

**Deep sequencing reveals that early reprogramming of
Arabidopsis root transcriptomes upon *Ralstonia*
solanacearum infection**

Journal:	<i>Molecular Plant-Microbe Interactions</i>
Manuscript ID	MPMI-10-18-0268-R
Manuscript Type:	Research
Date Submitted by the Author:	04-Oct-2018
Complete List of Authors:	Zhao, Cuizhu; Northwest Agriculture and Forestry University Wang, Huijuan; Northwest Agriculture and Forestry University Lu, Yao; Northwest Agriculture and Forestry University Hu, Jinxue; Northwest Agriculture and Forestry University Qu, Ling; Ningxia Academy of Agriculture and Forestry Sciences Li, Zheqing; Northwest Agriculture and Forestry University Wang, Dongdong; Northwest Agriculture and Forestry University He, Yizhe; Northwest Agriculture and Forestry University Valls, Marc; Universitat Barcelona, Genetics; Coll, Nuria; Centre for Research in Agricultural Genomics (CRAG), Molecular Genetics Chen, Qin; Northwest Agriculture and Forestry University Lu, Haibin; Northwest Agriculture and Forestry University,
Area That Best Describes Your Manuscript:	Plant responses to pathogens, genomics, proteomics, and metabolomics < Plant responses to pathogens, ethylene, jasmonic acid, or salicylic acid < Plant responses to pathogens

1
2
3 **1 Deep sequencing reveals that early reprogramming of *Arabidopsis* root**
4 **2 transcriptomes upon *Ralstonia solanacearum* infection**
5

6 3 Cuizhu Zhao¹, Huijuan Wang¹, Yao Lu¹, Jinxue Hu¹, Ling Qu², Zheqing Li¹,
7 4 Dongdong Wang¹, Yizhe He¹, Marc Valls^{3,4}, Núria S. Coll⁴, Qin Chen^{1*} and
8 5 Haibin Lu^{1*}

9
10 6 ¹State Key Laboratory of Crop Stress Biology for Arid Areas, College of
11 7 Agronomy, Northwest A&F University, Yangling, Shaanxi, China. 712100

12 8 ²National Wolfberry Engineering Research Center, Ningxia Academy of
13 9 Agriculture and Forestry Sciences, Yinchuan, Ningxia.750002

14 10 ³Genetics section, Universitat de Barcelona, 08028 Barcelona, Catalonia,
15 11 Spain.

16 12 ⁴ Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB,
17 13 08193 Barcelona, Catalonia, Spain.

18
19 14
20 15 * Corresponding author: chenpeter2289@nwsuaf.edu.cn and luhaibin011@hotmail.com
21 16 Tel: +0086-18829010553

22
23 18 RunningTitle: Root Transcriptional Responses to *R. solanacearum*

24
25 19 Word count: 6988 words

26
27 20
28 21
29 22 **Keywords:** root defense, transcriptome profiling, *Ralstonia*
30 23 *solanacearum*, plant hormones, bacterial wilt, RNA sequencing, root
31 24 growth inhibition, lateral root formation, root hair formation.

1
2
3 31 **SUMMARY**
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Bacterial wilt caused by the bacterial pathogen *Ralstonia solanacearum* is one of the most devastating crop diseases worldwide. The molecular mechanisms controlling the early stages of *R. solanacearum* colonization in the root remain unknown. In this study we established four stages in the early interaction of the pathogen with *Arabidopsis* roots and determined the transcriptional profiles of these stages of infection. A total 2698 genes were identified as differentially expressed genes during the initial 96h after infection, with the majority of changes in gene expression occurring after pathogen-triggered root hair development was observed. Further analysis of differentially-expressed genes indicated sequential activation of multiple hormone signaling cascades, including abscissic acid (ABA), auxin, jasmonic acid (JA), and ethylene (ET). Simultaneous impairment of ABA receptor genes increased plant sensitivity to *R. solanacearum*, but did not affect primary root growth inhibition, root hair and lateral root formation caused by *R. solanacearum*. This indicates that ABA signaling positively regulates root defense to *R. solanacearum*. Moreover, transcriptional changes of genes involved in primary root, lateral root and root hair formation exhibited high temporal dynamics upon infection. Taken together, our results suggest that successful infection of *R. solanacearum* on roots is a highly programmed process involving in hormone crosstalk.

61 **INTRODUCTION**

62 *Ralstonia solanacearum*, a soil-borne phytopathogen, causes devastating
63 bacterial wilt disease on crops and leads to huge economical loss (Mansfield
64 et al., 2012). The bacterium enters into the root epidermis through natural
65 openings or wounds, crosses the cortex and endodermis and finally reaches
66 the root xylem. In the xylem, *R. solanacearum* starts extensive colonization,
67 spreading to the aerial part of the infected plant along the vascular system and
68 finally kills the host by blocking water transport from root to shoot, which
69 causes the wilting symptoms (Genin and Denny, 2012). Due to its wide host
70 range, long persistence in soil and water and broad geographical distribution,
71 *R. solanacearum* was ranked as the second most important bacterial plant
72 pathogen (Mansfield et al., 2012).

73 The interaction between *R. solanacearum* and *Arabidopsis* has been
74 successfully used for more than twenty years as a model to study plant
75 defense (Deslandes et al., 1998). However, our knowledge about the
76 molecular mechanisms used by *Arabidopsis* to defend against *R.*
77 *solanacearum* is still limited. *RRS1-R* is the only *R. solanacearum* resistance
78 gene cloned from *Arabidopsis* and encodes a Toll-IL-1 receptor-nucleotide
79 binding site-leucine rich repeat (TIR-NB-LRR) resistance protein with a
80 C-terminal WRKY DNA-binding motif (Deslandes et al., 2002). In the absence
81 of PopP2, an effector from *R. solanacearum* GMI1000, *RRS1-R* forms
82 heterodimer complex with RPS4, another NB-LRR protein, localizes in the
83 nucleus and binds DNA through WRKY domain. When PopP2 is delivered into
84 the host cell through the Type Three Secretion System (TTSS), it directly
85 interacts with the RPS4/RRS1-R resistance complex and acetylates WRKY
86 domain of RRS1-R through its acetyltransferase activity, blocking
87 RPS4/RRS1-R DNA-binding activity and activating RPS4-mediated plant
88 resistance (Le Roux et al., 2015; Sarris et al., 2015).

89 It is widely recognized that the phytohormones salicylic acid (SA), jasmonate
90 (JA) and ethylene (ET) play a determinant role in plant defense to diverse

1
2
3 pathogenic insects, bacteria and fungi. However it is still not clear what is the
4 precise role of these hormones in response to *R. solanacearum*. Arabidopsis
5 mutants deficient in biosynthesis or signaling of SA, JA and ET have been
6 used to investigate their sensitivity to *R. solanacearum*, which has led
7 sometimes to contradictory results. For instance, while an increase or
8 decrease of endogenous SA levels did not alter plant sensitivity to *R.*
9 *solanacearum* (Hirsch et al., 2002), depletion SA in *wat1* mutant though
10 overexpression of the bacterial SA hydroxylase gene *NahG* restored plant
11 susceptibility to *R. solanacearum* (Denance et al., 2013). Mutation of EIN2, an
12 important component in ET signal transduction, dramatically delayed bacterial
13 wilt on Arabidopsis, which did not happen on *etr1-3*, *ein4-1* and *eni3-1*, other
14 ET insensitive mutants (Hirsch et al., 2002). In addition, while, the *jar1-1*
15 mutant -lacking the bioactive JA-Ile- shows the same sensitivity to *R.*
16 *solanacearum* as wild type plants (Hirsch et al., 2002), loss of function of the
17 JA receptor *COI1-1* enhances plant defense against to *R. solanacearum*
18 (Hernandez-Blanco et al., 2007).

19
20
21 WRKY transcription factors, critical players in modulating plant resistance to
22 phytopathogens, were also reported to function in plant defense to *R.*
23 *solanacearum*. WRKY27 mutation delays disease symptom development by
24 modulating signaling between the phloem and the xylem (Mukhtar et al., 2008).
25 Inactivation of WRKY53 also reduces wilt symptom caused by *R.*
26 *solanacearum* (Hu et al., 2008).

27
28 In roots, the cell wall is the first physical layer of plant defense against
29 pathogens. It is demonstrated that alteration of cell wall affects Arabidopsis
30 defense to *R. solanacearum*. Cellulose synthases are required for secondary
31 cell wall formation. Mutations of cellulose synthase genes (*CESA4*, *CESA7*
32 and *CESA8*) confer enhanced resistance to *R. solanacearum* independently of
33 SA, JA and ET but dependent on ABA (Hernandez-Blanco et al., 2007).
34 Similarly, the *WALLS ARE THIN 1* (*WAT1*) gene is essential for secondary cell
35 wall deposition. A mutation in *WAT1* leads to reduced cell elongation and

1
2
3 121 secondary wall thickness, but it also increases SA content and plant defense to
4 122 vascular *R. solanacearum* (Denance et al., 2013). Furthermore, pectin
5 123 homogalacturonan in the root cell wall was reported to be degraded after *R.*
6 124 *solanacearum* infection (Digonnet et al., 2012).

7
8 125 Transcriptional profiles by RNA-seq have been employed to look for
9 126 important events in plant defense against *R. solanacearum* in Arabidopsis. The
10 127 *R. solanacearum* Δ *hrpB* mutant has a dysfunctional TTSS and loses the
11 128 ability to invade host plants (Vasse et al., 2000). Plants infected with this
12 129 mutant exhibit increased plant defense to subsequent virulent strain infection.
13 130 Microarray analysis of transcriptional changes in aerial part of plants treated
14 131 with GMI1000 Δ *hrpB* indicated that 26% of up-regulated genes were involved
15 132 in the metabolism and signaling of ABA (Feng et al., 2012). In addition,
16 133 comparison of transcriptional profiles from the aerial part of Arabidopsis Col-0
17 134 inoculated with GMI1000 at several time points identified many differentially
18 135 expressed genes associated with ABA signaling pathways (Hu et al., 2008).

19
20 136 However, previous microarray studies focused on transcriptional changes in
21 137 the aerial part of root-inoculated Arabidopsis with GMI1000. Since *R.*
22 138 *solanacearum* is soil-borne and infects plant roots, direct investigation of
23 139 transcriptional changes in infected plant roots at a series of time points will
24 140 help disclosing the molecular mechanism of *R. solanacearum* infection. In this
25 141 study, by means of high-resolution temporal analysis of host global
26 142 transcriptional changes following pathogen infection, we identified several
27 143 important events as the activation of the biosynthesis and signaling of different
28 144 hormones, and further connected root structure changes to the transcriptional
29 145 reprogramming following *R. solanacearum* infection. Our data provides a
30 146 cornerstone to understand complicated regulation networks during the
31 147 infection process of *R. solanacearum* in the root.

32 148

33 149

34 150

151 **RESULTS**152 **Characterization of Root Morphology Changes Following GMI1000**153 **Infection**

154 As previously reported, *Arabidopsis* seedlings roots exhibited primary root
155 growth retardation, *de novo* root hair formation and cell death appearance
156 around the root tip at 9 days after GMI1000 treatment (Lu et al., 2018). To
157 refine the appearance time of the three root phenotypes, we investigated the
158 root elongation of *Arabidopsis* seedling after infection with GMI1000 over time.
159 Primary roots kept growing the first 24 hours post-inoculation (hpi). At 48 hpi,
160 primary root growth was found to be inhibited by GMI1000 (Fig. 1A). Root hairs
161 covered root tips around 24 hpi, while they did not appear in water-treated
162 seedlings (Fig. 1B). Roots were immersed in Propidium Iodide (PI) -a
163 DNA/RNA dye used to investigate cell integrity- and observed under confocal
164 microscope. Cells in the root meristem area were alive at 24 hpi but already
165 dead at 48 hpi (Fig. 1C). In addition, lateral roots emerged from primary roots
166 treated with GMI1000 at 72 hpi and became apparent at 96 hpi. The number of
167 these secondary roots on *Arabidopsis* root treated with GMI1000 was 4-5 fold
168 higher than in water-treated plants (Fig. 1A and Fig. S1). According to these
169 root structure changes over time, we divided the initial root infection by *R.*
170 *solanacearum* into four phenotypic stages: No symptoms (NS) stage at 0-12
171 hpi, Root Hair (RH) emergence stage at 12-24 hpi, Primary root growth arrest
172 and Cell death (PC) stage at 24-48 hpi and Lateral Root (LR) emergence stage
173 at 48-72 hpi.

174

175 **Time Series of Global Transcriptional Re-Programming in Roots**176 **Challenged with GMI1000**

177 To understand the events taking place at different infection stages of *R.*
178 *solanacearum*, we infected 7-day-old seedling roots *in vitro*, and collected root
179 samples at 0 hpi, 6 hpi, 12 hpi, 24 hpi, 48 hpi and 96 hpi, extracted total RNA
180 and sequenced the global transcripts of GMI1000-infected roots. Around 600

1
2
3 181 seedling roots were pooled into one sample. Three biological replicates per
4 time point were directly subjected to RNA-Illumina sequencing. An average of
5 183 33.9 million clean reads (range from 26.9-41.5 million) with Q30 > 90% were
6 184 obtained per sample. More than 94 percent of clean reads were mapped to the
7 185 Arabidopsis genome (Table S1). Aiming to disclose the molecular mechanism
8 186 of early infection process of *R. solanacearum*, we respectively compared *R.*
9 187 *solanacearum*-infected root transcriptomes at different infection time points with
10 188 those obtained in water-treated roots after 96h and in GMI1000-treated roots at
11 189 time 0h. The time series expression profiles identified a total of 2698
12 190 Arabidopsis genes as differentially expressed genes (DEGs) based on their
13 191 significance in fold-change expression ($\text{padj}<0.05$) and at least a two-fold
14 192 change in expression level ($-1>\log_2>1$) (Fig. 2 and Supplemental Data Set 1).

15 193 To analyze the overall patterns in gene expression during *R. solanacearum*
16 infection, the 2698 DEGs were clustered into 11 hierarchical clusters based on
17 their expression patterns over time (Fig. 2). The list of genes in each cluster is
18 presented in Supplemental data Set 2. These clusters group sets of genes that
19 were sequentially induced upon pathogen challenge over time. The cluster VI
20 genes started increasing at 12 hpi and peaked at HR stage (24 hpi), then
21 slowly dropped back to basal level, which was the most quick response to *R.*
22 *solanacearum* infection. The maximum level of cluster IV and V genes was at
23 RH stage and PC stage (48 hpi), later 12h than that of cluster VI. Then cluster
24 V quickly decreased. Comparing with relative long-lasting expression pattern
25 of cluster V and IV, the highest expression level of cluster III genes was more
26 concentrated in PC stage. The cluster I and II genes went up to maximum level
27 at LR stage (72 hpi) and 96 hpi, which are the last induction clusters. The
28 down-regulated genes also showed temporally modulated expression
29 pattern. The earliest repressed-gene clusters are cluster VIII and XI, which
30 happened at RH stage. Interestingly, unlike cluster VIII maintaining lower
31 expression, a few genes in cluster XI suffered a second induction at LR stage.
32 The lowest expression level of cluster IX and cluster X occurred at LR
33

1
2
3 211 stage. The expression of cluster VII were inhibited at LR stage and 96 hpi
4 212 (Fig.2).
5
6

7 213 To check whether the co-expressing genes in the same cluster participated
8 214 in similar biological processes, we investigated over-representation of Gene
9 215 Ontology (GO) terms in these groups. The selected over-represented GO
10 216 terms are shown at the right of each gene expression cluster in figure 2. Cell
11 217 wall organization genes enriched in cluster VI unregulated before the
12 218 appearance of root hairs (12 hpi) and reached their highest level at RH stage
13 219 in response to the pathogen, reflecting cell wall remodeling has a specific role
14 220 in the plant response to GMI1000 infection. A significant GO term in cluster V
15 221 was lignin metabolic process. Cluster IV contained major GO terms:
16 222 tryptophan metabolic process, auxin metabolic process and glucosinolate
17 223 biosynthetic process, which share major components in their biosynthesis and
18 224 peak at RH and PC stage. The GO term "response to auxin" was
19 225 over-presented in cluster I, cluster II and cluster III and strongly induced during
20 226 PC stage and LR stage (48-72 hpi), later 24 hour than GO term "auxin
21 227 metabolic process" in cluster VI (Fig. 2). Additionally GO terms such as
22 228 "response to JA", "response to abiotic stress", "response to heat" and
23 229 "response to hydrogen peroxide" were also overrepresented in clusters I, II
24 230 and III. GO terms related with plant defense such as "response to chitin",
25 231 "response to bacterium", "response to SA" and "defense response" were
26 232 enriched in cluster VII, which were significantly suppressed during LR stage
27 233 (72 hpi) . Interestingly, GO terms "cell to cell junction" and "cell wall
28 234 organization" also were enriched in Cluster VIII were significantly suppressed
29 235 at PC and LR stage. Cluster X genes were significantly related with GO term
30 236 "root hair cell differentiation", which suppressed when lateral root emerging.
31
32

33 237 Biological processes that take place during *R. solanacearum* infection are
34 238 likely to affect the outcome of the plant-pathogen interaction. Therefore we
35 239 further investigated enriched GO terms in the DEGs at single time points
36 240 irrespective of the previous clustering (Fig. S2). This analysis revealed that cell
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 wall organization-associated genes were enriched at NS and RH stages,
4 suggesting that these genes probably contribute to loosening the cell wall and
5 cell-to-cell junctions, which may help *R. solanacearum* crossing the cortex and
6 endodermis at early infection stages. The term “tryptophan metabolic process”
7 was overrepresented in up-regulated DEGs at RH stage, which may point at
8 tryptophan as a likely substrate for auxin biosynthesis. “Response to biotic
9 stimulus” was a GO term overrepresented in up-regulated DEGs at RH stage
10 and PC stage. “Response to hormones” was overrepresented in genes
11 specifically upregulated at PC and LR stages (48 hpi and 72 hpi, respectively),
12 which may reflect the root structure changes that take place at the LR stage.
13 The GO term “response to abiotic stimulus” was also highlighted in the
14 upregulated DEGs at PC stage. The upregulated “Glucosinolate biosynthetic
15 process” term spanned from LR stage to 96 hpi. JA is involved in root
16 development and regulation of plant defense. The DEGs related to “Response
17 to JA” term remarkably increased at 96 hpi. In down-regulated DEGs, the
18 terms “transport”, “cell wall organization” and “root development terms” were
19 over-represented at PC and LR stage. These sequentially overrepresented
20 GO terms during early *R. solanacearum* infection indicate that infection is a
21 programmed dynamic event from the very beginning of the plant-pathogen
22 interaction.
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

261

262 **Ethylene-, Jasmonate-, Auxin- and Abscisic acid-dependent signalling** 263 **are altered following *R. solanacearum* Infection**

264 The first and rate-limiting step in ethylene (ET) biosynthesis is the
265 conversion of S-adenosyl Methionine to 1-aminocyclopropane-1-carboxylic
266 acid (ACC) by ACC synthase (ACS). Five out of the nine ACS genes in the
267 Arabidopsis genome (ACS2, ACS6, ACS7, ACS8 and ACS9) were induced at
268 PC stage. Interestingly, the expression of ACS5 was inhibited at the same time
269 (Fig. S3A). No ACC oxidase gene was identified in our RNA-seq data.
270 However, its regulator SHYG was induced at RH and PC stage (Rauf et al.,

1
2
3 271 2013) (Fig. S3A). Moreover, *ERF* transcriptional factors including *ORA59* and
4 272 *ERF71* in response to ET were up-regulated or down-regulated following
5 273 GMI1000 infection (Fig. S3A). These findings suggest that ET biosynthesis
6 274 and signaling are involved in *R. solanacearum* infection.
7
8
9

10 275 The expression of several genes involved in jasmonic acid (JA) biosynthesis
11 276 and degradation was also altered in our RNA-seq data. For example, *LOX1*
12 277 and *LOX2*, encoding 13-lipoxygenase were induced at PC stage. LOXs are
13 278 responsible for converting α -linolenic acid to
14 279 13-hydroxyperoxy-octadecatrienoic acid (13-HPOT) in plastids, which is the
15 280 first step in the production of the JA precursor (Wasternack and Hause, 2013).
16 281 However, Acyl-coenzyme A oxidase (ACX4) and 3-ketoacyl-CoA thiolase
17 282 (KAT5), which catalize JA biosynthesis from this precursor (Li et al., 2005)
18 283 were repressed after inoculation. Three of the four *Arabidopsis*
19 284 jasmonate-induced oxygenases (JAOs), which inactivate JA through
20 285 hydroxylation (Caarls et al., 2017), were highly expressed in our data. Similarly,
21 286 a hydroxyjasmonate sulfotransferase (ST2A) that inactivates JA functions
22 287 (Gidda et al., 2003) was highly induced at LR stage (Fig. S3B). Jasmonate ZIM
23 288 domain Proteins (*JAZ1*, *JAZ3*, *JAZ5* and *JAZ10*), key negative regulators of JA
24 289 signaling pathway, were strongly activated at LR stage and 96 hpi (Fig. S3B).
25 290 In summary, the decrease in JA biosynthesis and increase in JA degradation
26 291 and negative regulators suggests an inhibition of this pathway by *R.*
27 292 *solanacearum* at late infection stages.
28
29

30 293 The components in auxin metabolism, auxin signaling and auxin transport
31 294 were up-regulated from NS stage to LR stage (Fig. 3). *TRP4*, *TRP5*, *TRP1*,
32 295 *TRP3* and *TSB2* encode five key components in the transformation of
33 296 chorismate to the auxin precursor tryptophan (Zhao, 2010). All of them were
34 297 up-regulated at RH stage (Fig 3A and Fig 3B). Members of two of the four
35 298 tryptophan-dependent auxin synthesis pathways described in *Arabidopsis*
36 299 (Zhao, 2010; Rosquete et al., 2012) were up-regulated at RH stage (genes
37 300 *CYP79B2*, *CYP79B3*, *NIT1*, *NIT3* and *YUC9*) (Fig. 3A and Fig. 3B). In addition,
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 301 the expression of *DAO1* and *DAO2* -encoding genes that oxidate IAA to oxIAA
4 302 and GH3 family genes, which conjugate amino acids to IAA (Rosquete et al.,
5 303 2012) were all induced at RH and PC stages (Fig. 3A and Fig. 3B).
6 304 Accumulation of auxin-responsive transcripts such *SAURs* and *Aux/IAAs* was
7 305 observed at PC stage (Woodward and Bartel, 2005), which is 24 hours later
8 306 than the peak auxin synthesis genes (Fig. 3B and Fig. S4). The expression of
9 307 auxin response factors such as *Auxin Response Factor 4 (ARF4)* increased
10 308 during infection (Fig. 3C), as well as the expression of auxin efflux transporters
11 309 (*PINs* and *ABCB4*) (Rosquete et al., 2012), which increased at PC and LR
12 310 stages (Fig. 3D). Moreover, a few regulators of stability of auxin transporters
13 311 (*PATL2*, *RAM2*, *PBP1*, *PILS7*, *SMXL8* and *PID*) were also differentially
14 312 expressed in our data.
15
16

17 313 Our RNA-seq data also identified a group of genes that were associated
18 314 with abscissic acid (ABA) metabolism and signaling (Fig. 4A). The expression
19 315 of *CYP707A*, which oxidizes and inactivates ABA (Saito et al., 2004), was
20 316 induced at all time points after 24 hpi. Expression of the ABA receptor *PYL5*
21 317 was inhibited after infection (Fig. 4A). And the *ABI2*, *HAB1* and *PP2C5* genes,
22 318 encoding protein phosphatases that suppress ABA signalling through
23 319 dephosphorylation of *SNRK2* proteins (Umezawa et al., 2009), were both
24 320 up-regulated at PC stage. Expression of *OST1*, essential for ABA signaling
25 321 (Fujii et al., 2009), showed a peak at PC stage, and then quickly decreased at
26 322 LR stage. On the contrary, other *SNRK* family genes were inhibited at PC and
27 323 LR stage (Fig. 4A). Finally, expression of the ABA-dependent transcription
28 324 factor *ABF2* (Fujita et al., 2005) peaked at RH stage, 24 hours earlier than
29 325 *OST1* (Fig. 4A).
30
31

327 **ABA signaling is involved in plant resistance to *R. solanacearum***

328 Next, we investigated whether the alteration of ABA biosynthesis and
329 signalling caused upon *R. solanacearum* infection had an impact on plant
330 responses to this pathogen. To this end, we took advantage of available

1
2
3 331 Arabidopsis mutants: the quintuple *pyl1/pyl2/pyl4/pyl5/pyl8* (12458) and the
4 332 sextuple *pyr1/pyl1/pyl2/pyl4/pyl5/pyl8* (112458) mutants, which are devoid of
5 333 multiple ABA receptors and show reduced vegetative growth and seed
6 334 production (Gonzalez-Guzman et al., 2012). We grew the Col-0 accession and
7 335 ABA receptor mutants and tested their sensitivities to *R. solanacearum*
8 336 infection. Both mutant lines showed increased wilting symptoms at 15 days
9 337 post-inoculation compared with their wild type counterpart (Fig. 4B). This was
10 338 translated into a significantly higher plant mortality rates in the mutants than in
11 339 wild type plants (Fig. 4C). These results indicate a role of ABA signaling in
12 340 plant resistance to *R. solanacearum*. We further tested if ABA signaling could
13 341 affect the previously-described root morphology changes induced by the
14 342 bacterium. The sextuple mutant exhibited root morphogenetic responses
15 343 identical to wild type plants (Fig. 5), suggesting that ABA signaling is not
16 344 required for *R. solanacearum*-induced root structural changes.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

346 **Regulation of Plant Defense Response genes in *R. solanacearum*-infected 347 Roots**

348 Among the 2698 genes differentially-expressed after *R. solanacearum*
349 infection 109 have been previously involved in plant defense (Fig. S5 and
350 Supplemental Data Set 3). RLK3, RD19 and WRKY27 regulate plant defense
351 to *R. solanacearum*. RLK3 encoding a cysteine-rich repeat receptor like kinase
352 was induced in the Arabidopsis ecotype Niederzenz (Nd-1) infected with *R.*
353 *solanacearum* GMI1000 (Czernic et al., 1999). RLK3 was strongly induced at
354 12 hpi and reached a peak at PC stage in infected plants (Fig. S5). Surprisingly,
355 RD19, a cysteine protease required for RRS1-R-mediated resistance to *R.*
356 *solanacearum* (Bernoux et al., 2008) was strongly inhibited upon infection (Fig.
357 S5). Similarly, WRKY27, which was shown to promote disease symptom
358 development (Bernoux et al., 2008), was repressed upon infection (Fig. S5).
359 The negative regulators of pathogen-associated molecular patterns
360 (PAMP)-triggered immunity (PTI) PUB22 and PUB23 (Trujillo et al., 2008),

1
2
3 361 were differentially expressed with PUB22 downgoing and a earlier induction
4 362 peak on PUB23. LYK4 participating in sensing chitin was induced at 12h after
5 363 infection and the expression of other PTI regulators (*PEP1*, *PUB23* and
6 364 *MPK11*) was strongly induced at RH and LR stages. Interestingly, these genes
7 365 were inhibited at LR stage (Fig. S5). Finally, 6 WRKY, 2 ERF and 2 ANAC
8 366 transcription factors, key modulators of plant immunity, were also identified as
9 367 DEGs in our experiments (Supplemental Data Set 3).
10
11
12
13
14
15
16
17
18 368
19 369 **Transcriptional regulation of Programmed Plant Cell Death genes in *R.***
20 370 ***solanacearum*-infected roots**

21 371 Programmed cell death (PCD) in root tip cells was initiated around 24 hpi
22 372 and completed around 48 hpi after infection (Fig. 1C). In line with cell death
23 373 appearance in root meristem zone, many regulators of plant cell death (PCD)
24 374 were differentially expressed (Fig. 6). For instance, expression of two negative
25 375 regulators of cell death -MC2 and SYP122- (Zhang et al., 2008) (Coll et al.,
26 376 2010) were strongly inhibited by *R. solanacearum* from RH stage on (Fig. 6A).
27
28 377 Consistent with down-regulation of SYP122, the expression of
29 378 mono-oxygenase1 (FMO1), required for SYP22-dependent lesion formation
30 379 reached a peak at 24 hours after infection (Fig. 6A). Auto-inhibited
31 380 Ca^{2+} -ATPase 4 (ACA4), also involved in regulation of PCD (Boursiac et al.,
32 381 2010) was repressed at 24-48 hpi (Fig. 6A). In addition, we also noticed plant
33 382 senescence genes associated with PCD differentially expressed (Fig. 6B).
34
35 383 *Oresara1* (*ORE1*), a transcription factor regulating ET-mediated age-induced
36 384 cell death, and WRKY57, a negative regulator of JA-induced leaf senescence
37 385 (Jiang et al., 2014) were both strongly induced at RH stage, the latter starting
38 386 induction at 12 hpi and decreasing at PC stage (Fig. 6B).
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

388 **Root Architecture Responses to *R. solanacearum* Infection**

389 Root hair formation was induced at RH stage at the root tip (Fig. 1B). We
390 thus scrutinized our transcriptomes for differentially-expressed genes

1
2
3 391 described in the literature to play a role in this process. We found the root hair
4 initiation zinc finger protein 5 (ZFP5) (An et al., 2012) and the *Oxidative*
5 *signal-inducible 1 (OXI1)* kinase required for normal root hair development
6 (Rentel et al., 2004) were induced at 6hpi, peaking at RH stage and returning
7 to basal levels at LR stage (Fig. 7A). The *ERU*, *EXP7* and *LRX1* genes,
8 involved in root hair elongation (Baumberger et al., 2001; Lin et al., 2011;
9 Schoenaers et al., 2018), were also quickly turned on at NS stage (6-12 hpi)
10 and inactivated at PC stage (Fig. 7A). According to these data, root hairs
11 should appear on root tips just after 12 hpi. We thus analysed in further detail
12 root hair appearance by observing infected root tips at 6, 12, 18 and 24 hpi.
13 Appearance of root hairs around the root tip was observed at around 18 hours
14 after infection (Fig. 7B), which correlates to the changes in root hair gene
15 expression patterns.
16
17

18 404 Another dramatic response to *R. solanacearum* infection is root growth
19 inhibition. In our transcriptome data, many regulators involved in primary root
20 growth were identified (Fig. 8). The expression of several negative regulators
21 of root growth increased after infection, reaching the highest levels at PC stage.
22 These included the *CLV3/ESR-related peptide 20 (CLE20)* (Meng and
23 Feldman, 2010), the methyltransferase *PXMT1* (Chung et al., 2016) , the
24 triterpene synthesis genes *THAH1*, *THAD1* and *THAS1* (Field and Osbourn,
25 2008), the *LRP1* gene -involved in root growth retardation induced by
26 phosphate deficiency (Svistoonoff et al., 2007) and *EFR*, whose
27 gain-of-function mutant showed shorter primary roots in rice (Xiao et al., 2016).
28 On the contrary, positive root growth regulators were repressed at PC stage.
29 Amongst them are GA3ox catalyzing the final step in gibberellic acid (GA)
30 biosynthesis (Mitchum et al., 2006) and *CLE6*, whose overexpression in a
31 *ga3ox* mutant partially restored primary root growth (Bidadi et al., 2014).
32 Therefore, coordinated expression of positive and negative regulators may
33 control root growth inhibition induced by *R. solanacearum*.
34
35

36 420 The last morphogenetic change observed in infected roots was enhanced
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 421 appearance of secondary roots at 72 hpi. The transcript levels of the lateral
4 422 root formation repressors CLE1, CLE3 and GLIP2 (Lee et al., 2009; Araya et
5 423 al., 2014) were significantly decreased during LR stage. In addition, the
6 424 positive secondary root regulators *GATA23*, were induced at 24 hpi and
7 425 repressed from 48 to 96 hpi (Fig. 8). Interestingly, the action of *GATA23* is
8 426 auxin-mediated (Xie et al., 2000; Lally et al., 2001; De Rybel et al., 2010; Lee
9 427 and Kim, 2013), which suggests that auxin may be controlling this root
10 428 response to *R. solanacearum*.
11
12
13
14
15
16
17
18
19
20 430 **DISCUSSION**
21
22 431 ***R. solanacearum* causes genome-wide transcriptional reprogramming in**
23
24 432 **Arabidopsis**

25 433 Transcriptional reprogramming in aboveground tissue following
26
27 434 soil-drenched *R. solanacearum* has been previously reported in Arabidopsis
28 (Hu et al., 2008; Feng et al., 2012). Leaf transcriptome analysis from
29 susceptible plants showed that 40% of the up-regulated genes were involved
30 in ABA biosynthesis and signaling (Hu et al., 2008), which is line with our root
31 transcriptome results. Similarly Feng and colleagues found that 26% of the
32 upregulated genes in the leaf transcriptome pretreated with nonpathogenic
33 *Ralstonia* strain were also involved in ABA biosynthesis and signaling. These
34 indicate ABA signaling is triggered by pathogenic and nonpathogenic invasion
35 and may function in root defense agnist *R. solanacearum*. Very few
36 439 SA-associated genes were found in our root transcriptome, which also
37 happened in the leaf transcriptome (Hu et al., 2008). This corroborates the
38 notion that SA does not have a key role in plant defense responses against
39 many root pathogenic bacteria. Moreover, several genes involved in auxin
40 signaling were down-regulated in the leaf transcriptome (Hu et al., 2008). In
41 contrast, the auxin biosynthesis, signaling and transport pathways were
42 significantly induced in the root transcriptome reported here. This discrepancy
43 in the results could be partly caused by the different tissues used in the
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 451 experiment (leaf vs. root) and different inoculation methods employed (soil
4 452 drench vs. *in vitro* infection).
5
6 453
7
8 454 ***R. solanacearum* manipulates different plant hormonal pathways**
9
10 455 Plant hormones are well-known to synergistically or antagonistically affect
11 456 each other's output, leading to plant resistance or susceptibility to various
12 457 pathogens (Berens et al., 2017). Therefore, phytopathogens have acquired the
13 458 abilities to hijack plant hormones to promote their proliferation in the host (Ma
14 459 and Ma, 2016). Ethylene and Jasmonic acid signals have been shown to be
15 460 the main target of many virulence factors produced by biotrophic and
16 461 hemibiotrophic phytopathogen, due to their negative role in plant immunity
17 462 against biotrophic pathogens via SA antagonism (Kloek et al., 2001;
18 463 Berrocal-Lobo et al., 2002). Ethylene is produced by many plant pathogens
19 464 including the bacterial pathogen *Pseudomonas syringae* and *R. solanacearum*
20 465 (Weingart and Volksch, 1997; Valls et al., 2006). Disruption of ET production
21 466 affects the virulence of *P. syringae* on soybean and bean (Weingart et al.,
22 467 2001). In *R. solanacearum*, mutation of ethylene-forming enzyme (*RsEFE*) did
23 468 not affect its proliferation on plant host (Valls et al., 2006). However plants
24 469 defective in ethylene signaling (*ein2* mutants), show delayed wilt symptom
25 470 (Hirsch et al., 2002). Our transcriptome data shows that *R. solanacearum*
26 471 highly induces expression of ACS genes in the roots, which could indicate that
27 472 besides directly producing ET, *R. solanacearum* employ another unknown
28 473 strategy to activate endogenous ET.
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

474 The *P. syringae* virulence factors Coronatine, HopZ1a, HopX1 and AvrB,
475 virulence factors, activate JA signaling by promoting degradation of JAZ
476 proteins, key negative regulators in JA signaling (Melotto et al., 2006; Jiang et
477 al., 2013; Gimenez-Ibanez et al., 2014; Zhou et al., 2015). Activation of JA
478 signaling leads to entry of phytopathogen into apoplast by reopening closed
479 stomata and attenuate SA-dependent plant defense (Melotto et al., 2006; Zhou
480 et al., 2015). Hernandez-Blanco reported mutation in JA-Ile receptor gene,
16

1
2
3 481 *Coronatine-insentistive 1 (COI1)*, conferred plant resistance to *R.*
4 482 *solanacearum* (Hernandez-Blanco et al., 2007). Our data showed JA
5 483 biosynthesis and degradation genes (*LOX1*, *LOX4* and *KAT5*) were
6 484 differentially-expressed at earlier RH stage and *JAZs* were mainly induced at
7 485 LR stage and 96 hpi, suggesting that JA signaling pathway was activated and
8 486 then quickly inhibited during *R. solanacearum* infection. However, the *jai3-1*,
9 487 *jar1-1*, and *dde2* mutants with disabled JA biosynthesis or signaling showed
10 488 similar root architectures as wild type plants in response to this pathogen (Lu
11 489 et al., 2018). This indicates that JA may be involved in plant defense, but not
12 490 in the root morphogenesis changes caused by *R. solanacearum*.
13
14

15 491 Auxin signaling and transport has been reported to be manipulated by
16 492 phytopathogens to suppress activation of SA-dependent defense. The *P.*
17 493 *syringae* effector AvrRpt2 activates auxin biosynthesis and induces expression
18 494 of auxin-response genes by promoting degradation of the key negative
19 495 regulators of auxin signaling AUX/IAAs. The effector HopM1 also from *P.*
20 496 *syringae* and PSE1 from *Phytophthora parasitica* disrupt auxin transport by
21 497 affecting expression or localization of different PIN auxin transporters, which
22 498 promotes pathogen infection by antagonizing SA signaling (Nomura et al.,
23 499 2006; Chen et al., 2007; Cui et al., 2013; Evangelisti et al., 2013; Tanaka et al.,
24 500 2013). Many plant pathogens, including *R. solanacearum*, produce auxin-like
25 501 molecules, which may alter auxin homeostasis and affect auxin signaling in the
26 502 host plants (Manulis et al., 1994; Glickmann et al., 1998; Valls et al., 2006;
27 503 Robert-Seilaniantz et al., 2007). Interestingly, we observed that auxin
28 504 biosynthesis genes were activated at the RH stage by *R. solanacearum*. Auxin
29 505 signaling and transport were also upregulated at PC and LR stage. In line with
30 506 our data, The expression of *DR5*, a marker gene of auxin signaling pathway,
31 507 was strongly induced in root vascular after *R. solanacearum* GMI1000
32 508 infection (Lu et al., 2018). Moreover, the *dg1-1* tomato mutant with disordered
33 509 auxin transport was found to be highly resistant to *R. solanacearum* (French et
34 510 al., 2018). Together, these data strongly supports the notion that auxin
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 511 signaling plays a negative role in root defense against *R. solanacearum*. A
4 512 deeper understanding of the role of auxin signaling in plant susceptibility to *R.*
5 513 *solanacearum* awaits further investigation.
6
7

8 514 ABA also plays an important role in attenuating plant defense, possibly by
9 515 inhibiting SA signaling (Cao et al., 2011). Increase of ABA levels in infected
10 516 plants will enhance plant susceptibility to the bacterial pathogen *P. syringae*,
11 517 the fungus *Magnaporthe grisea* and the nematode *Hirschmanniella oryzae* (de
12 518 Torres-Zabala et al., 2007; Jiang et al., 2010; Nahar et al., 2012). In turn,
13 519 various pathogenic fungi have been shown to produce ABA (Ma and Ma, 2016)
14 520 and the effectors AvrPtoB and HopAM1 produced by *P. syringae* enhance
15 521 plant susceptibility to the bacterial infection by promoting ABA biosynthesis or
16 522 affecting ABA singaling (de Torres-Zabala et al., 2007; Goel et al., 2008). ABA
17 523 also can positively regulate plant denfense to *P. syringae*. For example, ABA
18 524 induces stomata closure and locks pathogen outside of host upon
19 525 encountering pathogen, protecting plant from pathogen infection (Melotto et al.,
20 526 2006). A large number of ABA-responsive genes were up-regulated in plants
21 527 infected with the non-virulent *R. solanacearum* mutant $\Delta hrpB$ and in
22 528 CESA4/CESA7/CESA8-mediated resistance to *R. solanacearum*
23 529 (Hernandez-Blanco et al., 2007; Feng et al., 2012). *abi1-1* and *abi2-1*, two
24 530 ABA-insensitive mutants, exhibited more sensitivity to *R. solanacearum* and
25 531 disabled $\Delta hrpB$ -triggered and CESA4/CESA7/CESA8- mediated plant
26 532 resistance (Hu et al., 2008). Here we show that ABA signaling in root is turned
27 533 on at PC stage, much earlier than activation of ABA signaling in leaf. Further
28 534 genetic analysis demonstrated that simultaneous disruption of ABA receptors
29 535 (12458 and 112458) dramatically enhanced susceptibility towards *R.*
30 536 *solanacearum*. Consistent with this result, most components of the ABA
31 537 receptor, *PYR1*, *PYL1*, *PYL2*, *PYL4*, and *PYL8*, express in the stele of root
32 538 (Gonzalez-Guzman et al., 2012; Antoni et al., 2013). Interestingly, although
33 539 both ABA receptor mutants are insensitive to ABA-mediated root growth
34 540 inhibition (Antoni et al., 2013), they are still sensitive to root hair formation, root
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 541 growth inhibition, and lateral root formation caused by *R. solanacearum*. This
4 542 indicates that ABA signaling is not essential for *R. solanacearum*-triggered root
5 543 architecture changes. Together, our data suggests that ABA has a positive
6 544 effect on plant defense against *R. solanacearum*. However, the precise
7 545 mechanism by which ABA promotes defense to this bacteria still needs to be
8 546 further elucidated
9
10
11
12
13

14 547 Together, all these data indicates that the interplay between *R. solanacearum*
15 548 and Arabidopsis is mediated by a complex interplay of hormones. In particular,
16 549 a synergistic effect among JA, ET, SA, ABA, and auxin seem to determine the
17 550 level of defense to *R. solanacearum* in the plant in spatiotemporal way. Our
18 551 data provides new insight into the signaling network that occurs in the root host
19 552 in response to a root pathogen.
20
21
22
23
24
25
26

27 553
28 554 ***R. solanacearum* infection triggers specific defense responses in the root**
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

555 PTI and Effector-triggered immunity (ETI) are the two layers of defense that
556 plant pose to phytopathogens (Jones and Dangl, 2006). In our RNA-seq data,
557 we identified several components of both defense branches, which is
558 consistent with the reports that PAMPs elicits transcriptional changes and
559 callose deposition in Arabidopsis root and the effector RBP1 from root
560 nematode *Globodera pallida* triggers Gpa2-dependent resistance and cell
561 death (Sacco et al., 2009; Millet et al., 2010). LYK4, PUB22, PUB23 and,
562 PEP1 and MPK11, components of PTI signaling are quickly induced upon
563 infection. Interestingly, all of these PTI-related genes were inhibited at LR
564 stage, suggesting that *R. solanacearum* infection represses PTI in the root. In
565 addition, we also found around 19 NBS-LRR resistance genes in DEGs
566 including ZAR1. ZAR1 detects the acetylated hopz-ETI-deficient 1 (ZED1) by
567 the *P. syringae* effector HopZ1a and triggers ETI (Lewis et al., 2010; Lewis et
568 al., 2013). This suggests that this NB-LRR might be involved in *R.*
569 *solanacearum* effector recognition.

570 Accompanying with ETI, hypersensitive response (HR), a local cell death

1
2
3 571 at the attempted entry site of pathogens, often happens. Cell death was
4 572 observed on root tips at PC stage after *R. solanacearum* infection. Interestingly,
5 573 the occurrence of *R. solanacearum*-mediated cell death at the root tip is
6 574 dependent on the presence of a functional type three secretion system (Lu et
7 575 al., 2018). This could indicate that this cell death occurs via effector recognition
8 576 and thus ETI would be occurring at *R. solanacearum* infecting roots. HR in leaf
9 577 is thought to directly kill invaders and/or to interfere biotrophic pathogen with
10 578 acquisition of nutrients (Heath, 2000). But we showed cell death in root seems
11 579 not to affect the virulence of GMI1000 on Arabidopsis and we know GMI1000
12 580 is a compatible strain on Arabidopsis. Necrotrophic pathogen triggers cell
13 581 death in order to obtain more nutrients that helps them accomplishing their life
14 582 cycle (Glazebrook, 2005). Whether *R. solanacearum* would follow a similar
15 583 strategy with the root tip or it is simply a consequence of infection needs to be
16 584 answered.
17
18 585
19
20
21
22
23
24
25
26
27
28
29
30
31 586 **Root morphogenesis changes triggered by *R. solanacearum* infection are**
32 587 **accompanied by deep transcriptional reprogramming of genes involved**
33 588 **in root architecture**
34
35
36 589 The root is embedded in the soil and its architecture determines the
37 590 efficiency for nutrient uptake and aboveground growth. Root architecture is
38 591 often shaped by biotic stress and abiotic stress such as interaction with
39 592 mutualist microbes and elements deficiency (Le Fevre et al., 2015). Several *R.*
40 593 *solanacearum* strains cause root morphological changes (Lu et al., 2018),
41 594 reminiscent of root morphological changes triggered by plant growth promoting
42 595 bacteria/rizobacteria or fungi (PGPB/PGPR and PGPF) (Verbon and Liberman,
43 596 2016). These beneficial microbes affect cell division at the root meristem
44 597 region and cell differentiation at sites of lateral root formation through
45 598 manipulating endogenous hormone levels, hormone signaling such as auxin
46 599 signaling and transports and metabolic processes, resulting in root structure
47 600 changes (Verbon and Liberman, 2016). Our transcriptomic analysis indicated

1
2
3 601 that auxin synthesis, signaling and transport in root are all activated by *R.*
4 602 *solanacearum* colonization. The auxin insensitive single mutant *tir1* and double
5 603 mutant *tir1/afb2* were unable to form root hair in response to *R. solanacearum*
6 604 infection (Lu et al., 2018). In consonance with this, IAA28 controlling the
7 605 specification and identity of lateral root founder cells were upregulated in our
8 606 data (De Rybel et al., 2010). This suggests that auxin signaling in relation to
9 607 lateral formation might be activated in response to *R. solanacearum*. However,
10 608 activation of auxin signaling enhances plant sensitivity to *P. syringae*,
11 609 *Xanthomonas oryzae*, and *Magnaporthe oryzae* (Kazan and Lyons, 2014),
12 610 whilst destruction of polar auxin transport in tomato tremendously elevated
13 611 plant resistance towards *R. solanacearum* infection. This poses the question of
14 612 whether the observed *R. solanacearum*-triggered architecture changes are
15 613 side effects of elevated auxin levels caused by *R. solanacearum* to accomplish
16 614 successful colonization or not. In addition, it is still not clear why *R.*
17 615 *solanacearum* and PGPRs induce similar root architectures but exert two
18 616 opposite influences on plant survival and what benefits does *R. solanacearum*
19 617 obtain (if any) from altering root structure.
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36 618
37
38 619 **MATERIALS AND METHODS**
39
40 620 **Plants Materials**
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
611 In this study, *Arabidopsis thaliana* Col-0 and the ABA receptor mutants
612 12458 and 112458 were sown in soil and grown in the chamber at 23 °C, short
613 day conditions(8h light, light intensity 12000 lux) and 70% humidity. For
614 Arabidopsis seedling growth, Col-0 seeds were sterilized with 30% bleach and
615 0.02% TritonX-100, then sown on Murashige Skoog without sucrose (MS-)
616 plate and grown with the plates set vertically at 25 °C and long day conditions
617 (16h light, light intensity 9000 lux for 6-7 days).

628 ***R. solanacearum* Infection.**

629 The strain *R. solanacearum* GMI1000 was used to infection in this study. For
630 soil drench infection assay, 5-week old plants were watered with a suspension

1
2
3 631 of 1×10^8 colony forming units (cfu). One hour later, roots of the infected plants
4 632 were wounded three times with a blade, then grown into the chamber at 25 °C,
5 633 16h light. Leaf wilting symptoms and the number of dead plants were recorded
6 634 over time. For *in vitro* infection we used the method previously described in
7 635 Lu et al (Lu et al., 2018). Briefly, 6-7 day-old *Arabidopsis* seedlings grown on
8 636 MS plates were inoculated 1cm away from root tip with a droplet of a solution
9 637 containing 1×10^7 cfu of *R. solanacearum* GMI1000, then kept into the growth
10 638 chamber as detailed above. Root structures were photographed at indicated
11 639 time points with an Olympus SZX16 microscopy and lateral roots were counted
12 640 at the indicated times. For the cell death assay, seedlings were immersed into
13 641 0.1mg/ml propidium iodide solution and observed under an Olympus confocal
14 642 microscope IX83-FV1200.

15 643 **Sample Preparations for RNA-seq**

16 644 The root samples were collected from around 600 infected seedlings at the
17 645 indicated time point and frozen in liquid nitrogen, then directly sent to
18 646 Novogene Company (Beijing, China) which performed RNA seq and data
19 647 analysis (Supplemental method)

20 648

21 649 **ACKNOWLEDGEMENTS**

22 650 We thank Pedro L. Rodriguez for providing the 112458 and 12458 ABA
23 651 receptor mutants. We are also grateful for helps offered by Crop Biology
24 652 Innovation Platform in Agronomy College in NWAF. This study was supported
25 653 by the National Natural Science Foundation of China (No. 31601703), the
26 654 Start-up Funds of Northwest A&F University (Z111021601), the Fundamental
27 655 Research Fund for the Central Universities of China (Z109021706) and
28 656 External Science and Technology Cooperation Program of Ningxia Academy
29 657 of Agriculture and Forestry Sciences (DW-X-2018012). We also acknowledge
30 658 financial support from the Spanish Ministry of Economy and Competitiveness
31 659 (grants AGL2016-78002-R and SEV-2015-0533) and from the CERCA project
32 660 of the Catalan Government (Generalitat de Catalunya).

661 **LITERATURE CITED**

662 An, L., Zhou, Z., Sun, L., Yan, A., Xi, W., Yu, N., Cai, W., Chen, X., Yu, H., Schiefelbein, J., and Gan, Y. 2012.
663 A zinc finger protein gene ZFP5 integrates phytohormone signaling to control root hair
664 development in *Arabidopsis*. *The Plant journal : for cell and molecular biology* 72:474-490.

665 Antoni, R., Gonzalez-Guzman, M., Rodriguez, L., Peirats-Llobet, M., Pizzio, G.A., Fernandez, M.A., De
666 Winne, N., De Jaeger, G., Dietrich, D., Bennett, M.J., and Rodriguez, P.L. 2013. PYRABACTIN
667 RESISTANCE1-LIKE8 plays an important role for the regulation of abscisic acid signaling in root.
668 *Plant physiology* 161:931-941.

669 Araya, T., Miyamoto, M., Wibowo, J., Suzuki, A., Kojima, S., Tsuchiya, Y.N., Sawa, S., Fukuda, H., von
670 Wieren, N., and Takahashi, H. 2014. CLE-CLAVATA1 peptide-receptor signaling module
671 regulates the expansion of plant root systems in a nitrogen-dependent manner. *Proceedings*
672 *of the National Academy of Sciences of the United States of America* 111:2029-2034.

673 Baumberger, N., Ringli, C., and Keller, B. 2001. The chimeric leucine-rich repeat/extensin cell wall
674 protein LRX1 is required for root hair morphogenesis in *Arabidopsis thaliana*. *Genes &*
675 *development* 15:1128-1139.

676 Berens, M.L., Berry, H.M., Mine, A., Argueso, C.T., and Tsuda, K. 2017. Evolution of Hormone Signaling
677 Networks in Plant Defense. *Annual review of phytopathology* 55:401-425.

678 Bernoux, M., Timmers, T., Jauneau, A., Briere, C., de Wit, P.J., Marco, Y., and Deslandes, L. 2008. RD19,
679 an *Arabidopsis* cysteine protease required for RRS1-R-mediated resistance, is relocalized to
680 the nucleus by the *Ralstonia solanacearum* PopP2 effector. *The Plant cell* 20:2252-2264.

681 Berrocal-Lobo, M., Molina, A., and Solano, R. 2002. Constitutive expression of
682 ETHYLENE-RESPONSE-FACTOR1 in *Arabidopsis* confers resistance to several necrotrophic
683 fungi. *The Plant journal : for cell and molecular biology* 29:23-32.

684 Bidadi, H., Matsuoka, K., Sage-Ono, K., Fukushima, J., Pitaksaringkarn, W., Asahina, M., Yamaguchi, S.,
685 Sawa, S., Fukuda, H., Matsubayashi, Y., Ono, M., and Satoh, S. 2014. CLE6 expression recovers
686 gibberellin deficiency to promote shoot growth in *Arabidopsis*. *The Plant journal : for cell and*
687 *molecular biology* 78:241-252.

688 Boursiac, Y., Lee, S.M., Romanowsky, S., Blank, R., Sladek, C., Chung, W.S., and Harper, J.F. 2010.
689 Disruption of the vacuolar calcium-ATPases in *Arabidopsis* results in the activation of a
690 salicylic acid-dependent programmed cell death pathway. *Plant physiology* 154:1158-1171.

691 Caarls, L., Elberse, J., Awwanah, M., Ludwig, N.R., de Vries, M., Zeilmaker, T., Van Wees, S.C.M.,
692 Schuurink, R.C., and Van den Ackerveken, G. 2017. *Arabidopsis* JASMONATE-INDUCED
693 OXYGENASES down-regulate plant immunity by hydroxylation and inactivation of the
694 hormone jasmonic acid. *Proceedings of the National Academy of Sciences of the United*
695 *States of America* 114:6388-6393.

696 Cao, F.Y., Yoshioka, K., and Desveaux, D. 2011. The roles of ABA in plant-pathogen interactions. *Journal*
697 *of plant research* 124:489-499.

698 Chen, Z., Agnew, J.L., Cohen, J.D., He, P., Shan, L., Sheen, J., and Kunkel, B.N. 2007. *Pseudomonas*
699 *syringae* type III effector AvrRpt2 alters *Arabidopsis thaliana* auxin physiology. *Proceedings of*
700 *the National Academy of Sciences of the United States of America* 104:20131-20136.

701 Chung, P.J., Park, B.S., Wang, H., Liu, J., Jang, I.C., and Chua, N.H. 2016. Light-Inducible MiR163 Targets
702 PXMT1 Transcripts to Promote Seed Germination and Primary Root Elongation in *Arabidopsis*.
703 *Plant physiology* 170:1772-1782.

704 Coll, N.S., Vercammen, D., Smidler, A., Clover, C., Van Breusegem, F., Dangl, J.L., and Epple, P. 2010.

1
2
3 705 Arabidopsis type I metacaspases control cell death. *Science* 330:1393-1397.
4 706 Cui, F., Wu, S., Sun, W., Coaker, G., Kunkel, B., He, P., and Shan, L. 2013. The *Pseudomonas syringae*
5 707 type III effector AvrRpt2 promotes pathogen virulence via stimulating Arabidopsis
6 708 auxin/indole acetic acid protein turnover. *Plant physiology* 162:1018-1029.
7 709 Czernic, P., Visser, B., Sun, W., Savoure, A., Deslandes, L., Marco, Y., Van Montagu, M., and Verbruggen,
8 710 N. 1999. Characterization of an *Arabidopsis thaliana* receptor-like protein kinase gene
9 711 activated by oxidative stress and pathogen attack. *The Plant journal : for cell and molecular
10 712 biology* 18:321-327.
11 713 De Rybel, B., Vassileva, V., Parizot, B., Demeulenaere, M., Grunewald, W., Audenaert, D., Van
12 714 Campenhout, J., Overvoorde, P., Jansen, L., Vanneste, S., Moller, B., Wilson, M., Holman, T.,
13 715 Van Isterdael, G., Brunoud, G., Vuylsteke, M., Vernoux, T., De Veylder, L., Inze, D., Weijers, D.,
14 716 Bennett, M.J., and Beeckman, T. 2010. A novel aux/IAA28 signaling cascade activates
15 717 GATA23-dependent specification of lateral root founder cell identity. *Current biology : CB*
16 718 20:1697-1706.
17 719 de Torres-Zabala, M., Truman, W., Bennett, M.H., Lafforgue, G., Mansfield, J.W., Rodriguez Egea, P.,
18 720 Bogre, L., and Grant, M. 2007. *Pseudomonas syringae* pv. *tomato* hijacks the *Arabidopsis*
19 721 abscisic acid signalling pathway to cause disease. *The EMBO journal* 26:1434-1443.
20 722 Denance, N., Ranocha, P., Oria, N., Barlet, X., Riviere, M.P., Yadeta, K.A., Hoffmann, L., Perreau, F.,
21 723 Clement, G., Maia-Grondard, A., van den Berg, G.C., Savelli, B., Fournier, S., Aubert, Y.,
22 724 Pelletier, S., Thomma, B.P., Molina, A., Jouanin, L., Marco, Y., and Goffner, D. 2013.
23 725 *Arabidopsis wat1* (walls are thin1)-mediated resistance to the bacterial vascular pathogen,
24 726 *Ralstonia solanacearum*, is accompanied by cross-regulation of salicylic acid and tryptophan
25 727 metabolism. *The Plant journal : for cell and molecular biology* 73:225-239.
26 728 Deslandes, L., Olivier, J., Theulieres, F., Hirsch, J., Feng, D.X., Bittner-Eddy, P., Beynon, J., and Marco, Y.
27 729 2002. Resistance to *Ralstonia solanacearum* in *Arabidopsis thaliana* is conferred by the
28 730 recessive *RRS1-R* gene, a member of a novel family of resistance genes. *Proceedings of the
29 731 National Academy of Sciences of the United States of America* 99:2404-2409.
30 732 Deslandes, L., Pileur, F., Liaubet, L., Camut, S., Can, C., Williams, K., Holub, E., Beynon, J., Arlat, M., and
31 733 Marco, Y. 1998. Genetic characterization of *RRS1*, a recessive locus in *Arabidopsis thaliana*
32 734 that confers resistance to the bacterial soilborne pathogen *Ralstonia solanacearum*.
33 735 *Molecular plant-microbe interactions : MPMI* 11:659-667.
34 736 Digonnet, C., Martinez, Y., Denance, N., Chasseray, M., Dabos, P., Ranocha, P., Marco, Y., Jauneau, A.,
35 737 and Goffner, D. 2012. Deciphering the route of *Ralstonia solanacearum* colonization in
36 738 *Arabidopsis thaliana* roots during a compatible interaction: focus at the plant cell wall. *Planta*
37 739 236:1419-1431.
38 740 Evangelisti, E., Govetto, B., Minet-Kebdani, N., Kuhn, M.L., Attard, A., Ponchet, M., Panabieres, F., and
39 741 Gourgues, M. 2013. The *Phytophthora parasitica* RXLR effector penetration-specific effector 1
40 742 favours *Arabidopsis thaliana* infection by interfering with auxin physiology. *The New
41 743 phytologist* 199:476-489.
42 744 Feng, D.X., Tasset, C., Hanemian, M., Barlet, X., Hu, J., Tremousaygue, D., Deslandes, L., and Marco, Y.
43 745 2012. Biological control of bacterial wilt in *Arabidopsis thaliana* involves abscisic acid
44 746 signalling. *The New phytologist* 194:1035-1045.
45 747 Field, B., and Osbourn, A.E. 2008. Metabolic diversification-independent assembly of operon-like
46 748 gene clusters in different plants. *Science* 320:543-547.
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 749 French, E., Kim, B.S., Rivera-Zuluaga, K., and Iyer-Pascuzzi, A.S. 2018. Whole Root Transcriptomic
4 750 Analysis Suggests a Role for Auxin Pathways in Resistance to *Ralstonia solanacearum* in
5 751 Tomato. *Molecular plant-microbe interactions* : MPMI 31:432-444.
6
7 752 Fujii, H., Chinnusamy, V., Rodrigues, A., Rubio, S., Antoni, R., Park, S.Y., Cutler, S.R., Sheen, J., Rodriguez,
8 753 P.L., and Zhu, J.K. 2009. In vitro reconstitution of an abscisic acid signalling pathway. *Nature*
9 754 462:660-664.
10
11 755 Fujita, Y., Fujita, M., Satoh, R., Maruyama, K., Parvez, M.M., Seki, M., Hiratsu, K., Ohme-Takagi, M.,
12 756 Shinozaki, K., and Yamaguchi-Shinozaki, K. 2005. AREB1 is a transcription activator of novel
13 757 ABRE-dependent ABA signaling that enhances drought stress tolerance in *Arabidopsis*. *The*
14 758 *Plant cell* 17:3470-3488.
15
16 759 Genin, S., and Denny, T.P. 2012. Pathogenomics of the *Ralstonia solanacearum* species complex.
17 760 *Annual review of phytopathology* 50:67-89.
18
19 761 Gidda, S.K., Miersch, O., Levitin, A., Schmidt, J., Wasternack, C., and Varin, L. 2003. Biochemical and
20 762 molecular characterization of a hydroxyjasmonate sulfotransferase from *Arabidopsis thaliana*.
21 763 *The Journal of biological chemistry* 278:17895-17900.
22
23 764 Gimenez-Ibanez, S., Boter, M., Fernandez-Barbero, G., Chini, A., Rathjen, J.P., and Solano, R. 2014. The
24 765 bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling
25 766 and promote infection in *Arabidopsis*. *PLoS biology* 12:e1001792.
26
27 767 Glazebrook, J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic
28 768 pathogens. *Annual review of phytopathology* 43:205-227.
29
30 769 Glickmann, E., Gardan, L., Jacquet, S., Hussain, S., Elasri, M., Petit, A., and Dessaux, Y. 1998. Auxin
31 770 production is a common feature of most pathovars of *Pseudomonas syringae*. *Molecular*
32 771 *plant-microbe interactions* : MPMI 11:156-162.
33
34 772 Goel, A.K., Lundberg, D., Torres, M.A., Matthews, R., Akimoto-Tomiyama, C., Farmer, L., Dangl, J.L., and
35 773 Grant, S.R. 2008. The *Pseudomonas syringae* type III effector HopAM1 enhances virulence on
36 774 water-stressed plants. *Molecular plant-microbe interactions* : MPMI 21:361-370.
37
38 775 Gonzalez-Guzman, M., Pizzio, G.A., Antoni, R., Vera-Sirera, F., Merilo, E., Bassel, G.W., Fernandez, M.A.,
39 776 Holdsworth, M.J., Perez-Amador, M.A., Kollist, H., and Rodriguez, P.L. 2012. *Arabidopsis*
40 777 PYR/PYL/RCAR receptors play a major role in quantitative regulation of stomatal aperture and
41 778 transcriptional response to abscisic acid. *The Plant cell* 24:2483-2496.
42
43 779 Heath, M.C. 2000. Hypersensitive response-related death. *Plant molecular biology* 44:321-334.
44
45 780 Hernandez-Blanco, C., Feng, D.X., Hu, J., Sanchez-Vallet, A., Deslandes, L., Llorente, F., Berrocal-Lobo,
46 781 M., Keller, H., Barlet, X., Sanchez-Rodriguez, C., Anderson, L.K., Somerville, S., Marco, Y., and
47 782 Molina, A. 2007. Impairment of cellulose synthases required for *Arabidopsis* secondary cell
48 783 wall formation enhances disease resistance. *The Plant cell* 19:890-903.
49
50 784 Hirsch, J., Deslandes, L., Feng, D.X., Balague, C., and Marco, Y. 2002. Delayed Symptom Development in
51 785 *ein2-1*, an *Arabidopsis* Ethylene-Insensitive Mutant, in Response to Bacterial Wilt Caused by
52 786 *Ralstonia solanacearum*. *Phytopathology* 92:1142-1148.
53
54 787 Hu, J., Barlet, X., Deslandes, L., Hirsch, J., Feng, D.X., Somssich, I., and Marco, Y. 2008. Transcriptional
55 788 responses of *Arabidopsis thaliana* during wilt disease caused by the soil-borne
56 789 phytopathogenic bacterium, *Ralstonia solanacearum*. *PloS one* 3:e2589.
57
58 790 Jiang, C.J., Shimono, M., Sugano, S., Kojima, M., Yazawa, K., Yoshida, R., Inoue, H., Hayashi, N.,
59 791 Sakakibara, H., and Takatsuji, H. 2010. Abscisic acid interacts antagonistically with salicylic
60 792 acid signaling pathway in rice-Magnaporthe grisea interaction. *Molecular plant-microbe*

1
2
3 793 interactions : MPMI 23:791-798.
4 794 Jiang, S., Yao, J., Ma, K.W., Zhou, H., Song, J., He, S.Y., and Ma, W. 2013. Bacterial effector activates
5 795 jasmonate signaling by directly targeting JAZ transcriptional repressors. PLoS pathogens
6 796 9:e1003715.
7 797 Jiang, Y., Liang, G., Yang, S., and Yu, D. 2014. Arabidopsis WRKY57 functions as a node of convergence
8 798 for jasmonic acid- and auxin-mediated signaling in jasmonic acid-induced leaf senescence.
9 799 The Plant cell 26:230-245.
10 800 Jones, J.D., and Dangl, J.L. 2006. The plant immune system. Nature 444:323-329.
11 801 Kazan, K., and Lyons, R. 2014. Intervention of Phytohormone Pathways by Pathogen Effectors. The
12 802 Plant cell 26:2285-2309.
13 803 Kloek, A.P., Verbsky, M.L., Sharma, S.B., Schoelz, J.E., Vogel, J., Klessig, D.F., and Kunkel, B.N. 2001.
14 804 Resistance to *Pseudomonas syringae* conferred by an *Arabidopsis thaliana*
15 805 coronatine-insensitive (coi1) mutation occurs through two distinct mechanisms. The Plant
16 806 journal : for cell and molecular biology 26:509-522.
17 807 Lally, D., Ingmire, P., Tong, H.Y., and He, Z.H. 2001. Antisense expression of a cell wall-associated
18 808 protein kinase, WAK4, inhibits cell elongation and alters morphology. The Plant cell
19 809 13:1317-1331.
20 810 Le Fevre, R., Evangelisti, E., Rey, T., and Schornack, S. 2015. Modulation of host cell biology by plant
21 811 pathogenic microbes. Annual review of cell and developmental biology 31:201-229.
22 812 Le Roux, C., Huet, G., Jauneau, A., Camborde, L., Tremousaygue, D., Kraut, A., Zhou, B., Levaillant, M.,
23 813 Adachi, H., Yoshioka, H., Raffaele, S., Berthome, R., Coute, Y., Parker, J.E., and Deslandes, L.
24 814 2015. A receptor pair with an integrated decoy converts pathogen disabling of transcription
25 815 factors to immunity. Cell 161:1074-1088.
26 816 Lee, D.S., Kim, B.K., Kwon, S.J., Jin, H.C., and Park, O.K. 2009. *Arabidopsis* GDSL lipase 2 plays a role in
27 817 pathogen defense via negative regulation of auxin signaling. Biochemical and biophysical
28 818 research communications 379:1038-1042.
29 819 Lee, H.W., and Kim, J. 2013. EXPANSINA17 up-regulated by LBD18/ASL20 promotes lateral root
30 820 formation during the auxin response. Plant & cell physiology 54:1600-1611.
31 821 Lewis, J.D., Wu, R., Guttman, D.S., and Desveaux, D. 2010. Allele-specific virulence attenuation of the
32 822 *Pseudomonas syringae* HopZ1a type III effector via the *Arabidopsis* ZAR1 resistance protein.
33 823 PLoS genetics 6:e1000894.
34 824 Lewis, J.D., Lee, A.H., Hassan, J.A., Wan, J., Hurley, B., Jhingree, J.R., Wang, P.W., Lo, T., Youn, J.Y.,
35 825 Guttman, D.S., and Desveaux, D. 2013. The *Arabidopsis* ZED1 pseudokinase is required for
36 826 ZAR1-mediated immunity induced by the *Pseudomonas syringae* type III effector HopZ1a.
37 827 Proceedings of the National Academy of Sciences of the United States of America
38 828 110:18722-18727.
39 829 Li, C., Schilmiller, A.L., Liu, G., Lee, G.I., Jayanty, S., Sageman, C., Vrebalov, J., Giovannoni, J.J., Yagi, K.,
40 830 Kobayashi, Y., and Howe, G.A. 2005. Role of beta-oxidation in jasmonate biosynthesis and
41 831 systemic wound signaling in tomato. The Plant cell 17:971-986.
42 832 Lin, C., Choi, H.S., and Cho, H.T. 2011. Root hair-specific EXPANSIN A7 is required for root hair
43 833 elongation in *Arabidopsis*. Molecules and cells 31:393-397.
44 834 Lu, H., Lema, A.S., Planas-Marques, M., Alonso-Diaz, A., Valls, M., and Coll, N.S. 2018. Type III
45 835 Secretion-Dependent and -Independent Phenotypes Caused by *Ralstonia solanacearum* in
46 836 *Arabidopsis* Roots. Molecular plant-microbe interactions : MPMI 31:175-184.

1
2
3 837 Ma, K.W., and Ma, W. 2016. Phytohormone pathways as targets of pathogens to facilitate infection.
4 838 Plant molecular biology 91:713-725.
5 839 Mansfield, J., Genin, S., Magori, S., Citovsky, V., Sriariyanum, M., Ronald, P., Dow, M., Verdier, V., Beer,
6 840 S.V., Machado, M.A., Toth, I., Salmond, G., and Foster, G.D. 2012. Top 10 plant pathogenic
7 841 bacteria in molecular plant pathology. Molecular plant pathology 13:614-629.
8 842 Manulis, S., Shafrir, H., Epstein, E., Lichten, A., and Barash, I. 1994. Biosynthesis of indole-3-acetic acid
9 843 via the indole-3-acetamide pathway in *Streptomyces* spp. Microbiology 140 (Pt
10 844 5):1045-1050.
11 845 Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. 2006. Plant stomata function in
12 846 innate immunity against bacterial invasion. Cell 126:969-980.
13 847 Meng, L., and Feldman, L.J. 2010. CLE14/CLE20 peptides may interact with CLAVATA2/CORYNE
14 848 receptor-like kinases to irreversibly inhibit cell division in the root meristem of *Arabidopsis*.
15 849 *Planta* 232:1061-1074.
16 850 Millet, Y.A., Danna, C.H., Clay, N.K., Songnuan, W., Simon, M.D., Werck-Reichhart, D., and Ausubel, F.M.
17 851 2010. Innate immune responses activated in *Arabidopsis* roots by microbe-associated
18 852 molecular patterns. *The Plant cell* 22:973-990.
19 853 Mitchum, M.G., Yamaguchi, S., Hanada, A., Kuwahara, A., Yoshioka, Y., Kato, T., Tabata, S., Kamiya, Y.,
20 854 and Sun, T.P. 2006. Distinct and overlapping roles of two gibberellin 3-oxidases in *Arabidopsis*
21 855 development. *The Plant journal : for cell and molecular biology* 45:804-818.
22 856 Mukhtar, M.S., Deslandes, L., Auriac, M.C., Marco, Y., and Somssich, I.E. 2008. The *Arabidopsis*
23 857 transcription factor WRKY27 influences wilt disease symptom development caused by
24 858 *Ralstonia solanacearum*. *The Plant journal : for cell and molecular biology* 56:935-947.
25 859 Nahar, K., Kyndt, T., Nzogela, Y.B., and Gheysen, G. 2012. Abscisic acid interacts antagonistically with
26 860 classical defense pathways in rice-migratory nematode interaction. *The New phytologist*
27 861 196:901-913.
28 862 Nomura, K., Debroy, S., Lee, Y.H., Pumplin, N., Jones, J., and He, S.Y. 2006. A bacterial virulence protein
29 863 suppresses host innate immunity to cause plant disease. *Science* 313:220-223.
30 864 Rauf, M., Arif, M., Fisahn, J., Xue, G.P., Balazadeh, S., and Mueller-Roeber, B. 2013. NAC transcription
31 865 factor speedy hyponastic growth regulates flooding-induced leaf movement in *Arabidopsis*.
32 866 *The Plant cell* 25:4941-4955.
33 867 Rentel, M.C., Lecourieux, D., Ouaked, F., Usher, S.L., Petersen, L., Okamoto, H., Knight, H., Peck, S.C.,
34 868 Grierson, C.S., Hirt, H., and Knight, M.R. 2004. OXI1 kinase is necessary for oxidative
35 869 burst-mediated signalling in *Arabidopsis*. *Nature* 427:858-861.
36 870 Robert-Seilantian, A., Navarro, L., Bari, R., and Jones, J.D. 2007. Pathological hormone imbalances.
37 871 *Current opinion in plant biology* 10:372-379.
38 872 Rosquete, M.R., Barbez, E., and Kleine-Vehn, J. 2012. Cellular auxin homeostasis: gatekeeping is
39 873 housekeeping. *Molecular plant* 5:772-786.
40 874 Sacco, M.A., Koropacka, K., Grenier, E., Jaubert, M.J., Blanchard, A., Goverse, A., Smart, G., and
41 875 Moffett, P. 2009. The cyst nematode SPRYSEC protein RBP-1 elicits Gpa2- and
42 876 RanGAP2-dependent plant cell death. *PLoS pathogens* 5:e1000564.
43 877 Saito, S., Hirai, N., Matsumoto, C., Ohigashi, H., Ohta, D., Sakata, K., and Mizutani, M. 2004.
44 878 *Arabidopsis* CYP707As encode (+)-abscisic acid 8'-hydroxylase, a key enzyme in the oxidative
45 879 catabolism of abscisic acid. *Plant physiology* 134:1439-1449.
46 880 Sarris, P.F., Duxbury, Z., Huh, S.U., Ma, Y., Segonzac, C., Sklenar, J., Derbyshire, P., Cevik, V., Rallapalli, G.,
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 881 Saucet, S.B., Wirthmueller, L., Menke, F.L.H., Sohn, K.H., and Jones, J.D.G. 2015. A Plant
4 882 Immune Receptor Detects Pathogen Effectors that Target WRKY Transcription Factors. *Cell*
5 883 161:1089-1100.
6 884 Schoenaers, S., Balcerowicz, D., Breen, G., Hill, K., Zdanio, M., Mouille, G., Holman, T.J., Oh, J., Wilson,
7 885 M.H., Nikonorova, N., Vu, L.D., De Smet, I., Swarup, R., De Vos, W.H., Pintelon, I., Adriaensen,
8 886 D., Grierson, C., Bennett, M.J., and Vissenberg, K. 2018. The Auxin-Regulated CrRLK1L Kinase
9 887 ERULUS Controls Cell Wall Composition during Root Hair Tip Growth. *Current biology* : CB
10 888 28:722-732 e726.
11 889 Svistoonoff, S., Creff, A., Reymond, M., Sigoillot-Claude, C., Ricaud, L., Blanchet, A., Nussaume, L., and
12 890 Desnos, T. 2007. Root tip contact with low-phosphate media reprograms plant root
13 891 architecture. *Nature genetics* 39:792-796.
14 892 Tanaka, H., Kitakura, S., Rakusova, H., Uemura, T., Feraru, M.I., De Rycke, R., Robert, S., Kakimoto, T.,
15 893 and Friml, J. 2013. Cell polarity and patterning by PIN trafficking through early endosomal
16 894 compartments in *Arabidopsis thaliana*. *PLoS genetics* 9:e1003540.
17 895 Trujillo, M., Ichimura, K., Casais, C., and Shirasu, K. 2008. Negative regulation of PAMP-triggered
18 896 immunity by an E3 ubiquitin ligase triplet in *Arabidopsis*. *Current biology* : CB 18:1396-1401.
19 897 Umezawa, T., Sugiyama, N., Mizoguchi, M., Hayashi, S., Myouga, F., Yamaguchi-Shinozaki, K., Ishihama,
20 898 Y., Hirayama, T., and Shinozaki, K. 2009. Type 2C protein phosphatases directly regulate
21 899 abscisic acid-activated protein kinases in *Arabidopsis*. *Proceedings of the National Academy
22 900 of Sciences of the United States of America* 106:17588-17593.
23 901 Valls, M., Genin, S., and Boucher, C. 2006. Integrated regulation of the type III secretion system and
24 902 other virulence determinants in *Ralstonia solanacearum*. *PLoS pathogens* 2:e82.
25 903 Vasse, J., Genin, S., Frey, P., Boucher, C., and Brito, B. 2000. The *hrpB* and *hrpG* regulatory genes of
26 904 *Ralstonia solanacearum* are required for different stages of the tomato root infection process.
27 905 *Molecular plant-microbe interactions* : MPMI 13:259-267.
28 906 Verbon, E.H., and Liberman, L.M. 2016. Beneficial Microbes Affect Endogenous Mechanisms
29 907 Controlling Root Development. *Trends in plant science* 21:218-229.
30 908 Wasternack, C., and Hause, B. 2013. Jasmonates: biosynthesis, perception, signal transduction and
31 909 action in plant stress response, growth and development. An update to the 2007 review in
32 910 *Annals of Botany*. *Annals of botany* 111:1021-1058.
33 911 Weingart, H., and Volksch, B. 1997. Ethylene Production by *Pseudomonas syringae* Pathovars In Vitro
34 912 and In Planta. *Applied and environmental microbiology* 63:156-161.
35 913 Weingart, H., Ullrich, H., Geider, K., and Volksch, B. 2001. The Role of Ethylene Production in Virulence
36 914 of *Pseudomonas syringae* pvs. *glycinea* and *phaseolicola*. *Phytopathology* 91:511-518.
37 915 Woodward, A.W., and Bartel, B. 2005. Auxin: regulation, action, and interaction. *Annals of botany*
38 916 95:707-735.
39 917 Xiao, G., Qin, H., Zhou, J., Quan, R., Lu, X., Huang, R., and Zhang, H. 2016. OsERF2 controls rice root
40 918 growth and hormone responses through tuning expression of key genes involved in hormone
41 919 signaling and sucrose metabolism. *Plant molecular biology* 90:293-302.
42 920 Xie, Q., Frugis, G., Colgan, D., and Chua, N.H. 2000. *Arabidopsis NAC1* transduces auxin signal
43 921 downstream of *TIR1* to promote lateral root development. *Genes & development*
44 922 14:3024-3036.
45 923 Zhang, Z., Lenk, A., Andersson, M.X., Gjetting, T., Pedersen, C., Nielsen, M.E., Newman, M.A., Hou, B.H.,
46 924 Somerville, S.C., and Thordal-Christensen, H. 2008. A lesion-mimic syntaxin double mutant in
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 925 Arabidopsis reveals novel complexity of pathogen defense signaling. Molecular plant
4 926 1:510-527.
5

6 927 Zhao, Y. 2010. Auxin biosynthesis and its role in plant development. Annual review of plant biology
7 928 61:49-64.
8

9 929 Zhou, Z., Wu, Y., Yang, Y., Du, M., Zhang, X., Guo, Y., Li, C., and Zhou, J.M. 2015. An Arabidopsis Plasma
10 930 Membrane Proton ATPase Modulates JA Signaling and Is Exploited by the Pseudomonas
11 931 syringae Effector Protein AvrB for Stomatal Invasion. The Plant cell 27:2032-2041.
12 932
13

933 **SUPPORTING INFORMATION LEGENDS**

14 934 **Figure S1.** GMI1000 promotes lateral root formation. 7-day-old Arabidopsis
15 935 seedling roots were inoculated with GMI1000 suspension or water. Lateral
16 936 roots were counted and recorded at 5 dpi.
17

18 937 **Figure S2.** Selected GO term overrepresented in differentially expressed
19 938 genes at different infection stages of GMI1000. GO terms in upper boxes
20 939 indicate up-regulated genes and GO terms in lower boxes indicate
21 940 down-regulated genes.
22

23 941 **Figure S3.** Biosynthesis and signaling components of ET and JA during the
24 942 early stages of GMI1000 infection. (A) Heat map representation of differentially
25 943 expressed genes in ET biosynthesis and signaling pathways. (B) Heat map
26 944 representation of differentially expressed genes involved in JA biosynthesis
27 945 and signaling pathways. The heat map depicts FPKM values after log10
28 946 transformation.
29

30 947 **Figure S4.** Activation of auxin pathway in response to GMI1000 infection. Heat
31 948 map values represent log₁₀-transformed FPKM values.
32

33 949 **Figure S5.** Transcriptional changes of part of differentially expressed genes
34 950 involved in plant immunity. Heat map values represent log₁₀-transformed
35 951 FPKM values.
36

37 952 **Table S1.** Overview of quality of RNA-seq data.
38

39 953 **Data S1.** FPKM values of 2698 differentially expressed genes in root at each
40 954 time points after GMI1000 treatment
41

42 955 **Data S2.** Membership of 11 gene clusters.
43

44 956 **Data S3.** Summary of all of differentially expressed genes which play key roles
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 957 in plant immunity.
4
5
6
7 958

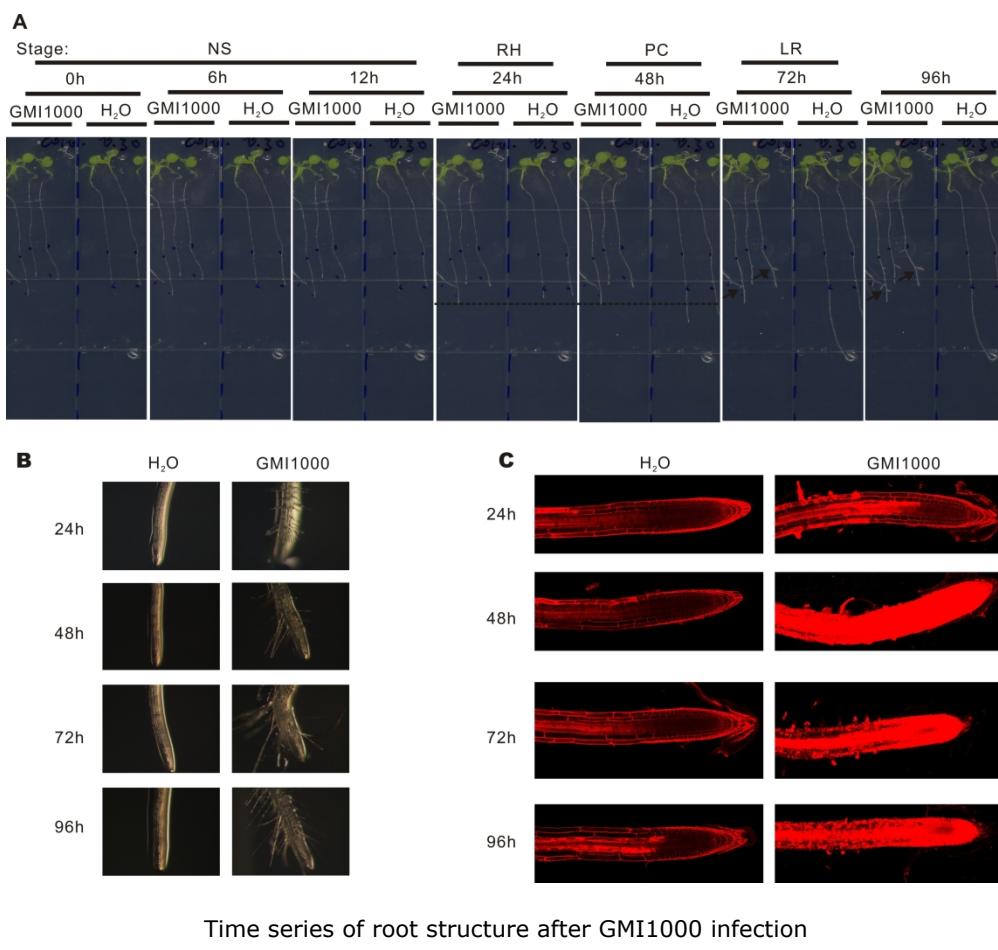
8
9 959 **FIGURE LEGENDS**
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

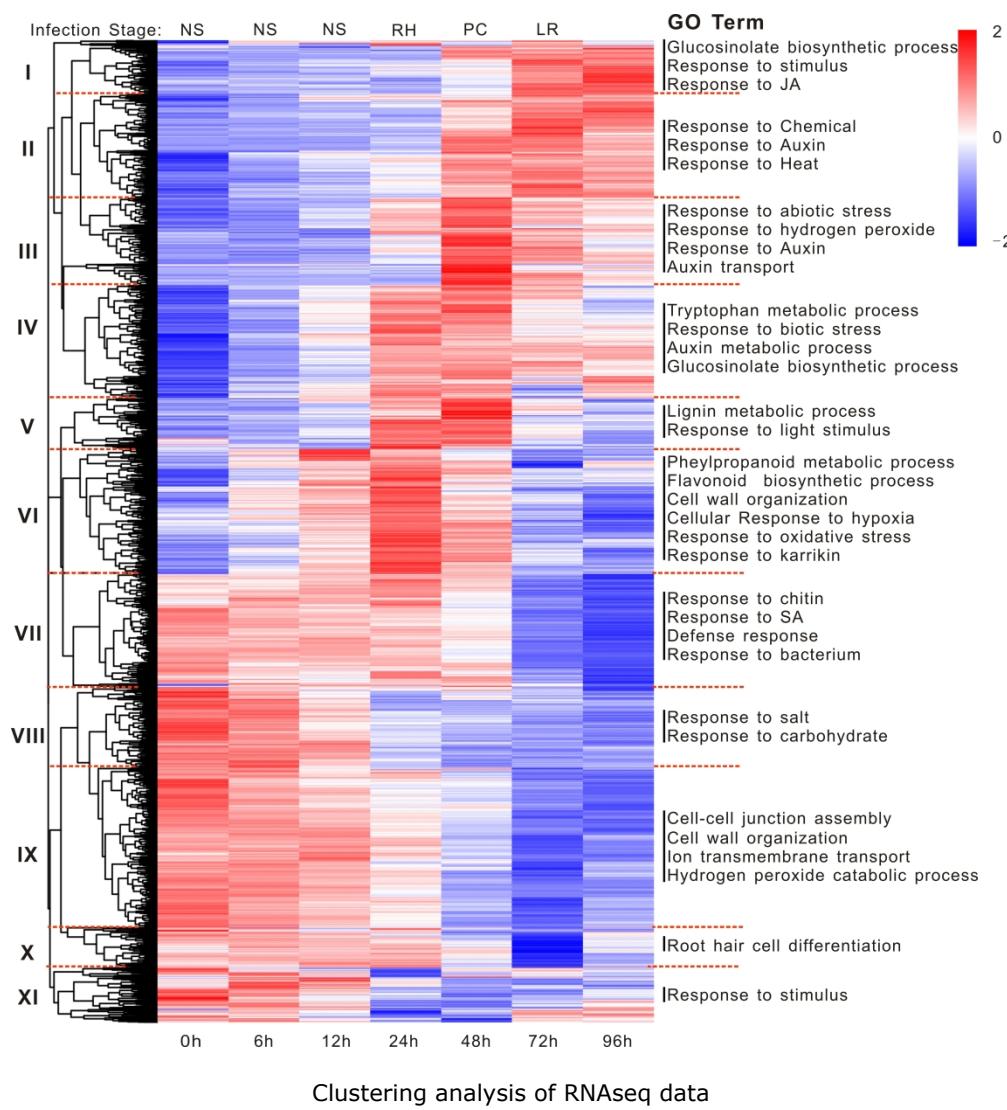
960 **Figure 1.** Time series of root structure after GMI1000 infection. (A) Root
961 growth was recorded and digital images were taken images at indicated time
962 points. The arrow indicates lateral roots. Dashed line indicates root growth
963 arrest. (B) Root hair images were taken with an OLYMPUS SZX16 microscope
964 at the indicated time points. (C) Cell death on the root tip was stained with a PI
965 solution and images were directly taken with an Olympus confocal microscope.

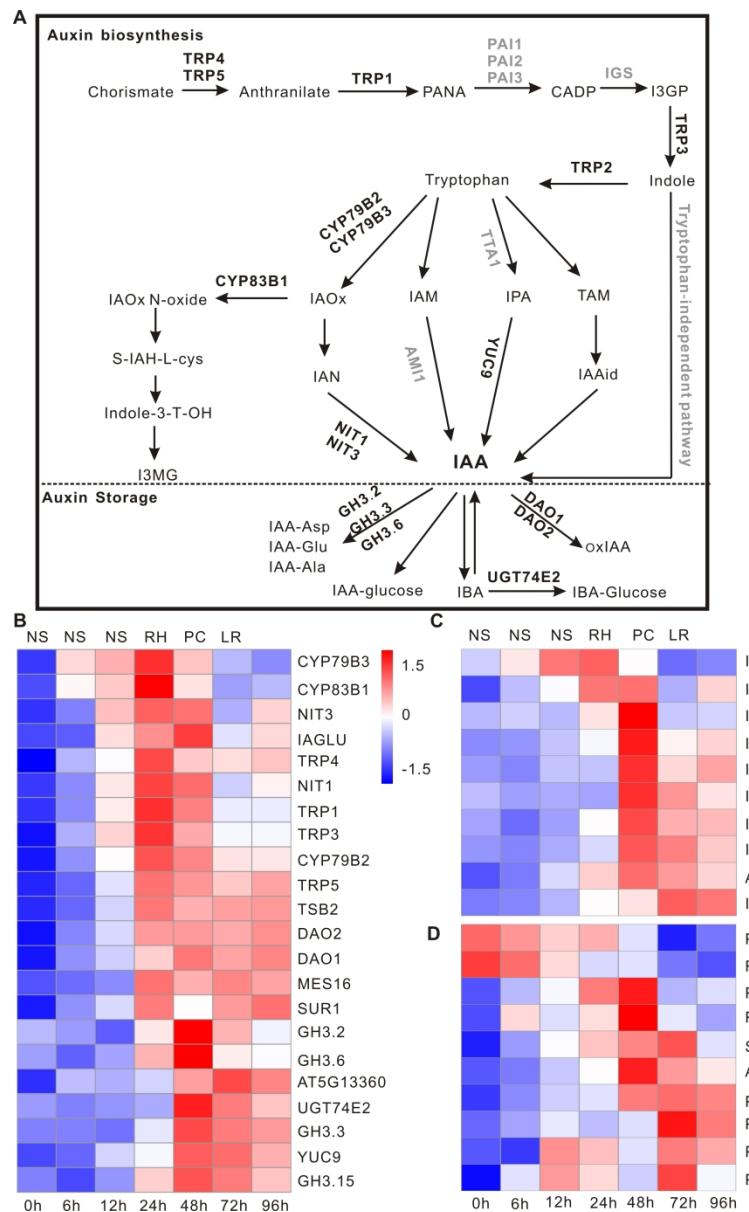
966 **Figure 2.** Clustering analysis of RNAseq data. The heat map represents the
967 expression patterns of 2698 DEGs identified in our RNA-seq data. The vertical
968 axis organizes genes according to co-expression patterns. The horizontal axis
969 displays time points. Red represents genes with high expression while blue
970 represents genes with low expression. The selected overpresented GO terms
971 in each cluster were shown on the left. The heat map depicts FPKM value after
972 \log_{10} transformation. .

973 **Figure 3.** Expression patterns of part of genes related with auxin biosynthesis,
974 signaling and transport. (A) Auxin biosynthesis processes and metabolic
975 processes. Differentially expressed enzymes in our RNA-seq data are shown
976 in black bold, otherwise enzymes are shown in gray bold. (B) Expression
977 patterns of differentially expressed auxin biosynthetic genes in response to
978 GMI1000 infection. (C) Expression patterns of differentially expressed auxin
979 signaling components in response to GMI1000. (D) Expression patterns of
980 differentially expressed auxin transport in response to GMI1000. The heat map
981 depicts FPKM values after \log_{10} transformation.

982 **Figure 4.** ABA receptor mutants 12458 and 112458 showed more sensitivity to
983 GMI1000. (A) Temporal dynamics of ABA signal components after GMI1000
984 treatment. Heat map depicts the expression patterns of differentially expressed
985 ABA-responsive genes. (B) Wilt symptoms were digitally imaged at 15 dpi. (C)
986 Mortality rate of the infected plants was recorded at indicated times. **

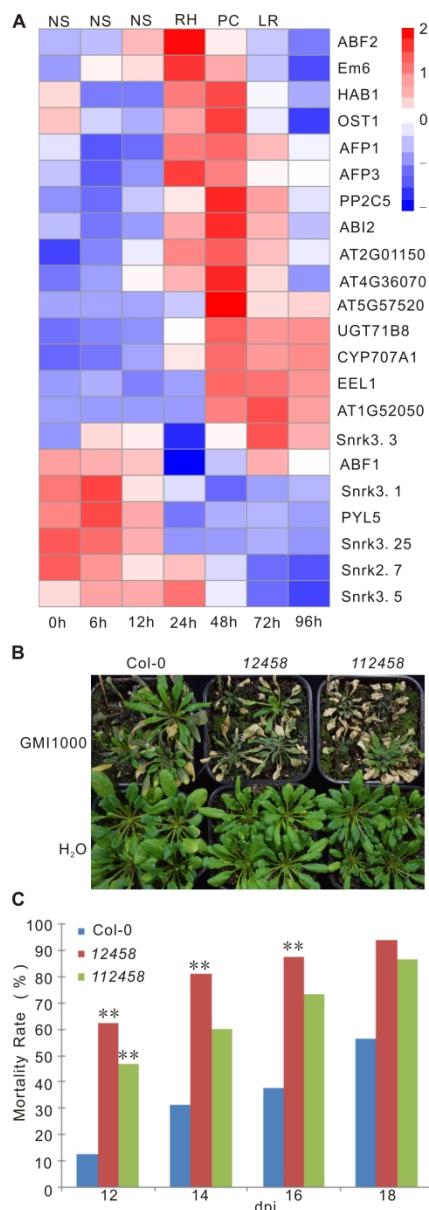

1
2
3 987 indicates P<0.001 (Student's test) with respect to Col-0.
4
5

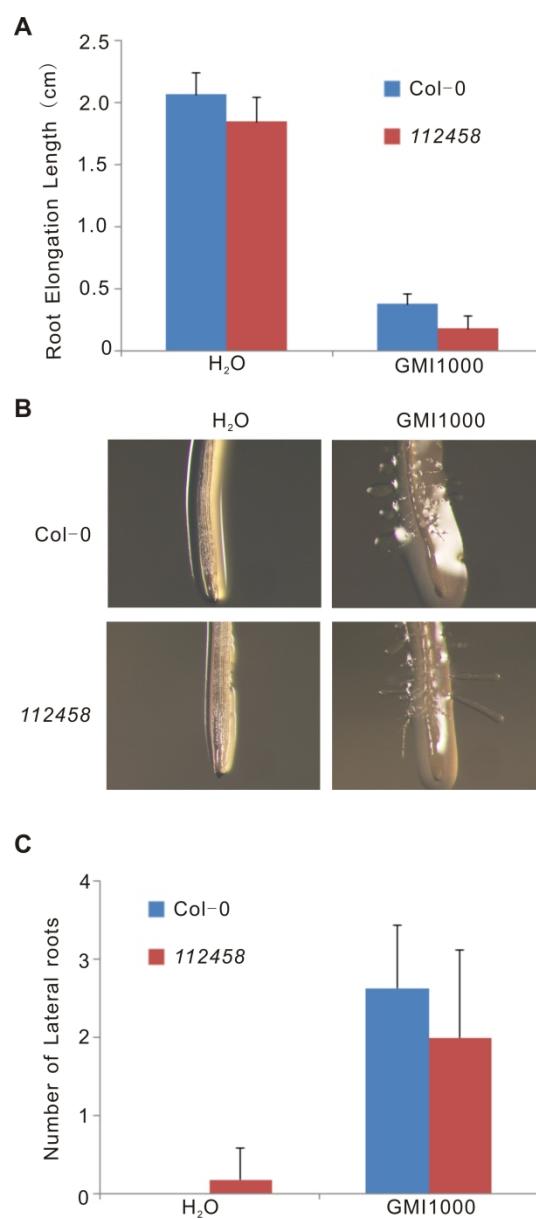

6 988 **Figure 5.** Mutations in ABA receptors did not abolish root architecture changes
7 989 caused by GMI1000. (A) Inhibition of 112458 root growth. Primary root
8 990 elongation length after infection was measured at 4 dpi. (B) Root hair formation
9 991 on 112458 root tips. The images were taken with Olympus microscope. (C)
10 992 Lateral roots on 112458 root. Lateral roots per seedling were counted and
11 993 recorded at 4 dpi
12
13


14 994 **Figure 6.** Expression dynamics of components of programmed cell death over
15 995 the infection time. (A) Heat map depicting differentially expressed genes in
16 996 effector –triggered hypersensitive responses. (B) Heat map representation of
17 997 differentially expressed components of senescence. Heat map values
18 998 represent log₁₀-transformed FPKM values.
19
20

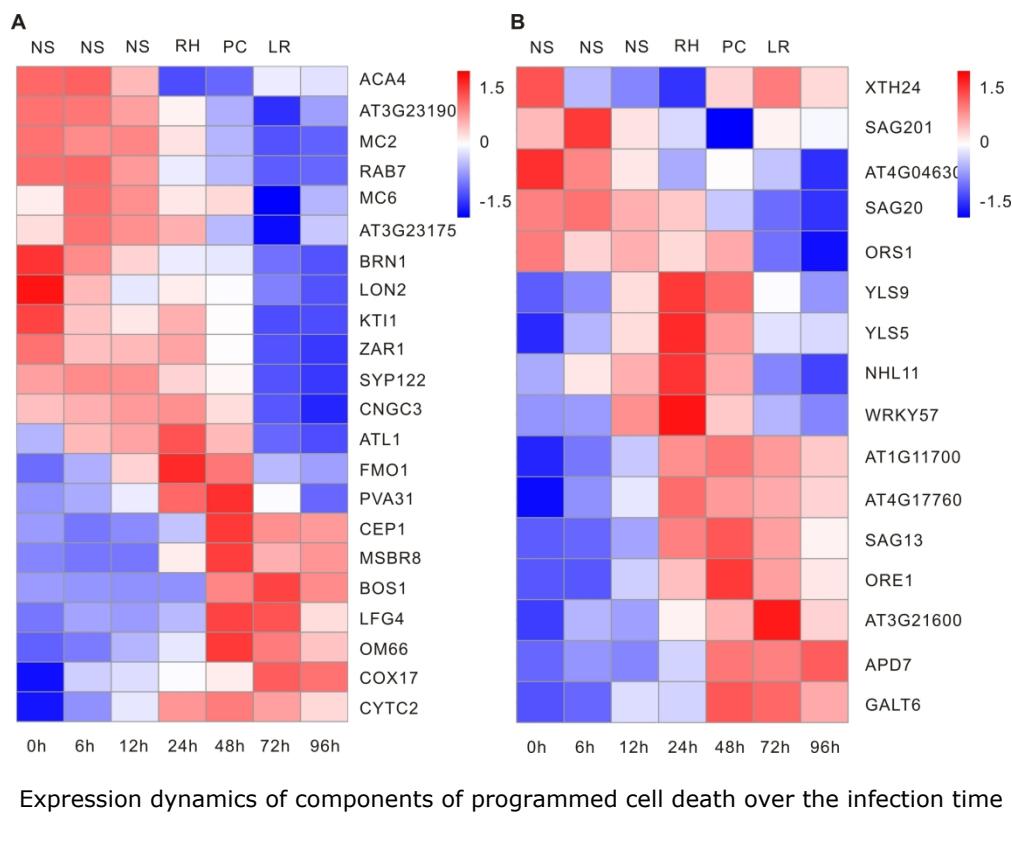
21 999 **Figure 7.** Expression of genes regulating root hair formation correlated with
22 1000 root hair formation. (A) Heat map representation of differentially expressed
23 1001 genes in root hair formation after GMI1000 infection. Heat map values
24 1002 represent log₁₀-transformed FPKM values. (B) Root hair appeared at 18h after
25 1003 GMI1000 infection. The pictures were taken with an Olympus microscope at
26 1004 the indicated time after infection.
27
28

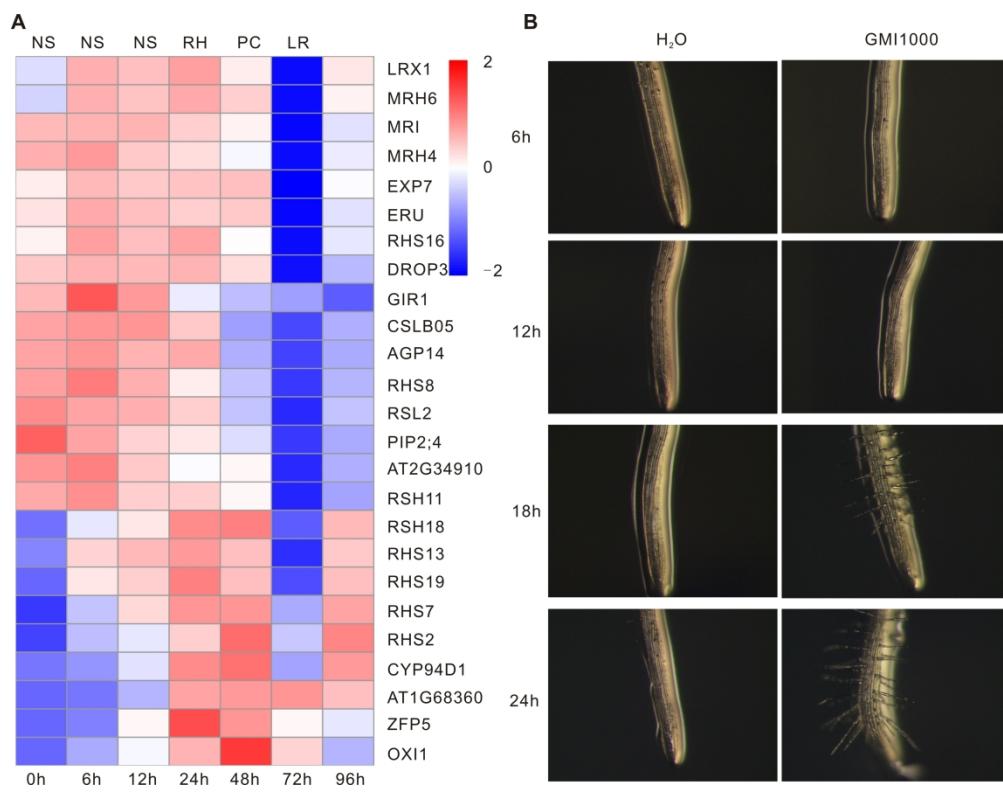
29 1005 **Figure 8.** Transcriptional dynamic changes of differentially expressed genes in
30 1006 root architecture. Heat map values represent log₁₀-transformed FPKM values.
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



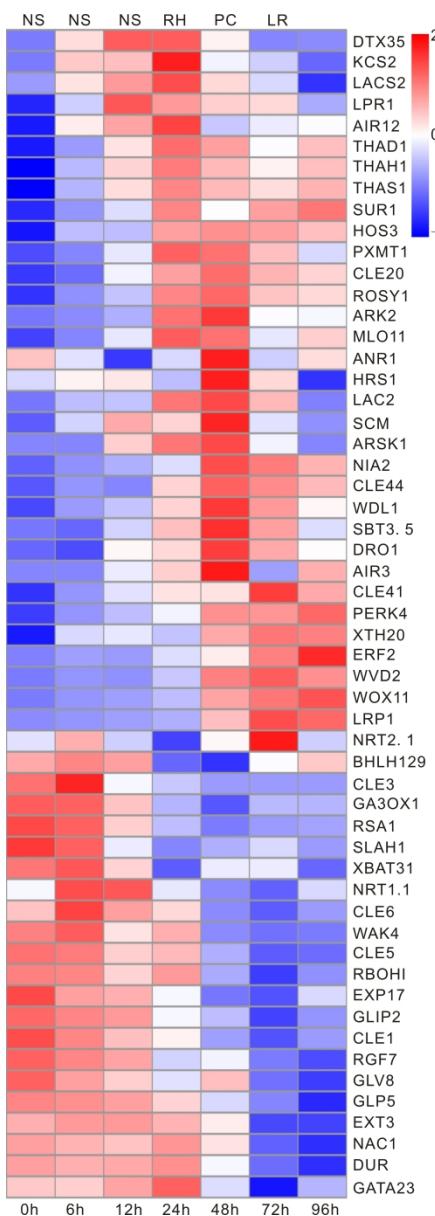

Expression patterns of part of genes related with auxin biosynthesis, signaling and transport

221x315mm (600 x 600 DPI)


ABA receptor mutants 12458 and 112458 showed more sensitivity to GMI1000


223x624mm (600 x 600 DPI)

Mutations in ABA receptors did not abolish root architecture changes caused by GMI1000


168x377mm (600 x 600 DPI)

Expression of genes regulating root hair formation correlated with root hair formation

130x100mm (600 x 600 DPI)

Transcriptional dynamic changes of differentially expressed genes in root architecture

216x586mm (600 x 600 DPI)

1
2
3
4
5
6
SUPPLEMENTAL DATA
7
8
9
10
11
12
13
14
15
16

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
50
51
52
53
54
55
56
57
58
59
60

Deep sequencing reveals that early reprogramming of
Arabidopsis root transcriptomes upon *Ralstonia*
solanacearum infection

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Overview

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

- Supplemental Methods
- Supplemental References
- Supplemental Tables: Table S1

56
57
58
59
60

Supplemental Methods

Sample Preparations for RNA-seq

The root samples were collected from around 600 infected seedlings at the indicated time point and frozen in liquid nitrogen, then directly sent to Novogene Company (Beijing, China) and perform RNA seq and data analysis there.

RNA Extraction, Library Preparation and Sequencing (Novogene)

RNA were extracted using Trizol. After RNA extraction, RNA quality and quantity were assessed with following equipments: Nano Photometer spectrophotometer (IMPLEN, CA, USA) for RNA purity, Qubit®RNA Assay Kit in Qubit® 2.0 Flurometer (Life Technologies, CA, USA) for RNA concentration, RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA, USA) for RNA integrity.

A total amount of 3 µg RNA per sample was used as input material for the RNA sample preparations. Sequencing libraries were generated using NEBNext® Ultra™ RNA Library Prep Kit for Illumina® (NEB, USA) following manufacturer's recommendations and index codes were added to attribute sequences to each sample. Briefly, mRNA was purified from total RNA using poly-T oligo-attached magnetic beads. Fragmentation was carried out using divalent cations under elevated temperature in NEB Next First Strand Synthesis Reaction Buffer (5X). First strand cDNA was synthesized using random hexamer primer and M-MuLV Reverse Transcriptase (RNaseH). Second strand cDNA synthesis was subsequently performed using DNA Polymerase I and RNase H. Remaining overhangs were converted into blunt ends via exonuclease/polymerase activities. After adenylation of 3' ends of DNA fragments, NEB Next Adaptor with hairpin loop structure were ligated to prepare for hybridization. In order to select cDNA fragments of preferentially 150~200 bp in length, the library fragments were purified with AMPure XP system (Beckman Coulter, Beverly, USA). Then 3 µl USER Enzyme (NEB, USA) was used with size-selected, adaptor-ligated cDNA at 37°C for 15 min followed by 5 min at 95 °C before PCR. Then PCR was performed with

1
2
3 Phusion High-Fidelity DNA polymerase, Universal PCR primers and Index (X)
4 Primer. At last, PCR products were purified (AMPure XP system) and library
5 quality was assessed on the Agilent Bioanalyzer 2100 system
6
7

8 The clustering of the index-coded samples was performed on a cBot Cluster
9 Generation System using TruSeq PE Cluster Kit v3-cBot-HS (Illumina)
10 according to the manufacturer's instructions. After cluster generation, the
11 library preparations were sequenced on an Illumina Hiseq platform and
12 125bp/150 bp paired-end reads were generated.
13
14

15
16
17
18
19 **Data Analysis: Quality Control, Reads Mapping to Genome,
20 Quantification of Gene Expression level and Differential Expression
21 Analysis (Novogene)**
22
23

24 Raw data (raw reads) of fastq format were firstly processed through
25 in-house perl scripts. In this step, clean data (clean reads) were obtained by
26 removing reads containing adapter, reads containing ploy-N and low quality
27 reads from raw data. At the same time, Q20, Q30 and GC content of the clean
28 data were calculated. All the downstream analyses were based on the clean
29 data with high quality.
30
31

32 Arabidopsis genome and gene model annotation files were downloaded
33 from Ensemble database Version 34 directly. Index of the reference genome
34 was built using Hisat2 v2.0.4 and paired-end clean reads were aligned to the
35 reference genome using Hisat2 v2.0.4 (Kim et al., 2015). We selected Hisat2
36 as the mapping tool for that Hisat2 can generate a database of splice junctions
37 based on the gene model annotation file and thus a better mapping result than
38 other non-splice mapping tools.
39
40

41 HTSeq v0.6.1 was used to count the reads numbers mapped to each gene
42 (Anders et al., 2015). And then FPKM of each gene was calculated based on
43 the length of the gene and reads count mapped to this gene. FPKM, expected
44 number of Fragments Per Kilobase of transcript sequence per Millions base
45 pairs sequenced, considers the effect of sequencing depth and gene length for
46
47

48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 the reads count at the same time, and is currently the most commonly used
4 method for estimating gene expression levels (Trapnell et al., 2010).
5
6 Differential expression analysis of two conditions/groups (two biological
7 replicates per condition) was performed using the DESeq R package (1.18.0)
8 (Anders and Huber 2012). DESeq provide statistical routines for determining
9 differential expression in digital gene expression data using a model based on
10 the negative binomial distribution (Anders and Huber, 2010). The resulting
11 P-values were adjusted using the Benjamini and Hochberg's approach for
12 controlling the false discovery rate. Genes with an adjusted P-value <0.05
13 found by DESeq and fold change (-1>log2>1) were assigned as differentially
14 expressed.
15
16

23 Clustering of Gene Expression Profiles (Novogene)

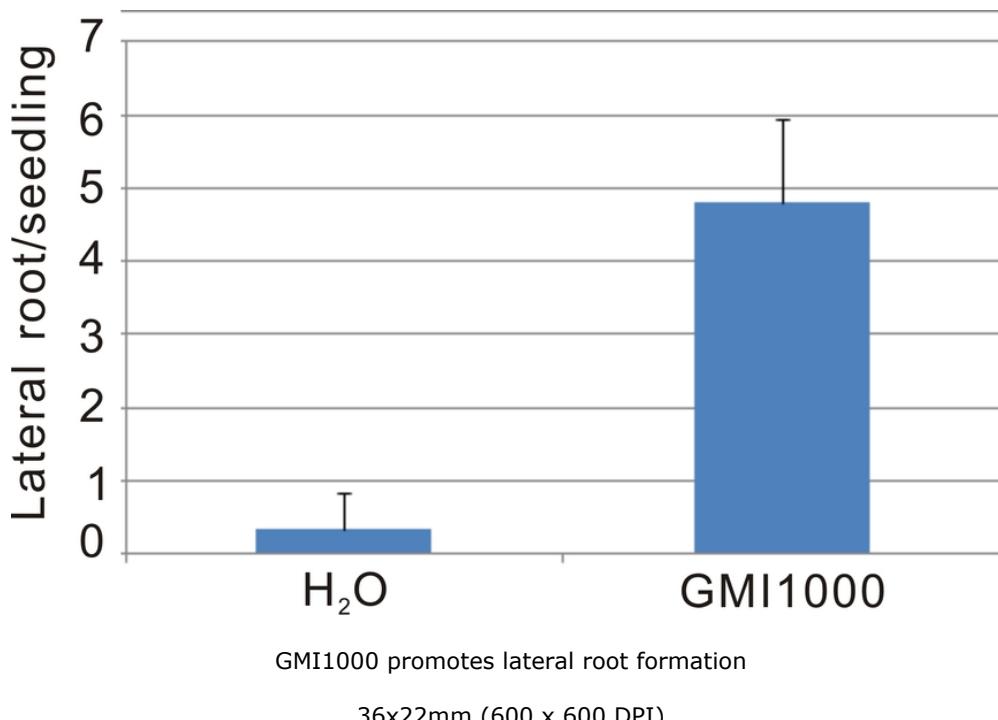
24
25 Cluster analysis is used to determine the expression patterns of differential
26 genes under different experimental conditions. Heatmap represents the
27 expressions of all differentially expressed genes identified in the RNA-seq
28 experiment. The FPKM value of differential genes under different experimental
29 conditions was used as the expression level, and hierarchical clustering
30 analysis was performed. Different colored regions represent different
31 clustering grouping information. The X-axis represents sample name and the
32 Y-axis represents the differentially expressed genes. Expression data was
33 normalized in log10 (FPKM+1) manner, heatmaps were drawn by R pheatmap
34 package (Kolde, 2018).
35
36
37
38
39
40
41
42
43
44

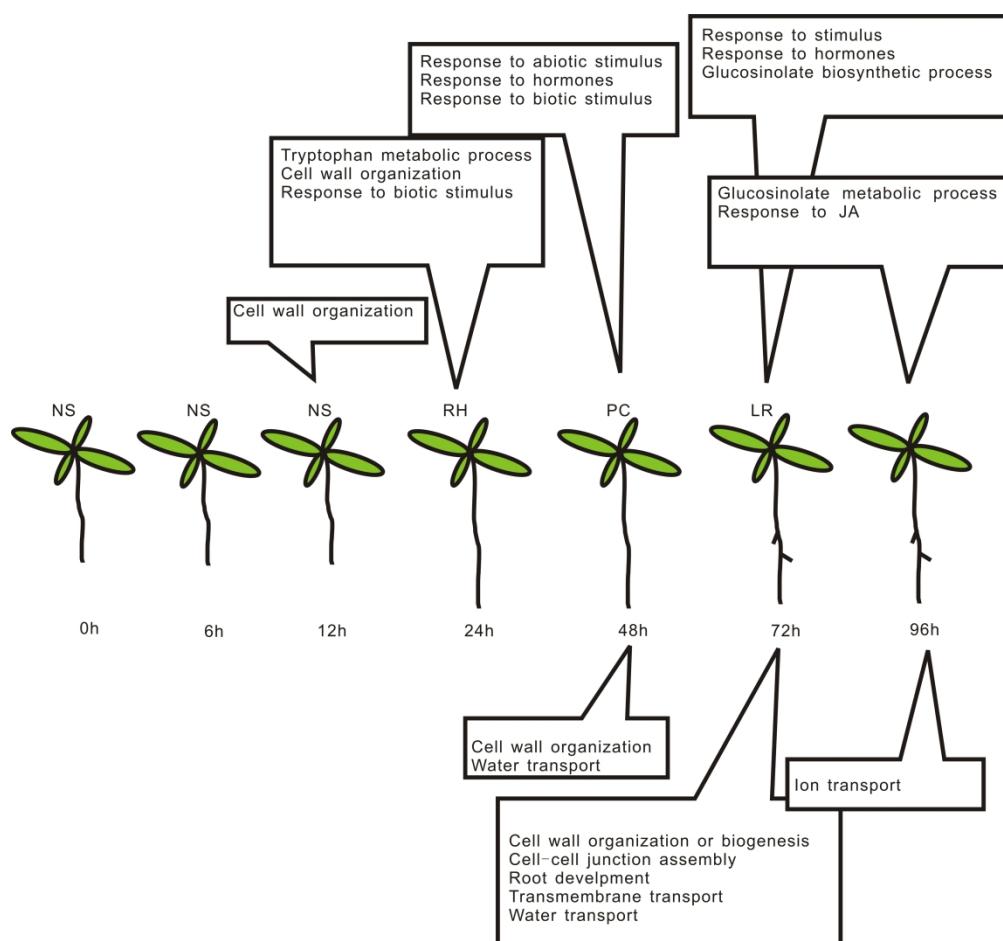
GO Analysis

45 GO annotation analysis was performed using the Agrigo v2.0 (Tian et al.,
46 2017). Overrepresented GO_Biological_Process categories were identified
47 using a hypergeometric test with FDR<0.05 with the whole annotated genome
48 as the reference test.
49
50
51
52

53 Supplemental References

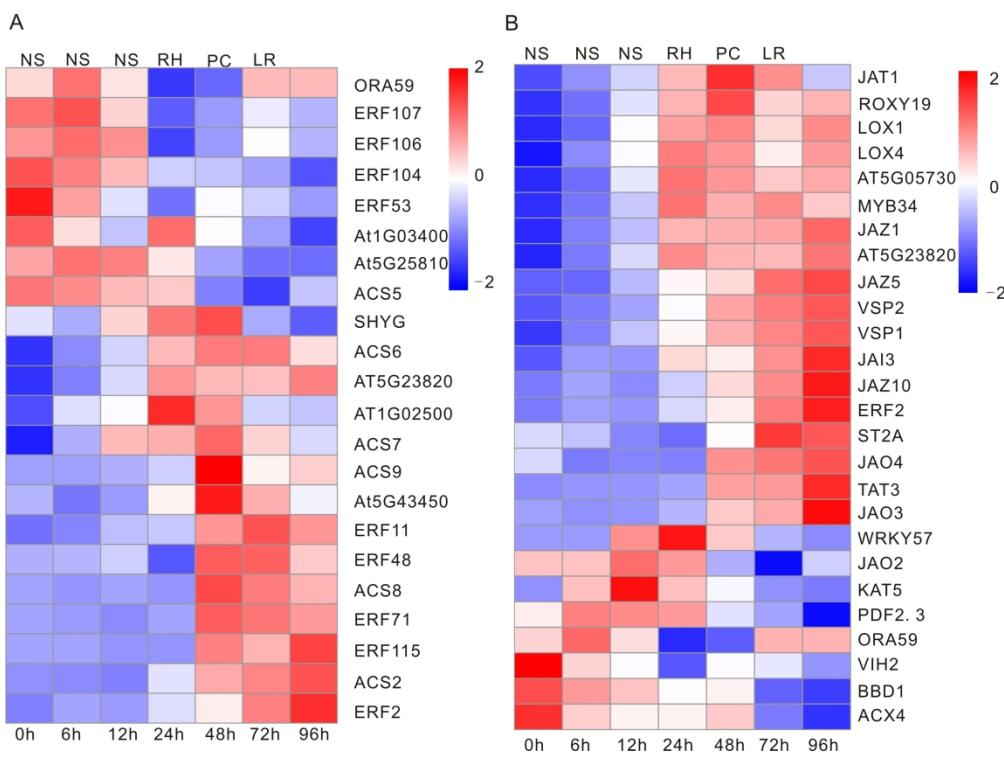
54
55 Anders, S. and Huber, W. (2010) Differential expression analysis for sequence count data. *Genome*
56 *biology*, 11, R106.
57
58
59
60

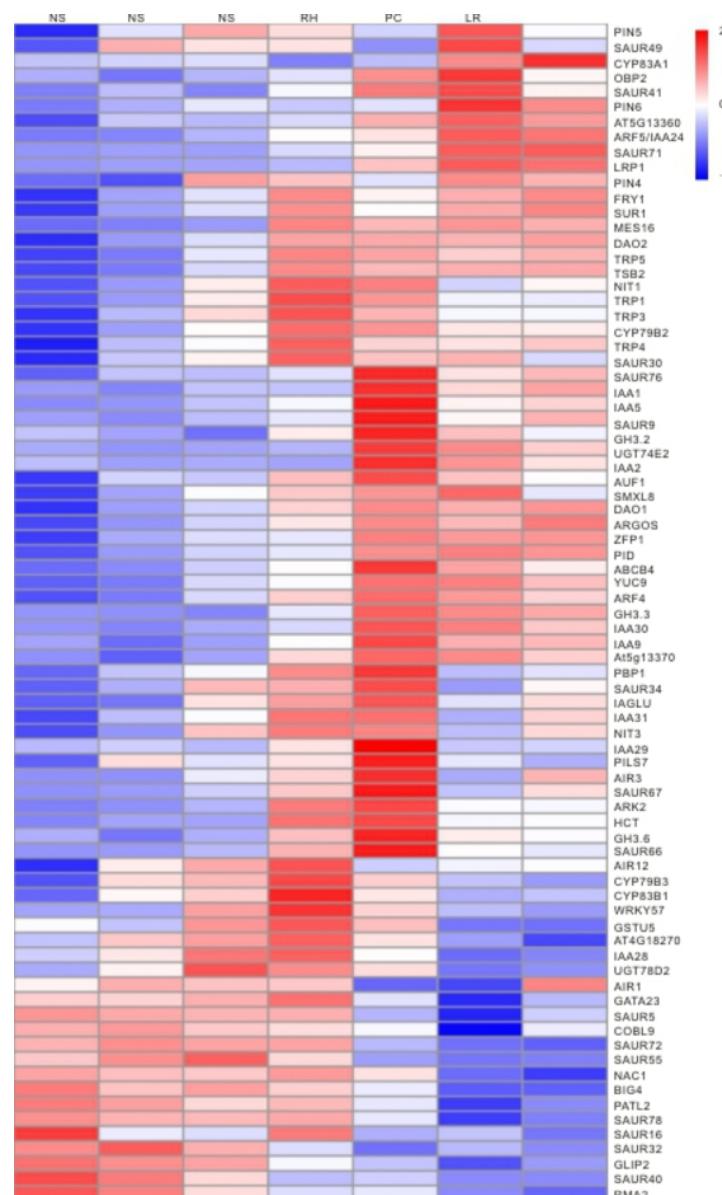

1
2
3 Anders S, Huber W (2012) Differential expression of RNA-seq data at the gene level- the DESeq
4 package
5 Anders, S., Pyl, P.T. and Huber, W. (2015) HTSeq--a Python framework to work with high-throughput
6 sequencing data. *Bioinformatics*, **31**, 166-169.
7 Kim, D., Langmead, B. and Salzberg, S.L. (2015) HISAT: a fast spliced aligner with low memory
8 requirements. *Nature methods*, **12**, 357-360.
9 Klode, R.(2018) Pretty Heatmaps Package 'pheatmap' version 1.0.10
10 Tian T, Liu Y, Yan H, You Q, Yi X, Du Z, Xu W, Su Z. 2017. agriGO v2.0: a GO analysis toolkit for the
11 agricultural community, 2017 update. *Nucleic Acids Res* **45**, W122-W129.
12 Trapnell, C., Williams, B.A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M.J., Salzberg, S.L., Wold,
13 B.J. and Pachter, L. (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated
14 transcripts and isoform switching during cell differentiation. *Nature biotechnology*, **28**, 511-515.
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


For Peer Review

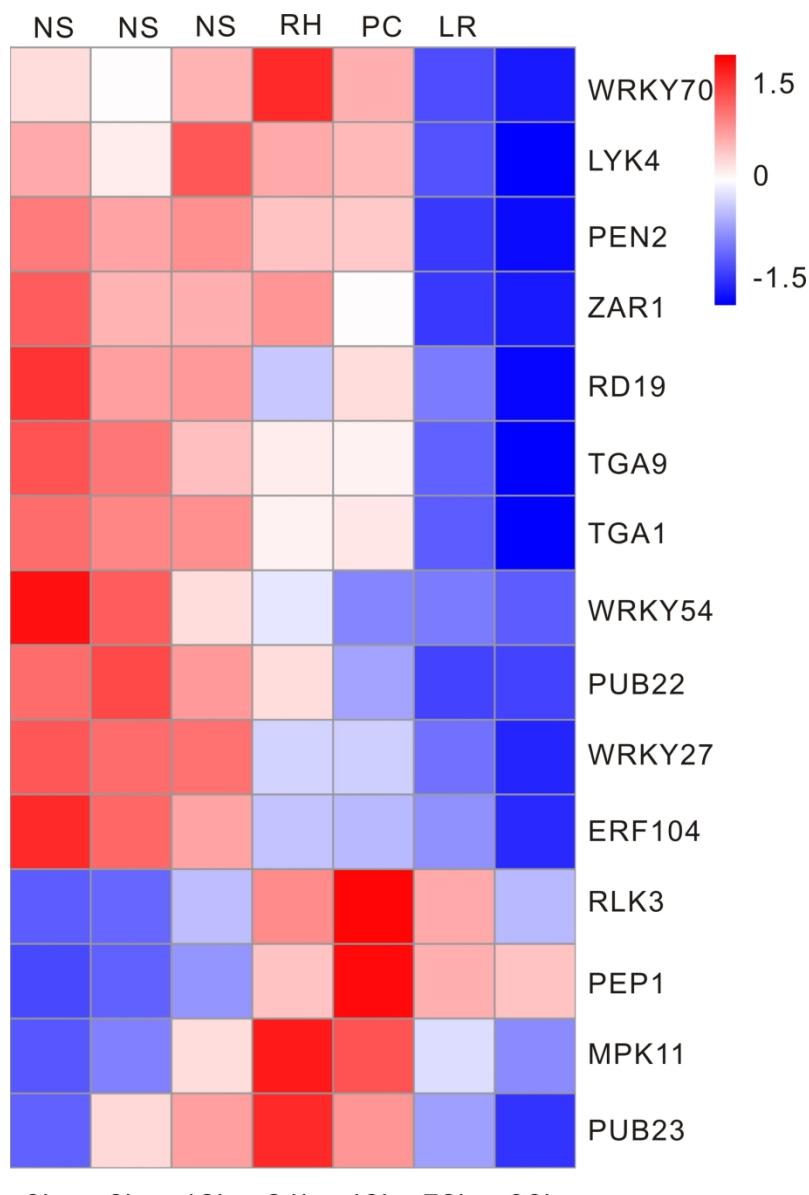
Supplemental Tables

Supplemental Table S1. Overview of quality of RNA-seq data.


Sample name	Raw reads	Clean reads	Clean bases (Gb)	Mapped reads (% of total)	Q30(%)
G0	34305303	33278781	4.99	31560849 (94.86%)	91.37
G6	36097955	34998502	5.25	33069200 (94.50%)	92.30
G12	39001013	37994586	5.70	36226397 (95.38%)	91.40
G24	34175878	33150365	4.97	31537042 (95.16%)	91.74
G48	33370411	32175593	4.82	30628497 (95.19%)	91.78
G72	32732665	31887137	4.78	30067895 (94.51%)	91.44
G96	35598467	34544686	5.18	32460784 (94.07%)	92.06
H96	35542801	34630479	5.19	32848338 (94.89%)	91.74



Selected GO term overrepresented in differentially expressed genes at different infection stages of GMI1000


158x147mm (600 x 600 DPI)

Activation of auxin pathway in response to GMI1000 infection

23x40mm (600 x 600 DPI)

Transcriptional changes of part of differentially expressed genes involved in plant immunity.

117x177mm (600 x 600 DPI)