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 Background and Aims MicroRNAs (miRNAs) are small non-coding RNAs that act 

as post-transcriptional regulators of gene expression via sequence-specific cleavage 

or translational repression of target transcripts. They are transcribed as long single-

stranded RNA precursors with unique stem-loop structures that are processed by a 

DICER-Like (DCL) ribonuclease, typically DCL1, to produce mature miRNAs. 

Although a plethora of miRNAs have been found regulated by pathogen infection in 

plants, the biological function of most miRNAs remains largely unknown. Here, the 

contribution of OsDCL1 to rice immunity was investigated. 
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 Methods Activation-tagged Osdcl1a (Osdcl1a-Ac) rice mutants were examined for 

resistance to pathogen infection. mRNA and small RNA deep sequencing, RT-qPCR 

and stem-loop RT-PCR were used to examine DCL1a-mediated alterations in the rice 

transcriptome. Rice diterpene phytoalexins were quantified by LC-MSMS.  

Accumulation of O2
•-
 was determined by NBT staining.  

 Key Results. dcl1a-Ac mutants exhibit enhanced susceptibility to infection by fungal 

pathogens which was associated with a weaker induction of defence gene expression. 

Comparison of the mRNA and miRNA transcriptomes of dcl1a-Ac and wild-type 

plants revealed misregulation of genes involved in detoxification of reactive oxygen 

species. Consequently, dcl1a-Ac plants accumulated O2
•-
 in their leaves and were more 

sensitive to methyl viologen-induced oxidative stress. Furthermore, dcl1a-Ac plants 

showed downregulation of diterpenoid phytoalexin biosynthetic genes, these genes 

being also weakly induced during pathogen infection. Upon pathogen challenge, 

dcl1a-Ac plants failed to accumulate major diterpenoid phytoalexins. OsDCL1a 

activation resulted in marked alterations in the rice miRNAome, including both 

upregulation and downregulation of miRNAs.  

 Conclusions OsDCL1a activation enhances susceptibility to infection by fungal 

pathogens in rice. Activation of OsDCL1 represses the pathogen-inducible host 

defence response and negatively regulates diterpenoid phytoalexin production. These 

findings provide a basis to understand the molecular mechanisms through which 

OsDCL1a mediates rice immunity.  
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INTRODUCTION 

MicroRNAs (miRNAs) are small non-coding RNAs that act as post-transcriptional regulators 

of gene expression via sequence-specific cleavage or translational repression of target 

transcripts in eukaryotes (Llave et al. 2002; Brodersen et al. 2008). MiRNA genes are 

transcribed by RNA polymerase II into long precursor transcripts with unique stem-loop 

structures (pri-miRNA) that are processed in a two-step process by a DICER-Like (DCL) 

ribonuclease, typically DCL1, to give rise to an miRNA-5p/miRNA-3p duplex (Kurihara and 

Watanabe 2004). The miRNA duplex is exported to the cytoplasm, where one miRNA strand 

is selectively incorporated into an Argonaute 1 (AGO1)-containing RNA-induced silencing 

complex (RISC). This complex interacts with mRNA targets to direct cleavage or suppress 

translation. 

 Plant miRNAs have long been recognized as important regulators of gene expression in 

diverse developmental processes (Palatnik et al. 2003; Mallory et al. 2004; Rubio-Somoza 

and Weigel 2011). They are also involved in hormone signal transduction and adaptation to 

abiotic and abiotic stress (Navarro et al. 2006; Jagadeeswaran et al. 2009; Li et al. 2010; 

Jeong and Green 2013; Baldrich and San Segundo 2016; Fei et al. 2016). Most of our 

knowledge of miRNAs involved in plant immune responses to pathogen infection is from 

studies of the interaction of Arabidopsis plants with the bacterial pathogen Pseudomonas 

syringae.  

 Plants have evolved multiple defence mechanisms to defend themselves against pathogen 

infection, forming the innate immune system. Defence reactions are activated by the 

recognition of conserved pathogen-associated molecular patterns (PAMPs) by host membrane 
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pattern-recognition receptors (PRR). This recognition triggers “PAMP-triggered immunity” 

(PTI), which is effective against most pathogens (Jones and Dangl 2006; Couto and Zipfel 

2016). PTI components include production of reactive oxygen species (ROS), reinforcement 

of the cell wall, activation of protein phosphorylation/dephosphorylation processes, and 

accumulation of antimicrobial proteins, among others. The induction of pathogenesis-related 

(PR) genes is a ubiquitous response of plants to pathogen infection. Damage-associated 

molecular patterns (DAMPs) released from the plant cell wall after damage caused by the 

pathogen also induce plant defence responses. However, certain pathogens are able to 

suppress these basal resistance mechanisms by delivering effector proteins that can suppress 

PTI responses into the host cell. As a countermeasure, these microbial effectors are 

recognized by plant disease resistance proteins (R proteins), establishing “effector-triggered 

immunity” (ETI). Plants also produce a variety of secondary metabolites as natural protection 

against microbial pathogens. Among them are phytoalexins, which are low-molecular-weight 

compounds with antimicrobial activity and structural diversity (e.g., flavonoids, terpenoids, 

indole phytoalexins) (Ahuja et al. 2012; Schmelz et al. 2014). 

 Rice is one of the most important crops worldwide and a primary source of food for more 

than a half of the population. Rice blast caused by the fungus Magnaporthe oryzae is one of 

the most devastating fungal diseases of cultivated rice worldwide (Wilson and Talbot 2009). 

Rice is also the model plant for research in monocotyledonous species with a sequenced 

genome (Goff et al. 2002; Yu et al. 2002). Evidence supports marked variations in the rice 

miRNA population during M. oryzae infection or treatment with M. oryzae elicitors (Campo 

et al. 2013; Li et al. 2014, 2016; Baldrich et al. 2015). Although an important fraction of the 

rice miRNA transcriptome has been found to respond to M. oryzae infection or treatment with 

M. oryzae elicitors, a role for these pathogen-regulated miRNAs has been demonstrated for 

only a few of them. They are: miR7695, miR160, and miR398 which function as positive 



5 
 

regulators for rice immunity against M. oryzae infection, and miR169 and miR319 which 

negatively regulate immunity against this fungus (Campo et al. 2013; Li et al. 2014, 2017; 

Zhang et al. 2018). 

 Regarding DCL1, a major miRNA processing component, 3 loci encoding DCL1 proteins 

are identified in the rice genome: OsDCL1a, OsDCL1b and OsDCL1c (Kapoor et al. 2008). 

Previous studies revealed that loss of function of OsDCL1a by RNA interference (dcl1a-IR 

lines) results in abnormal shoot and root development with eventual growth arrest for the 

strongest RNAi lines (Liu et al. 2005). Later on, silencing of OsDCL1 was found to enhance 

resistance to rice blast fungus (Zhang et al. 2015). In contrast, a phenotype of susceptibility to 

pathogen infection was observed in Arabidopsis dcl1 mutants, showing enhanced 

susceptibility to infection by bacterial (P. syringae) and fungal (Botrytis cinerea) pathogens 

(Navarro et al. 2008; Seo et al. 2013; Weiberg et al. 2014). DCL1a silencing also results in 

abnormal growth and development in Arabidopsis plants (Gasciolli et al.). However, the 

DCL1-mediated mechanisms underlying these phenotypes of disease resistance or 

susceptibility in rice or Arabidopsis remain unknown.  

 The goal of this research was to investigate the role of OsDCL1 in rice immunity against 

fungal pathogens. To rule out the disease phenotype of OsDCL1a knock-down mutants being 

an effect of its morphological phenotype, we searched for Osdcl1a activation mutants. Two 

OsDCL1a activation mutants were identified and characterized (named dcl1a-Ac mutants). 

Plant growth performance of Osdcl1a-Ac plants was not affected. OsDCL1a activation 

enhanced susceptibility to infection by the fungal pathogens M. oryzae (hemibiotroph) and 

Fusarium fujikuroi (necrotroph), the causal agents of the rice blast and bakanae disease, 

respectively. Susceptibility to pathogen infection in dcl1a-Ac plants was associated with 

weaker induction of defence gene expression. The mRNA transcriptome and miRNAome of 

dcl1a-Ac plants were obtained and compared to those of wild-type plants. OsDCL1a 
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activation had an important impact on the expression of genes involved in two processes: 

ROS detoxification and synthesis of diterpene phytoalexins. Dcl1a-Ac plants featured 

downregulation of genes involved in the biosynthesis of terpenoid phytoalexins. Upon 

pathogen infection, phytoalexin accumulation was compromised in dcl1a-Ac plants. Together, 

our results support that OsDCL1a plays an important role in rice immunity.  

 

MATERIALS AND METHODS 

Plant and fungal materials 

Plants (Oryza sativa) were grown at 28ºC/22ºC day/night (16-h light/8-h dark cycle). Rice 

genotypes used were O. sativa japonica cv Tainung 67 (TN67), dcl1a-Ac mutants 

(M0066754, M0040827) from the Taiwan Rice Insertional Mutant collection (TRIM; 

http://www.trim.sinica.edu.tw), and dcl1a-IR lines (Liu et al. 2005). Genotyping of dcl1a-Ac 

mutants was carried out by PCR on genomic DNA with DCL1a-specific primers combined 

with a T-DNA-specific primer located at the left border of the T-DNA (Supplementary Data, 

Table S1). 

 The fungus M. oryzae (strain Guy 11) was grown as previously described (Campos-

Soriano et al. 2013). The fungus F. fujikuroi (isolate 297) was grown for 15 days on Potato 

Dextrose Agar (PDA) medium. Fungal spores were collected by adding sterile water to the 

surface of the mycelium and adjusted to the appropriate concentration.  

 

Infection assays and elicitor treatment  

 Infection with M. oryzae involved spraying leaves of 3-week-old rice plants with a spore 

suspension (1 x 10
5
 spores mL

-1
). In all experiments, mock inoculations were performed. 

Development of disease symptoms was followed over time. Lesion area was determined by 

using digital imaging software (Assess 2.0, American Phytopathological Society). For 

http://www.trim.sinica.edu.tw/
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infection experiments with F. fujikuroi, seeds were sterilized with sodium hypochlorite (30%, 

for 30 min), pre-germinated for 24h on Murashige and Skoog (MS) media without sucrose, 

and then inoculated with F. fujikuroi spores (1 x 10
6 

spores mL
-1

; 10 μL per seed). Fungal 

DNA on infected leaves was quantified by qPCR with specific primers for the 28S DNA gene 

of the corresponding fungus (Qi and Yang 2002; Jeon et al. 2013). Primers are in 

Supplementary Data Table S1. A standard curve with fungal DNA was prepared for 

quantification of fungal DNA in infected leaf samples. For elicitor treatment, 3-week-old 

wild-type plants were sprayed with an elicitor suspension obtained by autoclaving and 

sonicating M. oryzae mycelium (300 μg mL
-1

) (Casacuberta et al. 1992). 

 

RT-qPCR and stem-loop RT-PCR 

 Total RNA was extracted using the TRIzol reagent (Invitrogen). The RNA concentrations 

were quantified by a NanoDrop ND-2000 spectrophotometer. First-strand cDNA was 

synthesized from DNase-treated total RNA (1 μg) with SuperScript III reverse transcriptase 

(Invitrogen GmbH) and oligo-dT. RT-qPCRs were performed in optical 96-well plates in a 

Light Cycler 480 (Roche) with SYBR Green. All reactions were performed in triplicate. The 

average cycle threshold (Ct) values were obtained by PCR from three independent biological 

replicates and normalized to the average Ct values for the cyclophilin 2 gene (Os02g02890) 

from the same RNA preparations to obtain the ΔCt value or normalized expression (relative 

expression). Primers used for RT-qPCR and stem-loop RT-PCR are listed in Supplementary 

Data Table S1. ANOVA tests were used to evaluate differences in gene expression. 

 

Quantification of rice diterpene phytoalexins 

 For quantification of rice phytoalexins, leaf segments were mixed with 40 volumes of 80% 

methanol, concentrated to dryness and resuspended in 0.5 mL of 80% methanol. 
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 Phytoalexins were quantified by LC-MSMS as previously described (Miyamoto et al. 

2016). Three biological replicates with two technical replicates each were performed. 

ANOVA tests were used to evaluate differences in phytoalexin accumulation. 

 

Treatment with methyl viologen, pigment quantification and determination of the superoxide 

ion 

 Leaf segments (approximately 2 cm in length) were treated with methyl viologen (MV) 

solution (10 µM) at room temperature in the dark for 12 h, then incubated at 28ºC at a 16-h/8-

h photoperiod cycle for 3 days. Chlorophylls and carotenoids were extracted and quantified 

spectrophotometrically (Lichtenthaler and Buschmann 2001). For histochemical detection of 

the superoxide ion O2
.-
, leaf sections approximately 2 cm long were stained with nitroblue 

tetrazolium (NBT) (Campo et al. 2008). 

 

RNAseq and small RNAseq 

 Libraries were prepared from leaves of 3-week-old wild-type (segregated azygous) and 

dcl1a-Ac plants (two biological replicates per genotype). Indexed libraries were prepared 

from 1 μg of purified RNA from each sample (TruSeq Stranded mRNA Sample Prep Kit, 

Illumina). RNAs were quantified using the Agilent 2100 Bioanalyzer (Agilent Technologies) 

and pooled such that each index-tagged sample was present in equimolar amounts, with final 

concentration of the pooled samples of 2 nM. The pooled samples underwent cluster 

generation and sequencing with the Illumina HiSeq 2500 System (Genomics4life S.R.L., 

Baronissi, Salerno, Italy) in a 2x50 single-end format at a final concentration of 8 pmol. The 

raw sequence files generated underwent quality control analysis with FastQC v0.11.3 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). Trimming and removal of 

adapters involved use of Trimmomatic v0.33 (Bolger et al. 2014) (minimum quality score 35, 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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minimum length 25). The obtained reads were then mapped against the Oryza sativa reference 

genome (MSU 7.0) with STAR (v2.4.0j) (Dobin et al. 2013) providing the reference gene 

annotation file with known transcripts (RGSP 7.0). Alignment files were filtered to remove 

reads with MAPQ <30. FeatureCounts v1.4.5-p1 (Liao et al. 2014) was used for read 

summarization at the gene level, with the strand-specific option “reversely stranded”. 

Statistical analysis of the read counts involved use of R 3.1.3 with the HTSFilter package to 

remove genes with low expression (Rau et al. 2013) and the edgeR package for differential 

expression analysis (McCarthy et al. 2012). Gene Ontology (GO) enrichment analysis of the 

differentially expressed genes involved use of the AgriGO webtool 

(http://bioinfo.cau.edu.cn/agriGO/;  Du et al. 2010).  

 For small RNAseq the minimum length established was 15 bp and the quality score 35. 

The high quality reads were aligned against the Oryza sativa reference genome sequence 

(MSU 7.0) with Bowtie (version 1.1.1, parameters “v1”, “a”). FeatureCounts (version 1.4.5) 

was used together with miRBase v21 annotation to calculate gene expression values as raw 

read counts. Normalization was applied to the raw read counts by using the Trimmed Mean of 

M values (TMM) normalization. Datasets generated during the current study are available 

from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus 

(GEO) repository (https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109307).  

 

RESULTS 

Identification and characterization of activation-tagged DCL1a mutants  

As previously mentioned, DCL1 silencing has a negative impact on plant growth in rice. To 

investigate the contribution of DCL1 in disease resistance with no influence of intrinsic 

developmental cues, we searched for DCL1 activation mutants in publicly available mutant 

collections. Two T-DNA tagged lines carrying the T-DNA insertion near OsDCL1a, lines 

http://bioinfo.cau.edu.cn/agriGO/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE109307
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M0066754 and M0040827, were identified in the activation/knockout TRIM collection 

generated in the Tainung 67 (TN67, japonica) background (Hsing et al. 2007; 

http://trim.sinica.edu.tw) (Fig. 1A). The T-DNA insertion site in each TRIM mutant line was 

confirmed by PCR followed by DNA sequencing. Homozygous, hemizygous and azygous 

plants were identified (Supplementary Data Fig. S1A, B).  The T-DNA used for generating 

the TRIM library contains eight tandem repeats of the cauliflower mosaic virus 35S promoter 

(CaMV35), which can activate the expression of genes located around the T-DNA insertion 

sites (Fig. 1A, left panel). OsDCL1a transcript levels were significantly higher in leaves from 

each mutant line as compared with azygous (segregated progeny) and wild-type TN67 plants 

(Fig. 1A, right panel), indicating that they are activation mutants for OsDCL1a (hereafter 

referred to as dcl1a-Ac#1 and dcl1a-Ac#2). As expected, OsDCL1a expression was lower in 

OsDCL1a RNAi (dcl1a-IR) plants than its parental genotype (O. sativa cv Nipponbare; Liu et 

al. 2005) (Fig. 1A, right panel). Quantitative PCR (qPCR) revealed that each of the dcl1a-Ac 

mutants has a single copy of the T-DNA inserted in its genome (Supplementary Data Table 

S2). Importantly, we found no obvious phenotype differences between dcl1a-Ac mutant and 

wild-type (azygous and TN67) plants grown under controlled greenhouse conditions 

(Supplementary Data Fig. S1C). An examination of the genomic regions flanking OsDCL1 

identified one gene, nascent polypeptide-associated complex subunit alpha (NACA), that 

partially overlaps OsDCL1a (Fig. 1A). OsDCL1 and NACA locate in opposite strands of the 

DNA (MSU release 7). Thus, in the dcl1a-Ac#1 mutant, the T-DNA insertion site is found at 

the 3'-UTR of both NACA and OsDCL1a. However, NACA transcripts accumulated at 

equivalent levels in mutant (dcl1a-Ac#1, dcl1a-Ac#2) and control plants (azygous, wild-type) 

(Supplementary Data Fig. S1D). 

 

Susceptibility to infection by fungal pathogens in dcl1a-Ac plants 

http://trim.sinica.edu.tw/
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 To investigate the functional relevance of OsDCL1a activation in disease resistance, dcl1a-

Ac plants were examined for resistance to infection by the rice blast fungus M. oryzae. The 

dcl1a-Ac plants consistently exhibited higher susceptibility to M. oryzae infection as 

compared with control plants (Fig. 1B). Susceptibility of dcl1a-Ac to blast was confirmed by 

measuring the average lesion area in the infected leaves and by qPCR measurement of fungal 

DNA, an indicator of fungal biomass in the infected leaves (Fig. 1B, right panels). The dcl1a-

Ac#2 mutant also exhibited higher susceptibility to M. oryzae infection as compared with 

control plants (Supplementary Data Fig. S2). Increased susceptibility to blast infection in 

dcl1a-Ac plants is consistent with findings of resistance to M. oryzae in dcl1a-IR lines (Zhang 

et al. 2015). However, dcl1a-IR plants showed abnormal growth, whereas dcl1a-Ac plants 

grew and developed normally. 

 To obtain further insights into the mechanisms underlying susceptibility to M. oryzae 

infection in dcl1a-Ac plants, we examined the expression pattern of the defence genes 

OsPR1a and OsPBZ1 (a PR10 family member) in wild-type and dcl1a-Ac plants. These genes 

are widely used as indicators of induction of rice defence responses during pathogen 

infection, including M. oryzae infection (Midoh and Iwata 1996; Agrawal et al. 2001). As 

expected, OsPR1a and OsPBZ1 expression was induced in wild-type plants during M. oryzae 

infection (Fig. 1C). Although OsPR1a and OsPBZ1 expression was also activated by fungal 

infection in dcl1a-Ac plants, their expression was induced at a much lower level in mutant 

plants than in wild-type plants at all times of infection. Reduced induction of defence gene 

expression agrees with the observed phenotype of susceptibility in dcl1a-Ac plants. 

 We also examined disease resistance of dcl1a-Ac plants against the necrotrophic fungus F. 

fujikuroi, the causal agent of bakanae, an important seed-borne disease of rice (Wulff et al. 

2010). As compared with wild-type segregated azygous plants, dcl1a-Ac seedlings grew 

poorly and their roots turned necrotic on F. fujikuroi inoculation (Fig. 1D). Fungal biomass 
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was greater in roots of dcl1a-Ac than wild-type plants (Fig. 1D, right panel), thus confirming 

that dcl1a-Ac plants are more susceptible to infection by F. fujikuroi. 

 Together, results demonstrate that OsDCL1a activation enhances susceptibility to infection 

by hemibiotrophic (M. oryzae) and necrotrophic (F. fujikuroi) fungal pathogens in rice and 

that disease susceptibility in dcl1a-Ac plants is associated with weaker induction of defence 

gene expression during pathogen infection.    

 

Expression of DCL genes in dcl1a-Ac plants 

 In plants, the DCL gene family typically comprises four members, DCL1 to DCL4, which 

have distinct functions in miRNA and siRNA biogenesis (Arikit et al. 2013). A fifth DCL, 

DCL3b (also named DCL5), which is associated with the production of 24-nt siRNAs, 

appears to have evolved in monocots (Margis et al. 2006; Song et al. 2012; Wei et al. 2014). 

The rice genome contains three DCL1 genes (OsDCL1a, OsDCL1b, OsDCL1c). OsDCL1a is 

most closely related to AtDCL1a from a structural and functional point of view, and 

OsDCL1a silencing impairs miRNA biogenesis in rice (Liu et al. 2005). Additionally, the rice 

genome has two DCL2 paralogs with almost identical sequences (DCL2a/b) and unique DCL3 

(OsDCL3a), DCL4 and DCL3b genes (Margis et al. 2006; Kapoor et al. 2008). OsDCL1a, 

OsDCL2a/b and OsDCL3a are ubiquitously expressed in vegetative tissues during 

development, but their expression is markedly reduced at the reproductive phase (Kapoor et 

al. 2008). DCL genes with low expression (OsDCL1b, OsDCL1c, and OsDCL3b) feature 

inflorescence, panicle- and/or early seed-specific expression (Kapoor et al. 2008). OsDCL1a 

was the most highly expressed OsDCL1 gene in leaves of 3-week-old wild-type rice plants 

(Supplementary Data Fig. S3). As expected, OsDCL1a expression was further increased in 

dcl1a-Ac plants, with no significant difference in the expression of any of the other DCL 

genes between dcl1a-Ac and wild-type plants (Supplementary Data Fig. S3).  
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 The apparently negative effect of OsDCL1a activation on resistance to fungal infection 

prompted us to investigate whether OsDCL1a expression itself is regulated as part of the host 

response to pathogen infection. This analysis revealed OsDCL1a expression induced in wild-

type plants in response to M. oryzae infection (at 24, 48 and 72 hours post-inoculation [hpi]) 

(Fig. 2A, left panel). A similar trend in OsDCL1a expression (i.e., upregulation) was observed 

after treatment with elicitors obtained by autoclaving and sonicating M. oryzae mycelium 

(Fig. 2A, right panel). Regarding other rice DCL genes, a different response to M. oryzae 

infection was observed depending on the family member. OsDCL1a and OsDCL1b, 

OsDCL2a/b and OsDCL3a expression was induced, whereas that of OsDCL4 was repressed 

by M. oryzae infection, and OsDCL3b was not affected (at least at the times examined, 72 

hpi) (Fig. 2B).  

 From these results, we conclude that pathogen infection alters the expression of rice DCL 

genes, namely OsDCL1a, OsDCL1b, OsDCL2 and OsDCL3a. Knowing that these genes are 

involved in small RNA biogenesis pathways, this observation anticipates important small 

RNA-mediated transcriptional reprogramming of gene expression as part of the rice response 

to infection by the fungal pathogen M. oryzae. 

 

Transcript profiling of dcl1a-Ac mutant plants 

 To investigate OsDCL1a-mediated alterations in the rice transcriptome, we used RNASeq 

analysis of dcl1a-Ac and wild-type (segregated azygous) plants. RNA was obtained from 

leaves of 3-week-old plants. Illumina Solexa sequencing produced 39.6 and 31.0 million 

reads in wild-type and dcl1a-Ac plants, respectively (Supplementary Data Table S3). The 

processed RNA-Seq reads were mapped to the rice genome (O. sativa cv Nipponbare MSU 

7.0). For calling differentially expressed (DE) genes, a fold change of 2.0 was used as a cut-

off, with False Discovery Rate (FDR) set to 0.05.  
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 A total of 216 genes were found DE in dcl1a-Ac plants relative to wild-type plants, most 

downregulated in dcl1a-Ac plants (155 downregulated; 61 upregulated) (Fig. 3A; 

Supplementary Data Tables S4, S5). GO functional analysis revealed that many 

downregulated genes in dcl1a-Ac plants were in the categories “signalling”, “metabolism”, 

and “biotic stress” (28%, 19% and 14%, respectively) (Fig. 3B, left panel).  

 The distribution of DE genes in functional categories differed greatly between upregulated 

and downregulated genes (i.e. genes associated with “biotic stress” were not represented in 

the upregulated genes in dcl1a-Ac plants, whereas genes involved in oxidative stress were 

highly represented) (Fig. 3B, right panel). Genes involved in “signalling” were less 

represented in upregulated than downregulated genes (Fig. 3B; Supplementary Data Tables 

S4, S5). DE genes in dcl1a-Ac plants were classified according to their molecular functions 

by using the AgriGO tool (Du et al. 2010; http://bioinfo.cau.edu.cn/agriGO/) (Supplementary 

Data Fig. S4). Important differences were observed in the categories of protein kinase and 

oxidoreductase (monooxygenase) activities. For instance, the expression of many receptor-

like kinases was downregulated in dcl1a-Ac versus wild-type plants (Supplementary Data 

Table S4). The subfamily of cell Wall-Associated Kinases (WAKs) was the most highly 

represented of downregulated receptor kinase genes (up to 17 WAKs were downregulated in 

dcl1a-Ac plants). WAKs are involved in perception of PAMPs and DAMPs for activation of 

defence-associated responses, and overexpression of WAK genes increases resistance to M. 

oryzae in rice (Li et al., 2009). Two brassinosteroid insensitive 1 receptor kinase (BRI1) 

genes were downregulated in dcl1a-Ac plants (Supplementary Data Table S4), these genes 

also being involved in recognition of PAMPs and activation of plant immune responses. 

Genes typically associated with disease resistance and defence mechanisms were also 

downregulated in dcl1a-Ac plants, such as several R genes and the OsWRKY47 transcription 

factor. Previous studies have shown overexpression of OsWRKY47 in rice accompanied by 

http://bioinfo.cau.edu.cn/agriGO/
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upregulation of PR10 and blast resistance (Wei et al., 2013). In agreement with this, dcl1a-Ac 

plants showed downregulation of both OsWRKY47 and PR10 expression (Supplementary 

Data Table S4). Among the genes downregulated in dcl1a-Ac were those involved in the 

biosynthesis of antifungal compounds, such as Agmantine hydroxycinnamoyltransferase1 (for 

producing antifungal hydroxycinnamoylagmantine derivatives) and strictosidine synthase (for 

producing alkaloids) (Supplementary Data Table S4). 

 Of note, genes encoding enzymes involved in oxidation-reduction reactions were highly 

represented among misregulated genes in dcl1a-Ac plants (up- and downregulated genes). 

They included several peroxidases and cytochrome P450 monooxygenases (CYPs) 

(Supplementary Data Tables S4, S5). CYPs catalyze the oxidation of many substrates for 

producing several metabolites, these enzymes being involved in the production of 

phytoalexins and phytohormones.  

 The expression of selected DE genes in dcl1a-Ac vs wild-type plants was validated by RT-

qPCR, including genes classified in the categories of “signalling”, “biotic stress” and 

“oxidative stress”. We further extended this analysis by determining the expression of these 

genes under non-infection and infection conditions (e.g., 72 hpi with M. oryzae). In the 

absence of pathogen infection, the expression of receptor kinase genes (Receptor kinase 5, 

OsWAK47, OsWAK14), disease resistance (RPM1) and defence genes (PR10, BetV) was 

significantly lower in dcl1a-Ac than wild-type plants (Fig. 3C, D). Prx83 was downregulated 

in dcl1a-Ac plants, but two other peroxidase genes (Prx14 and Prx34) were upregulated in the 

absence of pathogen infection (Fig. 3E). Together, these results indicate good correlation 

between RT-qPCR analysis and RNA-Seq data.   

 Upon pathogen challenge, the fungal-responsiveness of Receptor Kinase 5 was 

compromised in dcl1a-Ac plants, whereas WAK14, RPM1, PR10, and BetV reached a lower 

expression in dcl1a-Ac than wild-type plants (Fig. 3C, D). Prx14 and Prx34 expression was 
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more strongly induced by fungal infection in mutant than wild-type plants (Fig. 3E). The 

lower induction of defence-related genes during pathogen infection (e.g., Receptor Kinase, R, 

and PR genes) and misregulation of genes involved in oxidative stress might contribute well 

to disease susceptibility in dcl1a-Ac plants. 

 

DCL1 activation leads to reduced expression of diterpenoid phytoalexin biosynthesis genes 

and compromises phytoalexin accumulation during pathogen infection  

 Diterpenoid phytoalexins are the major phytoalexins in rice and are classified into five 

groups by the carbon skeleton: momilactones (A and B), oryzalexins (A to F), oryzalexin S, 

phytocassenes (A to E), and ent-10-oxodepressin (Ahuja et al. 2012; INOUE et al. 2013; 

Yamane 2013). Our RNASeq analysis revealed the downregulation of genes involved in the 

biosynthesis of of momilactones, oryzalexins and phytocassenes in dcl1a-Ac versus wild-type 

plants (Fig. 4A, B; Supplementary Data Table S4). Upon pathogen challenge, diterpenoid 

phytoalexin biosynthetic genes were induced to a lower extent in dcl1a-Ac than wild-type 

plants (Fig. 4C).  

 To investigate whether the downregulation of phytoalexin biosynthesis genes affects 

phytoalexin accumulation, we measured their levels in leaves of dcl1a-Ac and wild-type, 

under non-infection and infection conditions. Momilactone A and phytocassenes B, C and E 

accumulated at detectable levels in wild-type plants, but their accumulation was drastically 

reduced in dcl1a-Ac plants (Fig. 4D). To note, diterpenoid phytoalexins stayed almost at the 

basal level in M.oryzae-infected dcl1a-Ac plants (Fig. 4D) indicating that DCL1a activation, 

most probably, compromises diterpenoid phytoalexin production during pathogen infection. 

The antifungal activity of rice phytoalexins against M. oryzae has been described (Dillon et 

al. 1997; Umemura et al. 2003; Hasegawa et al. 2010). Failure to accumulate major rice 

phytoalexins in dcl1a-Ac plants would then facilitate pathogen growth in these plants.  



17 
 

 

Reduced tolerance to oxidative stress in dcl1a-Ac plants 

 ROS are constantly being generated during normal plant growth and development, and 

unbalance between ROS generation and safe detoxification generates oxidative stress in 

plants. Knowing that a substantial number of genes encoding enzymes that function in 

oxidation-reduction reactions (e.g. peroxidase, glutathione-S-transferase, CYP genes) were 

misregulated in dcl1a-Ac plants (Supplementary Data Tables S4, S5), we hypothesized that 

DCL1 activation might affect ROS detoxification systems and/or ROS homeostasis. This, in 

turn, would affect redox-dependent cellular processes. ROS includes superoxide anion (O2
.-
), 

hydroxyl radical (OH
•
) and hydrogen peroxide (H2O2), with the OH

•
 radical

 
being the most 

reactive molecule. Furthermore, O2
.−

 and H2O2 can react with each other in the presence of 

metal ions, such as iron, to form the more reactive hydroxyl radicals OH
• 

and OH
-
 via the 

Haber-Weiss and Fenton reactions. Hydroxyl radicals are highly reactive and interact with all 

biological molecules, leading to cellular damage. 

 To investigate whether transcriptome affectation caused by DCL1 activation affects the 

host ROS detoxification system, we used the ROS-generating reagent, MV. This compound 

acts as an inhibitor of photosynthesis and promotes the formation of superoxide anion (O2
.−

), 

which results in reduced chlorophyll content and discoloration in MV-treated leaves. Leaves 

of dcl1a-Ac plants were greatly affected by treatment with MV, and the chlorophyll content 

was markedly reduced in leaves of MV-treated dcl1a-Ac versus MV-treated leaves of wild-

type plants (Fig. 5A). Carotenoids are also able to detoxify ROS, and treatment with MV 

resulted in a higher reduction of carotenoid content in leaves of dcl1a-Ac than wild-type 

plants (Fig. 5A, right panel). The reduction in chlorophyll content in dcl1a-IR plants with MV 

treatment was similar to that of its wild-type parental genotype Nipponbare whereas the 

carotenoid level appears to be lower in dcl1a-IR plants than its parental genotype (although 
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differences in carotenoid level between dcl1a-IR and wild-type plants were not significant) 

(Supplementary Data Fig. S5A).   

 Finally, we examined O2
.-
 accumulation in dcl1a-Ac and wild-type plants grown under 

controlled conditions (i.e., in the absence of pathogen infection). For detecting O2
•-
 in rice 

leaves, we used nitroblue tetrazolium (NBT) staining. Of note, dcl1a-Ac plants accumulated 

high levels of O2
.- 

in leaves (Fig. 5B). As a control, leaves of wild-type plants (TN67) were 

treated with the ROS-generating agent H2O2 and examined for O2
•- 

accumulation. Contrary to 

dcl1a-Ac plants, dcl1a-IR plants showed no visible alterations in O2
.-
 accumulation 

(Supplementary Data Fig. S5B).  

 Altogether, these results indicate that DCL1a activation renders the plant more sensitive to 

oxidative stress caused by MV treatment and induces O2
.-
 accumulation in leaves. Disturbed 

ROS production and/or scavenging mechanisms might interfere with the normal functioning 

of host antioxidant systems, which might explain, at least in part, the phenotype of disease 

susceptibility in dcl1a-Ac plants. Further studies are needed to clarify the exact biochemical 

mechanisms by which DCL1a activation stimulates O2
.-
 accumulation and possibly alters 

ROS homeostasis in rice.  

 

Characterization of the miRNAome in the dcl1a-Ac mutant    

 Knowing that the activity of DCL1 is required for processing of miRNA precursors and 

production of mature miRNAs, we reasoned that DCL1a activation might affect the rice 

miRNAome. Accordingly, we used small RNA sequencing for characterizing the miRNA 

population in leaves of wild-type and dcl1a-Ac plants. Two small RNA libraries, representing 

independent biological replicates of each genotype were prepared (same biological samples as 

for mRNA transcript profiling). Illumina sequencing of small RNA libraries generated 36 

million reads (15 and 21 million reads from wild-type and mutant plants, respectively) 
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(Supplementary Data Table S6). After removing the adapter sequences and sequences < 15 

bp, 32 million reads were obtained (14 and 18 million from wild-type and dcl1a-Ac plants, 

respectively). All unique sequences were aligned to the rice genome (Nipponbare reference 

genome MSU 7.0), and reads mapping to known non-coding RNA families (rRNAs, tRNAs, 

small nuclear RNAs and small nucleolar RNAs) were removed. The abundance of small 

RNAs was calculated as Reads Per Kilobase Million (RPKMs).  

 Consistent with the distribution of small RNA sizes typically observed in plants, the 24-nt 

small RNA class was the most abundant size class in both genotypes, with the 21-nt small 

RNAs forming a secondary peak (Fig. 6A). However, in dcl1a-Ac plants, the small RNA size 

distribution showed a substantial increase in the 21-nt small RNA class when considering 

both relative abundance and distinct reads (Fig. 6A). The observed increase in the 21-nt small 

RNA population might be due to DCL1 being involved in the production of almost all 

canonical 21-nt miRNAs. 

 A blast search against the miRNA database (miRBase release 21) allowed us to identify 

known miRNAs present in our small RNA sequencing data. DE miRNAs were defined as 

those with changes in expression ≥ 1.5-fold (upregulated) or ≤ 0.5-fold (downregulated), and 

P-value ≤ 0.05. By using these criteria, 90 miRNAs corresponding to 61 miRNA families 

were found differentially expressed in dcl1a-Ac plants (Supplementary Data Table S7). 

Although the most obvious trend that could be expected from transcriptional activation of 

OsDCL1a was an enrichment of miRNAs (which are likely to involve DCL1 in their 

biogenesis), DE miRNAs in dcl1a-Ac plants included both upregulated and downregulated 

miRNAs. Representative examples of DE miRNAs in dcl1a-Ac plants are shown in Fig. 6B. 

The expression of selected miRNAs was validated by stem-loop RT-PCR (ST-RT-PCR), 

including upregulated miRNAs (miR1431, miR1847, miR2865, miR3982-3p) and 

downregulated miRNAs (miR393, miR396abc, miR398, miR529b) in dcl1a-Ac plants (Fig. 
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6C, D). A concordance between the sequencing based profiling and ST-RT-PCR was 

observed, which supports upregulation and downregulation of miRNAs in dcl1a-Ac plants. 

 According to the small RNASeq data and SL-RT-qPCR analysis, miR398 accumulation 

was lower in dcl1a-Ac than wild-type plants (Fig. 6D), which agreed with a reduced level of 

miR398 precursor transcripts and increased accumulation of miR398-targeted Superoxide 

Dismutase 2 (SOD2) transcripts in dcl1a-Ac plants (Supplementary Data Fig. S6). Previous 

studies reported that transgenic rice lines overexpressing MIR398 exhibit enhanced resistance 

to M. oryzae infection (Li et al. 2014), which agrees with the observed phenotype of 

susceptibility to M. oryzae infection in dcl1a-Ac plants (with reduced miR398b accumulation 

as compared with the wild-type).  

 Collectively, our results demonstrate that DCL1a activation results in important 

perturbations in the rice miRNAome. Presumably, perturbations in miRNA expression 

patterns might lead to altered expression of the corresponding target genes, which might 

contribute to susceptibility to M. oryzae infection in dcl1a-Ac plants. 

 

DISCUSSION 

In this work, we provide evidence that OsDCL1a, a component of the miRNA biogenesis 

pathway, functions as a negative regulator of the rice defence response. Several lines of 

evidence support this conclusion. First, mutant plants in which OsDCL1a expression is 

activated by T-DNA tagging were susceptible to infection by hemibiotrophic and 

necrotrophic fungal pathogens (M. oryzae and F. fujikuroi, respectively). Second, 

susceptibility to pathogen infection was accompanied by a weaker induction of defence-

related marker genes (e.g., OsPR1a and OsPBZ1) during M. oryzae infection. Third, genes 

involved in the production of diterpenoid phytoalexins were downregulated in dcl1a-Ac 

mutant plants. The finding that OsDCL1a expression itself is regulated, not only by M. oryzae 
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infection but also by treatment with M. oryzae elicitors in wild-type plants, supports that 

OsDCL1 is a component of PTI responses in rice. Also, the observation that OsDCL1a-Ac 

plants are susceptible to M. oryzae infection agrees with previous results of resistance to M. 

oryzae infection in rice plants silenced for Osdcl1a expression by RNA-interference (dcl1a-IR 

plants; Zhang et al. 2015). Contrary to dcl1a-IR plants showing developmental abnormalities 

(Liu et al. 2005), the Osdcl1a-Ac mutant plants grew and developed normally. 

  To note, whereas DCL1a appears to function as a negative regulator in rice immunity, this 

gene was reported to act as a positive regulator of immune responses in Arabidopsis. Thus, 

Arabidopsis dcl1 mutants (dcl1-7 and dcl1-9 mutants) showed hyper-susceptibility to 

infection by bacterial (P. syringae) and fungal (B. cinerea) pathogens (Navarro et al. 2008; 

Seo et al. 2013; Weiberg et al. 2014). The regulatory activity of DCL1a in rice likely differs 

from its Arabidopsis counterpart in determining the outcome of the plant–pathogen 

interaction. Alternatively, DCL1a might execute its regulatory role via different pathways 

depending on the type (fungal or bacterial pathogens) or lifestyle of the pathogen (biotrophs, 

hemibiotrophs, necrotrophs). Further investigation is needed to understand why altered 

DCL1a expression has a different impact on susceptibility/resistance to pathogen infection in 

rice and Arabidopsis.  

 The comparison of the dcl1a-Ac and wild-type transcriptomes allowed us to identify 

OsDCL1a-mediated processes related to blast resistance. Under normal growth conditions, R 

genes (RPM1 and Verticillium wilt disease resistance genes), and receptor kinase genes, 

including many WAK receptor kinases, were downregulated in dcl1a-Ac versus wild-type 

plants. The involvement of these genes in resistance to pathogen infection is well documented 

in several plant species (Boyes et al. 1998; Fradin et al. 2009). In particular, WAK receptor 

kinases are known to regulate resistance to M. oryzae in rice (Li et al. 2009). Downregulation 

of defence-related receptor kinases suggests that pathogen perception might be extensively 
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affected in these plants, which might result in no detection of the pathogen, suppression of 

PAMP/DAMP-elicited defence responses, or production of ineffective defence responses in 

dcl1a-Ac plants. 

 We also show that protective antioxidant systems do not function properly in dcl1a-Ac 

plants under normal growth conditions, as revealed by failure to alleviate MV-mediated 

oxidative stress. In line with this, dcl1a-Ac plants accumulate high levels of the superoxide 

ion O2
•- 

in their leaves. Although O2
•-
 is moderately reactive and does not cause extensive 

damage by itself, this radical undergoes transformation into the more reactive and toxic OH
•
, 

which is highly reactive and causes cellular damage. In the absence of infection, O2
•- 

accumulation appears not to cause negative effects in plant growth. However, ROS 

production is also a typical response of plant tissues to pathogen attack (so-called oxidative 

burst). If ROS is not effectively detoxified in dcl1a-Ac, its overproduction during pathogen 

infection would facilitate oxidative damage in the host plant, which, in turn, would render the 

host plant more susceptible to pathogen infection. How DCL1a activation compromises ROS 

detoxification mechanisms deserve further investigation.  

 Even more interesting is the fact that genes involved in diterpenoid phytoalexin 

biosynthesis were the most predominant group of downregulated genes in dcl1a-Ac plants. 

The accumulation of momilactones and oryzalexins has been found critical to counteract M. 

oryzae infection in rice (Dillon et al. 1997; Umemura et al. 2003). Also, diterpenoid 

phytoalexin genes show faster and/or stronger induction in resistant than susceptible rice 

cultivars (Hasegawa et al. 2010; Bagnaresi et al. 2012). The observed phenotype of disease 

susceptibility in dcl1a-Ac plants might then be attributed, at least in part, to downregulation of 

phytoalexin biosynthesis genes which is consistent with the observation that dcl1a-Ac plants 

fail to accumulate major diterpenoid phytoalexins also during pathogen infection. Together, 

these findings reinforce the notion that OsDCL1a is a negative regulator of immune responses 
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in rice and also support a DCL1-mediated regulation of secondary metabolic defence 

pathways with relevance to pathogen resistance, most probably via regulation of miRNA 

accumulation. 

 Characterization of the miRNAome in leaves of dcl1a-Ac plants allowed us to identify 

alterations in the accumulation of specific miRNA families caused by DCL1a activation. The 

observed increase in the accumulation of miRNAs in dcl1a-Ac plants is consistent with 

targeted activation of OsDCL1 in this mutant. Furthermore, we observed downregulation of 

different MIR genes in dcl1a-Ac plants, pointing to factors other than processing of miRNA 

precursors by DCL1a for the control of miRNA accumulation in rice. Several reasons can 

explain the otherwise paradoxical decrease in accumulation of miRNAs in dcl1a-Ac mutant 

plants. In addition to OsDCL1a, miRNA accumulation might be affected by the spatio-

temporal expression pattern of other components of the miRNA biogenesis pathway. The 

abundance of mature miRNAs might be affected by precursor processing by DCL1 and also 

by miRNA stability (which also depends on miRNA modifications such as 3’ end methylation 

or nucleotide addition), binding of miRNAs to Argonaute (AGO; which protects miRNAs 

from degradation), or sequestration by target mimic RNAs. As an additional complexity, 

evidence exists of auto-regulatory feedback loops between miRNA and target genes, whereby 

target genes can control the level of a miRNA in addition to being regulated by it. The best-

known example is the transcriptional/translational interlocked feedback loop governing the 

miR168–AGO1 pair function, featuring miR168-guided cleavage of AGO1 and post-

transcriptional stabilization of miR168 by AGO1 (Vaucheret et al. 2006).  

 Among the miRNAs accumulating at a lower level in dcl1a-Ac than wild-type plants were 

miR398 and miR393. A role for miR398 in protecting the plant against oxidative stress has 

been reported in Arabidopsis and rice, and transgenic rice lines overexpressing miR398 

exhibit resistance to M. oryzae (Jagadeeswaran et al. 2009; Li et al. 2014). Downregulation of 
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miR398 in dcl1a-Ac plants is then consistent with a phenotype of susceptibility to M. oryzae 

in these plants. However, other studies in Arabidopsis demonstrated that miR398 negatively 

regulates immune responses against bacterial pathogens (Li et al. 2010). Regarding miR393, 

its overexpression in Arabidopsis plants renders the host plant more resistant to biotrophic 

pathogens but more susceptible to the necrotrophic pathogens (Robert-Seilaniantz et al. 

2011). These findings indicate that certain miRNAs (e.g., miR393, miR398) might function as 

positive or negative regulators of immune responses depending on the host plant and/or the 

pathogen lifestyle. Further investigation will reveal whether dcl1a-Ac plants respond in a 

different manner (e.g., susceptibility or resistance) to infection by pathogens other than M. 

oryzae and F. fujikuroi. 

 All these findings allowed us propose a working model for the regulation of defence 

responses to M. oryzae infection in rice plants by which OsDCL1a would mediate pathogen 

recognition processes and defence reactions (Fig. 7). According to this model, pathogen 

perception would trigger OsDCL1a activation which in turn would have pleiotropic effects on 

the rice defence response. On the one hand, OsDCL1a activation would negatively affect 

PAMP recognition and signal transduction itself, and on the other hand, perturbations in the 

rice miRNAome caused by Osdcl1a activation would repress the pathogen-inducible host 

defence responses, such as PR expression and diterpene phytoalexin biosynthesis and 

accumulation, while altering the cellular redox status. All these factors would decrease the 

ability of the host plant to detect the invading pathogen and respond in a timely and 

appropriate manner. Moreover, even though DCL1 is predominantly involved in the 

production of miRNAs, we have examples of endogenous short interfering RNAs (siRNAs) 

that are generated by DCL1 activity in Arabidopsis, such as certain natural antisense 

transcript-derived siRNAs and long siRNAs (Borsani et al. 2005; Katiyar-Agarwal et al. 

2006). Therefore, the possibility that overexpression of DCL1a affects the production of other 
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types of small RNAs which, in turn, might regulate rice defence responses should not be ruled 

out.  

 Collectively, results here presented expand our knowledge of the molecular mechanisms 

involved in blast resistance while providing evidence on the important role of DCL1a (and 

miRNAs) in rice immunity. In this respect, although a plethora of rice miRNAs have been 

found regulated by pathogen infection in rice, the biological function of most pathogen-

regulated miRNAs remains largely unknown. Changes induced by OsDCL1a activation in the 

miRNAome are expected to cause altered expression of their corresponding target genes. To 

understand the impact of alterations in the miRNAome caused by DCL1a overexpression, and 

how these alterations might contribute to disease resistance in rice, a better knowledge on 

target genes for rice miRNAs is needed. Clearly, altered OsDCL1a expression and 

accompanying alterations in miRNA levels might affect diverse biological processes that are 

under miRNA regulation, which might then decrease the plant’s ability to cope with pathogen 

infection. As DCL1 is responsible for the majority of the miRNA processing in plants, a 

better understanding of the biological processes that are regulated by DCL1a will open new 

promising avenues for the control of the rice blast disease. This is of paramount importance 

when considering that over one-half of the world’s population relies on rice as the main 

source of calories and because the rice blast fungus M. oryzae has developed into a model 

system for the study of plant-pathogen interactions. The main challenge now is to elucidate 

how miRNAs function in regulating mechanisms involved in disease resistance in rice. 

Understanding these mechanisms will provide powerful tools for developing novel strategies 

to improve disease resistance in plants. 

 

SUPPLEMENTARY DATA 
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Supplementary data are available online at https://academic.oup.com/aob and consist of the 

following.Fig. S1: Analysis of OsDCL1a mutant plants. Fig. S2: Susceptibility of dcl1a-Ac♯2 

plants to infection by the fungal pathogen M. oryzae. Fig. S3; Expression of OsDCL genes in 

wild-type and dcl1a-Ac plants under normal conditions (non-infection). Fig. S4; Distribution 

of differentially expressed genes in dcl1a-Ac plants. Fig. S5; Effect of methyl viologen on 

chlorophylls and carotenoids, and detection of O2
· 
in dcl1a-IR plants. Fig. S6; Accumulation 

of miR398 and OsSOD2 transcripts in dcl1a-Ac plants. Table S1; Sequences of 

oligonucleotides used. Table S2: T-DNA copy number in dcl1a-Ac mutants. Table S3: 

Statistics of RNA-Seq in dcl1a-Ac and wild-type plants. Table S4: Downregulated genes in 

dcl1a-Ac plants relative to wild-type plants sorted by functional category. Table S5: 

Upregulated genes in dcl1a-Ac plants relative to wild-type plants sorted by functional 

category. Table S6: Summary of small RNA sequencing datasets from wild-type and dcl1a-

Ac plants. Table S7: List of miRNAs differentially accumulating in dcl1a-Ac plants.  
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FIGURE LEGENDS 

Fig. 1. Susceptibility of OsDCL1a activation mutants to infection by the pathogens M. oryzae 

and F. fujikuroi. (A) Representation of the T-DNA insertion mutants from the TRIM 

collection (lines M0066754 and M0040827) (left panel). Black and grey arrows represent the 

OsDCL1a (Os03g02970) and the nearby genes (Nascent polypeptide-associated complex 

subunit alpha, NACA; Os03g02960) pointing in the direction of transcription. Arrowheads in 

the T-DNA represent the CaMV35S enhancer octamers. Arrows above the OsDCL1a gene 

indicate the position of primers used for RT-qPCR analysis. Right panel: OsDCL1a 

expression in leaves of 3-week-old dcl1a-Ac and dcl1a-IR plants determined by RT-qPCR. 

Tainung67 (TN67) and Nipponbare (NB) are the genetic backgrounds of the TRIM mutants 

and dcl1a-IR plants, respectively. (B) Susceptibility of dcl1a-Ac#1 mutant to M. oryzae 

infection. Three-week-old rice plants were inoculated with M. oryzae spores (1 x 10
5
 spores 

mL
-1

). Pictures were taken at 7 days post-inoculation (dpi). Right panels show the lesion area 

in infected leaves (measured by Assess 2.0) and quantification of M. oryzae DNA by qPCR at 

7 dpi. (C) OsPR1a and OsPBZ1 expression in wild-type (segregated azygous) and dcl1a-Ac#1 

plants determined by RT-qPCR at the indicated times after inoculation with M. oryzae spores 

(1 x 10
5
 spores mL

-1
). (D) Susceptibility of dcl1a-Ac plants to infection by F. fujikuroi. Seeds 

of dcl1a-Ac#1 and wild-type (segregated azygous) plants were germinated for 24 h and 

inoculated with F. fujikuroi spores (10
6
 spores mL

-1
). Roots from F. fujikuroi-inoculated 

seedlings at 7 dpi are shown. Right panel: F. fujikuroi DNA in roots of wild-type and dcl1a-

Ac plants was quantified by qPCR at 7 dpi.  Three independent infection experiments with 

each one fungus were performed (at least 24 plants per genotype in each experiment). Data 

are mean ± SD (n = 3 biological replicates) (*, P ≤ 0.05; **, p ≤ 0.01; ***, p ≤ 0.001 by 

ANOVA).  
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Fig. 2. Expression of OsDCL genes during infection with M. oryzae and treatment with fungal 

elicitors. (A) OsDCL1a expression at different times after inoculation with M. oryzae spores 

(1 x 10
5
 spores mL

-1
) (left panel) or treatment with elicitors from this fungus (300 µg mL

-1
) 

(right panel) in wild-type plants. Black and red bars correspond to mock-inoculated and M. 

oryzae-inoculated (or elicitor-treated) plants, respectively. The expression level in mock-

inoculated plants was set to 1.0. Three independent experiments (each with 24 

plants/condition) were performed with similar results. Data are mean ± SD. (*, P ≤ 0.05; **, P 

≤ 0.01 by ANOVA). (B) Expression of OsDCL family members at 72 hours post-inoculation 

(hpi) with M. oryzae spores.  

 

Fig. 3. Distribution and validation of differentially expressed genes in dcl1a-Ac plants. (A) 

Total number of differentially expressed genes in leaves of dcl1a-Ac plants compared to wild-

type plants (downregulated and upregulated genes). (B) Functional categories of 

downregulated and upregulated genes in leaves of dcl1a-Ac plants. (C - E) Validation and 

fungal-responsiveness of differentially expressed genes identified by RNA-Seq. Transcript 

levels were determined by RT-qPCR in leaves of control (non-infected) and M. oryzae-

infected plants (at 72 hpi) (black and red bars, respectively). (C) Receptor Kinase 5 

(Os09g37880); OsWAK47 (Os04g30260), OsWAK14 (Os10g39680). (D) disease resistance 

RPM1 (Os11g12340); PR10 (Os12g36860); Bet V (PR10 family; Os12g36850). (E) Prx83 

(Os06g32990); Prx14 (Os07g48050); Prx34 (Os03g02939). Four biological samples 

(including the same RNA samples used for RNA-Seq experiments for non-inoculated plants) 

and two technical replicates were examined (**, P ≤ 0.01; ***, P ≤ 0.001 by ANOVA). 
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Fig. 4. Expression of genes involved in the biosynthesis of diterpenoid phytoalexins in dcl1a-

Ac plants. (A) Biosynthetic routes of diterpenoid phytoalexins in rice. Genes with expression 

downregulated in dcl1a-Ac compared to wild-type plants are indicated in red. Dipertenoid 

phytoalexins are synthesized from geranylgeranyl diphosphate (geranylgeranyl-PP), which is 

sequentially cyclized by the diterpene synthases CPSs (copalyl diphosphate synthases) and 

KSLs (termed kaurene synthase-like because of their similarity to the corresponding enzyme 

in gibberellic acid biosynthesis), then converted to each phytoalexin by P450 

monooxygenases (CYPs) and dehydrogenases. OsCPS4 (syn-copalyl-diphosphate synthase 4, 

Os04g09900); OsCPS2 (ent-copalyl diphosphate synthase 2, Os02g36210); OsCYP93A3 (9β-

pimara-7,15-diene oxidase, Os04g09920); OsCYP99A2 (Cytochrome P450, Os04g10160); 

OsCYP76M5 (Cytochrome P450, Os02g36030); OsCYP701A8 (ent-sandaracopimaradiene 3-

hydrolase, Os06g37300); OsCYP71Z7 (ent-cassadiene C2-hydroxylase, Os02g36190); 

OsCYP76M8 (Oryzalexin D synthase, Os02g36070); OsCYP76M6 (Oryzalexin E synthase, 

Os02g36280); OsCYP701A9 (ent-kaurene oxidase, Os06g37224); OsKSL7 (ent-cassa-12-15-

diene synthase, Os02g36140); OsKSL10 (ent-sandaracopiramadiene synthase, Os12g30824); 

OsKSL8 (stemar-13-ene synthase, Os11g28530); OsMAS (monilactone A synthase, OsMAS1, 

Os04g10000; and OsMAS2, Os04g10010). (B) Fold-repression of expression (dcl1a-Ac vs 

wild-type azygous plants) of genes involved in diterpenoid phytoalexin biosynthesis. (C) 

Expression of phytoalexin biosynthesis genes in wild-type (azygous) and dcl1a-Ac plants in 

response to M. oryzae infection (1 x 10
5
 spores mL

-1
), or mock inoculation (red and black 

bars, respectively) (*, P ≤ 0.05; **, P ≤ 0.01 comparing indicated genotypes or condition by 

ANOVA). (D) Accumulation of diterpenoid phytoalexins is compromised in leaves of dcl1a-

Ac plants. Three biological samples for each genotype and condition were examined (*, P ≤ 

0.05; ***, P ≤ 0.001 by ANOVA). FW, Fresh weight. 
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Fig. 5. Effect of treatment with methyl viologen and detection of superoxide ion in dcl1a-Ac 

plants. (A) Leaves of 3-week-old dcl1a-Ac (Osdcl1a-Ac#1) and wild-type (azygous) plants 

were treated with methyl viologen (MV, 10 µM). Right panels: quantification of chlorophylls 

(Chla + Chlb) and carotenoids in mock-inoculated and MV-treated wild-type and dcl1a-Ac 

plants at 72 h after treatment. Data shown correspond to wild-type  and dcl1a-Ac. Bars = 250 

µm. Data are mean ± SD (*, P ≤ 0.05; **, P ≤ 0.01 by ANOVA). (B) Detection of
 
superoxide 

ion radicals (O2
•-
) by nitroblue tetrazolium (NBT) staining. As a control, leaves were treated 

with H2O2 for 6 h. Three biological replicates with three technical replicates each were 

performed. Statistically significant differences were determined by one-way ANOVA. 

 

Fig. 6. Impact of DCL1a activation on the rice leaf miRNAome. (A) Abundance and unique 

small RNA sequences for each size class in leaves of wild-type and dcl1a-Ac plants (solid and 

dashed lines, respectively). (B) Expression profiling of known miRNAs in dcl1a-Ac plants 

relative to wild-type plants. Representative examples are shown. Reads retrieved from the 

Illumina sequencing datasets for each family member were normalized to the total count of 

reads obtained in the corresponding library. Fold change was calculated on the basis of 

normalized reads (RPKM) (dcl1a-Ac vs wild-type). (C, D) Stem-loop RT-PCR of miRNAs 

upregulated (C) and downregulated (D) in dcl1a-Ac plants (*, P ≤ 0.05; **, P ≤ 0.01 by 

ANOVA). 

 

Fig. 7. Model for the role of OsDCL1a in disease susceptibility. In response to M. oryzae 

infection, OsDCL1a is activated. Pathogen-induced OsDCL1a expression, as well as 

OsDCL1a activation in dcl1a-Ac plants, would cause perturbations in the host miRNAome, 

which, in turn, would negatively affect pathogen recognition processes and expression of 

stress-responsive genes (such as PR genes). Additionally, OsDCL1a activation would 
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negatively affect diterpenoid biosynthesis and alter ROS homeostasis, thereby compromising 

the ability of the host plant to mount a timely, targeted defence response. 
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