was not heavily affected by season, but was higher 306 

in the bottom plots than on either the slopes or tops. In Nouragues PC1 and PC2 together explained 307 

68.6 % of the variation (Fig 2 B). The first principal component (PC1) explained 55.2 % of the variation 308 

and, just as in Paracou, mostly contained topographically-induced variation. In Nouragues soil 309 



properties for top plots were clearly different from bottom and slope plots. Clay content correlated 310 

with total P and available N and all were highest in the top plots. In contrast to Paracou, however, total 311 

Mo correlated with available P and both were higher on the bottom and slope plots than on the top 312 

plots. Moisture, total C and total N correlated well with each other and clustered together at a ±45° 313 

angle from PC1. Available Mo and C:N were correlated along PC2, which explained 13.4 % of the 314 

variation. Lastly, pH also varied topographically and was highest on the bottom and slope plots, yet 315 

the variation was small. For all Pearson correlations, see table S3 A and B. 316 

LEAF LITTER – N FIXATION Leaf litter N fixation rates were not different between sites. On average, 317 

litter FLNF rates in the wet season were 7.5 to 13.5 times (+/- SE) higher (P < 0.001) than in the dry 318 

season. This difference between both seasons was further emphasized by the distinct seasonal 319 

difference in the proportion of FLNF measurements that were below the detection limit (Fig S4 C & D): 320 

the vast majority (97 %) of the 16 % (33 out of 235) of litter FLNF measurements that were below the 321 

detection limit were from the dry season (binomial GLM, P<0.001). Nonetheless, the impact of season 322 

interacted with that of topographical position (Season x Topography interactive effect P < 0.001) (Fig 323 

1 C & D). In the wet season FLNF rates were similar among topographic positions, but in the dry season, 324 

rates on the top plots were 2 to 7.5 times (+/- SE) lower (P < 0.05) than rates on the bottom or slope 325 

plots, which did not differ from each other. 326 

LEAF LITTER – ENVIRONMENTAL VARIABLES Because the LMER stated that FLNF rates were similar 327 

between sites we analysed the leaf litter stoichiometry of both sites together. Together, the first two 328 

principal components of the PCA accounted for 73.3% of the variation (Fig 3). PC1 explained 49.8 % of 329 

the variation and distinguished between the wet and dry season. Along this component, moisture, N 330 

and P content all correlated positively with each other and negatively with C:N and N:P ratio, indicating 331 

that moisture, N and P content was higher in the wet season, while C:N and N:P ratios were higher in 332 

the dry season. This was confirmed by linear effects regression analysis (Table S2). PC2, accounting for 333 

23.5 % of the variation, correlated positively with C content. The absence of a site effect on PC1 and 334 

PC2 indicates that leaf litter chemistry was similar for both sites. For all Pearson correlations, see table 335 

S3 C. 336 

DRIVERS OF FLNF IN SOILS AND LITTER- In soils, stepwise regression analyses indicated that soil water 337 

content, available P and pH were the primary drivers of N fixation rates (Table 2 A), explaining 24 % of 338 

the variation in soil FLNF rates. Because soil FLNF rates differed significantly between both sites, we 339 

ran the stepwise regression analysis again for each site separately. In Paracou, P exerted a strong 340 

effect, as both total P and available P had a positive influence on FLNF rates. Available N was negatively 341 

related to FLNF, and together with P, explained 36 % of the variation. For Nouragues a model 342 



containing only total N, total C or water content explained 40 % of the variation in FLNF rates. These 343 

three parameters were strongly correlated and the regression analysis deemed the models containing 344 

either one of them singularly equally valid (Table 2 A). 345 

In litter, across both sites and seasons, about 46 % of the variation in FLNF rates was explained by 346 

water and N:P ratio (Table 2B). While water had a positive effect on FLNF rates, N:P ratio showed a 347 

negative effect. As FLNF rates differed between seasons we ran the stepwise analysis again for each 348 

season separately. In the wet season 33 % of the variation could be explained by water, C content, P 349 

content and C:N ratio. The model for the dry season explained about 68 % of the variation and was 350 

dependent on the positive influence of water and the negative influence of N content.351 



Discussion 352 

Overall, the sum of FLNF rates of soils and leaf litter measured in this study fall into the lower end 353 

of the 0.1-60 kg N ha-1 y-1 range reported for FLNF on tropical forest floors worldwide (Reed et al. 2011), 354 

and much below the more recent estimate of 15-36 kg N ha-1 y-1 fixed in tropical forests (Pajares and 355 

Bohannan 2016) and the average ethylene production rate of 5.32 nmol ethylene g-1 h-1 reported in a 356 

recent meta-analysis on N fixation rates in tropical forest ecosystems (Dynarski and Houlton 2018). 357 

The FLNF rates found in the present study are much lower than those found in Costa Rica (Reed et al. 358 

2007; Reed et al. 2010; Reed et al 2013), Panama (Barron et al. 2009; Wurzburger et al. 2012), Puerto 359 

Rico (Cusack et al. 2009) or in the younger sites along a Hawaiian chronosequence (Crews et al. 2000). 360 

An overview of FLNF rates reported by these authors can be found in Table S4. Sullivan et al (2014) 361 

measured N fixation rates in Costa Rica, about 35 km away from where Reed et al. (2007) conducted 362 

their study. These authors reported soil and leaf litter FLNF rates that were lower than those previously 363 

published by Reed et al. (2007), but while their reported soil FLNF rates were similar to those found in 364 

our study, their reported leaf litter FLNF rates were still twice as high as the rates we found. Other 365 

studies of FLNF rates conducted in less fertile tropical forests, e.g. on the higher altitudes of an 366 

altitudinal transect in Ecuador (Matson et al. 2014) or in the older sites of a Hawaiian chronosequence 367 

(Crews et al. 2000), reported FLNF rates comparable to those found in the present study. In Hawaii, 368 

Crews et al (2000) measured decreasing rates of leaf litter FLNF on increasingly older soils and 369 

attributed this decrease to a combination of lower concentrations of geologically cycled nutrients, such 370 

as P, and high N pools at their oldest sites. This, coupled with increases in FLNF rates after P 371 

fertilization, led them to one of their main conclusions; that low P availability limited FLNF rates at 372 

their older sites. It would, however, be inaccurate to conclude that soil P alone determines N fixation 373 

since, for example, in Panama (Wurzburger et al 2012) two of the studied sites along a total soil P 374 

gradient containing high (AVA) and medium (Gigante) levels of total soil P displayed the lowest rates 375 

of FLNF in their study. 376 

Soil free-living N fixation 377 

At both sites moisture was important in the regulation of FLNF (Table 2 A). Water is essential for 378 

all microbes, but for diazotrophs in particular water plays an important role in regulating activity. Not 379 

only does their metabolism require sufficient amounts of water, but nitrogenase activity is hindered in 380 

the presence of oxygen (O2) (Hill 1988). Oxygen binds to nitrogenase and inhibits its function 381 

(Hartmann and Burris 1987) and because increased soil moisture decreases soil O2 concentrations, 382 

water content can have a large impact on soil FLNF rates. As diazotrophs are mainly heterotrophic the 383 

thickness of the soil water film, which is important for the diffusion rates of extracellular enzymes and 384 



soluble organic-C substrates and is directly affected by soil water content (Davidson and Janssens 385 

2006), will also play a role. 386 

In Paracou, we observed no seasonal effect on soil FLNF rates and although rates were typically 387 

reported to be higher in the wet season than in the dry season (e. g. Hofmockel and Schlesinger 2007; 388 

Reed et al. 2007), Matson et al. (2014) have shown that the opposite can also occur. They postulated 389 

that it is likely that moisture fluctuations were not directly responsible for their observed seasonal 390 

changes in FLNF rates, just as in our study it might not have contributed to unchanging rates. Their 391 

reasoning was based on the fact that cyanobacteria can fix N at moisture levels as low as 6 % and in 392 

one study reached maximum N fixation rates at soil moistures between 22 and 42 % (Jones 1977), 393 

though it did not specify whether this was in sandy or clayey soil. As soil moisture in Paracou always 394 

remained between 15 and 44 % (Table S1) it is likely that diazotrophs had sufficient moisture to keep 395 

oxygen levels low and continue N fixation. 396 

At Nouragues, the effect of soil moisture on FLNF rates was high (40 % of variability explained by 397 

soil moisture alone, Table 2 A) and seasonality caused an interesting pattern in the distribution of very 398 

low FLNF rate measurements (below detection limit). The vast majority of below detection limit 399 

measurements occurred during the dry season (Fig S4 B) and when analysing only data for which FLNF 400 

rates were above the detection limit, we found a significant season effect in Nouragues with 401 

quantifiable rates (i.e. in samples above the detection limit) actually being higher in the dry season 402 

than in the wet season (Fig S5 B). This meant that the range of FLNF rates was broader during the dry 403 

season than during the wet season (Fig S5 A), indicating that N fixation hotspots were of increasing 404 

importance. These are typically found in tropical ecosystems (Pajares and Bohannan 2016) and reflect 405 

the very small-scale spatial heterogeneity of abiotic factors affecting the dynamics of the diazotroph 406 

community (Reed et al. 2010). As the soil dried out at the onset of the dry season the heterogeneity of 407 

water-filled pore space increased, leading to the creation of aerobic and anaerobic, as well as dry and 408 

mesic microsites that co-occured on a small spatial scale (Sexstone et al. 1985). 409 

Besides water content, available P and pH were the most important predictors for soil FLNF at our 410 

sites. The pH in our soils is very low, ranging between 3.8 and 4.2 (Table S1). This is a relatively small 411 

range, yet pH has been identified to affect bacterial community composition and diversity (Rousk et 412 

al. 2010; Tripathi et al. 2014) or soil CO2 effluxes (Courtois et al, 2018) at the local scale even when 413 

changes are small. We were unable to find studies assessing the effect of pH on FLNF in tropical 414 

ecosystems, but nitrogenase activity of soil diazotrophs has been shown to increase with increased pH 415 

in a German pine forest situated in north-east Bavaria (Limmer and Drake 1996). Roper and Smith 416 

(1991) found that nitrogenase activity of bacteria extracted from clayey Australian soils reached its 417 



peak around pH 7.5, matching the nitrogenase pH optimum found by Pham and Burgess (1993), and 418 

decreased in more acidic soils. Their study, however, was carried out on soils that at the start of the 419 

experiment were only slightly acidic after which the pH was decreased during the course of the study. 420 

Their result is therefore not necessarily representative for N fixing microbial communities that 421 

developed in acidic soils, such as in our study. However, taking into account an enzymatic pH optimum 422 

of 7.5 (Pham and Burgess 1993) and decreased nitrogenase activity in more acidic temperate soils, a 423 

positive relationship between soil pH and FLNF rates in our acidic tropical forest sites is plausible. 424 

Phosphorus can play a pivotal role in regulating N fixation rates and is often limiting the rate of 425 

this process in highly weathered lowland tropical soils (e. g. Camenzind et al. 2018; Reed et al. 2011). 426 

In Paracou, both P predictors were positively correlated with the FLNF rates, suggesting a higher 427 

activity of N fixing microbes when more P is present in the soil. Additions of P to the forest floor have 428 

shown to increase both diversity and abundance of diazotrophs in tropical soils (Reed et al. 2010), as 429 

well as increases in FLNF rates (e. g. Benner et al. 2007; Reed et al. 2013). The positive correlation 430 

between available P and total P on the one hand, and FLNF rates on the other, is in line with the 431 

longstanding idea that increased P benefits FLNF rates in tropical lowland forests. In addition to P, the 432 

model for Paracou also identified available N as a predictor, indicating that higher available N is linked 433 

to decreased FLNF rates. This is in line with what was observed in previous tropical forest studies, 434 

where additions of N led to the decrease of N fixation rates (e. g. Barron et al. 2009; Crews et al. 2000; 435 

Cusack et al. 2009). This observation is generally attributed to the theory that many heterotrophic N2 436 

fixers are facultative fixers and able to down-regulate their fixation pathway when other sources of N 437 

are available and more cost-efficient to acquire (Menge et al. 2009). The topographic effect on FLNF 438 

rates in Paracou, effectively resulting in lower rates on the top than on bottom and slope plots is likely 439 

caused by the interplay of P and N in the Paracou soils as they also varied with topographic position. 440 

Total P was highest on the slope and available P highest on the bottom, while both were lowest on the 441 

top. Because of the higher clay content of the Paracou slope soils there are likely more aluminium and 442 

iron oxides (Tiessen et al. 1994) that are able to occlude more P, resulting in higher soil total P contents 443 

as seen on the slope. On the more sandy bottom landscape position metal oxides that can occlude P 444 

are likely scarcer and the higher water content, especially during rain events when runoff causes 445 

disproportionate changes in water status, leads to reduction of iron oxides (Colombo et al. 2014), 446 

liberating occluded P and provoking higher concentrations of available P. 447 

In Nouragues, we found that water content, C and N performed equally well, each individually 448 

explaining 40 % of the observed variation in FLNF rates, suggesting that the absolute concentrations 449 

of C and N in the soil explain a substantial part of the variation in FLNF rates. It is surprising that the 450 

model identified a positive effect of N content on FLNF rates, given that most studies associate 451 



increased N with decreased or unchanged fixation rates (Camenzind et al. 2018). Additionally, we 452 

would expect that available N, which was also included as potential variable but was not selected by 453 

the model, would be identified as a variable affecting FLNF rates instead of N content because no 454 

decomposition is needed before assimilation. Likely, the identification of N by the model is purely 455 

mathematical and caused by its near perfect correlation with C content (Table S3 B). The positive 456 

relationship of C with FLNF rates, which is predominantly carried out by heterotrophic diazotrophs 457 

(Sprent and Sprent 1990), is the result of decomposition of organic material and subsequent 458 

assimilation of additional C providing the energy necessary to carry out fixation. In Nouragues, the high 459 

correlation between C content and moisture (Table S3 B) partly explains their equal importance in the 460 

model. Their correlation might be due to the influence of soil moisture on decomposition rates, 461 

especially when it is very wet (negative relation) or very dry (positive relation). At high moisture levels, 462 

soil organic carbon and nitrogen stocks increase because of the slower decomposition in water-463 

saturated soil (Van Sundert et al. 2018). Moreover, soils in Nouragues are clay-rich, exacerbating this 464 

effect as soils containing more clay stabilize and store more soil organic matter than sandy soils (Reis 465 

et al. 2014), such as those in Paracou. Both increased water and C can be beneficial for free-living 466 

diazotrophs as many species possess heterotrophic anaerobic metabolisms (Dixon and Kahn 2004) and 467 

proliferate under oxygen poor and carbon rich conditions. 468 

In Nouragues the topographical patterns of N and P were different from Paracou, with much 469 

higher total P concentrations that occurred on the top landscape position instead of on the slopes, and 470 

much smaller differences in available P concentrations among the topographic positions. This likely 471 

played a role in the regulation of soil FLNF rate, causing them to remain high on the top landscape 472 

position. Because of this strong difference in topography effects between Nouragues and Paracou, we 473 

cannot draw general conclusions about landscape-scale variations in soil FLNF rates across 474 

topographies in French Guianese tropical forests. Instead, our results support the idea that soil FLNF 475 

rates at our sites varied in function of water and nutrient availability, similar to what was reviewed by 476 

Dynarski et al. (2018). 477 

Lastly, it is interesting to note that total or available Mo was never selected as explanatory 478 

variable for soil FLNF rates, in spite of playing a regulatory role in FLNF at other sites (Barron et al. 479 

2009; Reed et al. 2013; Wurzburger et al. 2012). Molybdenum concentrations in our study sites were 480 

slightly higher than those found elsewhere (Gupta and Lipsett 1981), and available Mo was ten times 481 

higher than in Panama (Wurzburger et al. 2012), which was the only study reporting the effect of 482 

available molybdenum on FLNF. Likely, the concentration of available Mo at our sites is high enough 483 

to preclude any regulatory role of Mo in this P-limited environment. 484 



Leaf litter free-living N2 fixation 485 

Overall, leaf litter FLNF rates did not vary with topography and were instead driven mainly by 486 

water content and the N:P ratio of the leaf litter, as shown by the overall model explaining 46 % of the 487 

variation (Table 2 B). The negative influence of N:P ratio is in line with what was postulated by Reed et 488 

al. (2007) and likely illustrates a stoichiometric and energetic balance shift. In a decomposing leaf a 489 

decreasing N:P ratio leads to P becoming comparatively more abundant, shifting the stoichiometric 490 

balance to move away from P limitation to N limitation, favouring diazotrophs. Additionally, increased 491 

P in the environment may alleviate energetic constraints (see above) and enable diazotrophs to invest 492 

the required energy into fixing N. As the general model included data from both seasons, a large 493 

influence of water content, as evidenced by the largest beta value (Table 2 B), was to be expected 494 

because litter FLNF rates were significantly affected by seasonality; wet season FLNF rates were up to 495 

nearly two times higher than dry season FLNF rates (Table 1) and the number of samples for which 496 

FLNF rates were below the detection limit was much smaller in the wet than in the dry season (Fig S4 497 

C & D). As expected, litter dried out severely during the dry season and water content decreased from 498 

an average ~64 to ~40 % across both sites. Given that diazotrophs grow and proliferate in aqueous 499 

environments (Scott 1957), it is likely that leaf litter water content in the dry season dropped below a 500 

threshold of minimum water required for diazotroph proliferation, resulting in a net drop of FLNF rate. 501 

This response of diazotroph activity to leaf litter moisture was already observed in a sub-tropical karst 502 

forest, where researchers found that decreases in leaf litter moisture resulted in decreased FLNF rates 503 

(Li et al. 2018). The large beta value (2.63, Table 2 B) associated with water content in the dry season 504 

model hints towards the disruptive effect of water shortage. This model explained 67 % of the variation 505 

in litter FLNF rates and included only water content and litter N, which, just as the N:P ratio in the 506 

general model, had a negative effect on the FLNF rates. As mentioned earlier, N assimilation is cheaper 507 

than N fixation from an energetic point of view and when more N is present fixation will likely be down 508 

regulated (Menge et al. 2009). On the top landscape position in Paracou, also during the dry season, 509 

leaf litter water content was lowest while N:P ratio was highest. This likely led to a complete collapse 510 

of N fixation (Fig 1 C), because N was in ample supply compared to P and water was scarce. During the 511 

wet season, litter stoichiometry explained 33 % of the variation in FLNF rates which likely reflects, at 512 

least partially, the interactions between seasonal changes in labile C availability, P content and N 513 

demand (Reed et al. 2007). Litterfall peaks at the onset of the dry season (Chave et al. 2010; Wagner 514 

et al. 2013) and once the wet season starts the daily rainfall provides a vehicle for the movement of 515 

readily decomposable, dissolved organic C (DOC) within the litter layer (Courtois et al. 2018). The N2-516 

fixing microbial community in the litter layer is dominated by heterotrophic microorganisms (Sprent 517 

and Sprent 1990) and the influx of litter DOC provides an easily accessible energy source for these 518 



diazotrophs. Additionally, in our study, we found that the concentration of both P and N in leaf litter 519 

was higher in the wet season than in the dry season, similar to what was found in another study in 520 

Costa Rica (Wood et al. 2005). However, relative to N content, P content increased more towards the 521 

wet season, resulting in a lower N:P ratio during the wet season. In combination with more labile C 522 

input, this could stimulate N fixation through the relief of energetic constraints and the added 523 

advantage of being able to fix N compared to assimilating N from an environment where it is, 524 

comparatively, less abundant than in the dry season. This process was already observed in tallgrass 525 

prairie soils (Eisele et al. 1989). 526 

In contrast to litter P content, which changed significantly across seasons yet showed no 527 

significant change along the topographical gradient, litter Mo content changed significantly between 528 

the two seasons and along the topographical gradient. Just as in soils, however, and in spite of its 529 

importance for N fixation (Kaiser et al. 2005; Seefeldt et al. 2009), we found no evidence to support a 530 

regulatory role for Mo content. Similar as in soils, litter Mo concentrations were ten-fold higher than 531 

those reported from other tropical sites (Barron et al. 2009; Bowell and Ansah 1993; Reed et al. 2013; 532 

Wurzburger et al. 2012) and likely too high to render a regulatory role to Mo in litter FLNF rates. 533 

Lastly, in both soils and leaf litter our models were unable to explain more than 67 % of the 534 

observed variation, and in most cases only around 40 %. This means that often the majority of variation 535 

in FLNF rates could not be explained by the variables we selected and thus it is very likely that other 536 

factors not measured in this study contribute to the regulation of FLNF in our tropical lowland forests. 537 

Knowing the diazotroph community composition, in both soil and leaf litter, could enhance our 538 

understanding of their nutritional and environmental needs and help us estimate at what point 539 

parameters such as moisture, pH and P or N availability are beneficial or, inversely, detrimental. The 540 

likelihood that within a single diazotroph community both aerobic and anaerobic lifestyles can occur 541 

(Dixon and Kahn 2004) and that N fixing Archaea within the community may possess different 542 

nutritional requirements than bacterial diazotrophs (Leigh 2000) are additional reasons to study the 543 

diazotroph community composition. Also, we did not assess the iron (Fe) or the vanadium (V) 544 

availabilities at our sites while they have the potential of participating in FLNF rate regulation (Zhang 545 

et al. 2016). While Mo is a necessary co-factor of most nitrogenase enzymes (Igarashi and Seefeldt 546 

2003), Fe is found in all known nitrogenases and the occurrence of ‘iron-only’ (Fe-Fe) nitrogenases has 547 

been widely documented (e. g. Yang et al. 2014; Zheng et al. 2018). The role of V in regulation of FLNF 548 

is understudied, but it is certain that the occurrence of an alternative enzymatic co-factor, namely the 549 

vanadium-iron (V-Fe) cofactor, is widespread and V availability may therefore also play a regulatory 550 

role in nitrogenase biosynthesis (Hu et al. 2012). A follow-up study investigating the community 551 

composition of the diazotrophs, specifically looking into the prevalence of aerobic and anaerobic 552 



organisms, combined with research into the occurrence of V-Fe nitrogenases and V and Fe availabilities 553 

in the soil and leaf litter could enable us to explain more of the observed variation than we presently 554 

could. 555 



Conclusion 556 

Our study has shed light on the drivers behind FLNF in tropical soil and leaf litter on the Guiana Shield 557 

and has shown that the rates of FLNF are much lower than those estimated for most tropical forests 558 

elsewhere. Water, N and P played the main roles in determining FLNF rates in both sample types, while 559 

pH only regulated in the soil. The effect of seasonality differed between sample type and differences 560 

in FLNF regulation between sites could be observed in soils, but not in litter. Despite having been 561 

shown to influence N fixation rates in other mature tropical forests, the micro nutrient Mo played no 562 

role in the regulation of FLNF rates at our sites in French Guiana. 563 

In the sandy site, Paracou, the stimulating effect of P and the inhibiting effect of N were the main 564 

drivers behind soil FLNF, but in the clayey site, Nouragues, soil FLNF was mainly stimulated by water 565 

or C content. Our models for soil FLNF could not explain more than 40 % of the observed variation, 566 

illustrating the complexity of predicting fixation rates upon measured variables in an environment that 567 

is highly heterogeneous on a regional, local and even micro scale. In leaf litter we also identified water, 568 

N and P as main drivers, but the underlying mechanisms that caused variation may have been different 569 

compared to the soil. In the leaf litter we observed no differences in FLNF rates between sites, but 570 

during the dry season litter rates exhibited a drastic decline that was mainly related to water 571 

insufficiency and the inhibiting effect of N. During the wet season water was still of importance, but 572 

now stimulating effects of C and P also came into play. It is important to note that our litter wet season 573 

model explained only about 30 % of the observed variation. 574 

It is likely that in both soil and leaf litter diazotroph community composition and iron or vanadium 575 

availability had an influence on FLNF rates making them interesting to measure in future studies. In 576 

the larger framework of global change, where N deposition is expected to increase (Penuelas et al. 577 

2013), P deposition to tropical forests may change (Gross et al. 2016) and the possibility of a drier 578 

Amazon basin (IPCC 2013) may cause disruptive changes to the FLNF rates in soil and litter. Nutrient 579 

addition studies may offer clues as to the response of FLNF to changes in N or P supply, but testing the 580 

influence of climatic changes in situ calls for a very specific type of studies.581 
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Tables and figure 590 

Table 1 Range, median, mean and standard error (SE) of FLNF rates at forest sites Paracou and Nouragues. Rates measured in sample types soil and leaf litter are given for the wet and dry 591 
season separately and split up by landscape unit. Rates are expressed both on a mass basis as ethylene production rates and on an area basis as N fixation rates. Significant differences (P < 592 
0.05) within a single site and sample type are indicated by differing letters. Calculation of median, mean and standard error and statistical analyses were performed from data including BDL* 593 
measurements. *BDL, below detection limit of 0.01 nl ethylene produced per ml air. This equates to a detection limit of 1*10-4 nmol g-1 h-1 and 7*10-4 kg N ha- 594 

 

 Paracou  Nouragues 

 Wet  Dry  Wet  Dry 

 Bottom Slope Top  Bottom Slope Top  Bottom Slope Top  Bottom Slope Top 

So
il 

Ethylene 
production 
(nmol g-1 h-1) 

Minimum BDL* BDL BDL  BDL BDL BDL  BDL BDL BDL  BDL BDL BDL 

Median 0.006 0.005 BDL  0.015 0.008 0.001  0.002 0.003 0.004  0.014 0.006 0.012 

Mean 0.012 0.017 0.002  0.014 0.013 0.003  0.003 0.005 0.028  0.055 0.010 0.037 

Maximum 0.044 0.191 0.022  0.029 0.056 0.018  0.006 0.034 0.404  0.298 0.086 0.460 

SE 0.003 0.009 0.001  0.002 0.002 0.001  0.000 0.002 0.020  0.030 0.004 0.021 

N fixation rate 
(kg N ha-1 y-1) 

Minimum BDL BDL BDL  BDL 0.001 BDL  0.020 BDL BDL  0.001 BDL BDL 

Median 0.296 0.183 0.008  0.738 0.350 0.060  0.084 0.119 0.129  0.537 0.228 0.395 

Mean 0.565 0.724 0.091  0.663 0.528 0.149  0.100 0.176 0.742  1.301 0.405 1.279 

Maximum 2.082 7.836 1.215  1.449 2.168 0.858  0.181 1.157 8.944  10.513 3.635 15.850 

SE 0.168 0.379 0.060  0.077 0.099 0.054  0.010 0.055 0.460  1.073 0.171 0.741 

  Sign. a a b  a a b  a a a  a a a 

Li
tt

er
 

Ethylene 
production 
(nmol g-1 h-1) 

Minimum 0.026 0.025 BDL  BDL BDL BDL  0.014 0.010 0.003  BDL BDL BDL 

Median 0.186 0.143 0.112  0.111 0.053 0.000  0.109 0.059 0.030  0.087 0.045 0.043 

Mean 0.524 0.433 0.403  0.376 0.290 0.001  0.346 0.300 0.150  0.207 0.046 0.139 

Maximum 3.018 2.500 3.976  2.981 4.554 0.007  2.898 2.407 1.252  0.930 0.120 2.112 

SE 0.188 0.127 0.186  0.156 0.219 0.001  0.145 0.119 0.063  0.056 0.008 0.103 

N fixation rate 
(kg N ha-1 y-1) 

Minimum 0.011 0.005 BDL  BDL BDL BDL  0.005 0.003 0.001  BDL BDL BDL 

Median 0.052 0.045 0.044  0.028 0.015 0.000  0.042 0.017 0.008  0.043 0.015 0.019 

Mean 0.166 0.127 0.142  0.109 0.102 0.000  0.126 0.112 0.045  0.111 0.017 0.065 

Maximum 0.889 0.580 1.332  0.898 1.707 0.002  0.615 0.979 0.418  0.800 0.053 0.867 

SE 0.054 0.034 0.062  0.046 0.083 0.000  0.044 0.048 0.021  0.041 0.002 0.042 

  Sign. a a ab  b b c  a abd ac  bcd ce be 

595 



 596 

Table 2. Results of the forward stepwise selection analyses for N fixation rates in soil (A) and leaf litter (B). For these analyses 597 
we excluded the measurements that were below the detection limit. 598 

Each row lists the parameters that were included into the model that provided the best fit, based on AICc values. Columns 599 
one and two give information regarding the dataset that was used. For soils (A) a model including data from both sites (Par, 600 
Paracou; Nou, Nouragues) and seasons was made along with models for each site separately because N fixation rates were 601 
different between sites. For leaf litter (B) a model including data from both sites and seasons was made along with models 602 
for each season separately because seasonality affected N fixation. Parameters that had a significant effect (*= p<0.05, **= 603 
p<0.01 and ***= p<0.001) on N fixation rates are given with their F values. Plus or minus numbers represent beta values. R² 604 
was calculated for the fit of the modelled and measured fixation rates. 605 

1 The stepwise selection identified total N, total C and water content as equally important for determining FLNF rates in 606 
Nouragues soils. This is because these three variables are highly correlated and behave similarly in the model. Explanations 607 
as to why this occurs are offered in the text.  608 

 609 

A  
Site Season Parameters  R² 

Par & 
Nou 
 

Wet & dry 
 

+0.57 Water* 
F1,169= 15.6  

+0.20 Available P* 
F1,179= 4.8 

+0.17 pH* 
F1,180= 4.5 

 0.240 

Par Wet & dry 
 

+1.1 Total P*** 
F1,88= 44.7 

+0.34 Available P** 
F1,91= 7.2 

-0.51 Available N** 
F1,68= 9.3 

 0.362 

       

  +0.25 Total N* 
F1,88= 5.0 

   0.398 

Nou Wet & dry +0.25 Total C* 
F1,88= 4.7 

   0.396 

  +0.25 Water* 
F1,88= 5.0 

   0.401 

B 

Site Season Parameters   

Par & 
Nou 
 

Wet & Dry 
 

+0.76 Water***  
F1,40= 24.67  

-0.32 N:P** 
F1,195= 8.34 

  0.457 

Par & 
Nou 
 

Wet 
 

+1.71 Water** 
F1,65= 9.10 

+0.65 Total P** 
F1,117= 10.69 

+1.38 Total C** 
F1,117= 8.64 

+ 0.81 CN* 
F1,115= 5.87 

0.328 

Par & 
Nou 
 

Dry 
 

+2.63 Water*** 
F1,82= 26.26  

-0.79 Total N* 
F1,73= 6.70 

  0.676 



Figures 610 

 611 

 612 

Figure 1. Area-based N fixation rates for soil at Paracou (A) and Nouragues (B) and for leaf litter at Paracou (C) and Nouragues 613 
(D). Rates represent the means (±1 SE) of the samples collected from the bottom, slope and top landscape positions in the 614 
wet (May) and dry (September) seasons (N = 20). Letters denote significant differences amongst different seasons and 615 
landscape units within a single site for soil or leaf litter at the P < 0.05 level. Significance testing was performed by mixed 616 
effects regression models using the log transformed values as measured values were non-normal. Data include 617 
measurements that were below the detection limit. 618 

 619 

  620 



 621 

Figure 2. Principal Component Analysis of soil variables in Paracou (A) and Nouragues (B). Points on the graph are plot 622 
averages. C = total C, N = total N, P = total P, Mo = total Mo, C:N = C:N ratio, P in = available P, N in = available N, Mo in = 623 
available Mo, Moisture = water content, pH = pH, Clay = % clay, Sand = % sand and BD = bulk density. 624 

  625 

Figure 3. Principal Component Analysis of leaf litter variables in both Paracou and Nouragues and for both wet and dry 626 
season. Dots on the graph are averaged for plot. C= total C, N = total N, P = total P, Mo = total Mo, C:N = C:N ratio, N:P = N:P 627 
ratio and Moisture = water content. 628 

 629 



Supplementary information 630 

Table S1. Soil water content, stoichiometry and nutrient availabilities for both field sites and seasons on the three topographies     631 

  Paracou  Nouragues 

 Wet season  Dry season  Wet season  Dry season 

  Bottom Slope Top  Bottom Slope Top  Bottom Slope Top  Bottom Slope Top 

Gravimetric 
water (%) 

37 (2)ab 44 (2)a 36 (1)b  19 (1)cd 22 (1)c 15 (1)d  48 (5)b 55 (3)b 66 (3)a  40 (5)c 30 (1)c 52 (3)b 

C:N ratio 
17.8 
(0.7)b 

20.1 (1.1)ab 13 (0.8)c   18.7 (1.2)ab 18.8 (0.7)ab 21.0 (0.8)a   15.8 (0.3)a 17.5 (0.3)a 16.0 (0.5)a   16.3 (0.6)a 16.0 (0.3)a 16.3 (0.4)a 

Total C (%) 3.1 (0.3)b 4.9 (0.5)ab 3.3 (0.3)b  3.6 (0.7)b 4.8 (0.8)ab 5.9 (0.8)a  5.0 (0.7)a 5.8 (0.4)a 6.6 (0.4)a  4.6 (0.8)a 4.1 (0.2)a 8.2 (0.9)a 

Total N (%) 
0.17 
(0.01)b 

0.24 (0.01)a 0.26 (0.01)a   0.18 (0.03)b 0.24 (0.02)a 0.27 (0.03)a   0.32 (0.04)b 0.33 (0.02)b 0.42 (0.02)a   0.27 (0.04)b 0.25 (0.01)b 0.49 (0.04)a 

Total P  
(mg kg-1) 

78 (3)bc 112 (3)a 65 (3)ce  63 (3)de 96 (4)b 58 (4)d  85 (8)cd 93 (4)c 272 (5)a  69 (8)cd 75 (3)d 267 (6)b 

Total Mo  
(mg kg-1) 

10.9 
(1.1)a 

6.6 (0.7)b 10.3 (1)a   2.0 (0.1)c 1.4 (0.1)c 1.8 (0.1)c   6.3 (1.1)a 5.6 (0.6)a 1.5 (0.2)b   5.8 (0.7)a 4.7 (0.6)a 0.1 (0)b 

Available N  
(mg kg-1) 

10.4 
(0.8)b 

24.7 (1.9)a 15.3 (1.4)b  4.6 (0.3)c 11.4 (0.7)b 5.9 (0.3)c  9.4 (0.9)bc 7.7 (0.3)c 16.4 (0.9)a  9.0 (0.6)bc 11.0 (1.0)b 15.0 (1.0)a 

Available P  
(mg kg-1) 

3.3 (0.3)a 1.3 (0.1)c 1.3 (0.1)cd   2.7 (0.2)b 0.9 (0.1)d 1.2 (0.1)cd   1.8 (0.2)b 0.9 (0)df 1.0 (0)ef   2.0 (0.1)a 1.2 (0.1)ce 1.3 (0.1)cd 

Available Mo  
(µg kg-1) 

6.42 
(0.9)b 

8.53 (1.61)a 3.96 (0.65)bc   3.97 (0.76)c 5.97 (0.83)b 3.52 (0.31)c   3.47 (0.34)a 1.49 (0.42)bc 0.36 (0.17)c   0.61 (0.26)c 2.48 (0.34)ab 3.76 (1.18)a 

pH 
4.21 
(0.03)a 

4.04 (0.02)b 4.06 (0.01)b   3.99 (0.02)b 4.00 (0.02)b 3.88 (0.02)c   3.95 (0.02)a 3.81 (0.01)bc 3.78 (0.06)c   3.82 (0.03)bc 3.80 (0.02)c 3.90 (0.02)ab 

Clay (%) 8.5 (0.5)b 17.5 (0.9)a 9.3 (0.1)b  8.7 (0.5)b 17.5 (0.9)a 9.3 (0.1)b  18.2 (0.5)c 26.0 (1.4)b 42.8 (0.9)a  18.5 (0.6)c 25.7 (1.4)b 42.4 (0.8)a 

Sand (%) 
77.3 
(0.9)a 

63.5 (1.4)b 76.2 (0.2)a   76.6 (0.9)a 63.5 (1.4)b 76.2 (0.2)a   63.8 (0.9)a 53.2 (2.6)b 22.8 (2.0)c   63.4 (1.0)a 53.5 (2.6)b 23.2 (2.0)c 

Bulk density  
(kg m-2) 

58.0 
(1.9)a 

51.9 (1.4)b 56.4 (2.5)a  58.1 (1.8)a 51.9 (1.4)b 56.4 (2.5)a  47.1 (2)a 45.9 (1.2)a 39.1 (1.3)b  46.4 (2.2)a 45.9 (1.2)a 40.0 (1.4)b 

 Values are means with standard errors in parentheses. Letters denote significant differences (linear mixed effects model with Season and Topography as factors, followed by post hoc 632 
tests and with p<0.05 as significance level) within a site.  633 

634 



Table S2. Leaf litter water content and stoichiometry at Paracou and Nouragues for both seasons and on the three topographies.     635 

  Paracou  Nouragues 

  Wet season  Dry season  Wet season  Dry season 

  Bottom Slope Top  Bottom Slope Top  Bottom Slope Top  Bottom Slope Top 

Gravimetric 
water (%) 

0.64 (0.01)a 0.67 (0.01)a 0.58 (0.02)b  0.42 (0.02)c 0.31 (0.01)d 0.22 (0.01)e  0.67 (0.01)a 
0.66 
(0.01)ab 

0.62 (0.01)b  0.60 (0.01)b 0.44 (0.01)c 0.42 (0.03)c 

C:N ratio 36.1 (0.9)b 34.9 (0.7)b 37.5 (1)b  42 (1.5)a 39.5 (0.9)a 42.1 (1.2)a  31.5 (1.8)b 34.2 (0.8)b 34.7 (0.9)b  33.7 (1.2)b 40.8 (1.6)a 38.9 (1.4)a 
N:P ratio 59.8 (2.2)c 60.2 (3.3)c 74.6 (3.1)b  63.0 (3.7)b 74.9 (3.7)ab 83.6 (5.5)a  60.4 (3.1)b 64.6 (4.0)b 58.7 (3.1)b  82.3 (5.2)a 79.6 (3.9)a 70.8 (2.9)a 

Total C (%) 40.5 (1.1)b 43.9 (0.7)b 44.6 (1.3)b  45.4 (0.6)a 46.0 (0.3)a 45.1 (0.6)a  41.6 (1.1)b 45 (0.6)a 45.6 (0.4)a  45.1 (0.4)a 47.0 (0.7)a 45.9 (0.5)a 

Total N (%) 1.14 (0.04)a 1.28 (0.03)a 1.21 (0.05)a  1.11 (0.05)b 1.19 (0.03)b 1.09 (0.03)b  1.39 (0.08)a 1.33 (0.03)a 1.34 (0.04)a  1.37 (0.06)b 1.19 (0.04)b 1.2 (0.03)b 

Total P (mg kg-1) 200 (14)a 227 (13)a 171 (14)a  190 (24)b 171 (10)b 140 (11)b  251 (26)a 220 (16)a 240 (14)a  180 (12)b 157 (9)b 176 (9)b 

Total Mo (mg kg-

1) 
2.8 (0.3)b 1.5 (0.2)c 1.8 (0.4)c  3.4 (0.7)a 1.9 (0.2)ab 3.8 (0.8)ab  1.7 (0.3)a 0.9 (0.2)b 0.5 (0.1)b  1.8 (0.4)a 0.7 (0.1)b 0.7 (0.1)b 

Bulk density (g 
m-2) 

468.2 (62.5)a 
370.4 
(23.2)b 

469.1 
(18.9)a 

 367.7 
(23.0)b 

340.2 
(20.7)c 

347.6 
(12.8)bc 

 441.0 
(29.7)b 

380.7 
(20.7)b 

336.7 
(20.5)b 

 571.8 
(94.2)a 

547.5 
(58.4)a 

682.3 
(72.6)a 

 Values are means with standard errors in parentheses. Letters denote significant differences (linear mixed effects model with Season and Topography as factors, followed by post hoc 636 
tests and with p<0.05 as significance level) within a site. 637 



Table S3 Correlation matrix showing Pearson’s r for the variable used in the stepwise regression analysis. Data from A 638 
Paracou soil, B Nouragues soil and C leaf litter from both sites. Data was averaged per plot prior to calculation. 639 
Abbreviations: C = total C, N = total N, P = total P, Mo = total Mo, C:N = C:N ratio, N:P = N:P ratio, Pin = available P, Nin = 640 
available N, Moin = available Mo, Moisture = water content, pH = pH, Clay = % clay, Sand = % sand and BD = bulk density 641 

A 

Soil variables C N C:N P Mo Nin Pin Moin pH Clay Sand BD 

Moisture -0,16 0,06 -0,24 0,45 0,64 0,68 0,05 0,55 0,55 0,31 -0,33 -0,23 

C 
 

0,78 0,63 0,03 -0,48 0,01 -0,37 -0,06 -0,43 0,20 -0,20 -0,09 

N 
  

0,04 0,04 -0,18 0,12 -0,51 -0,14 -0,39 0,17 -0,18 -0,23 

C:N 
   

0,02 -0,52 -0,07 -0,01 0,12 -0,19 0,11 -0,12 0,04 

P 
    

-0,06 0,69 -0,26 0,49 0,00 0,85 -0,83 -0,63 

Mo 
     

0,26 0,34 0,30 0,69 -0,31 0,31 0,21 

Nin 
      

-0,25 0,33 0,09 0,64 -0,63 -0,45 

Pin 
       

0,02 0,36 -0,51 0,53 0,54 

Moin 
        

0,52 0,45 -0,44 -0,22 

pH 
         

-0,14 0,09 0,18 

Clay 
          

-0,99 -0,68 

Sand 
           

0,73 

 642 

B 

Soil variables C N C:N P Mo Nin Pin Moin pH Clay Sand BD 

Moisture 0,75 0,77 0,14 0,65 -0,45 0,48 -0,36 -0,21 -0,20 0,59 -0,62 -0,64 
C 

 0,97 0,25 0,67 -0,52 0,50 -0,18 0,22 -0,12 0,61 -0,63 -0,63 
N 

  0,05 0,75 -0,63 0,62 -0,23 0,15 -0,11 0,70 -0,72 -0,74 
C:N 

   -0,11 0,37 -0,36 -0,02 0,13 -0,05 -0,18 0,20 0,34 
P 

    -0,70 0,80 -0,48 -0,10 0,03 0,90 -0,93 -0,79 
Mo 

     -0,70 0,40 0,06 0,19 -0,86 0,87 0,87 
Nin 

      -0,28 -0,05 -0,25 0,81 -0,82 -0,71 
Pin 

       0,23 0,11 -0,63 0,60 0,54 
Moin 

        0,36 -0,12 0,14 0,11 
pH 

         -0,19 0,15 0,09 
Clay 

          -0,99 -0,87 
Sand 

           0,89 

 643 

C 

Litter 
variables 

C N C:N P N:P Mo 

Moisture -0,29 0,55 -0,67 0,65 -0,50 -0,31 

C  0,13 0,37 -0,11 0,25 -0,49 

N   -0,85 0,61 -0,13 -0,46 

C:N    -0,61 0,24 0,22 

P     -0,83 -0,26 

N:P      0,13 

 644 

  645 



 646 

Table S4 Comparison of FLNF rates measured in different studies carried out in primary tropical rainforests. Rates for soil 647 
and leaf litter are given and expressed as nmol of ethylene produced per gram of substrate per hour (nmol g-1 h-1).  648 

Substrate Country Location FLNF Rate 
(nmol g-1 h-1) 

Reference 

Litter Hawai Pahoehoe 2.5 (0.4) Vitousek 1999 

Hawai A’a 4.0 (1.4) Vitousek 1999 

    

Hawai Thurston 3.15 (0.86) Crews 2000 

Hawai Laupahoehoe 1.25 (0.31) Crews 2000 

Hawai Kokee 1.08 (0.27) Crews 2000 

    

Hawai Pahoehoe 7.42 (1.85) Vitousek 2000 

Hawai Thurston 8.38 (2.10) Vitousek 2000 

Hawai Laupahoehoe 1.93 (0.48) Vitousek 2000 

Hawai Kokee 3.22 (0.81) Vitousek 2000 

    

Costa Rica Osa Peninsula, Ultisol 8.82 (5.50) Reed et al 2007 

Costa Rica Osa Peninsula, Mollisol 5.89 (4.75) Reed et al 2007 

    

Panama  0.53 (0.17) Barron et al. 2009 

    

Puerto Rico Wet tropical rainforest 2.0 (0.5) Cusack 2009 

Puerto Rico Lower montane rainforest 1.2 (0.5) Cusack 2009 

    

Costa Rica Osa Peninsula 11.39 (2.75) Reed et al 2010 

    

Panama Fairchild 6.52 (1.00) Wurzburger et al. 2012 

Panama AVA 0.34 (0.08) Wurzburger et al. 2012 

Panama Gigante 0.38 (0.06) Wurzburger et al. 2012 

Panama Barro Verde 1.84 (0.42) Wurzburger et al. 2012 

Panama Zetek 0.48 (0.21) Wurzburger et al. 2012 

Panama Rio Paja 1.58 (0.23) Wurzburger et al. 2012 

    

Costa Rica Osa Peninsula 3.77 (0.46) Reed et al. 2013 

    

Costa Rica Osa Peninsula 0.60 (0.15) Sullivan et al. 2014* 

    

French Guiana Paracou 0.32 (0.10) This study 

French Guiana Nouragues 0.18 (0.06) This study 

     

Soil Costa Rica Osa Peninsula, Ultisol 0.080 (0.013) Reed et al 2007 

Costa Rica Osa Peninsula, Mollisol 0.042 (0.009) Reed et al 2007 

    

Puerto Rico Wet tropical rainforest 0.11 (0.03) Cusack 2009 

Puerto Rico Lower montane rainforest 0.06 (0.02) Cusack 2009 

    

Ecuador 1000 m 0.179 (0.112) Matson et al. 2014 

Ecuador 2000 m  0.313 (0.156) Matson et al. 2014 

Ecuador 3000 m 0.223 (0.134) Matson et al. 2014 

    

Costa Rica Osa Peninsula 0.017 (0.004) Sullivan et al. 2014* 

    

French Guiana Paracou 0.011 (0.005) This study 

French Guiana Nouragues 0.021 (0.011) This study 

* For this study we found no bulk density reported for soil and litter. To calculate the amount of ethylene produced from the 649 
kg N ha-1 y-1 reported in the study we used the bulk density values we measured in French Guiana.  650 

 651 



 652 

Figure S1. Soil classification based on texture for each of the twelve plots in Paracou and Nouragues. Dots are plot averages. 653 

 654 



 655 

Figure S2 Relative importance of physico-chemical variables in the overall soil dataset (A), in Paracou (B) and in Nouragues 656 
(C). Higher relative importance means the predictor value is more likely to play a significant role in explaining the observed 657 
variation in FLNF rate (Burnham and Anderson 2002). Relative importance was calculated by summing the Akaike weights of 658 
each model, from all possible first order models, in which the variable participated. Moisture = water content, Ctot = total 659 
C, Ntot = total N, Ptot = total P, MoTot = total Mo, CN = C:N ratio, Navail = available N, Pbray = available P, Moavail = 660 
available Mo, pH = pH, Clay = percentage clay content and BD = bulk density. 661 



 662 

Figure S3 Relative importance of physico-chemical variables in the overall litter dataset (A), in the wet season (B) and in the 663 
dry season (C). Higher relative importance means the predictor value is more likely to play a significant role in explaining 664 
the observed variation in FLNF rate (Burnham and Anderson 2002). Relative importance was calculated by summing the 665 
Akaike weights of each model, from all possible first order models, in which the variable participated. Moisture = water 666 
content, Ctot = total C, Ntot = total N, Ptot = total P, MoTot = total Mo, CN = C:N ratio and NP = N:P ratio. 667 



 668 

Figure S4. Percentage of N fixation rates below (black) and above (grey) the detection limit as a function of season and 669 
topography for (A) Paracou soil, (B) Nouragues soil, (C) Paracou leaf litter and (D) Nouragues leaf litter. 670 

 671 

 672 

Figure S5. Boxplots comparing the effect of season on N fixation in Nouragues soils using the data set containing all datapoints 673 
(A) and the data set excluding datapoints below the detection limit (B). 674 

 675 
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