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ALGORITMOS SENCILLOS PARA CALCULAR π

ARMENGOL GASULL

Resumen. Hay ciertas integrales de�nidas de funciones racionales que permiten
demostrar con muy poco esfuerzo por ejemplo que 3 < π < 19/6. En este traba-
jo veremos como, a partir de estas integrales y otras relacionadas, no es difícil
encontrar varios algoritmos sencillos y rápidos para calcular el número π con la
precisión deseada.

El punto de partida de este trabajo son estas dos bonitas igualdades

∫ 1

0

2x(1 − x)2
1 + x2 dx = π − 3 y ∫ 1

0

2x3(1 − x)2
1 + x2 dx = 19

6
− π. (1)

Como los dos integrandos son positivos, una primera consecuencia es que 3 < π <
19
6 = 3,1

⌢
6. La segunda igualdad nos permite también aproximar un poco mejor π.

Veamos cómo: para x ∈ [0,1],
x3(1 − x)2 ≤ 2x3(1 − x)2

1 + x2 ≤ 2x3(1 − x)2.
Calculando, obtenemos que ∫ 1

0 x
3(1 − x)2 dx = 1/60. Por lo tanto,

3,1
⌢
3 = 188

60
= 19

6
− 1

30
< π < 19

6
− 1

60
= 189

60
= 3,15.

Figura 1. Número π en la cúpula del Palais de la Découverte (1937) de
París.
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En [10], Dalzell desarrolla un método para aproximar π con el número de cifras
decimales que se deseen basado en una fórmula similar,

∫ 1

0

x4(1 − x)4
1 + x2 dx = 22

7
− π.

Siguiendo sus ideas (ver también [18]), en este trabajo demostraremos que cualquier
fórmula �parecida� a las tres presentadas da lugar a un algoritmo válido para calcu-
lar π. Ilustraremos nuestro resultado basándonos en estas tres igualdades, en algunas
de las fórmulas que aparecen en los artículos [11, 17, 18], y también en otras nuevas
que se presentan en este trabajo.
Llegado este punto y antes de continuar, nos gustaría explicar qué motivaciones

hay y ha habido detrás del cálculo de las cifras decimales de π. Citando a [8, 21]
podemos decir que al principio el interés se centraba en buscar una cierta regularidad
en éstas, como ocurre por ejemplo con los números racionales. Ahora bien, una
vez probada la irracionalidad de π por Lambert y Legendre, en siglo XVIII, y su
trascendencia en 1882 por Lindemann, este primer motivo desapareció. Sin embargo,
hoy en día todavía nos queda el reto de saber si π es normal. Recordemos que un
número real se llama normal si, en sus cifras decimales, cualquier bloque de k dígitos
aparece con frecuencia relativa 10−k. Los números normales son, de alguna manera,
los más �aleatorios�. Así, si π fuera normal, en particular la proporción de cualquiera
de los diez dígitos en sus cifras decimales sería 1

10 . Las comprobaciones que se han
hecho en este sentido a partir de millones de sus cifras decimales parecen apoyar una
respuesta a�rmativa. Por ejemplo, según los cálculos de Kanada de 1995 (ver [12,
Cap. 10]), las primeras 6 × 109 cifras decimales muestran las frecuencias siguientes:

“0” ∶ 599 963 005, “5” ∶ 600 017 176,

“1” ∶ 600 033 260, “6” ∶ 600 016 588,

“2” ∶ 599 999 169, “7” ∶ 600 009 044,

“3” ∶ 600 000 243, “8” ∶ 599 987 038,

“4” ∶ 599 957 439, “9” ∶ 600 017 038.

Actualmente ya se conocen más de 22× 1012 cifras decimales de π y los especialistas
siguen intentando demostrar que π es un número normal. En cualquier caso, por muy
lejos que se llegue en el cálculo de sus cifras decimales, la prueba de la normalidad
de π, si es que éste es el caso, deberá ser teórica.
Quizás aún más importante, el cálculo de los dígitos de π permite explotar la

extraordinaria capacidad de los ordenadores actuales y en el camino descubrir po-
sibles errores de software o hardware. Además, por ejemplo, para programar lo más
óptimamente posible los algoritmos que se van descubriendo, se han desarrollado
nuevas técnicas para implementar la transformada rápida de Fourier (FFT), muy
utilizada en la ciencia y la ingeniería actuales.
Como veremos, las herramientas matemáticas involucradas en los algoritmos que

presentaremos en este trabajo no son complicadas: suma de series geométricas e
integración de funciones polinomiales y racionales. Por lo tanto pensamos que los
resultados desarrollados pueden ser usados como material para motivar a los estu-
diantes a buscar sus propios algoritmos para calcular las cifras decimales de π.
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Hoy en día hay muchos tipos diferentes de algoritmos para calcular π. Además,
éstos han sido obtenidos de maneras muy variadas e ingeniosas. Algunos de ellos,
aunque más complicados de obtener que los que presentamos aquí, son más rápidos,
ver por ejemplo [4, 6, 8, 9, 14, 16]. Hay varios libros dedicados exclusivamente a
este fascinante número y cuya lectura aconsejamos, ver [1, 3, 12, 13, 19, 23]. En
particular, el interesante libro [3] contiene la republicación de 25 artículos recientes
sobre el número π, entre los que se encuentran las referencias [5, 6, 7, 18].

1. Algoritmos para calcular π.

El principal resultado de este trabajo es el siguiente teorema, que nos permite
generar una in�nidad de algoritmos para calcular π y al mismo tiempo tener una
idea de su velocidad de convergencia.

Teorema Sea p(x) un polinomio de grado mayor que 2, con coe�cientes reales y tal
que p(±i) = −4. Entonces:

(i) Se cumple que p(x) = (1+x2)q(x)−4, para un cierto polinomio q(x). Además

∫ 1

0

p(x)
1 + x2 dx = c − π,

donde c = ∫ 1

0 q(x)dx. En particular, si el polinomio tiene coe�cientes racio-
nales entonces c ∈ Q.

(ii) Si p(x) restringido al intervalo [0,1] es positivo o cero (resp. negativo o cero)
entonces π < c (resp. π > c).

Supongamos también que máx{x∈[0,1]} ∣p(x)/4∣ ≤M < 1. Entonces:

(iii)

π = ∞∑
k=0 Ik, donde Ik ∶= ∫ 1

0
q(x) (−p(x)

4
)k dx.

(iv) Si además máx{x∈[0,1]} ∣q(x)∣ ≤ L, ∣Ik∣ ≤ L ⋅Mk.
(v) Si p(x) y q(x) son tales que la sucesión {Ik}k es alternada y con valor absoluto

decreciente, entonces se cumple que

∣π − n−1∑
k=0 Ik∣ ≤ ∣In∣ ≤ L ⋅Mn.

Demostración. (i) En general, p(x) = (1 + x2)q(x) + a + bx, a, b ∈ R. Substituyendo
en x = i obtenemos que −4 = a + bi y por tanto a = −4 y b = 0, como queríamos
demostrar. Integrando

∫ 1

0

p(x)
1 + x2 dx = ∫ 1

0
q(x)dx − ∫ 1

0

4

1 + x2 dx = c − π.
La prueba de (ii) es directa.(iii) La igualdad demostrada en el apartado (i) se puede reescribir como

4 + p(x)
1 + x2 = q(x),

o, equivalentemente,

4

1 + x2 = q(x)
1 + p(x)

4

= ∞∑
k=0 q(x) (−

p(x)
4

)k ,
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donde hemos utilizado que para ∣u∣ < 1, 1/(1+u) = ∑k≥0(−u)k. Integrando entre x = 0
y x = 1, y usando que cuando ∣u∣ ≤M < 1 la convergencia es uniforme y por lo tanto
el sumatorio y la integral se pueden intercambiar, obtenemos

π = ∫ 1

0

4

1 + x2 dx = ∫ 1

0

∞∑
k=0 q(x) (−

p(x)
4

)k dx = ∞∑
k=0(∫

1

0
q(x) (−p(x)

4
)k dx) = ∞∑

k=0 Ik.(iv) Acotando las funciones involucradas en Ik tenemos

∣Ik∣ = ∣∫ 1

0
q(x) (−p(x)

4
)k dx∣ ≤ ∫ 1

0
∣q(x)∣ ∣p(x)

4
∣k dx ≤ L ⋅Mk.

(v) Es una propiedad general de las series alternadas con termino general con
valor absoluto decreciente hacia cero. �

Para cada polinomio p(x) adecuado, el teorema demostrado nos proporciona un
algoritmo para calcular π. Éste consiste en el cálculo de la sucesión de valores

cm ∶= m∑
k=0 Ik donde Ik = ∫ 1

0
q(x) (−p(x)

4
)k dx = ∫ 1

0

4 + p(x)
1 + x2 (−p(x)

4
)k dx,

ya que ĺımm→∞ cm = π. Como c0 = I0 = c es la primera aproximación, el algoritmo
sera mejor como más cerca de π esté este valor. Por lo tanto usaremos polinomios
p(x) que proporcionen buenas aproximaciones iniciales de π. También es claro que
cuanto menor sea M más rápido será el algoritmo.
Es bien sabido que una manera de obtener buenas aproximaciones racionales de

un número (en el sentido de que son las que tienen el error más pequeño entre las
que tienen un tamaño de denominador dado) es tomar las proporcionadas por la
teoría de fracciones continuas, ver por ejemplo [15, 22].
Así, los primeros convergentes de π son:

3,
22

7
,

333

106
,

355

113
,

103993

33102
,

104348

33215
, . . .

y son varios de éstos los que consideraremos como c′s en este trabajo.
Entre ellos se encuentran algunas de las aproximaciones racionales simples en-

contradas por la humanidad. Así tenemos el 22
7 = 3,1428 . . . de Arquímedes, el

355
113 = 3,1415929 . . . de Zu Chongzhi (≃ 480) o el 103993

33102 = 3,1415926530 . . . debido
a Euler (1707-1783). En cada número subrayamos las cifras correctas.
Ahora bien, no todas las buenas aproximaciones nos la proporciona esta teoría.

Así por ejemplo tenemos también 311
99 = 3,1414 . . . o 377

120 = 3,1416 . . . .

1.1. Algoritmo 1. En la fórmula de la izquierda de (1),

∫ 1

0

−2x(1 − x)2
1 + x2 dx = 3 − π.

tenemos que p(x) = −2x(1 − x)2. Por lo tanto, como

−2x(1 − x)2 = (4 − 2x)(1 + x2) − 4,

q(x) = 4 − 2x. Además,

M = máx{x∈[0,1]} ∣p(x)4
∣ = máx{x∈[0,1]}

x(1 − x)2
2

= x(1 − x)2
2

∣
x=1/3 = 2

27
≲ 0,08,
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Mil xifres decimals del número π.

3.14159265358979323846264338327950288419716939937510582097494

4592307816406286208998628034825342117067982148086513282306647

0938446095505822317253594081284811174502841027019385211055596

4462294895493038196442881097566593344612847564823378678316527

1201909145648566923460348610454326648213393607260249141273724

5870066063155881748815209209628292540917153643678925903600113

3053054882046652138414695194151160943305727036575959195309218

6117381932611793105118548074462379962749567351885752724891227

9381830119491298336733624406566430860213949463952247371907021

7986094370277053921717629317675238467481846766940513200056812

7145263560827785771342757789609173637178721468440901224953430

1465495853710507922796892589235420199561121290219608640344181

5981362977477130996051870721134999999837297804995105973173281

6096318595024459455346908302642522308253344685035261931188171

0100031378387528865875332083814206171776691473035982534904287

5546873115956286388235378759375195778185778053217122680661300

19278766111959092164201989 . . .

Agraïments. L’autor està recolzat pels projectes MINECO MTM2013-40998-P i
MTM2016-77278-P FEDER i per la Generalitat de Catalunya, projecte 2014SGR568.
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Figura 2. Mil cifras decimales de π.

y usando nuestro teorema

π = ∞∑
k=0 Ik, donde Ik ∶= ∫ 1

0
(4 − 2x) (x(1 − x)2

2
)k dx.

De donde, calculando,

π = 3 + 2

15
+ 13

1680
+ 3

6160
+ 23

720720
+ 1

466752
+⋯,

con c0 = 3, c1 = 47
15 = 3,13 . . . , c2 = 1759

560 = 3,1410 . . . , c3 = 3,14155 . . . , . . . , c10 =
3,141592535895 . . . , ∣π − c20∣ < 10−24. Como M = 2

27 ≲ 0,08, tal y como comprobamos
en los cálculos, en cada paso tenemos poco más que una cifra decimal correcta nueva.
Veamos para acabar una fórmula cerrada para Ik en la que no sea necesario hacer

las integrales a cada paso. Para eso utilizaremos la conocida relación

∫ 1

0
xm(1 − x)n dx = m!n!(m + n + 1)! , (2)

cierta para todo n,m ∈ N y que puede demostrarse por ejemplo usando inducción.
Así,

Ik = ∫ 1

0
(4 − 2x) (x(1 − x)2

2
)k dx

= (2k)!
2k

(4
k!(3k + 1)! − 2

(k + 1)!(3k + 2)!) = k!(2k)!
2k−1(3k + 2)!(5k + 3),

y en consecuencia,

π = ∞∑
k=0

k!(2k)!
2k−1(3k + 2)!(5k + 3).
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1.2. Algoritmo 2. Tomando la fórmula de la derecha de (1),

∫ 1

0

2x3(1 − x)2
1 + x2 dx = 19

6
− π,

tenemos que p(x) = 2x3(1 − x)2. Como

p(x) = (4 − 4x2 + 2x3)(1 + x2) − 4,

q(x) = 4 − 4x2 + 2x3. En este caso

M = máx{x∈[0,1]} ∣p(x)4
∣ = máx{x∈[0,1]}

x3(1 − x)2
2

= x3(1 − x)2
2

∣
x=3/5 = 54

3125
≲ 0,018.

Aplicando el Teorema,

π = ∞∑
k=0 Ik, donde Ik ∶= ∫ 1

0
(4 − 4x2 + 2x3) (x3(1 − x)2

2
)k dx.

Por lo tanto,

π = 19

6
− 8

315
+ 59

180180
− 137

29099070
+ 277

3893984640
−⋯,

y c0 = 19
6 = 3,16 . . . , c1 = 1979

630 = 3,1412 . . . , c2 = 3,141597 . . . , . . . , ∣π − c10∣ < 2 × 10−20,
. . . , ∣π − c20∣ < 4 × 10−38.
Usando de nuevo (2) tenemos una formula cerrada para estas Ik,

Ik = ∫ 1

0
(4 − 4x2 + 2x3) (x3(1 − x)2

2
)k dx

= (−1

2
)k(2k)!(4

(3k)!(5k + 1)! − 4
(3k + 2)!(5k + 3)! + 2

(3k + 3)!(5k + 4)!)
= (−1)k(3k)!(2k)!

2k−1(5k + 4)! (187k3 + 342k2 + 201k + 38),
donde omitimos los cálculos de la última igualdad. En este algoritmo, como M es
cercano a 1/100 se observa que el número de cifras decimales correctas aumenta casi
en dos unidades a cada paso.

Algoritmo 3. Reproducimos en esta sección el algoritmo de Dalzell [10] donde se
encuentra la idea seminal de nuestro trabajo. En esta ocasión empezamos con la
igualdad

∫ 1

0

x4(1 − x)4
1 + x2 dx = 22

7
− π.

De entrada, siguiendo las misma ideas que en la introducción, ésta nos permite
encontrar fácilmente un intervalo que contiene a π. Para x ∈ [0,1], tenemos que

x4(1 − x)4
2

≤ x4(1 − x)4
1 + x2 ≤ x4(1 − x)4.

Usando (2) sabemos que ∫ 1

0 x
4(1 − x)4 dx = 1/630. Por lo tanto,

3,1412 . . . = 3958

1260
= 22

7
− 1

630
< π < 22

7
− 1

1260
= 3959

1260
= 3,1420 . . . .
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En particular, esas desigualdades implican el famoso resultado de Arquímedes
basado en el cálculo de los perímetros de los polígonos inscrito y circunscrito de
polígonos regulares de 96 lados,

3 + 10

71
= 223

71
< 3958

1260
< π < 22

7
= 3 + 10

70
.

Como p(x) = x4(1 − x)4, obtenemos que q(x) = 4 − 4x2 + 5x4 − 4x5 + x6. Además,

M = máx{x∈[0,1]} ∣p(x)4
∣ = máx{x∈[0,1]}

x4(1 − x)4
4

= x4(1 − x)4
4

∣
x=1/2 = 1

1024
≲ 0,001.

Aplicando una vez más el teorema tenemos

π = ∞∑
k=0 Ik donde Ik = ∫ 1

0
(−1

4
)kq(x)x4k(1 − x)4k dx.

Usando de nuevo (2),

Ik = (−1

4
)k(4k)!(4

(4k)!(8k + 1)! − 4
(4k + 2)!(8k + 3)! + 5

(4k + 4)!(8k + 7)! − 4
(4k + 5)!(8k + 6)! + (4k + 6)!(8k + 7)!)

= (−1)k(4k)!(4k + 3)!
4k−2(8k + 7)! (820k3 + 1533k2 + 902k + 165),

donde esta segunda igualdad es fruto de varios cálculos. Así,

π = 22

7
− 19

15015
+ 543

594914320
− 77

104187267600
+⋯

y c0 = 22
7 = 3,142 . . . , c1 = 47171

15015 = 3,141591 . . . , c2 = 3,141592654 . . . , . . . ∣c10 − π∣ <
4 × 10−34, . . . ∣c20 − π∣ < 2 × 10−64. Este algoritmo proporcionas tres cifras decimals
correctas nuevas a cada paso.

1.3. Algoritmo 4. Damos a continuación un algoritmo más rápido que el Algo-
ritmo 3. Empezamos con la igualdad

∫ 1

0

x5(1 − x)6
2(1 + x2) dx = 377

120
− π.

Así, p(x) = 1
2x

5(1 − x)6, y p(x) = (1 + x2)q(x) − 4, con

q(x) = 4 − 4x2 + 4x4 + 1

2
x5 − 7x6 + 7x7 − 3x8 + 1

2
x9.
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En este caso

M = máx{x∈[0,1]}
x5(1 − x)6

8
= x5(1 − x)6

8
∣
x=5/11 = 18225000

285311670611
≲ 0,00007.

Por lo tanto,

π = 377

120
− 547

7390240
+ 21342733

6161218256793600
+⋯,

y c0 = 377
120 = 3,1416 . . . , c1 = 69651371

22170720 = 3,141592650 . . . , . . . , ∣π − c10∣ < 3 × 10−47 . . . ,∣π−c20∣ < 3×10−89. Como vemos, a cada paso se añaden más de cuatro cifras decimales
correctas.
Podemos de nuevo dar la expresión cerrada de las Ik, pero omitimos los detalles

de los cálculos. Llegamos a que

Ik = 2(−1)k(5k)!(6k)!
8k(11k + 10)! R(k),

donde

R(k) = 3908628707k9 + 19140347068k8 + 40673488993k7 + 49137942692k6

+37116292921k5 + 18135042932k4 + 5715967247k3 + 1117115548k2+122381172k + 5700240.

1.4. Algoritmo 5. Finalmente, partimos del resultado de [18],

∫ 1

0

x8(1 − x)8(25 + 816x2)
3164(1 + x2) dx = 355

113
− π. (3)

Aquí p(x) = 1
3164x

8(1 − x)8(25 + 816x2) y q(x) es un polinomio de grado 16 que no
explicitamos. Se puede demostrar que

M = máx{x∈[0,1]} ∣p(x)4
∣ ≲ 3,1 × 10−7.

En este caso,

π = 355

113
− 23629704851

88578979782373080
+ 3594867070013354617

61934669017908076039597454707200
−⋯,

y c0 = 355
113 = 3,1415929 . . . , ∣π − c1∣ ≤ 6 × 10−14,. . . ∣π − c10∣ < 6 × 10−73,. . . , ∣π − c20∣ <

3 × 10−138. Por lo tanto se obtienen unas siete cifras decimals nuevas en cada paso.
Para economizar espacio no damos la expresión explícita de las Ik, que podría

obtenerse usando las mismas técnicas que en las secciones anteriores.

1.5. Más fórmulas fuente. No es difícil buscar otras fórmulas a partir de las
cuales obtener nuevos algoritmos. Por ejemplo,

∫ 1

0

−x5(1 − x)6(9 + 14x2)
10(1 + x2) dx = 311

99
− π,

∫ 1

0

−x5(1 − x)6(197 + 462x2)
530(1 + x2) dx = 333

106
− π,

∫ 1

0

x14(1 − x)12(124360 + 77159x2)
755216(1 + x2) dx = 103993

33102
− π.
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Las dos últimas se han extraído de [18]. Otras fórmulas parecidas pueden encontrarse
en [2, 6, 11, 17, 20]. Observemos, por ejemplo, que a partir de (3) y de la segunda
de las igualdades que acabamos de dar, se obtiene que

333

106
< π < 355

113
.

De hecho, hay una manera sistemática de buscar fórmulas cada vez más precisas. A
partir del teorema presentado podemos pensar que q(x) es un polinomio arbitrario
y que p(x) = (1 + x2)q(x) − 4. Así, en virtud de la fórmula (2), para facilitar los
cálculos de las Ik es natural buscar polinomios q(x) de grado m de manera que
p(x) = αxj(1 − x)m+2−j, para ciertos α ∈ R, j ∈ N. Las incógnitas son los m + 1
coe�cientes de q(x) y la condición impuesta se reduce al siguiente sistema lineal de
m + 2 ecuaciones

p(s)(0) = 0, s = 0, . . . , j − 1, y p(s)(1) = 0, s = 0, . . . ,m + 2 − j − 1,

dónde p(s)(x) denota la derivada s-ésima de p(x). Como hay más ecuaciones que
incógnitas, no tiene porqué tener solución. Si �jamos un m, encontramos que para
algunos valores de j este sistema si que es compatible (y determinado). Esos valores
de j son los que nos darán lugar a polinomios p(x) adecuados para nuestro propósito.
Veamos un par de ejemplos.
Si tomamos m = 12, se puede comprobar que el sistema lineal solo es compatible

(y determinado) cuando j ∈ {2,6,10}. En estos casos obtenemos los polinomios p(x),
− 1

16
x2(1 − x)12, 1

4
x6(1 − x)8, −x10(1 − x)4,

y las respectivas constantes M dadas por nuestro método son menores y cercanas a
5,1 × 10−5, 4,5 × 10−6 y 5,8 × 10−5.
Para n = 22, los valores de j para los que el sistema lineal tiene solución son

4,8,12,16 y 20. El patrón de los valores de j que dan lugar a sistemas compatibles
parece bien claro. Los valores de j que dan lugar a unaM más pequeña (≲ 10−9) son
j = 8 y j = 12. Por ejemplo, para este último, p(x) es x12(1 − x)12/16,

∫ 1

0

x12(1 − x)12
16(1 + x2) dx = 431302721

137287920
− π < 7,4 × 10−10,

y el correspondiente algoritmo, que no detallamos, �jaría unas nueve cifras decimales
nuevas a cada paso.
Las fórmulas obtenidas a partir de polinomios de la forma p(x) = x4m(1−x)4m/4m−1,

m ∈ N, son precisamente las que se estudian en [18]. Obsérvese que el caso m = 1
corresponde precisamente al Algoritmo 3 de Dalzell [10].

1.6. Un algoritmo debido a Ramanujan. Hay una relación famosa que re-
cuerda a varias de las obtenidas en este trabajo, pero es de naturaleza totalmente
diferente. Fue dada sin demostración en el año 1919 por el famoso matemático indio
Srinivasa Ramanujan (1887-1920) y es

1

π
= 2

√
2

9801

∞∑
k=0

(4k)!(1103 + 26390k)(k!)43964k
.

Se puede consultar por ejemplo [5, 7] para tener más información sobre ésta y
otras fórmulas similares. El algoritmo asociado que consiste en tomar un como el
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inverso de la suma parcial n-ésima es extraordinariamente rápido. Por ejemplo,
u0 = 9801

4412

√
2 = 3,1415927 . . . , ∣u1 − π∣ < 7 × 10−16, . . . y ∣u6 − π∣ < 5 × 10−56.

Según parece a Ramanujan le gustaba encontrar aproximaciones no racionales
sencillas de π como la dada por u0. Algunas otras encontradas por él son

9

5
+
√

9

5
= 3,1416 . . . ,

4

√
102 − 2222

222
= 4

√
2143

22
= 3,141592652 . . . .

El algoritmo asociado a la fórmula de Ramanujan es mucho más e�ciente que los
presentados en este trabajo ya que cuando se comparan dos algoritmos de este tipo,
no sólo hay que tener en cuenta el número de dígitos nuevos que proporciona cada
término, sino que también es muy importante estudiar el coste computacional de
cada uno de los sumandos, considerando por ejemplo el número y tipo de factoriales,
el grado de los polinomios involucrados, . . . . Es claro que en la serie de Ramanujan
el coste de cada término es mucho menor que el de los términos en los Algoritmos 4
o 5, por ejemplo. De hecho esta igualdad de Ramanujan nos da una de las mejores
series hipergeométricas para aproximar π. Esta serie es superada por la dada por
los hermanos Chudnovsky [5, 9],

1

π
= 12

∞∑
k=0

(−1)k(6k)!(13591409 + 545140134k)(k!)3(3k)!6403203k+3/2 ,

en la que se basa uno de los algoritmos más e�cientes para calcular π. En este
caso los primeros inversos de las sumas parciales wn, son: w0 = 53360

13591409

√
640320, con∣w0 − π∣ < 6 × 10−14, ∣w1 − π∣ < 4 × 10−28, . . . y ∣w6 − π∣ < 3 × 10−99.
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