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Abstract. We study the asymptotic development at infinity of an integral operator. We use this
development to give sufficient conditions to upper bound the number of critical periodic orbits that
bifurcate from the outer boundary of the period function of planar potential centers. We apply the main
results to two different families: the power-like potential family ẍ = xp − xq, p, q ∈ R, p > q; and the
family of dehomogenized Loud’s centers.

1 Introduction

Consider a continuous family of planar potential systems

ẋ = −y, ẏ = V ′µ(x), (1)

where µ ∈ Λ is a parameter, Λ is an open subset of Rd, d > 1, and Vµ is an analytic function defined in an
open interval Iµ ⊂ R containing x = 0. In the case when Vµ(0) = V ′µ(0) = 0 and V ′′µ (0) > 0 equation (1) has
a non-degenerate center at the origin for each value of the parameter and so the point (0, 0) has a punctured
neighbourhood that is entirely foliated by periodic orbits surrounding it. The largest neighbourhood with
this property is the period annulus of the center and we shall denote it by Pµ. If we consider the embedding
of Pµ into RP2, its boundary, namely ∂Pµ, is divided in two connected components: the origin itself, which
is called the inner boundary of the period annulus, and the outer boundary of the period annulus defined
by Πµ := ∂Pµ \ {(0, 0)}. When the center is a potential oscillator the natural parametrization of the closed
orbits inside the period annulus is given by the energy level of the Hamiltonian H(x, y;µ) = 1

2y
2 + Vµ(x).

Since Vµ(0) = 0 by convention, we have that H(Pµ) = (0, h0(µ)), where h0(µ) ∈ R+ ∪ {+∞} denotes the
energy level of the outer boundary Πµ.

The object under study in this paper is the period function of the center. The minimal period Tµ(h) of
the periodic orbit γh,µ inside the energy level {H(x, y;µ) = h} can be written as the Abelian integral

Tµ(h) =

∫

γh,µ

dx

y
.

This function is analytic on (0, h0(µ)) for each value of the parameter and it can be extended analytically
to h = 0 due to the non-degeneracy of the center. The derivative T ′µ(h) can also be written as an Abelian
integral and its zeros correspond to critical periodic orbits of the system. This paper is concerned with the
bifurcation of such critical periodic orbits from the outer boundary Πµ. That is, for a fixed µ0 ∈ Λ, we aim
to control the number of critical periodic orbits of system (1) that may emerge or disappear from Πµ0

as
we move slightly the parameter µ ≈ µ0. This number is called the criticality of the outer boundary.

Definition 1.1. Consider a continuous family {Xµ}µ∈Λ of planar analytic vector fields with a center and
fix some µ0 ∈ Λ. Suppose that the outer boundary of the period annulus varies continuously at µ0 ∈ Λ,
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meaning that for any ε > 0 there exists δ > 0 such that dH(Πµ,Πµ0
) 6 ε for all µ ∈ Λ with ‖µ− µ0‖ 6 δ.

Then, setting

N(δ, ε) := sup{#critical periodic orbits γ of Xµ in Pµ with dH(γ,Πµ0) 6 ε and ‖µ− µ0‖ 6 δ},
the criticality of (Πµ0

, Xµ0
) with respect to the deformation Xµ is Crit

(
(Πµ0

, Xµ0
), Xµ

)
:= infδ,εN(δ, ε). �

In the previous definition dH stands for the Hausdorff distance between compact sets of RP2. Notice that
according with this definition the criticality may be infinite but, in the case it is not, it gives the maximal
number of critical periodic orbits of Xµ tending to the outer boundary Πµ0

in the Hausdorff sense as the
parameter µ approaches µ0. The requirement of the continuity of Pµ with respect to the parameters of the
system ensures that the possible changes of Pµ do not occur abruptly. We refer to [8] for details illustrating
the necessity of this extra assumption.

Definition 1.2. A parameter µ0 ∈ Λ is called a local regular value of the period function at the outer
boundary of the period annulus if Crit

(
(Πµ0

, Xµ0
), Xµ

)
= 0. Otherwise the parameter is called a local

bifurcation value at the outer boundary. �

The present paper is a contribution that follows the spirit of the series of works [5,6,15]. In these papers,
we develop analytical tools which allow to give an upper bound of the criticality at the outer boundary of the
period annulus of families of planar potential systems (1). The key idea is to find a collection of functions
φiµ(h), i = 1, 2, . . . , n, verifying that there exist δ, ε > 0 such that (φ1

µ, φ
2
µ, . . . , φ

n
µ, T

′
µ) form an Extended

Complete Chebyshev system (ECT-system for short, see Definition 2.10) on the interval (h0(µ)− ε, h0(µ))
and ‖µ − µ0‖ 6 δ. This fact implies that T ′µ(h) has at most n zeros in (h0(µ) − ε, h0(µ)), counting

multiplicities, uniformly on the parameters µ ≈ µ0. In particular, Crit
(
(Πµ0 , Xµ0), Xµ

)
6 n. According

with Lemma 2.12, to give an upper bound of the criticality is reduced to guarantee that the Wronskian
(see Definition 2.11) W [φ1

µ, φ
2
µ, . . . , φ

n
µ, T

′
µ](h) does not vanish for all (h, µ) ≈ (h0(µ0), µ0). The tools of

the previous works, and also the ones we present here, allow to tackle this problem in the following two
situations: either h0(µ) = +∞ or h0(µ) < +∞ for all µ ≈ µ0. That is, the case in which there exist µ1 and
µ2 in any neighbourhood of µ0 with h0(µ1) = +∞ and h0(µ2) < +∞ is not considered.

Roughly speaking, the results in the previous papers relate the first term in the asymptotic develop-
ment of the potential Vµ at the endpoints of Iµ with the first term of the asymptotic development of
W [φ1

µ, φ
2
µ, . . . , φ

n
µ, T

′
µ](h) at h = h0(µ). This allows to control the sign of the Wronskian under consideration

for (h, µ) ≈ (h0(µ0), µ0); that is, uniformly on the parameters µ ≈ µ0. However, there are some situations
where these first terms of Vµ are not enough to compute the first term of the Wronskian at h = h0(µ)
and so more terms in the asymptotic development must be employed. Theorem D and E in Section 3 aim
to generalize the results in [5, 6, 15] in this direction. To accomplish the desired results, we will employ a
generalization of [6, Proposition 2.16] and [15, Theorem D] (see Theorem C in Section 2.)

As an illustration of these generalizations we recover the study of two different families of planar centers.
The first application is on the two-parametric family of potential differential system given by

{
ẋ = −y,
ẏ = (x+ 1)p − (x+ 1)q,

(2)

which has a non-degenerate center at the origin for all µ := (q, p) varying in Λ := {(q, p) ∈ R2 : p > q}. As
far as we know, the period function of this center was originally studied by Miyamoto and Yagasaki [14],
giving a monotonicity result for q = 1 and p ∈ N. This result was improved later by Yagasaki [18]
showing that the period function of (2) is monotonous for q = 1 and any p > 1 real. Motivated by
those results, we considered the whole family (2) with p > q and performed an exhaustive study of the
period function in [7]. Concerning the criticality at the outer boundary, the family (2) became our testing
ground for the techniques mentioned before. In these works, see Figure 1a, we proved that parameters
µ0 ∈ Λ\

(
ΓB ∪{q+ 1 = 0}∪{(− 1

2 , p1)}∪{(− 1
3 , p2)}

)
, with p1 ≈ 1.20175 and p2 ≈ 1.15685, are local regular

values of the period function at the outer boundary. In addition, Crit
(
(Πµ0

, Xµ0
), Xµ

)
> 1 if µ0 ∈ ΓB and

it is exactly one for parameters µ0 = (q0, p0) satisfying either q0 = 0 and p0 ∈ (0,+∞) \ {1}, p0 = 1 and
q0 < −3, or p0 +2q0 +1 = 0 and q0 ∈ (− 3

5 ,− 1
3 )\{− 1

2}. Using the tools in the present paper, the bifurcation
diagram in Figure 1a is improved by the following result. (See Figure 1b.)
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(a) Previous bifurcation diagram (b) New bifurcation diagram

Figure 1: On the left, bifurcation diagram of the period function of the family (2)
at the outer boundary of the period annulus according with [5, 6, 15]. On the right,
improvement of the bifurcation diagram according with Theorem A. In both figures,
ΓB stands for the union of the bold lines. In black the parameters with criticality
at least one. In blue the parameters with criticality exactly one. Black squares are
parameters that correspond to isochronous centers. Crosses are parameters where
techniques do not apply. The q-axis do not preserve the scale for the sake of space.

Theorem A. Let {Xµ}µ∈Λ be the family of analytic potential systems (2) and consider the period function
of the center at the origin. If µ0 = (q0, p0) with either p0 = 1 and q0 ∈ (−3,−1) \ {−2}, or p0 + 2q0 + 1 = 0
and q0 ∈ (−1,− 1

2 ) \ {− 2
3} then Crit

(
(Πµ0

, Xµ0
), Xµ

)
= 1.

The proof of this result is presented in Section 4.1.1 (see Proposition 4.2) and Section 4.1.2 (see Propo-
sition 4.6). The result finishes the bifurcation diagram of the period function at the outer boundary of
the family (2) except for the line {q + 1 = 0} and four points in the parameter space. (See Figure 1b.)
We point out that the line corresponds to parameters such that the energy at the outer boundary h0(µ)
changes from infinite (q < −1) to finite (q > −1). The points correspond to parameters that do not satisfy
the technical hypothesis to apply the analytic tools. The bifurcation diagram in Figure 1b agrees with the
global bifurcation diagram conjectured in [7].

The second application is on the family of quadratic polynomial planar centers. The literature clas-
sify quadratic centers in four families: Hamiltonian, reversible QR3 , codimension four Q4, and generalized
Lotka-Volterra QLV3 . Chicone [2] conjectured that reversible centers have at most two critical periodic or-
bits whereas the centers of the other three families have monotonic period function. Regarding quadratic
reversible centers, by an affine transformation and a constant rescaling of time, they can be brought to the
Loud normal form {

ẋ = −y +Bxy,

ẏ = x+Dx2 + Fy2.

In [3] the authors show that if B = 0 the period of the center at the origin is globally monotone. When
B 6= 0 one can reduce the system, by means of a rescaling, to B = 1. That is,

{
ẋ = −y + xy,

ẏ = x+Dx2 + Fy2.
(3)

This family is known as dehomogenized Loud’s centers and it has a center at the origin for all parameters
µ := (D,F ) ∈ R2. The bifurcation of critical periodic orbits from the outer boundary of the period annulus
of system (3) has been extensively studied in the recent years. (See Figure 2.) We refer to the series of
papers [8, 10–12,16,17] and references therein.

Our contribution to the bifurcation diagram at the outer boundary of the dehomogenized Loud’s centers
is to show that almost all parameters in the bifurcation curve D = G(F ) have criticality exactly one. Up to
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Figure 2: Bifurcation diagram of the period function at the polycycle of system (3),
where µ? = (−F?, F?) with F? ≈ 2.34. The union of the bold curves correspond to
the set of bifurcation parameters at the outer boundary. The union of dotted straight
lines correspond to the set of unspecified parameters. The complementary of those
two sets correspond to regular parameters.

now, this have been proved for parameters in that bifurcation curve with F ∈ ( 3
2 ,

4
3 ). In order to state the

result properly, let us consider the parameter space

Λ:= {(D,F ) ∈ R2 : 1 < F < 3
2 , D < − 1

2 , D + F > 0}.

Moreover, let 2F1(a, b; c; z) be the Hypergeometric function (see [1, Section 15]), α := (p2−1)/(p2−p1) with
p1 and p2 defined in (15), and let c(µ) be the function in the statement of Lemma 4.3 using the expression
of Vµ in (18).

Theorem B. Let {Xµ}µ∈Λ be the family of analytic potential systems (3) and consider the period function
of the center at the origin. Let µ0 = (D0, F0) ∈ Λ satisfying D0 = G(F0). Then Crit

(
(Πµ0

, Xµ0
), Xµ

)
= 1

in the following situations:

(a) If F0 ∈ ( 6
5 ,

4
3 ).

(b) If F0 ∈ ( 9
8 ,

6
5 ) and c(µ0) 6= 0.

(c) If F0 ∈ (1, 9
8 ], c(µ0) 6= 0 and

2F1

(
− 3

2 ,
5
2 ; 7

2 − 4F0;α(µ0)
)

Γ
(

7
2 − 4F0

) 6= 0. (4)

The proof of the result is given in Sections 4.2.2 and 4.2.3. In that last Section, also a numerical
manifestation that condition (4) seems to be fulfilled for F ∈ (1, 9

8 ] is given. The condition c(µ0) 6= 0 is
a technical requirement for the techniques involved in the proof and it is conjectured to be non necessary
for the criticality to be also exactly one for those parameters satisfying c(µ0) = 0. Regarding the equality
c(µ0) = 0 we also show numerically that the equation has a unique solution (D0, F0) ≈ (−0.56996, 1.00781)
in Section 4.2.3. The parameter D0 = G( 4

3 ) is conjectured to have criticality exactly two at the outer
boundary of the period annulus.

In the forthcoming paper [13] the authors also obtain (4) as a sufficient condition for bifurcation param-
eters in D = G(F ) to have criticality exactly one using a completely different approach. In that work the
authors study the asymptotic development of the Dulac time function near hyperbolic saddle singularities of
meromorphic planar centers. They also use the dehomogenized Loud’s centers as testing ground and reach
the same result in Theorem B without the technical restriction c(µ0) 6= 0 and allowing F0 = 6

5 .
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The rest of the paper is organized as follows. In Section 2 we study the asymptotic behaviour of an
integral operator that will be useful for the proof of the dynamical results in the paper. In Section 3 we
use these techniques to obtain two results that gives sufficient conditions in order to bound the criticality
at the outer boundary of planar potential centers. Finally Section 4 is dedicated to the application of such
sufficient conditions and so we prove Theorems A and B. The work is complemented with an Appendix that
contain the more technical proofs.

2 Asymptotic behaviour of a certain integral operator

Let c ∈ R+ ∪ {+∞} and consider the integral operator

F : C[0, c)→ C[0, c)

defined by

F [f ](x) :=

∫ π
2

0

f(x sin θ)dθ.

Here, and in what follows, C[0, c) stands for the set of continuous functions on [0, c). In the collection of
works [5,6,15] the previous operator is studied because of its relation with the bifurcation of critical periodic
orbits. Indeed, the derivative of the period function of system (1) satisfies the equality

√
2h2T ′µ(h2) = F [fµ](h), h ∈ (0, h0(µ)) (5)

with fµ(x) = x(g−1
µ )′′(x)−x(g−1

µ )′′(−x) and gµ(x) := sgn(x)
√
Vµ(x). Roughly speaking, the main objective

in these works is to give sufficient conditions to the first term of the asymptotic development at x = c of
the function fµ in order that the first term of the asymptotic development at x = c of F [fµ] is obtained,
uniformly on the parameters. These conditions are formulated using the following notions.

Definition 2.1. Let {fµ}µ∈Λ be a continuous family of continuous functions on
(
a(µ), b(µ)

)
, meaning that

the map (x, µ) 7−→ fµ(x) is continuous on
{

(x, µ) ∈ R×Λ : x ∈
(
a(µ), b(µ)

)}
. Assume that either b : Λ→ R

is continuous or b ≡ +∞ in Λ. Given µ0 ∈ Λ we say that {fµ}µ∈Λ is continuously quantifiable in µ0 at b(µ)
by α(µ) with limit `(µ) if there exists an open neighbourhood U of µ0 such that for all µ̂ ∈ U ,

(i) If b(µ0) < +∞, then lim(x,µ)→(b(µ̂),µ̂) fµ(x)(b(µ)− x)α(µ) = `(µ̂) and `(µ̂) 6= 0.

(ii) If b(µ0) = +∞, then lim(x,µ)→(+∞,µ̂) x
−α(µ)fµ(x) = `(µ̂) and `(µ̂) 6= 0.

For the sake of shortness, in the first case we write fµ(x) ∼b(µ) `(µ)(b(µ)−x)−α(µ) at µ0, and in the second

case fµ(x) ∼+∞ `(µ)xα(µ) at µ0. We use the analogous definition for the left endpoint a(µ). �

We point out that the map α : U → R in the previous definition is continuous at µ = µ0 (see [5,
Remark 2.6]).

From now on let us assume that fµ ∈ C[0,+∞). The purpose of this section is to deal with an specific
situation that was not contemplated in the previous works. With this aim in view we first recover the main
results in [5, 15].

Definition 2.2. The function defined for all x > 0 and α ∈ R by means of

ω(x, α) :=

{
xα+1−1
α+1 if α 6= −1,

log x if α = −1,

is called the Roussarie-Ecalle compensator. For the sake of brevity, we also define

G (α) :=

√
π

2

Γ
(

1+α
2

)

Γ
(
1 + α

2

) and Ω(x, α) := (α+ 1)G (α)ω(x, α),

5



where Γ is the Gamma function. Following the notation in Definition 2.1, we write fµ(x) ∼+∞ `(µ)Ω(x, α(µ))
at µ0 if

lim
(x,µ)→(+∞,µ0)

fµ(x)

Ω(x, α(µ))
= `(µ0) 6= 0.

�

Definition 2.3. Let f ∈ C[0,+∞). We call

Mn[f ] :=

∫ +∞

0

x2n−2f(x)dx

the n-th momentum of f , whenever it is well defined. If n = 1 we simply say that M [f ] := M1[f ] is the
momentum of f . �

The next result gathers Theorems 2.13 and 2.17 in [5] together with Theorem C in [15].

Theorem 2.4. Let Λ be an open subset of Rd and consider a continuous family {fµ}µ∈Λ of continuous
functions on [0,+∞). Suppose that fµ(x) ∼+∞ a(µ)xα(µ) at µ0. The following assertions hold:

(a) If α(µ0) > −1 then F [fµ](x) ∼+∞ a(µ)G (α(µ))xα(µ) at µ0.

(b) If α(µ0) = −1 then F [fµ](x) ∼+∞ a(µ)Ω(x, α(µ)) 1
x at µ0.

(c) If α(µ0) < −1 let us take m ∈ N such that α(µ0) + 2m ∈ [−1, 1). In this case:

(c1) If Mi[fµ] ≡ 0 for i = 1, . . . , `− 1 and M`[fµ0
] 6= 0 for some 1 6 ` 6 m, then

F [fµ](x) ∼+∞ M`[fµ]x1−2` at µ0.

(c2) If Mi[fµ] ≡ 0 for i = 1, . . . ,m and α(µ0) + 2m /∈ {−1, 0} then

F [fµ](x) ∼+∞ a(µ)
m∏

i=1

α(µ) + 2i

α(µ) + 2i− 1
G (α(µ) + 2m)xα(µ) at µ0.

(c3) If Mi[fµ] ≡ 0 for i = 1, . . . ,m and α(µ0) + 2m = −1 then

F [fµ](x) ∼+∞ a(µ)
m∏

i=1

α(µ) + 2i

α(µ) + 2i− 1
Ω(x, α(µ) + 2m)x−2m−1 at µ0.

In the previous result the first term in the asymptotic development at infinity of the function F [fµ](x)
is provided as soon as fµ(x) ∼+∞ a(µ)xα(µ) at µ0 except in the case when α(µ0) = −2m for some m ∈ N,
m > 1, and Mi[f ] = 0 for i = 1, . . . ,m. In this special situation the hypothesis of fµ to be quantifiable
by α(µ) = −2m is not enough to quantify F [fµ] at infinity. The following three functions exemplify this
phenomena for n = 1 even in the non-parametric scenario:

f(x) =

{
x−2 + x−

5
2 x > 1,

22
3 x− 16

3 x ∈ [0, 1),
g(x) =

{
x−2 + x−5 x > 1,
13
2 x− 9

2 x ∈ [0, 1),
h(x) =

{
x−2 + x−3 x > 1,

7x− 5 x ∈ [0, 1).
(6)

All these functions are quantifiable by α = −2 at infinity and it is a computation to show that their momenta
vanish. One can verify that F [f ] and F [g] are quantifiable at infinity by − 5

2 and −3 respectively, and that

lim
x→+∞

x3

log x
F [h](x) =

1

2
.

These three examples subscribe the idea that more information on the asymptotic development of the
function fµ is needed to quantify F [fµ] in this situation. To address this problem we generalize Definition 2.1
as follows.
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Definition 2.5. Let {fµ}µ∈Λ be a continuous family of continuous functions on (a(µ), b(µ)). Assume that
either b : Λ → R is continuous or b ≡ +∞ in Λ. Given µ0 ∈ Λ we say that fµ has uniformly development
at x = b(µ)

fµ(x) ∼b(µ)

n∑

i=1

ai(µ)(b(µ)− x)−αi(µ) in µ0

if there exists an open neighbourhood U of µ0 such that for all µ̂ ∈ U ,

lim
(x,µ)→(b(µ̂),µ̂)

(b(µ)− x)αk(µ)

(
fµ(x)−

k−1∑

i=1

ai(µ)(b(µ)− x)−αi(µ)

)
= ak(µ̂) 6= 0

for each k = 1, . . . , n. If b ≡ +∞ then

fµ(x) ∼+∞

n∑

i=1

ai(µ)xαi(µ) in µ0

if for all µ̂ ∈ U ,

lim
(x,µ)→(b(µ̂),µ̂)

x−αk(µ)

(
fµ(x)−

k−1∑

i=1

ai(µ)xαi(µ)

)
= ak(µ̂) 6= 0.

We use the analogous definition at a. �

Similarly as in Definition 2.1, the functions µ 7→ αk(µ) are continuous at µ = µ0.

Definition 2.6. Let f ∈ C[0,+∞). Setting [f ]0 := f , we define

[f ]m(x) := x2[f ]m−1(x) + x

∫ x

0

[f ]m−1(s)ds

for all m > 1. �

The functions F [f ] and F
[
[f ]m

]
are related by the following result.

Lemma 2.7 (see [5]). Let f ∈ C[0,+∞). For any m > 1,

F [f ](x) =
1

x2m
F
[
[f ]m

]
(x) for all x > 0.

In the following statement the assumption M [[Lµ]0] ≡ · · · ≡ M [[Lµ]`−2] ≡ 0 in assertion (a) is void in
case that ` = 1.

Proposition 2.8. Let {fµ}µ∈Λ be a continuous family of continuous functions on [0,+∞) satisfying

fµ(x) ∼∞
∑N
i=1 ai(µ)x−2ni + b(µ)xβ(µ) at µ0 with 1 6 n1 < n2 < · · · < nN positive integers and

β(µ0) < −2nN . The following holds:

(a) If M [[fµ]0] ≡ · · · ≡M [[fµ]`−2] ≡ 0 and M [[fµ0
]`−1] 6= 0 with 1 6 ` 6 nN then, for m = 1, 2, . . . , `− 1,

[fµ]m(x) ∼∞
N∑

i=1
ni>m

m∏

j=1

2j − 2ni
2j − 2ni − 1

ai(µ)x2m−2ni +
m∏

j=1

β(µ) + 2j

β(µ) + 2j − 1
b(µ)xβ(µ)+2m at µ0

and [fµ]`(x) ∼∞ M [[fµ]`−1]x at µ0.

(b) If M [[fµ]0] ≡ · · · ≡M [[fµ]nN−1] ≡ 0 then [fµ]nN (x) ∼∞
∏nN
j=1

β(µ)+2j
β(µ)+2j−1b(µ)xβ(µ)+2nN at µ0.
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Proof. We shall prove the result by induction on m. To do so, we shall first assume m ∈ {1, . . . , n1 − 1}.
(In the case n1 = 1 this assumption is void and we move to the next step.) Let us start considering m = 1.
By definition of [f ]1 and elementary manipulations, we have

[fµ]1(x)−∑k−1
i=1

2−2ni
1−2ni

ai(µ)x2−2ni

x2−2nk
=
x2[fµ]0(x)−∑k−1

i=1
2−2ni
1−2ni

ai(µ)x2−2ni + x
∫ x

0
[fµ]0(s)ds

x2−2nk

=
[fµ]0(x)−∑k−1

i=1 ai(µ)x−2ni

x−2nk
+

∫ x
0

[fµ]0(s)ds−∑k−1
i=1

ai(µ)
1−2ni

x1−2ni

x1−2nk

for any k = 1, . . . , N . The hypothesis M [[fµ]0] ≡ 0 together with ni > 1 imply that the numerator of the
second quotient tends to zero as x tends to infinity. Therefore the second quotient is a 0/0-indeterminacy
as (x, µ)→ (+∞, µ̂) for any µ̂ ≈ µ0. We apply the Uniform Hôpital’s Rule in [5, Proposition A.1] to deduce
that

lim
(x,µ)→(+∞,µ̂)

[fµ]1(x)−∑k−1
i=1

2−2ni
1−2ni

ai(µ)x2−2ni

x2−2nk
=

2− 2nk
1− 2nk

ak(µ̂)

for any k = 1, . . . , N . Similarly,

lim
(x,µ)→(+∞,µ̂)

[fµ]1(x)−∑N
i=1

2−2ni
1−2ni

ai(µ)x2−2ni

xβ(µ)+2
=
β(µ) + 2

β(µ) + 1
b(µ̂).

Therefore,

[fµ]1(x) ∼∞
N∑

i=1

2− 2ni
1− 2ni

ai(µ)x2−2ni +
β(µ) + 2

β(µ) + 1
b(µ̂)xβ(µ)+2 at µ0.

This proves the result for m = 1. If m ∈ {2, . . . , n1 − 1} the result follows identically changing [fµ]0 by
[fµ]1. So we have

[fµ]m(x) ∼∞
N∑

i=1

m∏

j=1

2j − 2ni
2j − 2ni − 1

ai(µ)x2m−2ni +
m∏

j=1

β(µ) + 2j

β(µ) + 2j − 1
b(µ)xβ(µ)+2m at µ0

for m = 1, . . . , n1 − 1. Let us consider now that m ∈ {n1, . . . , n2 − 1}, and let us start by taking m = n1.
The same procedure as before can be applied taking into account that the fist term in the asymptotic
development disappear. Indeed, we have

[fµ]n1(x) ∼∞
N∑

i=2

n1∏

j=1

2j − 2ni
2j − 2ni − 1

ai(µ)x2n1−2ni +

n1∏

j=1

β(µ) + 2j

β(µ) + 2j − 1
b(µ)xβ(µ)+2n1 at µ0,

where now the sum starts at i = 2 instead of the previous i = 1. Now using the first procedure the
result follows for m = n1, . . . , n2 − 1. Inductively the result holds for m = 1, . . . , ` − 1 provided that
M [[fµ]0] ≡ · · ·M [[fµ]`−2] ≡ 0. To finish the proof of (a), let us assume that M [[fµ0 ]`−1] 6= 0. Then

lim
(x,µ)→(+∞,µ̂)

[fµ]`(x)

x
= lim

(x,µ)→(+∞,µ̂)

(
x[fµ]`−1(x) +

∫ x

0

[fµ]`−1(s)ds

)
= M [[fµ̂]`−1] 6= 0

for all µ̂ ≈ µ0. Here we used that

[fµ]`−1(x) ∼∞
N∑

i=1
ni>`−1

`−1∏

j=1

2j − 2ni
2j − 2ni − 1

ai(µ)x2`−2−2ni

and, since ` 6 ni, x[fµ]`−1(x) → 0 as (x, µ) → (+∞, µ̂). This proves (a). To show (b) let us assume that
M [[fµ]0] ≡ · · ·M [[fµ]nN−1] ≡ 0. The procedure holds for all m = 1, . . . , nN in this case. For m = nN all
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the terms in the asymptotic development associated with even powers disappear and so the only remaining
term is the one with betas. Then,

[fµ]nN (x) ∼∞
nN∏

j=1

β(µ) + 2j

β(µ) + 2j − 1
b(µ)xβ(µ)+2nN at µ0.

This ends the proof of the result.

Remark 2.9. A very useful tool for the computation of momenta was introduced in [5]. If f is quantifiable
by α < −2n+ 1, n ∈ N with n > 2, and M [[f ]i] = 0 for i = 0, . . . , n− 2 then

M [[f ]n−1] = Cn

∫ ∞

0

x2n−2f(x)dx = CnMn[f ]

for some constant Cn 6= 0. We point out that this result do not contemplate the case when α = −2n and
M [[f ]i] = 0 for i = 0, . . . , n− 2. Therefore this simplification can not be used in Proposition 2.8. �

From now on, for the sake of simplicity, we shall assume that the functions are analytic on [0,+∞). The
reason is that in Section 3 the differential system (1) is assumed to be analytic and so the functions involved
also are. However, the reader may notice that weaker regularity is allowed in the forthcoming definitions
and results. Let us recall at this point the notions of Chebyshev system and its relation with the Wronskian,
which are both key ingredients for our purposes.

Definition 2.10. Let f0, f1, . . . fn−1 be analytic functions on an open real interval I. The ordered set
(f0, f1, . . . fn−1) is an extended complete Chebyshev system (for short, a ECT-system) on I if, for all k =
1, 2, . . . n, any nontrivial linear combination

α0f0(x) + α1f1(x) + · · ·+ αk−1fk−1(x)

has at most k−1 isolated zeros on I counted with multiplicities. (Let us mention that, in these abbreviations,
“T” stands for Tchebycheff, which in some sources is the transcription of the Russian name Chebyshev). �

Definition 2.11. Let f0, f1, . . . , fn−1 be analytic functions on an open interval I of R. Then

W [f0, f1, . . . , fn−1](x) = det
(
f

(i)
j (x)

)
06i,j6n−1

=

∣∣∣∣∣∣∣∣∣

f0(x) · · · fn−1(x)
f ′0(x) · · · f ′n−1(x)

...

f
(n−1)
0 (x) · · · f

(n−1)
n−1 (x)

∣∣∣∣∣∣∣∣∣

is the Wronskian of (f0, f1, . . . , fn−1) at x ∈ I. �

These two notions are closely related by the following result (see for instance [4]).

Lemma 2.12. (f0, f1, . . . , fn−1) is an ECT-system on I if and only if, for each k = 1, 2, . . . , n,

W [f0, f1, . . . , fk−1](x) 6= 0 for all x ∈ I.

In the study of bifurcation of critical periodic orbits from the outer boundary the main objective is
to bound the zeros of the derivative of the period function for energy levels h ≈ h0(µ) uniformly on the
parameters close to a fixed µ0 ∈ Λ. Invoking equality (5), this problem is tackled by completing F [fµ]
with a collection of analytic functions φ1

µ, . . . , φ
n
µ in order that (φ1

µ, . . . , φ
n
µ,F [fµ]) form an ECT-system on

(h0(µ) − ε, h0(µ)) for some ε > 0 and all µ ≈ µ0. Note that guarantee the uniformity with respect to the
parameters of the system is mandatory to obtain the desired upper bounds. With this aim in view, and
on account of the characterization in Lemma 2.12, given ν1, ν2, . . . , νn ∈ R, we consider the linear ordinary
differential operator

Lνn(µ) : Cω(0,+∞)→ Cω(0,+∞)
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defined by

Lνn(µ)[f ](x) :=
W [xν1 , xν2 , . . . , xνn , f(x)]

x
∑n
i=1(νi−i) .

Here, and in what follows, for the sake of shortness we use the notation νn = (ν1, ν2, . . . , νn). Furthermore
we define Lν0

= id in order that forthcoming statements contemplate the case n = 0 as well. We also
denote by Cω(0,+∞) the analytic functions on (0,+∞) and by Cω[0,+∞) the functions on Cω(0,+∞)
that can be extended analytically to x = 0.

Proposition 2.13 (See [6]). For any f ∈ Cω(0,+∞) and ν1, . . . , νn ∈ R, the following recurrence holds:

Lνn [f ](x) = cn
(
xLνn−1 [f ]′(x)− νnLνn−1 [f ](x)

)
,

where c1 := 1 and cn :=
∏n−1
i=1 (νn−νi) for n > 2. In particular, if f ∈ Cω[0,+∞), then Lνn [f ] ∈ Cω[0,+∞).

Moreover, F ◦Lνn = Lνn ◦F .

In the statement of the following result the assumptions M [[Lµ]0] ≡ · · · ≡ M [[Lµ]`−2] ≡ 0 in assertion
(a) and Mi[[Lµ]nN ] ≡ 0 for i = 1, . . . , `− 1 in assertion (d1) are void in case that ` = 1.

Theorem C. Let Λ be an open subset of Rd and {fµ}µ∈Λ be a continuous family of analytic functions on
[0,+∞). Assume that, in a neighbourhood of some fixed µ0 ∈ Λ there exist n > 0 continuous functions
ν1, ν2, . . . , νn pairwise distinct at µ = µ0 such that the function Lµ := Lνn(µ)[fµ] satisfies

Lµ(x) ∼∞
N∑

i=1

ai(µ)x−2ni + b(µ)xβ(µ) at µ0

with 1 6 n1 < n2 < · · · < nN positive integers and β(µ0) < −2nN . The following holds:

(a) If M [[Lµ]0] ≡ · · · ≡M [[Lµ]`−2] ≡ 0 and M [[Lµ0
]`−1] 6= 0 for some 1 6 ` 6 nN then

(Lνn(µ) ◦F )[fµ](x) ∼∞ M [[Lµ]`−1]x1−2` at µ0.

(b) If M [[Lµ]0] ≡ · · · ≡M [[Lµ]nN−1] ≡ 0 and β(µ0) + 2nN = −1 then

(Lνn(µ) ◦F )[fµ](x) ∼∞
nN∏

j=1

β(µ) + 2j

β(µ) + 2j − 1
b(µ)

Ω(x, β(µ) + 2nN )

x1+2nN
at µ0.

(c) If M [[Lµ]0] ≡ · · · ≡M [[Lµ]nN−1] ≡ 0 and β(µ0) + 2nN > −1 then

(Lνn(µ) ◦F )[fµ](x) ∼∞ G (β(µ) + 2nN )

nN∏

j=1

β(µ) + 2j

β(µ) + 2j − 1
b(µ)xβ(µ) at µ0.

(d) If M [[Lµ]0] ≡ · · · ≡ M [[Lµ]nN−1] ≡ 0 and β(µ0) + 2nN < −1, let us take m ∈ N such that β(µ0) +
2nN + 2m ∈ [−1, 1) and let us assume additionally that β(µ0) + 2nN + 2m 6= 0. In this case,

(d1) If Mi[[Lµ]nN ] ≡ 0 for i = 1, . . . , `− 1 and M`[[Lµ0
]nN ] 6= 0 for some 1 6 ` 6 m, then

(Lνn(µ) ◦F )[fµ](x) ∼∞ M`[[Lµ]nN ]x1−2nN−2` at µ0.

(d2) If Mi[[Lµ]nN ] ≡ 0 for i = 1, . . . ,m and β(µ0) + 2nN + 2m 6= −1 then

(Lνn(µ) ◦F )[fµ](x) ∼∞
nN+m∏

j=1

β(µ) + 2j

β(µ) + 2j − 1
b(µ)G(β(µ) + 2nN + 2m)xβ(µ) at µ0.
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(d3) If Mi[[Lµ]nN ] ≡ 0 for i = 1, . . . ,m and β(µ0) + 2nN + 2m = −1 then

(Lνn(µ) ◦F )[fµ](x) ∼∞
nN+m∏

j=1

β(µ) + 2j

β(µ) + 2j − 1
b(µ)

Ω(x, β(µ) + 2nN + 2m)

x2nN+2m+1
at µ0.

Proof. Let us start by considering n = 0. In this case Lµ = fµ and the assumptions of Proposition 2.8 are
satisfied. Moreover, if (a) is satisfied then by (a) in Proposition 2.8 we have

[fµ]`(x) ∼∞ M [[fµ]`−1]x at µ0.

Therefore, using Lemma 2.7 and Theorem 2.4 with [fµ]`, since G (1) = 1,

F [fµ](x) =
1

x2`
F [[fµ]`](x) ∼+∞ M [[fµ]`−1]x1−2` at µ0.

This proves (a). Let us show (b), (c) and (d). By hypothesis we have M [[fµ]i] ≡ 0 for i = 0, . . . , nN − 1.
Therefore by (b) in Proposition 2.8,

[fµ]nN ∼+∞

nN∏

j=1

β(µ) + 2j

β(µ) + 2j − 1
b(µ)xβ(µ)+2nN at µ0.

The result follows using Theorem 2.4 with [fµ]nN and Lemma 2.7 again. This ends the proof for the case
n = 0.

Let us consider now n > 1. By Proposition 2.13 Lµ = Lνn(µ)[fµ] is an analytic function on [0,+∞) for
each µ ∈ Λ and

(Lνn(µ) ◦F )[fµ](x) = (F ◦Lνn(µ))[fµ](x).

Then the result follows by applying the case n = 0 to the family {Lνn(µ)[fµ]}µ∈Λ.

Remark 2.14. Let us recover at this point the examples in (6). The function f satisfies the assumptions
of Theorem C with n = 0, n1 = 1 and β = −5/2. Since β+ 2 = −1

2 > −1 then assertion (b) of the Theorem
states that

F [f ](x) ∼+∞

√
π Γ
(

1
4

)

6 Γ
(

3
4

) x−
5
2 .

The function g satisfies the hypothesis with n = 0, n1 = 1 and β = −5. In this case β + 2 = −3 < −1 and

M [[g]1] =

∫ ∞

0

({
3

4x3 if x > 1
3
4x

2(13x− 12) if x ∈ [0, 1)

)
dx = − 3

16
.

That is, g satisfies the hypothesis in assertion (c1) of the Theorem with j = 1. Therefore,

F [g](x) ∼+∞ −
3

16
x−3.

Finally, the function h satisfies the hypothesis with n = 0, n1 = 1 and β = −3. In this example assumptions
in assertion (b) are satisfied and

F [h](x) ∼+∞
log x

2x3
.

�

We point out that Theorem C together with Theorem 2.4 cover all possible situations of the uniform
asymptotic development of fµ except the case when all powers are negative even numbers at µ = µ0. The
last result of this Section is a recursive formula for the computation of a certain momentum that will be
useful in the applications.
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Lemma 2.15. Let f ∈ Cω[0,+∞), n > 1 and ν1, ν2, . . . , νn ∈ R. Then,

M
[
[Lνn [f ]]1

]
= cn lim

R→+∞

(
R3Lνn−1 [f ](R) +

(νn + 1)R2

2

∫ R

0

Lνn−1 [f ](x)dx− 3νn + 5

2

∫ R

0

x2Lνn−1 [f ](x)dx

)

where c1 := 1 and cn :=
∏n−1
i=1 (νn − νi) for n > 2.

Proof. By Definition 2.6 we have

M
[
[Lνn [f ]]1

]
=

∫ ∞

0

[Lνn [f ]]1(x)dx = lim
R→+∞

∫ R

0

(
x2Lνn [f ](x) + x

∫ x

0

Lνn [f ](s)ds

)
dx.

Using the recursive expression in Proposition 2.13,

M
[
[Lνn [f ]]1

]
= cn lim

R→+∞

(∫ R

0

(
x3Lνn−1

[f ]′(x)− νnx2Lνn−1
[f ](x)

)
dx +

+

∫ R

0

(
x

∫ x

0

(
sLνn−1

[f ]′(s)− νnLνn−1
[f ](s)

)
ds

)
dx

)
.

The result then follows integrating by parts.

3 Criticality of the period function at the outer boundary

In this section we apply Theorem C in order to obtain sufficient conditions to bound the number of critical
periodic orbits that may bifurcate from the outer boundary of the period annulus in families of planar
potential centers. We consider analytic differential systems (1) depending on a parameter µ ∈ Λ ⊂ Rd
and we assume that the origin is a non-degenerate center for all µ. We denote by Iµ = (x`(µ), xr(µ)) the
projection of the period annulus on the x-axis, x` < 0 < xr and by h0(µ) the energy level at the outer
boundary of the period annulus.

Definition 3.1. We say that the family (1) verifies the hypothesis (H) in case that:

(a) For all k > 0, the map (x, µ) 7−→ V
(k)
µ (x) is continuous on {(x, µ) ∈ R× Λ : x ∈ Iµ},

(b) µ 7−→ xr(µ) is continuous on Λ or xr(µ) = +∞ for all µ ∈ Λ,

(c) µ 7−→ x`(µ) is continuous on Λ or x`(µ) = −∞ for all µ ∈ Λ,

(d) µ 7−→ h0(µ) is continuous on Λ or h0(µ) = +∞ for all µ ∈ Λ.
�

Lemma 3.2 (See [5]). Let {Xµ}µ∈Λ be a family of potential analytic differential systems verifying (H).

Then the map (z, µ) 7−→ g−1
µ (z) is continuous on the open set

{
(z, µ) ∈ R× Λ : z ∈

(
−
√
h0(µ),

√
h0(µ)

)}
.

This section is divided in two parts according with the dichotomy produced by h0. First, Section 3.1
deals with the case h0 ≡ +∞. Second, Section 3.2 is dedicated to the case h0 finite.

3.1 Potential systems with infinite energy

In this section we present sufficient conditions to bound the criticality at the outer boundary for potential
systems satisfying h0(µ) = +∞ for all µ ∈ Λ. Following the strategy in [5,6,15], we find sufficient conditions
such that fT ′µ can be embedded into the ECT-system (hν1(µ), hν2(µ), . . . , hνn(µ)), where f is an analytic non-
vanishing function. Next result is a combination of [6, Lemma 3.5] and [15, Lemma 3.3], and it is the key
piece that connects the analytic tools studied in Section 2 with the dynamical results we are looking for.
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Lemma 3.3. Let {Xµ}µ∈Λ be a family of potential analytic differential systems verifying (H) and such that
h0 ≡ +∞. Assume that there exist n > 1 continuous functions ν1, ν2, . . . , νn in a neighbourhood of some
fixed µ0 ∈ Λ, a continuous function α : Λ→ R with α(µ0) = −1 and an analytic non-vanishing function f
on (0,+∞) such that

lim
(h,µ)→(+∞,µ0)

hνn(µ)

Ω(h, α(µ))m
W [hν1(µ), . . . , hνn−1(µ), f(h)T ′µ(h)] = ` 6= 0

with m ∈ {0, 1}. Then Crit
(
(Πµ0

, Xµ0
), Xµ

)
6 n− 1.

The assumption requiring the existence of functions ν1, ν2, . . . , νn in the following statement is void in
case that n = 0. The same happens to the assumptions M [[Lµ]0] ≡ · · · ≡ M [[Lµ]`−2] ≡ 0 in assertion (a)
and Mi[[Lµ]nN ] ≡ 0 for i = 1, . . . , `− 1 in assertion (c1) in case that ` = 1.

Theorem D. Let {Xµ}µ∈Λ be a family of potential analytic differential systems verifying (H) with h0 ≡
+∞ and that there exist n > 0 continuous functions ν1, ν2, . . . , νn in a neighbourhood of some fixed µ0 ∈ Λ
such that

Lµ(x) := Lνn(µ)[x(g−1
µ )′′(x)− x(g−1

µ )′′(−x)] ∼+∞

N∑

i=1

ai(µ)x−2ni + b(µ)xβ(µ) at µ0

with 1 6 n1 < n2 < · · · < nN positive integers and β(µ0) < −2nN . Then Crit
(
(Πµ0 , Xµ0), Xµ

)
6 n if one

of the following assertions hold:

(a) If M [[Lµ]0] ≡ · · · ≡M [[Lµ]`−2] ≡ 0 and M [[Lµ0 ]`−1] 6= 0 for some 1 6 ` 6 nN .

(b) If M [[Lµ]0] ≡ · · · ≡M [[Lµ]nN−1] ≡ 0 and β(µ0) + 2nN > −1.

(c) If M [[Lµ]0] ≡ · · · ≡ M [[Lµ]nN−1] ≡ 0 and β(µ0) + 2nN < −1, let us take m ∈ N such that β(µ0) +
2nN + 2m ∈ [−1, 1) \ {0}. In this case:

(c1) If Mi[[Lµ]nN ] ≡ 0 for i = 1, . . . , `− 1 and M`[[Lµ0 ]nN ] 6= 0 for some 1 6 ` 6 m.

(c2) If Mi[[Lµ]nN ] ≡ 0 for i = 1, . . . ,m.

Proof. For the sake of shortness let us denote fµ(x) := x(g−1
µ )′′(x) − x(g−1

µ )′′(−x). Lemma 3.2 and the
hypothesis (H) imply that {fµ}µ∈Λ is a continuous family of analytic functions on [0,+∞). According to
equality (5) the result will follow once we show that there exist M, ε > 0 in such a way F [fµ] has at most
n isolated zeros for h > M and ‖µ− µ0‖ < ε, multiplicities taken into account.

Let us assume that Lµ := Lνn(µ)[fµ] satisfies one of the hypothesis of the statement. Therefore Lµ
satisfies one of the hypothesis in Theorem C, so we can assert that either

(Lνn(µ) ◦F )[fµ](h) ∼+∞ C(µ)hξ(µ) at µ0

or
(Lνn(µ) ◦F )[fµ](h) ∼+∞ C(µ)Ω(h, α(µ))hξ(µ) at µ0

for some functions C, ξ, α with C(µ0) 6= 0 and α(µ0) = −1. Taking into account the definition of the
operator Lνn(µ), we have that either

lim
(x,µ)→(+∞,µ0)

W
[
hν1(µ), . . . , hνn(µ),F [fµ](h)

]

hξ(µ)+
∑n
i=1(νi(µ)−i) = C(µ0),

or

lim
(x,µ)→(+∞,µ0)

W
[
hν1(µ), . . . , hνn(µ),F [fµ](h)

]

hξ(µ)+
∑n
i=1(νi(µ)−i)Ω(h, α(µ))

= C(µ0).

Therefore, on account of equality (5), by Lemma 3.3 we have that Crit
(
(Πµ0

, Xµ0
), Xµ

)
6 n as desired.
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3.2 Potential systems with finite energy

We assume in this section that the energy at the outer boundary of system (1) is finite for all parameters
µ ∈ Λ. As in the previous works [5,6,15], in order to embed the function fT ′µ into some ECT-system for an
appropriate non-vanishing function f , the spirit of this section is to “translate” the case h0 < +∞ to the
case h0 = +∞ so we can take advantage of Theorem C. This translation is given by the operator

B : Cω[0, 1) −→ Cω[0,+∞)

defined by

B[f ](x) :=
(
1− φ2(x)

)(
f ◦ φ

)
(x) =

1

1 + x2

(
f ◦ φ

)
(x), (7)

where φ(x) := x√
1+x2

. Given ν1, . . . , νn ∈ R, B conjugates the operator Lνn with the linear ordinary

differential operator
Dνn : Cω(0, 1) −→ Cω(0, 1)

defined by

Dνn [f ](z) := (z(1− z2))
n(n+1)

2
W [ψν1 , . . . , ψνn , f ] (z)∏n

i=1 ψνi(z)
. (8)

Definition 3.4. Let f ∈ Cω[0, 1). We call

Nn[f ] :=

∫ 1

0

f(z)√
1− z2

(
z√

1− z2

)2n−2

dz

the n-th momentum of f , whenever it is well defined. If n = 1 we simply say that N [f ] := N1[f ] is the
momentum of f . �

Lemma 3.5. Consider ν1, ν2, . . . , νn ∈ R. Then the following hold:

(a) B[ψνi ](x) = xνi for i = 1, 2, . . . , n.

(b) B ◦Dνn = Lνn ◦B.

(c)
(
F ◦B

)
[f ](x) =

√
1 + x2

(
B ◦F

)
[f ](x) for any f ∈ Cω(0, 1).

(d) Nn = Mn ◦B.

Definition 3.6. Given a continuous function f on [0, 1) we define [f ]m(z) := 1
1−z2 [B[f ]]m(φ−1(z)). �

Lemma 3.7. Let {fµ}µ∈Λ be a continuous family of analytic functions on [0, 1). Then

fµ(z) ∼z=1

n∑

i=1

ai(µ)(1− z2)−αi(µ) at µ0 if and only if B[fµ](x) ∼+∞

n∑

i=1

ai(µ)x2αi(µ)−2 at µ0.

Proof. By definition B[f ](x) = 1
1+x2 f(φ(x)) with φ(x) = x√

1+x2
. Therefore, for a fixed µ0 ∈ Λ,

lim
(x,µ)→(+∞,µ0)

B[fµ](x)−∑k−1
i=1 ai(µ)x2αi(µ)−2

x2αk(µ)−2
= lim

(x,µ)→(+∞,µ0)

fµ(φ(x))−∑k−1
i=1 ai(µ)(1 + x2)αi(µ)

(1 + x2)αk(µ)
.

Denoting z = φ(x), since φ(x)→ 1 as x→ +∞, we have that

lim
(x,µ)→(+∞,µ0)

B[fµ](x)−∑k−1
i=1 ai(µ)x2αi(µ)−2

x2αk(µ)−2
= lim

(z,µ)→(1,µ0)

fµ(z)−∑k−1
i=1 ai(µ)(1− z2)−αi(µ)

(1− z2)−αk(µ)
.

Consequently the result follows on account of Definition 2.5.
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The following is an analogous version of Lemma 3.3 for the case h0 finite. It gathers [6, Lemma 3.10]
and [15, Lemma 3.8].

Lemma 3.8. Let {Xµ}µ∈Λ be a family of potential analytic differential systems verifying (H) and such
that µ 7→ h0(µ) is continuous on Λ. Assume that there exist n > 1 continuous functions ν1, ν2, . . . , νn in
a neighbourhood of some fixed µ0 ∈ Λ, a continuous function α : Λ → R with α(µ0) = −1 and an analytic
non-vanishing function f on (0, 1) such that

lim
(z,µ)→(1,µ0)

(1− z)νn(µ)

Ω
(

z√
1−z2 , α(µ)

)mW [ψν1(µ)(z), . . . , ψνn−1(µ)(z), f(z)T ′µ(z2h0(µ))] = ` 6= 0

with m ∈ {0, 1}. Then Crit
(
(Πµ0 , Xµ0), Xµ

)
6 n− 1.

In the same way as in the main result of the previous section, we stress that the assumption requiring
the existence of functions ν1, ν2, . . . , νn in the following statement is void in case that n = 0. Also are void
the assumptions N [[Dµ]0] ≡ · · · ≡ N [[Dµ]`−2] ≡ 0 in assertion (a) and Ni[[Dµ]nN ] ≡ 0 for i = 1, . . . , ` − 1
in assertion (c1) in case that ` = 1.

Theorem E. Let {Xµ}µ∈Λ be a family of potential analytic differential systems verifying (H) with h0(µ) <
+∞ for all µ ∈ Λ and that there exist n > 0 continuous functions ν1, ν2, . . . , νn in a neighbourhood of some
fixed µ0 ∈ Λ such that the function

fµ(z) := z
√
h0(µ)(g−1

µ )′′(z
√
h0(µ))− z

√
h0(µ)(g−1

µ )′′(−z
√
h0(µ))

satisfies

Dµ(z) := Dνn(µ)[fµ](z) ∼z=1

N∑

i=1

ai(µ)(1− z2)ni + b(µ)(1− z2)β(µ) at µ0

with 0 6 n1 < n2 < · · · < nN integers and β(µ0) > nN . Then Crit
(
(Πµ0

, Xµ0
), Xµ

)
6 n if one of the

following assertions hold:

(a) If N [[Dµ]0] ≡ · · · ≡ N [[Dµ]`−2] ≡ 0 and N [[Dµ0 ]`−1] 6= 0 for some 1 6 ` 6 nN .

(b) If N [[Dµ]0] ≡ · · · ≡ N [[Dµ]nN−1] ≡ 0 and β(µ0)− nN 6 1
2 .

(c) If N [[Dµ]0] ≡ · · · ≡ N [[Dµ]nN−1] ≡ 0 and β(µ0)−nN > 1
2 , let us take m ∈ N such that β(µ0)−nN−m ∈

(− 1
2 ,

1
2 ] \ {0}. In this case:

(c1) If Ni[[Dµ]nN ] ≡ 0 for i = 1, . . . , `− 1 and N`[[Dµ0
]nN ] 6= 0 for some 1 6 ` 6 m.

(c2) If Ni[[Dµ]nN ] ≡ 0 for i = 1, . . . ,m.

Proof. According with Lemma 3.2 and the hypothesis (H), the family {fµ}µ∈Λ is a continuous family of
analytic functions on [0, 1). On account of equality (5), after the appropriate rescaling,

F [fµ](z) =
√

2h0(µ)z2T ′µ(h0(µ)z2) for all z ∈ (0, 1). (9)

Therefore the result will follow if there exist ε > 0 and a neighbourhood U of µ0 such that F [fµ](z) has at
most n zeros for all z ∈ (1 − ε, 1) and µ ∈ U , multiplicities taken into account. To this end, we shall use
that the operator B commutes the linear differential operators Dνn(µ), defined for functions in Cω[0, 1),
with Lνn(µ), defined for functions in Cω[0,+∞). Then, as we proceeded in Theorem D, we aim to apply
Theorem C in this case to the family B[fµ].

First, by hypothesis we have that

Dνn(µ)[fµ](z) ∼z=1

N∑

i=1

ai(µ)(1− z2)ni + b(µ)(1− z2)β(µ) at µ0,
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so, on account of Lemmas 3.5 and 3.7, we have

(Lνn(µ) ◦B)[fµ](x) = (B ◦Dνn(µ))[fµ](x) ∼+∞

N∑

i=1

ai(µ)x−2ni−2 + b(µ)x−2β(µ)−2 at µ0.

Moreover, on account of Lemma 3.5 and Definition 3.6,

Nn
[
[Dµ]m

]
= Nn

[
1

1−z2 [B[Dµ]]m(φ−1(z))
]

= Mn

[
B
[

1
1−z2 [B[Dµ]]m(φ−1(z))

]]
= Mn

[
[B[Dµ]]m

]
.

That is,

Nn
[
[Dµ]m

]
= Mn

[
[(Lνn(µ) ◦B)[fµ]]m

]
.

Therefore, if Dµ satisfies one of the hypothesis of the statement, the function Lµ := (Lνn(µ)◦B)[fµ] satisfies
one of the hypothesis in Theorem C. It turns out then that either

(Lνn(µ) ◦F ◦B)[fµ](x) ∼+∞ C(µ)xξ(µ) at µ0

or

(Lνn(µ) ◦F ◦B)[fµ](x) ∼+∞ C(µ)Ω(x, α(µ))xξ(µ) at µ0

for some functions C, ξ, α with C(µ0) 6= 0 and α(µ0) = −1. Let us note that

(Lνn(µ) ◦F ◦B)[fµ](x) = Lνn(µ)

[√
1 + x2(B ◦F )[fµ](x)

]

= (Lνn(µ) ◦B)
[
(1− z2)−

1
2 F [fµ](z)

]
(x)

= (B ◦Dνn(µ))
[
(1− z2)−

1
2 F [fµ](z)

]
(x),

with z = φ(x) = x√
1+x2

, where we use (c) in Lemma 3.5 in the first quality, the identity
√

1 + x2B[ϕ](x) =

B[(1 − z2)−
1
2ϕ(z)] with ϕ = F [fµ] in the second equality, and (b) in Lemma 3.5 in the third equality. So

we have

(B ◦Dνn(µ))
[
(1− z2)−

1
2 F [fµ](z)

]
(x) ∼+∞ C(µ)Ω(x, α(µ))mxξ(µ) at µ0

with m ∈ {0, 1}. Using the definition of B, the previous equation yields to

1

1 + x2
Dνn(µ)

[
(1− φ(x)2)−

1
2 F [fµ](φ(x))

]
∼+∞ C(µ)Ω(x, α(µ))mxξ(µ) at µ0.

Setting x = φ−1(z) = z√
1−z2 , the previous identity implies that

lim
(z,µ)→(1,µ0)

(1− z2)1+
ξ(µ)
2 Dνn(µ)

[
(1− z2)−

1
2 F [fµ](z)

]

Ω
(

z√
1−z2 , α(µ)

)m = C(µ0).

Thus, on account of the definition of Dνn(µ) in (8),

lim
(z,µ)→(1,µ0)

(1− z2)1+
ξ(µ)
2 (z(1− z2))

n(n+1)
2

Ω
(

z√
1−z2 , α(µ)

)m
W
[
ψν1(µ)(z), . . . , ψνn(µ)(z), (1− z2)−

1
2 F [fµ](z)

]
∏n
i=1 ψνi(µ)(z)

= C(µ0)

which, since ψν(z) = zν

(1−z2)1+ν/2
, implies that

lim
(z,µ)→(1,µ0)

(1− z2)κ(µ)

Ω
(

z√
1−z2 , α(µ)

)mW
[
ψν1(µ)(z), . . . , ψνn(µ)(z), (1− z2)−

1
2 F [fµ](z)

]
= C(µ0)

with κ(µ) := 1 + ξ(µ)
2 + n(n+3)

2 + 1
2

∑n
i=1 νi(µ) and m ∈ {0, 1}. The result follows then by Lemma 3.8 and

taking the identity (9) into account.
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4 Applications

In this Section we present the results obtained applying Theorems D and E to the two-parametric families
of centers introduced in Section 1.

4.1 The family ẍ+ (x+ 1)p − (x+ 1)q = 0

The family of vector fields (2) is an analytic potential system with potential function

Vµ(x) =

∫ x+1

1

(up − uq)du. (10)

According with the dichotomy that produces h0 in hypothesis (H), in order to prove Theorem A we split the
parameter space in two parts: Λ1 := {(q, p) ∈ Λ : q > −1} and Λ2 := {(q, p) ∈ Λ : q < −1}. As mentioned
in the Introduction, the line {q + 1 = 0} correspond to parameters such that in any neighbourhood of
them h0 = +∞ and h0 < +∞ coexist. This scenario is out of reach with the current techniques. If
µ ∈ Λ1 system (2) has a non-degenerate center at the origin and the projection of the period annulus on

the x-axis is Iµ = (−1, ρ(µ) − 1) with ρ(µ) :=
(
p+1
q+1

) 1
p−q . Moreover, the energy at the outer boundary is

h0(µ) = p−q
(p+1)(q+1) < +∞ for all µ ∈ Λ1. On the other hand, if µ ∈ Λ2 the origin is also a non-degenerate

center but in this case Iµ = (−1,+∞) and h0(µ) = +∞. (For more details in this direction we refer to [7].)
In particular, in both cases hypothesis (H) in Definition 3.1 is fulfilled. The proof of Theorem A follows
directly from Propositions 4.2 and 4.6.

4.1.1 The criticality is at most one in Λ2

The purpose of this Section is to apply Theorem D with n = 1 on family (2) to parameters µ0 = (q0, 1) with
q0 ∈ (−3,−1), q0 6= −2. According with the Theorem, we first need to compute the asymptotic expression
of the function Lν(µ)[x(g−1

µ )′′(x)−x(g−1
µ )′′(−x)] at x = +∞. To this end, we follow the same strategy used

on the proof of [6, Theorem A]. Since the function x(g−1
µ )′′(x) is analytic on R, we can write

Lν(µ)[x(g−1
µ )′′(x)− x(g−1

µ )′′(−x)] =
W [xν(µ), x(g−1

µ )′′(x)]

xν(µ)−1
+
W [xν(µ),−x(g−1

µ )′′(−x)]

xν(µ)−1
(11)

for all x ∈ (0,+∞). On account of the equalities (g−1)′′(x) = 2R(g−1(x)) with R := (V ′)2−2V V ′′

(V ′)3 and

V (g−1(x)) = x2, equality (11) reads

Lν(µ)[x(g−1
µ )′′(x)− x(g−1

µ )′′(−x)] = 4
(
Sµ(g−1

µ (x)) + Sµ(g−1
µ (−x))

)
, (12)

where

Sµ(x) := V ′µ(x)−1Vµ(x)2− ν(µ)2 W
[
V
ν(µ)−1

2
µ ,Rµ

]
(x).

Lemma 4.1. Let Sµ be defined as above with Vµ defined in (10). Taking µ0 = (q0, 1), the following hold:

(a) Sµ(g−1
µ (x)) ∼+∞

p(1+3p)(p−q)
q+1 (p+ 1)−

3+4p
p+1 x−

1+3p
p+1 + (3p−2q−1)(1−p+q)(p−q)

q+1 (p+ 1)
q−4p−2
p+1 x

1−3p+2q
p+1 at µ0.

(b) Sµ(g−1
µ (−x)) ∼+∞

(q−1)(p−q)
p+1 (−q − 1)−

2+3q
q+1 x

1−q
q+1 at µ0.

Proof. By means of some algebraic manipulations the function Sµ writes

Sµ(x) =

√
Vµ(x)

2V ′µ(x)5
ψµ(x),

where ψ := −(V ′2 − 2V V ′′)((ν − 1)V ′2 + 6V V ′′) − 4V 2V ′V ′′′. Using the expression in (10) we can assert
that ψµ is the sum of 12 monomials of the form c(µ)(x + 1)n1p+n2q+n3 with ni ∈ Z for i = 1, 2, 3 and c

17



a well defined rational function at µ = µ0. The biggest exponent for µ ≈ µ0 is (x + 1)4p with coefficient
(p−1)(p−1+ν(p+1))

(p+1)2 . Let us notice that, since the coefficient vanishes at p = p0 = 1, ψµ is not continuously

quantifiable at infinity in µ = µ0 unless we fix ν = p−1
p+1 . With this choice of ν, the following two largest

exponents for µ ≈ µ0 are (x+ 1)3p−1 and (x+ 1)3p+q. More precisely, we have

Sµ(x) ∼+∞
p(1 + 3p)(p− q)
(1 + p)

5
2 (1 + q)

(x+ 1)−
1
2 (1+3p) +

(3p− 2q − 1)(1 + q − p)(p− q)
(1 + p)

5
2 (1 + q)

(x+ 1)−
1
2 (3p−2q−1).

The result in (a) follows using that g−1
µ (x) → +∞ as x → +∞ and gµ(x)2 = Vµ(x) ∼+∞

(x+1)p+1

p+1 . The

assertion (b) follows similarly now looking for the smallest exponent for µ ≈ µ0.

Proposition 4.2. Let {Xµ}µ∈Λ be the family of analytic potential systems (2) and consider the period
function of the center at the origin. If µ0 = (q0, 1) with q0 ∈ (−3,−1)\{−2} then Crit

(
(Πµ0

, Xµ0
), Xµ

)
= 1.

Proof. From [5] we already know that Crit
(
(Πµ0

, Xµ0
), Xµ

)
> 1. Let us prove the opposite inequality.

According with equality (12) and Lemma 4.1, the function Lν(µ)[x(g−1
µ )′′(x)− x(g−1

µ )′′(−x)] satisfies

Lν(µ)[x(g−1
µ )′′(x)− x(g−1

µ )′′(−x)] ∼+∞
p(1 + 3p)(p− q)
(p+ 1)

5
2 (q + 1)

(p+ 1)−
1+3p

2(p+1)x−
1+3p
p+1 + b(µ)xβ(µ)

at µ0 = (q0, 1), where

β(µ) := max
µ≈µ0

{
1− 3p+ 2q

p+ 1
,

1− q
q + 1

}
=

{
1−q
q+1 if q ∈ (−3,−2),
1−3p+2q
p+1 if q ∈ (−2,−1),

and

b(µ) :=

{
(q−1)(p−q)

p+1 (−q − 1)−
2+3q
q+1 if q ∈ (−3,−2),

(3p−2q−1)(1−p+q)(p−q)
q+1 (p+ 1)

q−4p−2
p+1 if q ∈ (−2,−1).

We point out that β(µ) is continuous but b(µ) changes sign at q = −2. On account of the previous
computations, the quantifier at infinity of Lν(µ)[x(g−1

µ )′′(x) − x(g−1
µ )′′(−x)] at µ = µ0 is −2. In addition,

the first momentum M [[Lµ]0] on Theorem D vanishes identically. Indeed,

M [[Lµ]0] =

∫ ∞

−∞
x(g−1

µ )′′(x)dx =

∫ +∞

−1

(
1

2
− V V ′′

(V ′)2
(x)

)
dx =

V (x)

V ′(x)
− x

2

∣∣∣∣
+∞

−1

= 0

for all µ ∈ Λ2. Moreover, β(µ) ∈ (−3,−2) and b(µ) is continuous for µ ≈ µ0. Therefore, condition (b) in
Theorem D holds. This proves that the criticality at µ0 is at most one.

4.1.2 The criticality is at most one in Λ1

The energy at the outer boundary of the period annulus for parameters µ ∈ Λ1 is finite. Accordingly we
shall use Theorem E with n = 1 to parameters µ0 = (q0, p0) with p0 +2q0 +1 = 0, q0 ∈ (−1,− 1

2 ) in order to
prove the second assertion of (b) in Theorem A. A similar argument as in the previous section shows that

Dν(µ)[z
√
h0(g−1

µ )′′(z
√
h0)− z

√
h0(g−1

µ )′′(−z
√
h0)] =

4

h0

(
Sµ
(
g−1
µ (z

√
h0)
)
− Sµ

(
g−1
µ (−z

√
h0)
))
, (13)

where

Sµ(x) :=
W
[( Vµ
h0−Vµ

) ν
2 , (h0 − Vµ)V

1
2
µ Rµ

]
(x)

(h0 − Vµ(x))−
ν
2 Vµ(x)

ν
2−1V ′µ(x)

.

Here, and in what follows, we omit the dependence in µ of h0 for the sake of simplicity. Next result is
general for any potential function Vµ with finite energy at the outer boundary.
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Lemma 4.3. Let Sµ be defined as above and fix µ0 ∈ Λ. Assume that, for all µ in a neighbourhood of µ0,
h0(µ) is finite and the right endpoint of the projection of the period annulus xr = xr(µ) is also finite and
satisfies V ′µ(xr) 6= 0. Then

Sµ
(
g−1
µ (z

√
h0)
)
∼1

h
3
2
0 (2 + ν)(2h0V

′′
µ (xr)− V ′µ(xr)

2)

2V ′µ(xr)3
+ c(µ)(1− z2) at µ0

with

c(µ) :=
h

3
2
0 (12h2

0(4 + ν)V ′′µ (xr)
2 − 4h2

0(4 + ν)V ′′′µ (xr)V
′
µ(xr)− 8h0(5 + ν)V ′′µ (xr)V

′
µ(xr)

2 + (8 + ν)V ′µ(xr)
4)

4V ′µ(xr)5
.

The analogous result is true for x`.

Proof. The function Sµ can be written, after some algebraic manipulations, as

Sµ(x) =

√
Vµ(x)

2V ′µ(x)5
ψµ(x), (14)

where ψ := −
(
(V ′)2 − 2V V ′′

)(
(V ′)2(h0(ν − 1) + 3V ) + 6(h0 − V )V V ′′

)
− 4V 2(h0 − V )V ′V ′′′. Since the

function Vµ(x) is analytic at x = xr the result follows by considering the Taylor’s expansion at x = xr of
the previous expression and using the change of variable z = gµ(x)/

√
h0.

Lemma 4.4. Let Sµ be defined as above with Vµ defined in (10). Taking ν(µ) ≡ −1 and µ0 = (q0, p0) with
p0 + 2q0 + 1 = 0 and q0 ∈ (−1,− 1

2 ) then

Sµ
(
g−1
µ (−z

√
h0)
)
∼1 −

h
− 1+3q

2(1+q)

0 (p− q)2q(1 + q)−
4+5q
1+q (1 + 3q)

(1 + p)2
(1− z2)−

1+2q
1+q at µ0.

Moreover, the asymptotic expression in Lemma 4.3 holds with c(µ0) 6= 0.

Proof. The first assertion of the result can be proven similarly as Lemma 4.1 so we skip the details for
the sake or brevity. We only prove that c(µ0) 6= 0. Indeed, using the expression in (10) and substituting
p0 = −2q0 − 1 some tedious but elementary computations show that (see Lemma 4.3)

c(µ0) =
16−

q
1+3q h

3
2
0 (1 + 3q)2

(
−1 + 1

1+q

)− 4q
1+3q

4q(1 + q)4V ′µ0
(ρ)5

(
−7q(1 + 3q)2 + 4

3+8q
1+3q q(1 + q)(1 + 3q)

(
−1 + 1

1+q

) 1+q
1+3q

+9× 2
4+8q
1+3q (1 + q)2

(
−1 + 1

1+q

) 2(1+q)
1+3q

)
.

We stress that each term inside the parenthesis is positive for q0 ∈ (−1,− 1
2 ). Also the multiplicative term

is non-vanishing so c(µ0) 6= 0.

The following result is the version of [6, Lemma 3.12] for ` = n = 1.

Lemma 4.5. Let f ∈ Cω[0, 1) and ν ∈ R. Let us assume that f is quantifiable at z = 1 by ξ. If ξ < 1
2 then

N
[
Dν [f ]

]
= −(1 + ν)N [f ].

Proposition 4.6. Let {Xµ}µ∈Λ be the family of analytic potential systems (2) and consider the period
function of the center at the origin. If µ0 = (q0, p0) with p0 + 2q0 + 1 = 0 and q0 ∈ (−1,− 1

2 ) \ {− 2
3} then

Crit
(
(Πµ0

, Xµ0
), Xµ

)
= 1.
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Proof. From [5] we already know that Crit
(
(Πµ0

, Xµ0
), Xµ

)
> 1. Let us prove the opposite inequality. Let

us denote fµ(z) := z
√
h0(g−1

µ )′′(z
√
h0)− z

√
h0(g−1

µ )′′(−z
√
h0) for the sake of simplicity. In [6, Lemma 4.4]

it was shown that fµ satisfies the hypothesis on Lemma 4.5 for all µ ≈ µ0. Applying Lemma 4.5 with
ν(µ) ≡ −1 we have then N

[
Dν(µ)[fµ]

]
= 0 for all µ ≈ µ0. Moreover, on account of the equality (13) and

Lemma 4.4,

Dν(µ)[fµ](z) ∼1

h
3
2
0 (2h0V

′′
µ (ρ)− V ′µ(ρ)2)

2V ′µ(ρ)3
+ b(µ)(1− z2)β(µ) at µ0,

where

β(µ) := min
µ≈µ0

{
1,−1 + 2q

1 + q

}
=

{
1 if q ∈ (−1,− 2

3 ),

− 1+2q
1+q if q ∈ (− 2

3 ,− 1
2 ),

and

b(µ) :=





c(µ) if q ∈ (−1,− 2
3 ),

−h
− 1+3q

2(1+q)

0 (p− q)2q(1 + q)−
4+5q
1+q (1 + 3q)

(1 + p)2
if q ∈ (− 2

3 ,− 1
2 ),

due to c(µ0) 6= 0 by Lemma 4.4. Let us apply now Theorem E with n = 1. According with the previous
discussion, if p0 + 2q0 + 1 = 0 and q0 ∈ (− 2

3 ,− 1
2 ) then assertion in (b) of Theorem E is satisfied with N = 1,

n1 = 0 and ` = 1 due to N
[
Dν(µ)[fµ(z)]

]
≡ 0 and β(µ)−1 6 1

2 . Then Crit
(
(Πµ0 , Xµ0), Xµ

)
6 1 in this case.

On the other hand, if q0 ∈ (−1,− 2
3 ) we apply Theorem E with N = 2, n1 = 0 and n2 = 1. By Lemma 5.4

we also have

N
[[

Dν [fµ0 ]
]1] 6= 0.

Then assertion (a) in Theorem E states that Crit
(
(Πµ0 , Xµ0), Xµ

)
6 1 also in this case.

4.2 The family of dehomogenized Loud’s centers

Through all this section we consider parameters µ = (D,F ) inside the open set

Λ:= {(D,F ) ∈ R2 : 1 < F < 3
2 , D < − 1

2 , D + F > 0}.

The Loud system (3) has a first integral given by

Hµ(x, y) = (1− x)−2F

(
1

2
y2 − qµ(x)

)

for all F /∈ {0, 1, 1
2} (see for instance [11]) where qµ(x) = a(µ)x2 + b(µ)x+ c(µ) with

a =
D

2(1− F )
, b =

D − F + 1

(1− F )(1− 2F )
and c =

F −D − 1

2F (1− F )(1− 2F )
,

and integrating factor κ(x) = (1 − x)−2F−1. The line at infinity L∞, the line {x = 1} and the conic
Cµ = { 1

2y
2 − qµ(x) = 0} are invariant curves of the differential system and, for parameters µ ∈ Λ, Cµ is a

hyperbola intersecting the x-axis at

x = p1(µ) :=
−b−

√
b2 − 4ac

2a
and x = p2(µ) :=

−b+
√
b2 − 4ac

2a
, (15)

with 0 < p1(µ) < p2(µ). The outer boundary of the period annulus of the center at the origin of system (3)
consists of the branch of the hyperbola Cµ passing through (p1, 0) and the line at infinity Lµ, joined by two
hyperbolic saddles (see Figure 3.) Although it is not relevant at this moment (but it will be nearly soon)
we point out that there is a bifurcation on the phase portrait at D = −1 due to the fact that the branch of
hyperbola passing through (p2, 0) crosses the invariant line {x = 1}. In particular, p2(µ) > 1 if and only if
D > −1.
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Πµ Πµ

Figure 3: Phase portrait of (3) in the Poincaré disc for µ = (D,F ) ∈ Λ with D < −1
(left) and D > −1 (right). The center at (0, 0) is placed on the left of the centered
invariant line {x = 1} for convenience. The invariant hyperbola Cµ is in boldface type.
(Figure extracted from [11].)

In [11] the authors give an implicit expression of the bifurcation curve D = G(F ) in Λ. More concretely,
for each µ ∈ Λ and s > 0 small let P (s;µ) be the period of the periodic orbit of system (3) passing through
the point (p1(µ) − s, 0). Then, for parameters in Λ, the derivative of the period function P ′(s;µ) tends to
∆(µ) as s tends to zero uniformly on compact subsets of Λ, where

∆(µ) :=
−1√

2a(p2 − p1)(1− p1)

{
2−

∫ 1

0

(1− u)−
3
2

(
u2−2F

(
1− p2

1− p1
(u− 1) + 1

)2F−1

− 1

)
du

}
.

The bifurcation curve D = G(F ) is given by the zero set of ∆(µ) and the following properties are deduced:

(a) −F < G(F ) < − 1
2 for all F ∈ (1, 3

2 ).

(b) lim
F→ 3

2
G(F ) = − 3

2 , and

(c) limF→1 G(F ) = − 1
2 .

For the proof of these results we refer to [11, Theorem 3.6 and Proposition 3.11]. In particular the curve
D = G(F ) is analytic on Λ and joins the parameters µ = (− 3

2 ,
3
2 ) and µ = (− 1

2 , 1). The following result
gives a more compact expression of the zero set of ∆(µ) and an additional property. The proof is given in
the Appendix.

Proposition 4.7. For parameters µ ∈ Λ the zero sets of ∆(µ) and 1

Γ
(

7
2−4F

) 2F1

(
− 1

2 ,
3
2 ; 5

2 − 2F ; p2−1
p2−p1

)

coincide. Moreover, lim
F→ 5

4
G(F ) = −1.

The Loud system (3) is not a potential system and, at first glance, is not suitable to use the techniques
developed in this paper to study the criticality at the outer boundary of its center. However we recall that
it has a first integral quadratic in y and its integrating factor depends only on x. These two properties are
the requirements of [3, Lemma 14], which shows that the change of variables

(u, v) = (φ(1− x), (1− x)−F y), with φ(z) :=
z−F − 1

F
,

transforms system (3) to the potential system

{
u̇ = −v,
v̇ = (Fu+ 1)

(
(Fu+ 1)−

1
F − 1

)(
D(Fu+ 1)−

1
F −D − 1

)
.

(16)
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The potential system above has a non-degenerated center at the origin and all the properties that we derive
of its period function are directly transmitted to the period function of the Loud’s center. In these new
variables, the projection of the period annulus is Iµ := (− 1

F , ur(µ)), where

ur(µ) := φ(1− p1(µ)) =
(1− p1(µ))−F − 1

F
. (17)

Let Hµ(u, v) = 1
2v

2 + Vµ(u) by the Hamiltonian function associated to system (16) with Vµ(0) = 0. If

we set z = φ−1(u) = (Fu + 1)−1/F the following expressions will be useful to simplify the forthcoming
computations:

Vµ(u) = h0(µ)− z−2FV0(z;µ) with V0(z;µ) = D
2−2F z

2 + 1+2D
2F−1 z − D+1

2F ,

V ′µ(u) = z−FV1(z;µ) with V1(z;µ) = (z − 1)
(
D(z − 1)− 1),

V ′′µ (u) = V2(z;µ) with V2(z;µ) = D(F − 2)z2 − (2D + 1)(F − 1)z + F (D + 1),
V ′′′µ (u) = zFV3(z;µ) with V3(z;µ) = −2D(F − 2)2 + (2D + 1)(F − 1)z.

(18)

Here h0(µ) = F−D−1
2F (F−1)(2F−1) denotes the energy of the outer boundary of the center for all µ ∈ Λ. In

particular, h0(µ) is finite in Λ.

4.2.1 Quantification of the functions involved

With the aim of applying Theorem E with n = 1 to parameters µ = (D,F ) ∈ Λ satisfying D = G(F ),
we need to compute the first terms of the asymptotic development of Dµ(z) at z = 1. We recall that the
previous is reduced to study the asymptotic development of

Sµ(u) :=
W
[( Vµ
h0−Vµ

) ν
2 , (h0 − Vµ)V

1
2
µ Rµ

]
(u)

(h0 − Vµ(u))−
ν
2 Vµ(u)

ν
2−1V ′µ(u)

at u = − 1
F and u = ur(µ) due to equality (13). Here, and in what follows, we omit the dependence in µ of

h0 and ν for the sake of brevity. Moreover we use u instead of x to be consistent with the notation in (16).

Lemma 4.8. Let Sµ and Vµ be defined as above. Taking ν ≡ −1 we have that

Sµ
(
g−1
µ (−z

√
h0)
)
∼1 a1(µ)(1− z2)−

3
2 + 1

2(F−1) + a2(µ)(1− z2)
2−F
2F−2 at µ0

where

a1 :=
D

F
2−2F (1 +D − F )2(2− F )(2F − 3)h

−1+ 1
2(F−1)

0

4F 2(2F − 1)2(F − 1)3(2− 2F )
3
2− 1

2(F−1)

and a2 :=
D

F
2−2F (1 +D − F )(3− F )h

1
2(F−1)

0

4F (2F − 1)(F − 1)3(2− 2F )
2−F

2(F−1)

.

Proof. In order to get the desired asymptotic expression of Sµ
(
g−1
µ (−z

√
h0)
)

at z = 1 we study the
asymptotic expression of Sµ(u) at u = u` = −1/F . The result will follow then on account of the change of
variable z = −gµ(u)/

√
h0. To do so we invoke the expression in (14) and perform the change of variable

z = φ−1(u) = (Fu + 1)−1/F . Taking advantage of the relations in (18) we can write Sµ(φ(z)) in terms
of the polynomials Vi(z;µ) and some powers of z depending on the parameter F . Due to the fact that
φ(z)→ −1/F as z → +∞, we are concerned about the asymptotic expression of Sµ(φ(z)) at z = +∞. An
analogous study than the one done in Lemma 4.1 shows in this case that

Sµ(φ(z)) ∼+∞
(2− F )(D + 1− F )2(2F − 3)

√
h0

4F 2D2(F − 1)3(2F − 1)2
z3F−4 +

(3− F )(D + 1− F )
√
h0

4FD(F − 1)3(2F − 1)
z−2+F at µ0.

The result follows undoing the change of variable.
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4.2.2 Proof of Theorem B

From the results in [11] we already know that Crit
(
(Πµ0

, Xµ0
), Xµ

)
> 1 for parameters µ0 satisfying D0 =

G(F0). The strategy for showing the opposite inequality is to apply Theorem E with n = 1 to the family (16).
To do so, let fµ be defined as in the statement of the Theorem. The first thing to notice is that fµ satisfies
hypothesis (H) with h0(µ) < +∞ for all µ ∈ Λ. Let us fix ν(µ) ≡ −1. On account of equality (13) and
Lemmas 4.3 and 4.8 we have that

Dν(µ)[fµ](z) ∼1

h
3
2
0 (2h0V

′′
µ (ρ)− V ′µ(ρ)2)

2V ′µ(ρ)3
+ b(µ)(1− z2)β(µ) at µ0,

where

β(µ) := min
µ≈µ0

{
1,−3

2
+

1

2(F − 1)

}
=

{
1 if F ∈ (1, 6

5 ),

− 3
2 + 1

2(F−1) if F ∈ ( 6
5 ,

4
3 ),

and

b(µ) :=

{
c(µ) if F ∈ (1, 6

5 ),

a1(µ) if F ∈ ( 6
5 ,

4
3 ).

If F0 ∈ [ 5
4 ,

4
3 ) then β(µ0) 6 1/2 and assertion (b) in Theorem E is fulfilled with N = 1, n1 = 0 and ` = 1.

Therefore, assertion (a) in Theorem B holds.

If F0 ∈ (1, 5
4 ) then β(µ0) > 1/2. Let us split this interval in two parts, namely (1, 6

5 ) and ( 6
5 ,

5
4 ).

The parameter F0 = 6
5 is excluded due to the noncontinuity of the function β(µ). If F0 ∈ ( 6

5 ,
5
4 ) then

the coefficient of (1 − z2)β(µ) in the previous asymptotic expansion is the nonvanishing function a1(µ) on
Lemma 4.8. Moreover, by Lemma 4.5, N [Dν(µ)[fµ]] = 0 for all µ ≈ µ0. Consequently, we apply Theorem E
with N = 2, n1 = 0 and n2 = 1. Using Lemma 5.5 we have that

N
[[

Dν [fµ0
]
]1]

= 0 if and only if
2F1

(
− 3

2 ,
5
2 ; 7

2 − 4F0;α(µ0)
)

Γ
(

7
2 − 4F0

) = 0.

Proposition 4.9 ensures that the previous Hypergeometric function do not vanishes for F0 ∈ ( 9
8 ,

5
4 ). Con-

sequently, hypothesis of Theorem E are fulfilled and so the criticality at the outer boundary for those
parameters is exactly one.

Let us finally consider F0 ∈ (1, 6
5 ). In this case the coefficient of (1−z2)β(µ) on the asymptotic expansion

above is c(µ) given in Lemma 4.3. Here then we invoke the assumption in the statement of Theorem B
regarding c(µ0) 6= 0. As before we can apply Theorem E with N = 2, n1 = 0 and n2 = 1 and the hypothesis
are satisfied whenever condition (4) is fulfilled. That is, whenever the hypergeometric function above do
not vanish. Again Proposition 4.9 ensures that this is true for parameters F0 ∈ ( 9

8 ,
5
4 ). Consequently, the

result in assertion (b) of Theorem (B) holds. For parameters F0 ∈ (1, 9
8 ] condition (4) is required and so the

result follows if it is satisfied. This ends the proof of the first assertion in Theorem B.

4.2.3 Some additional comments

This section is devoted to discuss some technicalities involved in the proof of Theorem B. More concretely,
we show that condition (4) is fulfilled when F0 ∈ ( 9

8 ,
5
4 ) and we also give some numerical intuition to the

fact that the condition should be fulfilled for every F0 ∈ (1, 5
4 ).

Proposition 4.9. If µ = (D,F ) satisfy D = G(F ) with 9
8 < F < 5

4 then

2F1

(
− 3

2 ,
5
2 ; 7

2 − 4F ;α(µ)
)

Γ
(

7
2 − 4F

) 6= 0.

Proof. From the fact that the parameters µ = (D,F ) satisfy D = G(F ) with 9
8 < F < 5

4 it follows that

D > −1 and so p2(µ) > 1. Moreover p1 < 1. Consequently, α(µ) = p2−1
p2−p1 ∈ (0, 1).
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Consider the function

ϕ := (z, F ) −→ 2F1

(
− 3

2 ,
5
2 ; 7

2 − 4F ; z
)

Γ
(

7
2 − 4F

) .

From [1] the derivative of ϕ(z, F ) with respect to z writes

dϕ

dz
(z, F ) = − 15

4Γ
(

9
2 − 4F

) 2F1

(
−1

2
,

7

2
;

9

2
− 4F ; z

)
.

Using the series expression of the Hypergeometric function it turns out that all its coefficients are positive
for F ∈ ( 9

8 ,
5
4 ). Consequently, for each F ∈ ( 9

8 ,
5
4 ) we have that

dϕ

dz
(z, F ) > 0 if z > 0.

Hence for each F ∈ ( 9
8 ,

5
4 ) the function ϕ(·, F ) is increasing for z > 0. In addition,

ϕ(0, F ) =
1

Γ
(

7
2 − 4F

) > 0

if F ∈ ( 9
8 ,

5
4 ). Therefore, for each F ∈ ( 9

8 ,
5
4 ), the function ϕ(z, F ) is positive for all z > 0. Taking z = α(µ)

and on account of 0 < α(µ) < 1 for all parameters under consideration, the result follows.

Figure 4a exhibits the curve D = G(F ) together with the two connected components of the zero set level
of the function

2F1

(
− 3

2 ,
5
2 ; 7

2 − 4F ;α(µ)
)

Γ
(

7
2 − 4F

) . (19)

As the previous result states, there is no crossing of the zero set with the curve D = G(F ) for parameters
with F ∈ ( 9

8 ,
5
4 ). Indeed Proposition 4.9 shows that condition (4) is satisfied in this situation. Numerics

seems to show that the non-crossing property is still verified till F = 1. However, we have not been able to
prove it analytically.

We end this section with also a numerical intuition about the equation c(µ0) = 0 in the statement
of Theorem B. Although again no analytical prove is provided, it seems that this equation has a unique
solution with is approximately (D0, F0) = (−0.56996, 1.00781).

5 Appendix: Computation of momenta

The purpose of this section is to compute the momenta used to apply Theorem E on the two-parametric
potential family and the Loud’s family (see Proposition 4.6 and Section 4.2.2.) In both cases the momentum
we are interested in is

N
[[

Dν [fµ]
]1]

with ν = −1.

Lemma 3.5 together with Definition 3.6 imply that

N
[[

Dν [fµ]
]1]

= M
[[

(Lν ◦B)[fµ]
]
1

]
.

Using the formula in Lemma 2.15 on the right-hand side of the equality above, we get the equality

N
[[

Dν [fµ]
]1]

= lim
R→+∞

(
R3B[fµ](R)−

∫ R

0

x2B[fµ](x)dx

)
.
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(a) (b)

Figure 4: (a) The curve joining the points (− 3
2 ,

3
2 ) and (− 1

2 , 1) correspond to the
bifurcation parameters D = G(F ). The other two bold lines are the two connected
components of the zero set of the function (19). (b) Zoom of the previous figure in the
parameter region (D,F ) ∈ (−1,− 1

2 )× (1, 9
8 ) and the curve c(µ) = 0.

Finally, the change of variable R = φ−1(r) = r√
1−r2 yields to

N
[[

Dν [fµ]
]1]

= lim
r→1

(
r3fµ(r)√

1− r2
−
∫ r

0

z2fµ(z)

(1− z2)
3
2

dz

)

= lim
r→1

(
r3fµ(r)√

1− r2
−
∫ r

0

fµ(z)

(1− z2)
3
2

dz +

∫ r

0

fµ(z)

(1− z2)
1
2

dz

)

= lim
r→1

(
r3fµ(r)√

1− r2
−
∫ r

0

fµ(z)

(1− z2)
3
2

dz

)
+N [fµ].

Let fµ(z) := z
√
h0(µ)(g−1

µ )′′(z
√
h0(µ)) − z

√
h0(µ)(g−1

µ )′′(−z
√
h0(µ)) with gµ := sgn(x)

√
Vµ(x). In both

families, for parameters µ = µ0 under consideration the momentum N [fµ0 ] vanishes. We point out that
this fact is not a coincidence. Indeed, in both cases we are interested to bound the criticality of bifurcation
parameters such that limh→h0(µ0) T

′
µ0

(h) = 0. In other words, the bifurcation occurs in such a way that
limh→h0(µ) T

′
µ(h) is convergent for all µ ≈ µ0 and changes sign at µ = µ0. From the definition of the period

function, it turns out that

N [fµ] = lim
h→h0(µ)

T ′µ(h)√
2h0(µ)

(20)

and so we have N [fµ0 ] = 0 (we refer to [5, Corollary 3.12] for more details in this direction.) Hence, for
parameters in such situation,

N
[[

Dν [fµ]
]1]

= lim
r→1

(
r3fµ(r)√

1− r2
−
∫ r

0

fµ(z)

(1− z2)
3
2

dz

)
. (21)

Next two lemmas are useful for the forthcoming computations. See for instance (6.2.1) and (6.2.2) of [1]
for the first one. The first assertion of the second lemma was proved in [5, Lemma A.3]. The second assertion
follows similarly.

Lemma 5.1. Let α and β be any complex numbers with strictly positive real part. Then
∫ 1

0

uα−1(1− u)β−1du =

∫ ∞

0

uα−1(1 + u)−(α+β)du =
Γ(α)Γ(β)

Γ(α+ β)
,

25



where Γ denotes the Gamma function.

Lemma 5.2. Let α and β be real numbers such that α+ β + 1 6= 0. Then

∫
uα(1 + u)βdu =

β

α+ β + 1

∫
uα(1 + u)β−1du+

1

α+ β + 1
uα+1(1 + u)β ,

and ∫
uα(1− u)βdu =

α

α+ β + 1

∫
uα−1(1− u)β − 1

α+ β + 1
uα(1− u)β+1.

Lemma 5.3. Let Φµ(x) := h0 − Vµ(x). The following hold:

(a) If Vµ with µ = (q, p) is defined by (10) and q ∈ (−1,− 3
5 ) then

∫ s

0

Φµ(x)−
3
2 dx =

2(p+ 1)
3
2 (q + 1)s−

1
2 (3q+1)

(p− q)(p+ 1)
u(s)−

1
2 +

2(p+ 1)
3
2 (λ− 1)

(p− q)
(
p+1
q+1

)λ
∫ k(s)

0

y
1
2−λ(1 + y)λ−2dy,

and

∫ s

0

Φµ(x)−
5
2 dx =

2(p+ 1)
3
2 (q + 1)s−

1
2 (5q+3)

3(p− q) u(s)−
3
2 +

4(p+ 1)
1
2 (q + 1)2(ω − 1)s−

1
2 (5q+3)

3(p− q) u(s)−
1
2

+
4(p+ 1)

5
2 (ω − 1)(ω − 2)

3(p− q)
(
p+1
q+1

)ω
∫ k(s)

0

y
3
2−ω(1 + y)µ−3dy,

where u(s) := p+1
q+1 − sp−q, k(s) := 1

u(s)s
p−q, λ := 1

2
3p+1
p−q and ω := 1

2
5p+3
p−q .

(b) If Vµ with µ = (D,F ) is defined by (18) then

∫ s

− 1
F

Φµ(x)−
3
2 dx =

(2− 2F )
3
2 (1− p1)2F− 3

2

D
3
2 (p2 − p1)

3
2

(
2(v(s)−

1
2 − 1) +

∫ 1

v(s)

y−
3
2 ((1− y)2−2F (1− αy)−

3
2 − 1)dy

)

and

∫ s

− 1
F

Φµ(x)−
5
2 dx =

(2− 2F )
5
2 (1− p1)4F− 5

2

D
5
2 (p2 − p1)

5
2

(
2

3
(v(s)−

3
2 − 1) + (8F − 8 + 5α)(v(s)−

1
2 − 1)

+

∫ 1

v(s)

y−
5
2

(
(1− y)4−4F (1− αy)−

5
2 − 1− (4F − 4 + 5

2α)y
)
dy

)

where v(s) := (Fs+1)−
1
F +p1−1

(Fs+1)−
1
F

, α := p2−1
p2−p1 and p1, p2 are defined in (15).

Proof. Let us compute the integrals in (a). Using the expression of Vµ in (10) we have that

∫ s

0

Φ(x)−
3
2 dx = (p+ 1)

3
2

∫ s

0

x−
3
2 (q+1)

(
p+ 1

q + 1
− xp−q

)− 3
2

dx.

We perform the change of variable y = k(x) = xp−q
p+1
q+1−xp−q

. Then the integral above writes

∫ s

0

Φ(x)−
3
2 dx =

(p+ 1)
3
2

(p− q)
(
p+1
q+1

)λ
∫ k(s)

0

y
1
2−λ(1 + y)λ−1dy,

where λ := 1
2

3p+1
p−q . This improper integral is divergent as s tends to ρ =

(
p+1
q+1

) 1
p−q , which will be the case

under consideration. We shall make explicit the order of the singularity of this function using Lemma 5.1.

26



In order to apply it, we note that the power of y in the integrand should be greater than −1 and the power
of (1 + y) negative. The first condition is satisfied for q ∈ (−1,− 3

5 ), p > q, but λ − 1 = 1+p+2q
2(p−q) is positive

for some parameters. (In fact vanishes for the bifurcation parameters.) To overpass this situation, we apply
Lemma 5.2, getting

∫ s

0

Φ(x)−
3
2 dx =

2(p+ 1)
3
2

(p− q)
(
p+1
q+1

)λ k(s)
3
2−λ(1 + k(s))λ−1 +

2(p+ 1)
3
2 (λ− 1)

(p− q)
(
p+1
q+1

)λ
∫ k(s)

0

y
1
2−λ(1 + y)λ−2dy.

Using u(s) := p+1
q+1 − sp−q we can write k(s) = sp−q 1

u(s) and 1 + k(s) = p+1
q+1

1
u(s) so,

∫ s

0

Φ(x)−
3
2 dx =

2(p+ 1)
3
2 (q + 1)s−

1
2 (3q+1)

(p− q)(p+ 1)
u(s)−

1
2 +

2(p+ 1)
3
2 (λ− 1)

(p− q)
(
p+1
q+1

)λ
∫ k(s)

0

y
1
2−λ(1 + y)λ−2dy

as desired. Similarly we can obtain the expression for the second integral in (a). In this case, we need to
apply Lemma 5.2 twice in order that the power of (1 + y) of the integrand is negative. We omit the details
for the sake of brevity.

Let us now prove (b). Using the expression of Vµ in (18) together with the change of variable z =

φ−1(x) = (Fx+ 1)−
1
F the first integral on item (b) is written as

∫ +∞

φ−1(s)

z2F−1
(
h0(µ)− Vµ(φ(z))

)− 3
2 dz.

By definition of p1 and p2 in (15) the difference on the integrand above decomposes as

h0(µ)− Vµ(φ(z)) =
D

2− 2F
(z − 1 + p1)(z − 1 + p2).

Let us now consider the change of variable y = v(x) = z+p1−1
z = φ−1(x)+p1−1

φ−1(x) . In this new variable, we have

that ∫ s

− 1
F

Φµ(x)−
3
2 dx =

(2− 2F )
3
2 (1− p1)2F− 3

2

D
3
2 (p2 − p1)

3
2

∫ 1

v(s)

y−
3
2 (1− y)2−2F (1− αy)−

3
2 dy

with α := p2−1
p2−p1 . As in (a), we point out here that v(s) tends to zero as s tends to xr (see (17)) which

will be the case under study. In particular, the above improper integral is divergent as v(s) tends to zero.

To deal with this situation, we add and subtract the value at y = 0 of (1 − y)2−2F (1 − αy)−
3
2 inside the

integral, which turns out to be exactly 1. That is,

∫ s

− 1
F

Φµ(x)−
3
2 dx =

(2− 2F )
3
2 (1− p1)2F− 3

2

D
3
2 (p2 − p1)

3
2

(
2(v(s)−

1
2 − 1) +

∫ 1

v(s)

y−
3
2 ((1− y)2−2F (1− αy)−

3
2 − 1)dy

)

as desired. Similarly we obtain the expression for the second integral in (b). In this case, we need to add

and subtract 1 + (4F − 4 + 5
2α)y to the function (1− y)2−2F (1− αy)−

3
2 , which turns out to be its Taylor’s

development up to degree one.

Lemma 5.4. Let Vµ be defined as in (10) and h0(µ) = p−q
(p+1)(q+1) . If µ = (q, 1) with q ∈ (−1,− 3

5 ) and

ν = −1 then

N
[[

Dν [fµ]
]1]

=
2
√−2q

q(q + 1)(3q + 1)

( −2q

q + 1

)− 1+5q
1+3q

√
π Γ

(
− 5q+3

2(p−q)

)

Γ
(

1
2 −

5q+3
2(p−q)

) .

Proof. For the parameters under consideration the equality deduced in (21) holds. For the sake of simplicity
we shall omit the dependence on the parameter µ from now on. We stress that although the dependence on
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the parameters is not shown all the limits in the proof are uniform with respect to the parameters. Using
the definition of f , that is

f(z) = z
√
h0(g−1)′′(z

√
h0)− z

√
h0(g−1)′′(−z

√
h0)

with g(x) = sgn(x)
√
V (x), and the change of variable z = g(x)/

√
h0, the following equality holds

∫ r

0

f(z)dz

(1− z2)
3
2

= 2h0

∫ g−1(r
√
h0)

g−1(−r√h0)

η1(x)

(h0 − V (x))
3
2

dx,

with η1 = 1
2 − V V ′′

(V ′)2 . The function g−1(−r
√
h0) tends to zero as r → 1. Moreover, η1(x)(h0 − V (x))−

3
2 has

a singularity at x = 0 of order x−
5
2 (q+1), which is integrable since q < − 3

5 . Consequently,

lim
r→1

∫ g−1(r
√
h0)

g−1(−r√h0)

η1(x)

(h0 − V (x))
3
2

dx = lim
r→1

∫ g−1(r
√
h0)

0

η1(x)

(h0 − V (x))
3
2

dx.

Let us define

Φ(x) := h0 − V (x), l(x) := − 1

V ′(x)
, h(x) := h0Φ(x)−

3
2 − Φ(x)−

1
2 . (22)

We have η1(x)(h0 − V (x))−
3
2 = 1

2Φ(x)−
3
2 − l′(x)h(x). Denoting s = g−1(r

√
h0) and integrating by parts,

the previous discussion leads to the equality

∫ r

0

f(z)dz

(1− z2)
3
2

= h0

∫ s

0

Φ(x)−
3
2 dx+ 2h0

∫ s

0

l(x)h′(x)dx− 2h0l(s)h(s).

Here we used that limx→0 l(x)h(x) = 0, which is a direct computation. By definition,

l(x)h′(x) = −3

2
h0Φ(x)−

5
2 +

1

2
Φ(x)−

3
2 .

Then, ∫ r

0

f(z)dz

(1− z2)
3
2

= 2h0

∫ s

0

Φ(x)−
3
2 dx− 3h2

0

∫ s

0

Φ(x)−
5
2 dx− 2h0l(s)h(s). (23)

From now on let us denote u(s) := p+1
q+1 − sp−q. Using the expressions of l and h we have

l(s)h(s) =
(p+ 1)

1
2 s−

1
2 (3q+1)

sp−q − 1
u(s)−

1
2 − (p− q)(p+ 1)

1
2 s−

1
2 (5q+3)

(q + 1)(sp−q − 1)
u(s)−

3
2 . (24)

Substituting (24) and the integrals in assertion (a) of Lemma 5.3 into (23), and taking into account that

(
2h0(p− q)(p+ 1)

1
2 s−

1
2 (5q+3)

(q + 1)(sp−q − 1)
− 2h2

0(p+ 1)
3
2 (q + 1)s−

1
2 (5q+3)

p− q

)
u(s)−

3
2 =

2h0(p+ 1)
1
2 s−

1
2 (5q+3)

sp−q − 1
u(s)−

1
2

we obtain

∫ r

0

f(z)dz

(1− z2)
3
2

=
4h0(p+ 1)

3
2 (λ− 1)

(p− q)
(
p+1
q+1

)λ
∫ k(s)

0

y
1
2−λ(1 + y)λ−2dy

− 4h2
0(p+ 1)

5
2 (ω − 1)(ω − 2)

(p− q)
(
p+1
q+1

)ω
∫ k(s)

0

y
3
2−ω(1 + y)ω−3dy

+ 2h0(p+ 1)
1
2 s−

1
2 (5q+3)

(
2(q + 1)sq+1

p− q +
1− sq+1

sp−q − 1
− 2h0(q + 1)2(ω − 1)

p− q

)
u(s)−

1
2 .

(25)
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Let us now compute r3√
1−r2 f(r). Using again the expression of f the previous function writes

r3f(r)√
1− r2

=
r4
√
h0(g−1)′′(r

√
h0)√

1− r2
− r4

√
h0(g−1)′′(−r

√
h0)√

1− r2
. (26)

First, the change of variable s = g−1(−r
√
h0) on the second quotient of the previous equality yields to

r4
√
h0(g−1)′′(−r

√
h0)√

1− r2
=

2V (s)2
(
V ′(s)2 − 2V (s)V ′′(s)

)

h0V ′(s)3
√
h0 − V (s)

.

The function s = g−1(−r
√
h0)→ 0 as r → 1 and the function in the right hand side of the previous equality

has a singularity at s = 0 of order s−
1
2 (5q+3). Since q ∈ (−1,− 3

5 ) we have that

lim
r→1

r4
√
h0(g−1)′′(−r

√
h0)√

1− r2
= lim
s→0

2V (s)2
(
V ′(s)2 − 2V (s)V ′′(s)

)

h0V ′(s)3
√
h0 − V (s)

= 0.

Second, the change of variable s = g−1(r
√
h0) yields to the same expression as before,

r4
√
h0(g−1)′′(r

√
h0)√

1− r2
=

2V (s)2
(
V ′(s)2 − 2V (s)V ′′(s)

)

h0V ′(s)3
√
h0 − V (s)

.

On account of the expression of V , expanding in series on u = p+1
q+1 − sp−q we have that

2V (s)2
(
V ′(s)2 − 2V (s)V ′′(s)

)

h0V ′(s)3
√
h0 − V (s)

=
2h0(p+ 1)

1
2 s−

1
2 (5q+3)

(sp−q − 1)3

(
sq+1(sp−q − 1)2 − 2h0(psp−q − q)

)
u−

1
2 + o(u

1
2 ).

Let us recall ρ :=
(
p+1
q+1

) 1
p−q

. At this point we claim that

lim
s→ρ

(
2h0(p+ 1)

1
2 s−

1
2 (5q+3)

(sp−q − 1)3

(
sq+1(sp−q − 1)2 − 2h0(psp−q − q)

)
u(s)−

1
2

−2h0(p+ 1)
1
2 s−

1
2 (5q+3)

(
2(q + 1)sq+1

p− q +
1− sq+1

sp−q − 1
− 2h0(q + 1)2(ω − 1)

p− q

)
u(s)−

1
2

)
= 0.

Indeed, the previous expression writes

2h0(p+ 1)
1
2 s−

1
2 (5q+3)u−

1
2

(
2(q + 1)sq+1

(p− q)(sp−q − 1)
u+

2h0(q + 1)2(ω − 1)

p− q − 2h0(psp−q − q)
(sp−q − 1)3

− 1

sp−q − 1

)
.

Using the expression of h0 and ω appearing in Lemma 5.3,

2h0(q + 1)2(ω − 1)

p− q − 2h0(psp−q − q)
(sp−q − 1)3

− 1

sp−q − 1
=

u

(p− q)(p+ 1)

(
c1 + c2s

p−q + c3s
2(p−q)

)
,

for some c1, c2, c3 ∈ R[p, q]. Substituting the previous equality on the limit above and taking into account
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that u(s) = p+1
q+1 − sp−q → 0 as s→ ρ the claim follows. Therefore,

N
[[

Dν [fµ]
]1]

= lim
r→1

(
r3f(r)√
1− r2

−
∫ r

0

f(z)dz

(1− z2)
3
2

)

= lim
s→ρ


2V (s)2

(
V ′(s)2 − 2V (s)V ′′(s)

)

h0V ′(s)3
√
h0 − V (s)

− 4h0(p+ 1)
3
2 (λ− 1)

(p− q)
(
p+1
q+1

)λ
∫ k(s)

0

y
1
2−λ(1 + y)λ−2dy

+
4h2

0(p+ 1)
5
2 (ω − 1)(ω − 2)

(p− q)
(
p+1
q+1

)ω
∫ k(s)

0

y
3
2−ω(1 + y)ω−3dy

− 2h0(p+ 1)
1
2 s−

1
2 (5q+3)

(
2(q + 1)sq+1

p− q +
1− sq+1

sp−q − 1
− 2h0(q + 1)2(ω − 1)

p− q

)
u−

1
2

)

= lim
s→ρ

(
4h2

0(p+ 1)
5
2 (ω − 1)(ω − 2)

(p− q)
(
p+1
q+1

)ω
∫ k(s)

0

y
3
2−ω(1 + y)ω−3dy

−4h0(p+ 1)
3
2 (λ− 1)

(p− q)
(
p+1
q+1

)λ
∫ k(s)

0

y
1
2−λ(1 + y)λ−2dy


 .

Let us now fix p = −2q − 1. On account of the expression of λ we have that λ − 1 = 0. Finally, using the
expressions of ω and h0, the fact that k(s)→ +∞ as s→ +∞ and Lemma 5.1 we obtain

N
[[

Dν [fµ]
]1]

=
2
√−2q

q(q + 1)(3q + 1)

( −2q

q + 1

)− 1+5q
1+3q

√
π Γ

(
− 5q+3

2(p−q)

)

Γ
(

1
2 −

5q+3
2(p−q)

)

as we desired.

Lemma 5.5. Let Vµ be defined as in (18). The following holds:

(a) If µ = (D,F ) satisfies F ∈ (1, 3
2 ), D ∈ (− 3

2 ,− 1
2 ) and D + F > 0 then

N [fµ] =
h0(2− 2F )

3
2 (1− p1)2F− 3

2

D
3
2 (p2 − p1)

3
2

√
πΓ(3− 2F )

Γ
(

5
2 − 2F

) 2F1

(
3
2 ,− 1

2 ; 5
2 − 2F ;α).

(b) If µ = (D,F ) satisfies D = G(F ) and F ∈ (1, 5
4 ) then

N
[[

Dν [fµ]
]1]

= −4h2
0(2− 2F )

5
2 (1− p1)4F− 5

2

D
5
2 (p2 − p1)

5
2

√
π Γ(5− 4F )

Γ
(

7
2 − 4F

) 2F1

(
− 3

2 ,
5
2 ; 7

2 − 4F ;α
)
.

Here α := p2−1
p2−p1 , h0 = F−D−1

2F (F−1)(2F−1) and p1, p2 are defined in (15).

Proof. The proof of the assertion in (a) follows the same lines as the proof of (b) using that

N [fµ] = lim
r→1

∫ r

0

fµ(z)dz

(1− z2)
1
2

.

Since the proof of (b) is richer in subtle technicalities, and for the sake of brevity, we decided to prove (b)
and omit the proof of assertion in (a).

Let us show (b). For the parameters µ = (D,F ) with D = G(F ) the equality in (21) holds. Again
we omit the dependence on parameters for the sake of simplicity although all the limits are uniform with
respect to the parameters. Following the same discussion as in the proof of Lemma 5.4 we arrive to the
equality ∫ r

0

f(z)dz

(1− z2)
3
2

= 2h0

∫ s

− 1
F

Φ(x)−
3
2 dx− 3h2

0

∫ s

− 1
F

Φ(x)−
5
2 dx− 2h0l(s)h(s), (27)
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where the functions Φ, h and l are defined in (22). The only difference lies on the interval of integration
due to g−1(−r

√
h0)→ − 1

F as r → 1 in this case.

Let us denote u = u(s) := φ−1(s)−1 +p1 = (Fs+ 1)−
1
F −1 +p1. From the expressions of h and l in (22)

and the definition of V and V1 in (18) we have

l(s)h(s) =
(u+ 1− p1)2F (2− 2F )

1
2

D
1
2V1(u+ 1− p1)(u+ p2 − p1)

1
2

u−
1
2 − h0(u+ 1− p1)4F (2− 2F )

3
2

D
3
2V1(u+ 1− p1)(u+ p2 − p1)

3
2

u−
3
2 . (28)

Moreover, equality (26) also holds and the limit of the second quotient of the right-hand side of the equality
tends to zero as r tends to one. Therefore

lim
r→1

r3f(r)√
1− r2

= lim
r→1

r4
√
h0(g−1)′′(r

√
h0)√

1− r2
.

The change of variable s = g−1(r
√
h0) yields to

r4
√
h0(g−1)′′(r

√
h0)√

1− r2
=

2V (s)2(V ′(s)2 − 2V (s)V ′′(s))

h0V ′(s)3
√
h0 − V (s)

.

On account of the expressions in (18), if z = φ−1(s) = (Fs+ 1)−
1
F we have

r4
√
h0(g−1)′′(r

√
h0)√

1− r2
=

2z4F (h0 − z−2FV0(z))2(z−2FV1(z)2 − 2(h0 − z−2FV0(z))V2(z))

h0V1(z)3V0(z)
1
2

.

Finally, using the factorization V0(z) = D
2−2F (z − 1 + p1)(z − 1 + p2) and u = u(s) = z − 1 + p1 defined

above, after some algebraic manipulations we arrive to

r4
√
h0(g−1)′′(r

√
h0)√

1− r2
=

2h0(2− 2F )
1
2

(
(u+ 1− p1)−2FV1(u+ 1− p1)2 − 2h0V2(u+ 1− p1)

)

D
1
2V1(u+ 1− p1)3(u+ p2 − p1)

1
2 (u+ 1− p1)−4F

u−
1
2 + o(u

1
2 ).

At this point we substitute the previous equality and (27) into (21), and we use the equality (28) and the
integrals in item (b) of Lemma 5.3 to have an explicit expression for the momentum under consideration. On

account that v(s) = φ−1(s)−1+p1
φ−1(s) = u

u+1−p1 (see Lemma 5.3), we can collect the expression of the momentum

as follows

N
[[

Dν [fµ]
]1]

= lim
r→1

(
r3f(r)√
1− r2

−
∫ r

0

f(z)dz

(1− z2)
3
2

)

= lim
u→0

(
a(u)u−

3
2 + b(u)u−

1
2 +

2h0(2− 2F )
3
2 (1− p1)2F− 3

2

D
3
2 (p2 − p1)

3
2

I1(u)

+
3h2

0(2− 2F )
5
2 (1− p1)4F− 5

2

D
5
2 (p2 − p1)

5
2

I2(u)

)
,

where

I1(u) := 2−
∫ 1

u
u+1−p1

y−
3
2 ((1− y)2−2F (1− αy)−

3
2 − 1)dy,

I2(u) := −22

3
+ 8F + 5α−

∫ 1

u
u+1−p1

y−
5
2

(
(1− y)4−4F (1− αy)−

5
2 − 1− (4F − 4 + 5

2α)y
)
dy,

and both a and b are analytic functions at u = 0. Here α = p2−1
p2−p1 . First, from the first part of the proof of

Lemma 4.6 we know that N
[[

Dν [fµ]
]1]

exists and so the previous limit is finite. (This can also be deduced

from the fact that at the moment when certain momentum in Theorem E needs to be computed, such
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momentum exists and it is finite.) The previous fact, together with the analyticity of a and b, implies that

a(u)u−
3
2 + b(u)u−

1
2 → 0 as u→ 0. Second, we point out that I1(0) is the expression of the curve D = G(F )

found in [11] which vanishes for bifurcation parameters we are considering. Consequently, taking the limit
on the equality above,

N
[[

Dν [fµ]
]1]

=
3h2

0(2− 2F )
5
2 (1− p1)4F− 5

2

D
5
2 (p2 − p1)

5
2

I2(0).

The result will follow once we prove that

I2(0) = −4
√
π Γ(5− 4F )

3 Γ
(

7
2 − 4F

) 2F1

(
− 3

2 ,
5
2 ; 7

2 − 4F ;α
)
.

To do so we shall show that the power series of the functions at both sides of the equality coincides. We
notice that for parameters under consideration, |α| < 1 and so the Hypergeometric function is analytic
and well defined as a power series (see [1, Section 15]). First notice that using the Newton’s binomial the
integrand of I2(0) writes

−1 + (1− y)4−4F + (4− 4F )y

y
5
2

+
5(1− y)4−4F − 5

2y
3
2

α+ (1− y)4−4F y−
5
2

∞∑

k=2

(
3
2 + k

3
2

)
αkyk. (29)

By the assertion in Lemma 5.1 and on account that F < 5/4, for each k > 2 we have

∫ 1

0

(1− y)4−4F yk−
5
2 dy =

Γ(5− 4F )Γ
(
− 3

2 + k
)

Γ
(

7
2 − 4F + k

) .

Since the function inside the integral is positive for each k > 2, Tonelli’s theorem states that summation
and integral signs interchange. Thus we obtain

∫ 1

0

∞∑

k=2

(
3
2 + k

3
2

)
αk(1− y)4−4F yk−

5
2 dy =

∞∑

k=2

(
3
2 + k

3
2

)
Γ(5− 4F )Γ

(
− 3

2 + k
)

Γ
(

7
2 − 4F + k

) αk

=
∞∑

k=2

Γ(5− 4F )Γ
(
− 3

2 + k
)
Γ
(

5
2 + k

)

Γ
(

7
2 − 4F + k

)
Γ
(

5
2

) αk

k!
.

(30)

Let us now integrate the second term in (29). The integration of the first term follows similarly and we
omit the computation for the sake of shortness. Taking ε > 0 small we have

∫ 1

ε

5(1− y)4−4F − 5

2y
3
2

αdy =
5

2
α

∫ 1

ε

y−
3
2 (1− y)4−4F dy + 5α(1− ε− 1

2 ).

With the aim of applying Lemma 5.1 in view we need the powers of y and (1 − y) to be greater than −1.
Indeed, since F ∈ (1, 5

4 ) we already have 4− 4F > −1. On the contrary, the power of y do not satisfy the
assumptions of the lemma. To overcome this we use Lemma 5.2 and we get

∫ 1

ε

y−
3
2 (1− y)4−4F dy = −2

(
9
2 − 4F

) ∫ 1

ε

y−
1
2 (1− y)4−4F dy + 2ε−

1
2 (1− ε)5−4F .

Substituting this equality on the previous expression, tending ε to zero and using Lemma 5.1 we get

∫ 1

0

5(1− y)4−4F − 5

2y
3
2

αdy = 5α− 5α
(

9
2 − 4F

) ∫ 1

0

y−
1
2 (1− y)4−4F dy = 5α− 5α

√
πΓ(5− 4F )

Γ
(

9
2 − 4F

) .

As we noticed before, the same procedure shows that

∫ 1

0

−1 + (1− y)4−4F + (4− 4F )y

y
5
2

dy = −22

3
+ 8F +

4
√
πΓ(5− 4F )

3Γ
(

7
2 − 4F

) .
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In this last case Lemma 5.2 must be applied twice. Summing these two last expressions together with (30)
we have that

I2(0) = −4
√
πΓ(5− 4F )

3Γ
(

7
2 − 4F

) +
5α
√
πΓ(5− 4F )

Γ
(

9
2 − 4F

) −
∞∑

k=2

Γ(5− 4F )Γ
(
− 3

2 + k
)
Γ
(

5
2 + k

)

Γ
(

7
2 − 4F + k

)
Γ
(

5
2

) αk

k!

= −4
√
πΓ(5− 4F )

3Γ
(

7
2 − 4F

)
(

1 +
15α

2(8F − 7)
+

∞∑

k=2

Γ
(
− 3

2 + k
)
Γ
(

5
2 + k

)
Γ
(

7
2 − 4F

)

Γ
(
− 3

2

)
Γ
(

5
2

)
Γ
(

7
2 − 4F + k

) αk

k!

)

= −4
√
πΓ(5− 4F )

3Γ
(

7
2 − 4F

) 2F1

(
− 3

2 ,
5
2 ; 7

2 − 4F ;α
)
,

where on the first equality we use common properties of the Gamma function and on the second equality
we use the definition of the Hypergeometric function 2F1 as a power series on account that |α| < 1.

Remark 5.6. The Hypergeometric function 2F1

(
a, b; c; z) can be continued analytically for any complex

number with |z| > 1 along any path in the complex plane that avoids the branch points 1 and infinity. For
parameters µ = (D,F ) satisfying F ∈ (1, 3

2 ), D ∈ (− 3
2 ,− 1

2 ) and D + F > 0 the property |α(µ)| < 1 do not
hold. However, it holds that α(µ) < 1. Thus the function

1

Γ
(

5
2 − 2F

) 2F1

(
3
2 ,− 1

2 ; 5
2 − 2F ;α(µ))

in the statement of Lemma 5.5 is well defined as a power series. �

Proof of Proposition 4.7 As it is shown in (20) the bifurcation curve D = G(F ) must coincide with the
zero set of N [fµ]. For the parameters under consideration, the first assertion in Lemma 5.5 shows that this
zero set coincide with the zero set of the function 2F1

(
3
2 ,− 1

2 ; 5
2 − 2F ;α) where α := p2−1

p2−p1 . This proves the
first assertion of the result. To show the second assertion notice that

lim
(D,F )→(−1,5/4)

2F1

(
3
2 ,− 1

2 ; 5
2 − 2F ;α(µ)) = 1

since α(µ)→ 0 as D → −1. Therefore the result follows by the limit lim(D,F )→(−1,5/4)
Γ(3−2F )

Γ
(

5
2−2F

) = 0.
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