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ALGORITMOS SENCILLOS PARA CALCULAR 7

ARMENGOL GASULL

RESUMEN. Hay ciertas integrales definidas de funciones racionales que permiten
demostrar con muy poco esfuerzo por ejemplo que 3 < 7 < 19/6. En este traba-
jo veremos como, a partir de estas integrales y otras relacionadas, no es dificil
encontrar varios algoritmos sencillos y rapidos para calcular el nimero 7 con la
precision deseada.

El punto de partida de este trabajo son estas dos bonitas igualdades

194(1 - 1) 1os3(1-2)? . 19
.[0—1+x2 de=m-3 y f0—1+x2 dx—g—w. (1)

Como los dos integrandos son positivos, una primera consecuencia es que 3 < m <

1679 = 3,16. La segunda igualdad nos permite también aproximar un poco mejor 7.

Veamos como: para x € [0, 1],

c 223(1 - x)?

31_ 2
r(1-2)"< 1+2a?

<22%(1-1x)%

Calculando, obtenemos que fol 23(1—x)?dz =1/60. Por lo tanto,

~ 188 19 1 19 1 189
313=—=— - — <A< — - — = —
60 6 30 6 60 60

=3,15.

Figura 1. Numero 7 en la ctpula del Palais de la Découverte (1957) de
Parfs.
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En [10], Dalzell desarrolla un método para aproximar m con el nimero de cifras

decimales que se deseen basado en una féormula similar,
4
fl—x (1_I)4dx: g—w.
o 1+a? 7

Siguiendo sus ideas (ver también [18]), en este trabajo demostraremos que cualquier
formula “parecida” a las tres presentadas da lugar a un algoritmo vélido para calcu-
lar 7. Tlustraremos nuestro resultado basandonos en estas tres igualdades, en algunas
de las formulas que aparecen en los articulos [11, 17, 18], y también en otras nuevas
que se presentan en este trabajo.

Llegado este punto y antes de continuar, nos gustaria explicar qué motivaciones
hay y ha habido detras del calculo de las cifras decimales de 7. Citando a [8, 21]
podemos decir que al principio el interés se centraba en buscar una cierta regularidad
en éstas, como ocurre por ejemplo con los nimeros racionales. Ahora bien, una
vez probada la irracionalidad de 7 por Lambert y Legendre, en siglo XVIII, y su
trascendencia en 1882 por Lindemann, este primer motivo desaparecié. Sin embargo,
hoy en dia todavia nos queda el reto de saber si m es normal. Recordemos que un
numero real se llama normal si, en sus cifras decimales, cualquier bloque de k digitos
aparece con frecuencia relativa 107%. Los nimeros normales son, de alguna manera,
los més “aleatorios”. Asi, si 7 fuera normal, en particular la proporcion de cualquiera
de los diez digitos en sus cifras decimales seria %0' Las comprobaciones que se han
hecho en este sentido a partir de millones de sus cifras decimales parecen apoyar una
respuesta afirmativa. Por ejemplo, segtn los célculos de Kanada de 1995 (ver [12,
Cap. 10]), las primeras 6 x 10° cifras decimales muestran las frecuencias siguientes:

“0” : 599963005, “6”7 + 600017176,
“17 = 600033260, “6” : 600016588,
“27 + 599999169, “77 + 600009044,
“37 + 600000243, “8”7 : 599987038,
“4” + 599957439, “9” : 600017038.

Actualmente ya se conocen més de 22 x 10'2 cifras decimales de 7 y los especialistas
siguen intentando demostrar que 7 es un niimero normal. Fin cualquier caso, por muy
lejos que se llegue en el calculo de sus cifras decimales, la prueba de la normalidad
de 7, si es que éste es el caso, debera ser tedrica.

Quizés atn méas importante, el calculo de los digitos de 7w permite explotar la
extraordinaria capacidad de los ordenadores actuales y en el camino descubrir po-
sibles errores de software o hardware. Ademas, por ejemplo, para programar lo mas
o6ptimamente posible los algoritmos que se van descubriendo, se han desarrollado
nuevas técnicas para implementar la transformada rapida de Fourier (FFT), muy
utilizada en la ciencia y la ingenieria actuales.

Como veremos, las herramientas matematicas involucradas en los algoritmos que
presentaremos en este trabajo no son complicadas: suma de series geométricas e
integracion de funciones polinomiales y racionales. Por lo tanto pensamos que los
resultados desarrollados pueden ser usados como material para motivar a los estu-
diantes a buscar sus propios algoritmos para calcular las cifras decimales de 7.
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Hoy en dia hay muchos tipos diferentes de algoritmos para calcular 7. Ademas,
éstos han sido obtenidos de maneras muy variadas e ingeniosas. Algunos de ellos,
aunque mas complicados de obtener que los que presentamos aqui, son mas rapidos,
ver por ejemplo [4, 6, 8, 9, 14, 16|. Hay varios libros dedicados exclusivamente a
este fascinante nimero y cuya lectura aconsejamos, ver [1, 3, 12, 13, 19, 23]. En
particular, el interesante libro [3| contiene la republicacion de 25 articulos recientes
sobre el namero 7, entre los que se encuentran las referencias |5, 6, 7, 18|.

1. ALGORITMOS PARA CALCULAR 7.

El principal resultado de este trabajo es el siguiente teorema, que nos permite
generar una infinidad de algoritmos para calcular 7 y al mismo tiempo tener una
idea de su velocidad de convergencia.

Teorema Sea p(x) un polinomio de grado mayor que 2, con coeficientes reales y tal
que p(xi) = —4. Entonces:

(1) Se cumple que p(z) = (1+22)q(x) -4, para un cierto polinomio q(x). Ademds

/ p(z) de=c-7
o 1+22

donde c = fol q(z)dx. En particular, si el polinomio tiene coeficientes racio-
nales entonces c € Q.

(11) Si p(x) restringido al intervalo [0,1] es positivo o cero (resp. negativo o cero)
entonces m < ¢ (resp. ™>c).

Supongamos también que Max 017y [p(x)/4| < M < 1. Entonces:

(iii)
W:i[k, donde [kizfo (x)( o ))

(iv) Si ademds maxeo.7y |q(x)| < L, |Ix| < L- M*.
(v) Sip(x) yq(x) son tales que la sucesion {Iy}y es alternada y con valor absoluto
decreciente, entonces se cumple que

n-1
_ Z I
k=0

<|L|<L-Mm

Demostracion. (i) En general, p(z) = (1 + 22)q(x) + a + bz, a,b € R. Substituyendo
en r =i obtenemos que —4 = a + bi y por tanto a = -4 y b = 0, como queriamos
demostrar. Integrando

p(2) fl /1 4
/0 1+x2d$ ; q(z)dx ; 1Jrxzdx—c .

La prueba de (i) es directa.
(i77) La igualdad demostrada en el apartado (i) se puede reescribir como

4+ p(x)
1+ 22

=q(7),

0, equivalentemente,

4 k

Mfl p(z) zq< ( <x>)
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donde hemos utilizado que para |u| < 1, 1/(1+u) = ¥450(-u)*. Integrando entre z = 0
y =1, y usando que cuando |u| < M < 1 la convergencia es uniforme y por lo tanto
el sumatorio y la integral se pueden intercambiar, obtenemos

v [ s [ S0 (22 a (oo (2 p)) g 0)- 5

(iv) Acotando las funciones involucradas en [; tenemos

[0 () ] < o[22 ar < 2o

(v) Es una propiedad general de las series alternadas con termino general con
valor absoluto decreciente hacia cero. 0

x| =

Para cada polinomio p(z) adecuado, el teorema demostrado nos proporciona un
algoritmo para calcular 7. Este consiste en el calculo de la sucesion de valores

Cm:,g)lk donde ]k:f (x)( ()) dx=f014+p(:r:)(_p(4$))kd$7

1+ 22

va que lim,, .. ¢, = m. Como ¢y = Iy = ¢ es la primera aproximacion, el algoritmo
sera mejor como mas cerca de 7 esté este valor. Por lo tanto usaremos polinomios
p(x) que proporcionen buenas aproximaciones iniciales de w. También es claro que
cuanto menor sea M mads rapido sera el algoritmo.

Es bien sabido que una manera de obtener buenas aproximaciones racionales de
un namero (en el sentido de que son las que tienen el error mas pequeno entre las
que tienen un tamano de denominador dado) es tomar las proporcionadas por la
teoria de fracciones continuas, ver por ejemplo [15, 22].

Asi, los primeros convergentes de 7 son:

22 333 355 103993 104348
T 771067 1137 331027 33215
y son varios de éstos los que consideraremos como s en este trabajo.

Entre ellos se encuentran algunas de las aproximaciones racionales simples en-

contradas por la humanidad. Asi tenemos el 22 = 3,1428... de Arquimedes, el
895 = 3,1415929... de Zu Chongzhi (= 480) o el 103993 3,1415926530. .. debido
a Euler (1707-1783). En cada nimero subrayamos las cifras correctas.

Ahora bien, no todas las buenas aproximaciones nos la proporciona esta teoria.

) . 2 311 377
Asi por ejemplo tenemos también 5 = 3,1414 ... o 155 = 3,1416.... ..

1.1. Algoritmo 1. En la formula de la izquierda de (1),

[l
0 .

1+ 22

tenemos que p(x) = —-2z(1 - x)2. Por lo tanto, como
-2x(1-2)%=(4-22)(1 +2%) -4,
q(x) =4 -2x. Ademas,

p(x)
1

o ox(l-2)2 x(l-x)? 2
- - = = 50,08,
o)y 2 2 w13 27

M = max
{z€[0,1]}
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3.14159265358979323846264338327950288419716939937510582097494
459230781640628620899862803482534211706798214808651328230664 7
0938446095505822317253594081284811174502841027019385211055596
4462294895493038196442881097566593344612847564823378678316527
1201909145648566923460348610454326648213393607260249141273724
5870066063155881748815209209628292540917153643678925903600113
3053054882046652138414695194151160943305727036575959195309218
6117381932611793105118548074462379962749567351885752724891227
9381830119491298336733624406566430860213949463952247371907021
7986094370277053921717629317675238467481846766940513200056812
7145263560827785771342757789609173637178721468440901224953430
1465495853710507922796892589235420199561121290219608640344181
5981362977477130996051870721134999999837297804995105973173281
6096318595024459455346908302642522308253344685035261931188171
0100031378387528865875332083814206171776691473035982534904287
5546873115956286388235378759375195778185778053217122680661300
19278766111959092164201989 . ..

Figura 2. Mil cifras decimales de 7.

y usando nuestro teorema

oo 1 1— 2\ k
m=> Iy, donde I:= / (4-2x) (u) dz.
k=0 0 2

De donde, calculando,

2 13 3 23 1
T=3+-—+ + + + + ey
15 1680 6160 720720 466752
con ¢y = 3, C1 = ﬂ = 3 13.. ., Co = 1576509 = 3 ]_4].0 = 3 14155.. , C10 =

3,141592535895. .., | — c20| <1024, Como M = Z =5 O 08 tal y como Comprobamos
en los célculos, en Cada paso tenemos poco mas que una cifra decimal correcta nueva.

Veamos para acabar una formula cerrada para I en la que no sea necesario hacer
las integrales a cada paso. Para eso utilizaremos la conocida relacion

folxm(l—x)”dx=ﬂ 2)

(m+n+1)

cierta para todo n,m € N y que puede demostrarse por ejemplo usando induccion.
Asi,

I - [01(4— %) (M)k

_ (2k)! (4 k! _2(k+1)!)_ k!(2k)! (5k+3).

ok \"(3k+1)! T(3k+2)!)  2k-1(3k +2)!
y en consecuencia,
= kI(2k)!

- Z STk ¢ 2)'(5k+3).
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1.2. Algoritmo 2. Tomando la formula de la derecha de (1),
1943(1 = 1)2
f il k7 (1-7) dng—w,
0 1+ 22 6
tenemos que p(z) = 223(1 - z)2. Como
p(z) = (4 - 422 + 223) (1 + 22) - 4,

q(z) =4 - 422+ 223. En este caso

3(1— )2 23(1 — )2

s x3(1-1x) =:c(1 T)

{ze[0,1]} 2 2

o4

= <0,018.
2=3/5 T 3125 7

M = méax ‘M =
{ze[01]}| 4

Aplicando el Teorema,

%) 1 5 = N
= ZIku donde I := [ (4—4w2+2x3)(¥) dr.
k=0 0

Por lo tanto,

19 8 59 137 21
m=— - — — [
6 315 180180 29099070 3803984640

Voo =2=316..., ¢ =0 -31412... ¢, =3,141597 .., ..., |7 - ¢l < 2 x 10720,

|’/T—CQO|<4><10 38,
Usando de nuevo (2) tenemos una formula cerrada para estas Iy,

Ik—[ (4 - 42? +2w3)(M) dx

_ | | |
_ (_) (26)! (4 (3k)! _4(3k+2). +2(3k+3).
2 (bk+1)! (5k+3)!  (Bk+4)!
~(=1)*(3k)!(2k)!
 2k1(5k + 4)!
donde omitimos los calculos de la tltima igualdad. En este algoritmo, como M es

cercano a 1/100 se observa que el nimero de cifras decimales correctas aumenta casi
en dos unidades a cada paso.

(187K + 342k2 + 201k + 38),

Algoritmo 3. Reproducimos en esta seccion el algoritmo de Dalzell [10] donde se
encuentra la idea seminal de nuestro trabajo. En esta ocasion empezamos con la

igualdad
Lat(1-x)? 22
———dr=—-m.
./0 1+ 22 7
De entrada, siguiendo las misma ideas que en la introduccién, ésta nos permite
encontrar facilmente un intervalo que contiene a 7. Para x € [0, 1], tenemos que

x4(1-x)* c x4 (1-x)*

<xt(l-xz)*
7 ST v
Usando (2) sabemos que /01 (1 -2z)*dz =1/630. Por lo tanto,
a1z, =oe 2 L o 2 L9 50

1260 7 630 7 1260 1260
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En particular, esas desigualdades implican el famoso resultado de Arquimedes
basado en el calculo de los perimetros de los poligonos inscrito y circunscrito de
poligonos regulares de 96 lados,

10 223 3958 < 22 3y 10

71 T 1260 7 70°
Como p(z) = 2*(1 - z)*, obtenemos que ¢(x) =4 — 422 + 5zt — 425 + 25. Ademas,
wt(l-z)t _ 2*(l-a)!

< 0,001.
= T g 4

M = max ‘p(m)
{ze[0,1]}| 4

Aplicando una vez maés el teorema tenemos

oo 1 -1 k
T = Z[k donde Iszo (Z) q($)$4k(1—$)4kd$-

=0

iy 10247

ol

Usando de nuevo (2),

L= (__1)k(4k)! (4 (4k)! _4(4k+2)! +5(4k’+4)! _4(4k+5)! . (4kr+6)!)

(8k+1)I "(8k+3)l “(8k+T)! (8k+6)!  (8k+T)!
_ (CD)F(AR)!(4k +3)!

(820K3 + 1533k* + 902k + 165),

4-2(8k +7)!
donde esta segunda igualdad es fruto de varios calculos. Asi,
_22 19 .\ 543 77 .
7 15015 594914320 104187267600
y co = 2 = 3,142. = {40 = 3,141591. = 3,141592654. .., ...|cio - 7| <
4 x 10~ 34 e - 7r| < 2 x 10764, Este algorltmo proporcionas tres leras decimals

Correctas nuevas a cada paso.

1.3. Algoritmo 4. Damos a continuaciéon un algoritmo més rapido que el Algo-
ritmo 3. Empezamos con la igualdad

Lad(1-x)8 377
LAY g2 2L
fo 2(1+x2) 120

Ast, p(z) = 325(1 - z)8, y p(x) = (1 + 2?)q(x) - 4, con

1 1
q(z) =4 - 42% + 4o + §x5 —72% + 727 - 32% + 5:139.
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En este caso

, 2(1-2)8  2°(1-x)8 18225000
M = = = <0,00007.
@01y 8 8 losju 285311670611
Por lo tanto,
__BTT AT 21349733
T 120 7390240  6161218256793600
y co =300 =31416..., ¢ = 8UITL = 3141592650. .., ..., |m — 10| < 3x 10747 ...,

|T—ca0| < 3x10782. Como vemos, a cada paso se anaden mas de cuatro cifras decimales
correctas.

Podemos de nuevo dar la expresion cerrada de las [, pero omitimos los detalles
de los célculos. Llegamos a que

. _ 2CD)H(5R)!(6R)!
BT 8R(11k + 10)!

R(k),

donde

R(k) = 3908628707k + 19140347068k® + 40673488993k + 49137942692k5
+37116292921%5 + 18135042932k* + 5715967247k + 1117115548k>
+122381172k + 5700240.

1.4. Algoritmo 5. Finalmente, partimos del resultado de [18],

Va8(1-2)8(25+8162%) . 355
/0 3164(1+22) ERETEI 3)

Aqui p(z) = 5772%(1 — 2)%(25 + 81622) y ¢(x) es un polinomio de grado 16 que no
explicitamos. Se puede demostrar que

p(z)

M= méx |[—2|$3,1x107".
{z€[0,1]}
En este caso,
__ 355 23629704851 3594867070013354617 o
113 88578979782373080  61934669017908076039597454707200
y co =5 =3,1415929. .., |1 — 1] < 6 x 1071, |m — 10| < 6 x 10773, | = e <

3 x 107138, Por lo tanto se obtienen unas siete cifras decimals nuevas en cada paso.
Para economizar espacio no damos la expresiéon explicita de las I, que podria
obtenerse usando las mismas técnicas que en las secciones anteriores.

1.5. Mas férmulas fuente. No es dificil buscar otras formulas a partir de las
cuales obtener nuevos algoritmos. Por ejemplo,

fl —2%(1 - 2)%(9 + 1422) do = 311 -
0 10(1 + 22?) 99
1 _25(1 — 2)6 2

f x?(1-x) (197+462x)dx:@_ﬂ’

0 530(1 + x?) 106
/1 714(1 - 2)"2(124360 + 771592%) | 103993

= - .
0 755216(1 + 22) 33102
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Las dos ultimas se han extraido de [18]. Otras formulas parecidas pueden encontrarse
en [2, 6, 11, 17, 20]. Observemos, por ejemplo, que a partir de (3) y de la segunda
de las igualdades que acabamos de dar, se obtiene que

333 355
— <7< .
106 113

De hecho, hay una manera sistemética de buscar férmulas cada vez més precisas. A
partir del teorema presentado podemos pensar que ¢(z) es un polinomio arbitrario
y que p(x) = (1 +22)q(x) — 4. Asi, en virtud de la formula (2), para facilitar los
célculos de las I es natural buscar polinomios ¢(x) de grado m de manera que
p(x) = axd(1 - )™*2J, para ciertos a € R, j € N. Las incognitas son los m + 1
coeficientes de ¢(x) y la condicion impuesta se reduce al siguiente sistema lineal de
m + 2 ecuaciones

p®(0)=0, s=0,....5-1, v p®(1)=0, s=0,....m+2-j-1,

donde p(*)(z) denota la derivada s-ésima de p(z). Como hay méas ecuaciones que
incognitas, no tiene porqué tener solucion. Si fijamos un m, encontramos que para
algunos valores de j este sistema si que es compatible (y determinado). Esos valores
de j son los que nos darén lugar a polinomios p(x) adecuados para nuestro propoésito.
Veamos un par de ejemplos.

Si tomamos m = 12, se puede comprobar que el sistema lineal solo es compatible
(y determinado) cuando j € {2,6,10}. En estos casos obtenemos los polinomios p(z),

L 5 12 16 8 10 4

16:5(1 x)e, 4:C(l )%, —x(1l-x)%

y las respectivas constantes M dadas por nuestro método son menores y cercanas a
5,1x1075,4,5x 1076 y 5,8 x 1075,

Para n = 22, los valores de j para los que el sistema lineal tiene solucion son
4,8,12,16 y 20. El patron de los valores de j que dan lugar a sistemas compatibles
parece bien claro. Los valores de j que dan lugar a una M maés pequena (S 1072) son
j =8y j=12. Por ejemplo, para este tltimo, p(x) es x'2(1 - z)'2/16,

fl 212(1 - )12 431302721
T =
o 16(1+22) 137287920

y el correspondiente algoritmo, que no detallamos, fijaria unas nueve cifras decimales
nuevas a cada paso.

Las formulas obtenidas a partir de polinomios de la forma p(x) = z4m(1-z)4m[/4m-1,
m € N, son precisamente las que se estudian en [18]. Obsérvese que el caso m = 1
corresponde precisamente al Algoritmo 3 de Dalzell [10].

—m<74x10719,

1.6. Un algoritmo debido a Ramanujan. Hay una relacion famosa que re-
cuerda a varias de las obtenidas en este trabajo, pero es de naturaleza totalmente
diferente. Fue dada sin demostracion en el ano 1919 por el famoso matematico indio
Srinivasa Ramanujan (1887-1920) y es

122 i (4k)!(1103 + 26390k )
™ 9801 & (k!)43964

Se puede consultar por ejemplo [5, 7] para tener mas informaciéon sobre ésta y
otras formulas similares. El algoritmo asociado que consiste en tomar u, como el
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inverso de la suma parcial n-ésima es extraordinariamente rapido. Por ejemplo,
up = BU\/2=31415927. .., Jug — 7| < 7 x 10719, ...y |ug — 7| < 5 x 10756,
Segiin parece a Ramanujan le gustaba encontrar aproximaciones no racionales

sencillas de m como la dada por uy. Algunas otras encontradas por él son

9 9 4 2222, /2143
2/ 2=31416... 102 - - _ 3141592652 . . ..
5+\/; 2280 \/0 2 \/22 Bt

El algoritmo asociado a la formula de Ramanujan es mucho mas eficiente que los
presentados en este trabajo ya que cuando se comparan dos algoritmos de este tipo,
no so6lo hay que tener en cuenta el nimero de digitos nuevos que proporciona cada
término, sino que también es muy importante estudiar el coste computacional de
cada uno de los sumandos, considerando por ejemplo el niimero y tipo de factoriales,
el grado de los polinomios involucrados, . ... Es claro que en la serie de Ramanujan
el coste de cada término es mucho menor que el de los términos en los Algoritmos 4
o 5, por ejemplo. De hecho esta igualdad de Ramanujan nos da una de las mejores
series hipergeométricas para aproximar 7. Esta serie es superada por la dada por
los hermanos Chudnovsky [5, 9],

=] k
I NCO
k=0

™

6k)!1(13591409 + 545140134k)
(k1)3(3k)16403203k+3/2 ’

en la que se basa uno de los algoritmos mas eficientes para calcular 7. En este

caso los primeros inversos de las sumas parciales w,,, son: wy = %\/ 640320, con

|wo — | <6 x 107, |wy; — 7| <4 x 10728, ...y |wg — | < 3 x 109,
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