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PERIODIC ORBITS FOR THE
PERTURBED PLANAR CIRCULAR RESTRICTED 3–BODY PROBLEM

ELBAZ I. ABOUELMAGD1, JUAN LUIS GARCÍA GUIRAO2 AND JAUME LLIBRE3

Abstract. We characterize when the classical first and second kind of periodic orbits of
the planar circular restricted 3–body problem obtained by Poincaré, can be extended to
perturbed planar circular restricted 3–body problems. We put special emphasis when the
perturbed forces are due to zonal harmonic or to a solar sail.

1. Introduction

The circular restricted 3–body problem is considered the simplest non–integrable dynam-
ical system in Celestial Mechanics. However it has many applications not only in the solar
system but also in the studies of the stellar dynamics. Therefore many different dynamical
astronomical systems can be studied within its frame. Thus, for instance this model is used
in some space missions motion of spacecrafts in the Earth–Moon system, or between two
planets. Also there are specific applications of the circular restricted 3–body problem in
stellar systems for studying exoplanets around either one or both components of a binary
star system, (see for instance [13]), and in particular for analyzing the existence of habitable
zones in these exoplanets, see [12, 15, 17, 18, 21].

Many researchers pay their attention to present analytical studies on the circular restricted
3–body problem within the frame of some perturbed forces, due to oblateness, zonal harmonic
coefficients, triaxial and radiation pressure effects. In this context the existence and linear
stability analysis of libration points as well as the periodic orbits around these points are
studied by [1, 2, 3, 16, 17, 18, 30]. Furthermore some researchers devoted their work to
construct the possible solutions of the same problem with some numerical techniques, if it
either includes perturbed forces or not. Some of these techniques are Bulirsch–Stoer method,
Runge–Kutta algorithm, Lie series approach, symplectic integrators, hybrid integrators, etc.
For more details on these methods see for instance [4, 5, 8, 9, 10, 14, 20].

But within frame of continuation solutions [19] establishes that a symmetric periodic orbit
of the circular restricted 3–body problem, when the mass of the third body is small, can
be analytically extended into a periodic solution of the full 3–body problem in a synodic
reference frame. It also proves that a family of symmetric periodic orbits of this problem can
be analytically extended into a family of periodic motion of the full problem, for a fixed value
of the small mass of the third body. In [22] the authors develop a new relationship to find a
connection between the periodic orbits of the planar 3–body problem and the planar circular
restricted 3–body problem. They also state new conditions to prove that the symmetric
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periodic orbits of the elliptic restricted system can be extended into the full planar 3–body
problem.

Our objective in the present work is to analyze when the first and second kind of periodic
orbits found by Poincaré [26, 27] in the planar circular restricted 3–body problem can be or
not extended to periodic orbits of the perturbed planar circular restricted 3–body problem.
The orbits of first (respectively second) kind in the planar circular restricted 3–body problem
are the ones which come from the circular (respectively elliptic) orbits of the two–body
problem or Kepler problem in synodical (or rotating) coordinates.

We recall that in the perturbed circular circular restricted 3–body problem the primaries
are rotating in circular orbits around their common center of masses. In this setting the
infinitesimal third body is affected by the gravitational forces of the primaries as well as
small perturbed force. We shall work in synodical coordinates where the primaries are fixed
on the x–axis. Thus the model of the circular restricted 3–body problem is perturbed by an
extra small force, obtaining the so called the perturbed circular restricted 3–body problem.

There are two standard proofs for showing that the circular periodic orbits of the rotating
Kepler problem can be extended to the first kind of periodic orbits of the circular restricted
3–body problem. The first proof uses the Poincaré variables, see for instance [29] and the
proof of Theorem 2 of this paper, and the second proof uses the multipliers associated to
the circular periodic orbits, see for instance [24] or the proof of Theorem 1 of this paper.
Inspired in both proofs we shall show that, if the circular restricted 3–body problem with
a small perturbation has a first integral, then the periodic solutions of first kind can be
extended from the circular restricted 3–body problem to the perturbed circular restricted
3–body problem. But we shall see that if such first integral does not exist then both proofs
do not work, and it remains as open problem: “to know when the periodic solutions of first
kind can be extended or not when the perturbed problem has not a first integral”.

Finally we study in Theorem 3 the continuation of the second kind of periodic solutions
from the planar circular restricted 3–body problem to a perturbed planar circular restricted
3–body problem.

2. Equations of motion

We assume, without loss of generality, that the separation distance between the primaries,
the sum of their masses and the universal constant of gravitation are equal to one. Then
the equations of motion can be written in dimensionless synodic coordinate system xyz (see
[25]) as

(1) r̈+ 2n ∧ ṙ = ∇V
where

r = [x y z]T , n = [0 0 1]T ,

V =
(1− µ)

r1
+
µ

r2
+

1

2
|n ∧ r|2,

r1 = [(x− µ) y z]T , r2 = [(x− µ+ 1) y z]T ,

Now we assume that the infinitesimal body will receive an additional force, say perturbed
force, with the acceleration in synodic frame a. Using equation (1) the perturbed restricted
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3–body problem can be written as

(2) r̈+ 2n ∧ ṙ = ∇V + a,

where a = a(r, ṙ, t) being

a = [ax(x, y, z, ẋ, ẏ, ż, t) ay(x, y, z, ẋ, ẏ, ż, t) az(x, y, z, ẋ, ẏ, ż, t)]
T ,

and n = [0 0 n]T the mean motion vector.

In cartesian coordinates equations (2) have the form

(3)

ẍ− 2nẏ = n2x− (x− µ)f(x, y, z)− (x− µ+ 1)g(x, y, z) + ax,

ÿ + 2nẋ = n2y − y[f(x, y, z) + g(x, y, z)] + ay,

z̈ = −z[f(x, y, z) + g(x, y, z)] + az,

where

f(x, y, z) =
1− µ

r31
and g(x, y, z) =

µ

r32
.

We assume that the parameter µ and the acceleration a are small. Within this frame we can
write µ = εµ1 and a = εa1, where the parameter ε is very small (i.e. 0 < ε ≪ 1). In what
follows for simplicity the subindex 1 in µ1 and a1 will be dropped. Then equations (3) can
be written as
(4)

ẍ = 2nẏ + n2x− (1− µε)(x− µε)

[(x− µε)2 + y2 + z2]3/2
− µε(x− µε+ 1)

[(x− µε+ 1)2 + y2 + z2]3/2
+ εax,

ÿ = −2nẋ+ n2y − y

[
µε

[(x− µε+ 1)2 + y2 + z2]3/2
+

1− µε

[(x− µε)2 + y2 + z2]3/2

]
+ εay,

z̈ = −z
[

µε

[(x− µε+ 1)2 + y2 + z2]3/2
+

1− µε

[(x− µε)2 + y2 + z2]3/2

]
+ εaz.

After expanding (4) in powers of ε this system can be written into the form

(5)

ẍ = 2nẏ + n2x− x

(x2 + y2 + z2)3/2
+O(ε),

ÿ = −2nẋ+ n2y − y

(x2 + y2 + z2)3/2
+O(ε),

z̈ = − z

(x2 + y2 + z2)3/2
+O(ε).

If z = 0, then ż = 0. So the plane (x, y) is invariant, in the sense that if we choose a point
in that plane then the solution which passes through this point with ż = 0 remains always
in that plane. We shall study if the periodic orbits of first and second kind persist in the
perturbed planar circular restricted 3–body problem (5) with z = 0, i.e. in the differential
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system

(6)

ẍ = 2nẏ + n2x− x

(x2 + y2)3/2
+O(ε),

ÿ = −2nẋ+ n2y − y

(x2 + y2)3/2
+O(ε).

3. Periodic orbits of first kind

For ε = 0 system (6) is the Kepler problem in dimensionless synodic coordinates. We do the
usual change to polar coordinates with the corresponding momenta as follows (x, y, ẋ, ẏ) →
(r, θ,Q, P ) where

x = r cos θ, y = r sin θ, ẋ = ny +Q cos θ − 1

r
P sin θ, ẏ = −nx+Q sin θ +

1

r
P cos θ.

Then the differential system (6) writes

(7)

ṙ = f1(r, θ,Q, P ) = Q,

θ̇ = f2(r, θ,Q, P ) =
P

r2
− n,

Q̇ = f3(r, θ,Q, P ) =
P 2

r3
− 1

r2
+O(ε),

Ṗ = f4(r, θ,Q, P ) = O(ε).

Let (r(t), θ(t), Q(t), P (t)) be a T–periodic solution of system (7) for ε = 0. A con-
tinuation of this periodic solution is a pair of smooth functions, (r(t, ε), θ(t, ε), Q(t, ε),
P (t, ε)) and T (ε), defined for ε > 0 near 0 such that (r(t, 0), θ(t, 0), Q(t, 0), P (t, 0)) =
(r(t), θ(t), Q(t), P (t)), T (0) = T , and (r(t, ε), θ(t, ε), Q(t, ε), P (t, ε)) is a T (ε)−periodic solu-
tion of system (7).

Note that the variational equation associated to the T–periodic solution ϕ(t, ε) = (r(t, ε),
θ(t, ε), Q(t, ε), P (t, ε)) is

(8) Ṁ =

(
∂(f1, f2, f3, f4)

∂(r, θ,Q, P )

∣∣∣
(r,θ,Q,P )=ϕ(t,ε)

)
M,

where M is a 4 × 4 matrix. Of course ∂(f1, f2, f3, f4)/∂(r, θ,Q, P ) denotes the Jacobian
matrix of (f1, f2, f3, f4) with respect to the variables (r, θ,Q, P ). The monodromy matrix
associated to the T–periodic solution ϕ(t, ε) is the solution M(T, ε) of (8) satisfying that
M(0, ε) is the identity matrix. The eigenvalues of the monodromy matrixM(T, 0) associated
to the periodic solution ϕ(t, ε) are called the multipliers of the periodic orbit.

A periodic solution ϕ(t, ε) always has +1 as an eigenvalue of its associated monodromy
matrix M(T, ε), and +1 with multiplicity two for a system with a non–degenerate first
integral. Drop one +1 multiplier for a general autonomous differential system, and drop two
+1 multipliers from the list of multipliers for an autonomous differential system with a non–
degenerate first integral to get the nontrivial multipliers. If the nontrivial multipliers are not
equal to one then the periodic solution is called elementary. It is known that an elementary
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periodic solution for ε = 0 can be extended to ε > 0 sufficiently small, see Proposition 9.1.1
of [24].

System (7) for ε = 0 becomes

ṙ = Q, θ̇ =
P

r2
− n, Q̇ =

P 2

r3
− 1

r2
, Ṗ = 0.

Clearly the angular momentum P is a first integral. Taking P = c for a fixed constant
c3 ̸= 1/n, we get the circular periodic solution r = c2, Q = 0 of period |2πc3/(1 − nc3)|.
Computing the multipliers of this circular periodic solution we obtain +1 with multiplicity
two and exp(±i2π/(1 − nc3)) ̸= +1. If the perturbed problem has a first integral, by
Proposition 9.1.1 of [24], this periodic orbits can be extended, and take the following result:

Theorem 1. Consider a circular restricted 3–body problem with a small perturbation having
a first integral. If c3 ̸= 1/n and 1/(1− nc3) is an integer, then the perturbed circular orbits
of the rotating Kepler problem with angular momentum c can be extended to this problem.

For instance this theorem can be applied to the models of the perturbed circular restricted
3–body problem by zonal harmonic coefficients, oblateness, triaxial, and radiation pressure
effects because these models have a first integral. If the circular restricted 3–body problem
with a small perturbation has not a first integral the multipliers of the circular periodic
orbits cannot be used for knowing if such orbits can be extended, this is the case of planar
circular restricted 3–body problem with a solar sail [28].

We introduce theDelaunay variables (ℓ, g, L,G) instead of the variables (r, θ,Q, P ) through

Q =

√
−G

2

r2
+

2

r
− 1

L2
, P = G, ℓ =

t

L3
, g = θ − f,

where t is the time and f the true anomaly. For ε = 0 we have the Kepler problem in
rotating coordinates and the Delaunay variables have the following meaning: L =

√
a where

a is the semi–major axis of the elliptic orbits, G = L
√
1− e2 where e is the eccentricity of

the elliptic orbits, g is the angle of the pericenter of the elliptic orbits, and ℓ is the mean
anomaly (which is the angular variable measured from the pericenter). For more details on
the Delaunay variables see page 164 of [24] and its neighborhood.

In terms of the Delaunay variables the differential system (7) writes

(9) ℓ̇ =
1

L3
+O(ε), L̇ = O(ε), ġ = −n+O(ε), Ġ = O(ε).

We note that the Delaunay variables are valid only in a neighborhood of the phase space
where we have the elliptic orbits of the Kepler problem in rotating coordinates, and now we
introduce the Poincaré variables (λ,Λ, ξ, η) given by

λ = ℓ+ g, Λ = L, ξ =
√
2(L−G) cos ℓ, η =

√
2(L−G) sin ℓ,

for studying the orbits in a neighborhood of circular periodic orbits of the rotating Kepler
problem. In the Poincaré variables the differential system (9) becomes

(10) λ̇ = Γ− n+O(ε), Λ̇ = O(ε), ξ̇ = −Γη +O(ε), η̇ = Γξ +O(ε),

where Γ = 1/Λ3.
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The periodic solutions of system (10) for ε = 0 are
(11)
λ = (Γ0 − n) t+ λ0, Λ = Λ0, ξ = ξ0 cos(Γ0t)− η0 sin(Γ0t), η = ξ0 sin(Γ0t) + η0 cos(Γ0t),

where Λ0 is a non–zero constant and Γ0 = 1/Λ3
0.

The orbit (11) is periodic if and only if 2πl/(Γ0 − n) = 2πl/Γ0, i.e. Γ0 must be k/(k − l)
with l < k positive integers. Note that k/(k − l) can be any positive rational number. The
circular periodic solutions of system (10) for ε = 0 are

λ = (Γ0 − n) t+ λ0, Λ = Λ0, ξ = 0, η = 0.

Note that ξ = η = 0 if and only if L = G, and since G = L
√
1− e2, we have that ξ = η = 0 if

and only if the eccentricity e = 0. Now applying the Poincaré continuation method (see for
more details on this method [11]), we shall study which of these circular periodic solutions
can be extended to periodic solutions of system (10) with ε > 0 sufficiently small.

We denote by

(12) (ξ(t; ε, ξ0, η0, λ0,Λ0), η(t; ε, ξ0, η0, λ0,Λ0), λ(t; ε, ξ0, η0, λ0,Λ0),Λ(t; ε, ξ0, η0, λ0,Λ0))

the solution of system (10) such that

ξ(0; ε, ξ0, η0, λ0,Λ0) = ξ0,

η(0; ε, ξ0, η0, λ0,Λ0) = η0,

λ(0; ε, ξ0, η0, λ0,Λ0 = λ0,

Λ(0; ε, ξ0, η0, λ0,Λ0) = Λ0.

We want to study the periodic solutions of period T = T0 + τ of system (10) which are
continuation of the circular periodic solutions of (10) with ε = 0, i.e. the solutions (12)
satisfying

(13)

ξ(T ; ε, ξ0, η0, λ0,Λ0) = ξ(0; ε, ξ0, η0, λ0,Λ0),

η(T ; ε, ξ0, η0, λ0,Λ0) = η(0; ε, ξ0, η0, λ0,Λ0),

λ(T ; ε, ξ0, η0, λ0,Λ0) = λ(0; ε, ξ0, η0, λ0,Λ0) + 2πl,

Λ(T ; ε, ξ0, η0, λ0,Λ0) = Λ(0; ε, ξ0, η0, λ0,Λ0),

and
ξ(t; 0, ξ0, η0, λ0,Λ0) = 0,

η(t; 0, ξ0, η0, λ0,Λ0) = 0,

λ(t; 0, ξ0, η0, λ0,Λ0 = (Γ0 − n) t+ λ0,

Λ(t; 0, ξ0, η0, λ0,Λ0) = Λ0.

Thus we expect to find initial conditions (ξ0(ε), η0(ε), λ0(ε),Λ0(ε)) for a periodic solution of
period T0 of system (10), such that for ε = 0 we have

ξ0(0) = η0(0) = 0, Λ0(0) = Λ0 and (Γ0(0)− n)T0 = 2πl.

where Γ0(0) = 1/Λ0(0), therefore

Γ0(0) =
2πl + nT0

T0
and Λ0(0) =

(
T0

2πl + nT0

)1/3

,
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with λ0(0) arbitrary.

We want to solve system (13) with T = T0+τ , more precisely to find the zeros (ξ0, η0,Λ0, τ) =
(ξ0(ε), η0(ε),Λ0(ε), τ(ε)) of the map (ψ1, ψ2, ψ3, ψ4) given by

(14)

ψ1(ε, ξ0, η0, λ0,Λ0, τ) = ξ(T0 + τ ; ε, ξ0, η0, λ0,Λ0)− ξ(0; ε, ξ0, η0, λ0,Λ0),

ψ2(ε, ξ0, η0, λ0,Λ0, τ) = η(T0 + τ ; ε, ξ0, η0, λ0,Λ0)− η(0; ε, ξ0, η0, λ0,Λ0),

ψ3(ε, ξ0, η0, λ0,Λ0, τ) = λ(T0 + τ ; ε, ξ0, η0, λ0,Λ0)− λ(0; ε, ξ0, η0, λ0,Λ0)− 2πl,

ψ4(ε, ξ0, η0, λ0,Λ0, τ) = Λ(T0 + τ ; ε, ξ0, η0, λ0,Λ0)− Λ(0; ε, ξ0, η0, λ0,Λ0).

The Jacobian matrix of (ψ1, ψ2, ψ3, ψ4) with respect to ξ0, η0,Λ0 and τ0 evaluated at (ξ0, η0,Λ0, τ) =
(0, 0, Λ̄0, 0) and ε = 0 is

D =




∂ψ1

∂ξ0

∂ψ1

∂η0

∂ψ1

∂Λ0

∂ψ1

∂τ

∂ψ2

∂ξ0

∂ψ2

∂η0

∂ψ2

∂Λ0

∂ψ2

∂τ

∂ψ3

∂ξ0

∂ψ3

∂η0

∂ψ3

∂Λ0

∂ψ3

∂τ

∂ψ4

∂ξ0

∂ψ4

∂η0

∂ψ4

∂Λ0

∂ψ4

∂τ




∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
(ξ0,η0,Λ0,τ,ε)=(0,0,Λ̄0,0,0)

.

Since

ψ1(ε, ξ0, η0, λ0,Λ0, τ) = ξ0 cos[Γ0(T0 + τ)]− η0 sin[Γ0(T0 + τ)]− ξ0 +O(ε),

ψ2(ε, ξ0, η0, λ0,Λ0, τ) = ξ0 sin[Γ0(T0 + τ)] + η0 cos[Γ0(T0 + τ)]− η0 +O(ε),

ψ3(ε, ξ0, η0, λ0,Λ0, τ) = (
1

Λ3
0

− n)τ +O(ε),

ψ4(ε, ξ0, η0, λ0,Λ0, τ) = O(ε).

then

D =




cos(Γ0T0)− 1 − sin(Γ0T0) ∗ ∗

sin(Γ0T0) cos(Γ0T0)− 1 ∗ ∗

0 0 0
2πl

T0

0 0 0 0




= 0.

Since the determinant D = 0 ,the Poincaré variables which allow to continue the circular
periodic orbits of the rotating Kepler problem to the circular restricted 3–body problem, do
not work for continuing periodic orbits to the circular restricted 3–body problem with some
small perturbation without first integrals. But if this perturbed problem has a first integral,
using this first integral we can compute in each level of the fixed first integral the variable Λ
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as a function of the variables (ξ, η, λ), and we can omit in system (14) the equation ψ4 = 0.
Thus the determinant becomes

D =




cos(Γ0T0)− 1 − sin(Γ0T0) ∗

sin(Γ0T0) cos(Γ0T0)− 1 ∗

0 0
2πl

T0




= −8πl

T0
sin2 1

2
Γ0T0.

and D ̸= 0 if Γ0T0 ̸= 2πk with k a positive integer. Consequently we have the following
result:

Theorem 2. Let T0 = 2πr with r an arbitrary positive rational number. Consider a planar
circular restricted 3–body problem with a small perturbation having a first integral. If T0 ̸=
2πk with k being a positive integer and ε > 0 sufficiently small, then there exists a periodic
orbit for this perturbed problem which tends to a circular periodic orbit of the rotating Kepler
problem with period T0 when ε→ 0.

Clearly Theorem 1 and 2 are related because both provide sufficient conditions in order
that the circular periodic orbits of the rotating Kepler problem can be extended to the
perturbed planar circular restricted 3–body problem.

4. Applications of the periodic orbits of first kind

In this section the previous results of Theorems 1 and 2 will be applied to two perturbed
planar circular restricted 3–body problems. In the first application the perturbed problem
has a first integral [2], and the second one does not have a first integral [28].

4.1. Planar circular restricted 3–body problem with a zonal harmonic effect. The
equations of motion of the planar circular restricted 3–body problem under the effect of zonal
harmonic coefficients up to J2, for the more massive primary, within dimensionless synodic
coordinate system xyz can be written as in [2]

(15)
ẍ− 2ẏ = x− (x− µ)f(x, y, z)− (x− µ+ 1)g(x, y, z) + ax,

ÿ + 2ẋ = y − y[f(x, y, z) + g(x, y, z)] + ay,

where
ax = A(x− µ)h(x, y, z), ay = Ayh(x, y, z),

being A the zonal harmonic parameter and the function h(x, y, z) = 3(1− µ)/(2r51). System
(15) admits a Hamiltonian formulation with the Hamiltonian

(16)

H(x, y, p1, p2) =
1

2
(p21 + p22) + n(yp1 − xp2)−

1− µ

[(x− µ)2 + y2]1/2

− µ

[(x− µ+ 1)2 + y2]1/2
− (1− µ)A

[(x− µ)2 + y2]3/2
.

Consider µ = εµ1 and A = εA1 where ε is a small parameter. In what follows for simplicity
the subindex 1 in µ1 and A1 will be dropped. Then

H(x, y, p1, p2) = Hk(x, y, p1, p2) + εHp(x, y, p1, p2) +O(ε2),
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where Hk is the Hamiltonian of the rotating Kepler problem and Hp comes from the per-
turbed force, i.e.

Hk(x, y, p1, p2) =
1

2
(p21 + p22) + n(yp1 − xp2)−

1

(x2 + y2)1/2
,

Hp(x, y, p1, p2) = − µ

[(x+ 1)2 + y2]1/2
− A

2 [(x+ 1)2 + y2]3/2
+
µ[x(x− 1) + y2]

(x2 + y2)3/2
.

Now we change the cartesian variables (x, y, p1, p2) to the polar variables (r, θ,Q, P ), and
the Hamiltonian becomes

H(r, θ,Q, P ) = Hk(r, θ,Q, P ) + εHp(r, θ,Q, P ) +O(ε2).

where

Hk(r, θ,Q, P ) =
1

2
(Q2 +

P 2

r2
)− nP − 1

r
,

Hp(r, θ,Q, P ) = − µ

(r2 + 2r cos θ + 1)1/2
− A

2 (r2 + 2r cos θ + 1)3/2
+
µ(r − cos θ)

r2
.

and system (15) takes the form
(17)
ṙ = Q,

θ̇ =
P

r2
− n,

Q̇ =
P 2

r3
− 1

r2
+ ε

[
µ(r − 2 cos θ)

r3
− µ(r + cos θ)

(r2 + 2r cos θ + 1)3/2
− 6A(r + cos θ)

(r2 + 2r cos θ + 1)5/2

]
+O(ε2),

Ṗ = −ε
[
µ

r2
sin θ − µr sin θ

(r2 + 2r cos θ + 1)3/2
− 3Ar sin θ

(r2 + 2r cos θ + 1)5/2

]
+O(ε2).

Since system (17) is a particular case of the general system (7) having a first integral, then
Theorems 1 and 2 hold to the the planar circular restricted 3–body problem with the zonal
harmonic coefficient perturbation.

4.2. Planar circular restricted 3–body problem with solar sail perturbation. In
this case the equations of motion with reflecting the solar sail reflector (see [23] and [28]) are

(18) r̈+ 2n ∧ ṙ = ∇V + a,

where

a =
β(1− µ)

r21
(r̂1. s)

2s,

s =
1

R
R,

R = r1 + r2,

R =
√
[2(x− µ) + 1]2 + 4(y2 + z2) .

and
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• r is the position vector of the solar reflector,
• n is the angular velocity vector of a rotating frame with unity value,
• a is the acceleration on a perfectly reflecting solar sail,
• V is the effective potential function,
• r1 is the position vector of the space reflector with respect to the Sun,
• r̂1 is the unit vector in the direction of r1,
• r2 is the position vector of the space reflector with respect to the Earth,
• s is the attitude unit normal vector of the reflector,
• µ mass ratio parameter,
• β sail lightness number, and
• The dot denotes derivative with respect to the time t.

In cartesian coordinates equations (18) are

(19)

ẍ− 2ẏ = x− (x− µ)f(x, y, z)− (x− µ+ 1)g(x, y, z) + ax,

ÿ + 2ẋ = y − y[f(x, y, z) + g(x, y, z)] + ay,

z̈ = −z[f(x, y, z) + g(x, y, z)] + az,

where

ax = β[2(x− µ) + 1]h(x, y, z), ay = 2βyh(x, y, z), az = 2βzh(x, y, z),

being

f(x, y, z) =
1− µ

r31
, g(x, y, z) =

µ

r32
, h(x, y, z) =

1− µ

r41R
3

[
(x− µ)[2(x− µ) + 1] + 2(y2 + z2)

]2
.

We assume that both parameters µ and β are small. Within this frame we can write µ = εµ1

and β = εβ1, where the parameter ε is very small (i.e. 0 < ε≪ 1), and µ1 and β1 are positive
constants. In what follows for simplicity the subindex 1 in µ1 and β1 will be dropped. Then
equations (19) can be written as

(20)

ẍ = 2ẏ + x− (1− µε)(x− µε)

[(x− µε)2 + y2 + z2]3/2
− µε(x− µε+ 1)

[(x− µε+ 1)2 + y2 + z2]3/2
+

βε(1− µε)[2(x+ µε)− 1] [(x+ µε)[2(x+ µε)− 1] + 2y2 + 2z2]
2

[(x− µε)2 + y2 + z2]2 [(2(x+ µε)− 1)2 + 4 (y2 + z2)]3/2
,

ÿ = −2ẋ+ y − y

[
µε

[(x− µε+ 1)2 + y2 + z2]3/2
+

1− µε

[(x− µε)2 + y2 + z2]3/2

]
+

2βyε(1− µε) [(x+ µε)[2(x+ µε)− 1] + 2y2 + 2z2]
2

[(x− µε)2 + y2 + z2]2 [(2(x+ µε)− 1)2 + 4 (y2 + z2)]3/2
,

z̈ = −z
[

µε

[(x− µε+ 1)2 + y2 + z2]3/2
+

1− µε

[(x− µε)2 + y2 + z2]3/2

]
+

2βzε(1− µε) [(x+ µε)[2(x+ µε)− 1] + 2y2 + 2z2]
2

[(x− µε)2 + y2 + z2]2 [[2(x+ µε)− 1]2 + 4 (y2 + z2)]3/2
.

After expanding (20) in powers of ε this system can be written into the form (5), and we
can study its periodic orbits in the plane z = 0 using the system (6). But since now the



THE PERTURBED PLANAR RESTRICTED 3–BODY PROBLEM 11

planar circular restricted 3–body problem with solar sail perturbation has no first integrals,
the results of Theorems 1 and 2 cannot be applied, and it remains an open problem to know
if the periodic orbits of first kind can be extended or not to this perturbed problem. But in
the case of radial solar sail, that is when the sail is oriented along the Sun–Line (i.e. along
the normal vector n = r̂1), then system (18) has a first integral see [31], and in this case the
results of Theorems 1 and 2 will apply.

5. Periodic orbits of second kind

Birkhoff [7] observed that if the equations of system (6) are invariant with respect to the
change variables (x, y, t) → (x,−y,−t), then an orbit which crosses the x−axis perpendicular
at t = 0 and again at t = T/2 must be periodic of period T . So a way of finding periodic
orbits is to look for orbits having two perpendicular crossings with the x−axis. Barrar [6]
used ideas of Birkhoff for extending the elliptical orbits of the rotating Kepler problem to
the planar circular restricted 3–body problem. Now we will see that the work of Barrar goes
beyond the planar circular restricted 3–body problem, i.e. that it extends to the perturbed
planar circular restricted 3–body problems.

In Delaunay variables two perpendicular crossing with the x−axis correspond to

g(t) = mπ, l(t) = nπ.

Indeed g(t) = mπ says that the major axis of the ellipse coincides with the x−axis, and
l(t) = nπ says that the infinitesimal body is on the x−axis, either at the apocenter or at
the pericenter. Since instantaneous velocity of the infinitesimal body is the same than its
motion along the ellipse and rotation of the ellipse, and both motions are perpendicular to
the x−axis this implies a perpendicular crossing with the x−axis.

For ε = 0 we consider the elliptic orbit with its apocenter at the positive x−axis when
t = 0, i.e.

(21) g(0) = −π , l(0) = π,

from system (9) the equations of motion of this ellipse are

ℓ̇ =
1

L3
, L̇ = 0, ġ = −n, Ġ = 0.

So its solution satisfying conditions (21) is given by

(22) l(t) =
t

L3
0

+ π, L(t) = L0, g(t) = −nt− π, G(t) = G0,

where L0 and G0 are constants.

The period of this elliptic orbit is 2πL3
0 and we want to consider the case when 2πL3

0 =
2πp/q with p and q are coprime. Thus we want to continue this periodic orbit to ε > 0
sufficiently small with a period T = 2πp = 2πqL3

0. Therefore

g(T/2) = −(1 + p)π, l(T/2) = (1 + q)π,

and a such orbit will have two perpendicular crossings with the x−axis. Of course we must
avoid the collision with the small body localized at the point (1, 0).
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For ε > 0 sufficiently small we look for solutions

(l(t, ε, L0, G0), g(t, ε, L0, G0), L(t, ε, L0, G0), G(t, ε, L0, G0))

of system (9) with initial conditions

g(0, ε, L0, G0) = −π , l(0, ε, L0, G0) = π,

such that
ψ1(t, ε, L0, G0) = g(t, ε, L0, G0) + (1 + p)π,

ψ2(t, ε, L0, G0) = l(t, ε, L0, G0)− (1 + q)π,

with L0 near (p/q)1/3 and t near T/2.

From the Implicit Function Theorem such a solution will exist if

det

(
∂(ψ1, ψ2)

∂(t, L0)

)∣∣∣∣
ε=0

̸= 0.

on the elliptic orbit. Since

∣∣∣∣
∂(ψ1, ψ2)

∂(t, L0)

∣∣∣∣
ε=0

=

∣∣∣∣∣∣∣∣∣

∂g

∂t

∂l

∂t

∂g

∂L0

∂l

∂L0

∣∣∣∣∣∣∣∣∣
ε=0

then, from (22), we get ∣∣∣∣
∂(ψ1, ψ2)

∂(t, L0)

∣∣∣∣
ε=0

=
3nT

2L4
0

̸= 0.

So we have the following result:

Theorem 3. Let p and q be relative prime positive integers and T = 2πp. Then the elliptical
periodic solution of period T of the Kepler rotating problem satisfying

g(0) = −π , l(0) = π , L3(0) = p/q,

and do not going through the point (1, 0) can be extended to the perturbed planar circular
restricted 3–body problem with µ > 0 and ε > 0 small such that its equations of motion (9)
come from the equations (6) invariant by the symmetry (x, y, t) → (x,−y,−t).

6. Conclusion

We have proved that the periodic orbits of first kind can be extended from the planar
circular restricted 3–body problem to a perturbed planar circular restricted 3–body problem
if this perturbed problem has a first integral. It is an open problem to know when these
periodic orbits can be extended if the perturbed problem has not a first integral.

We also have shown that the periodic orbits of second kind can be extended from the
planar circular restricted 3–body problem to a perturbed planar circular restricted 3–body
problem if this perturbed problem in cartesian coordinates is invariant by the symmetry
(x, y, t) → (x,−y,−t).



THE PERTURBED PLANAR RESTRICTED 3–BODY PROBLEM 13

Acknowledgements

The first and second author of this work were partially supported by MINECO grant
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