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ABSTRACT 

Driven by the growing need of simple, cost efficient and flexible sensing systems, we have 

designed here a fully printed Reduced Graphene Oxide (rGO) based impedimetric sensor for 

one step sensing of DNA. The DNA sensor was fabricated by stamping of layered rGO and 

rGO/gold nanoparticles/single stranded DNA (rGO/AuNPs/ssDNA) composites over PET 

substrates using wax-printing technique. rGO works as an excellent working electrode, while 

the AuNPs create a suitable environment for ssDNA immobilization.  Counter and reference 

electrodes were previously screen-printed on the plastic substrate, making thus a compact and 

highly integrated sensing platform. The change in electron transfer resistance after 

hybridization with a target ssDNA specific of Coxsackie B3 virus was monitored using 

electrochemical impedance spectroscopy (EIS), finding a linear response in the range of 

concentrations 0.01 - 20µM.  The novel, simple and straightforward one-step printing process 

for fabrication of a biosensing device developed keeps in mind the growing need of large 

scale device manufacturing. The successful proof-of-concept for the detection of DNA 

hybridization can be extended to other affinity biosensors, taking advantage of the integration 

of the bioreceptor on the sensor surface. Such ready-to-use biosensor would lead  to a one-

step electrochemical detection.  
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1. INTRODUCTION 

Graphene is a well-known one-atom thick two dimensional carbon layer that possess 

outstanding inherent properties like high mechanical and chemical stability, high thermal and 

outstanding electrical and thermal conductivity (Novoselov, K.S. et al, 2004; Geim, A. K. and 

Novoselov K. S.,2007)  . It has a high theoretical surface area of about ~2600 m2 g-1 that is 

higher than that of carbon or CNTs (10 or 1315 m2 g-1). It is sp2 hybridized and the out of 

plane π bonds are responsible for the high conductivity. Although these properties are 

interesting and highly useful for research purposes in different areas, they vary greatly with 

the quality of graphene (Chen, X-m. et al, 2011; Bollella, P et al., 2017) that is, number of 

layers, sheet size, degree of oxidation or defects, all of which depend in turn of the production 

procedures. Indeed, graphene materials with varied quality and price can be prepared in 

different ways considering the end application; broadly by mechanical or chemical exfoliation 

of graphite, vapor deposition or epitaxial growth etc. (Lee, H. C.2017). All this has made 

possible the use of graphene in broad range of applications  (Randviir, E.P. et al, 2014)  like 

solar cells (Roy-Mayhew, J. D. and I. A. Aksay, 2014) , energy storage (Dubal, D. P. et al, 

2017; Li, X. and L. Zhi, 2018) , electronics (Lee, S.-M. et al, 2015) , (bio)sensing (Shao, Y. et 

al, 2010; Justino, C. I. L. et al, 2017)  to name a few. Owing to such great properties of 

graphene, especially due to its high conductivity and high biomolecule loading as a result of 

high surface area, it is widely explored in the research of (electrochemical) biosensings  

(Pumera, M., 2011; Bo, X. et al, 2017 ), for instance, Tzu-YenHuang et al demonstrated the 

use of rGO composite with single-walled carbon nanotubes as an effective electrode material 

for electrochemical sening (Huang, T. U. et al, 2013). Apart from this, graphene can interact 

with the biomolecules using non covalent interactions like π-π or Hydrogen bonding making 

it more suitable for sensors application.  
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For Two formats are widely followed for DNA sensing taking advantage of rGO, either 

attaching (labelled or non-labelled) ssDNAs directly over Graphene sheet via π-π bonding or 

by modifying Graphene surface by using polymers, nanoparticles etc. that have available 

groups or sites for binding to the DNA. Most commonly used nanomaterial for this purpose 

are gold nanoparticles (AuNPs) which are typicaly attached to the modified ssDNA at one end 

via thiol-Au interactions (Lin, L. et al, 2011; Singh, A., 2013)  . 

Flexibility and portability are characteristics most expected for wearable electronic systems 

and is been used in fancy applications like implantable/wearable sensors (Ray, W. J. and 

Wang. J, 2013; Singh, E. et al, 2017) Joseph , OLEDs (Lee, J. Et al, 2016)  , transistors(Seo, 

J.-H et al, 2016)  , energy devices (Nagar, B. et al, 2018)  etc. Material of interest is usually 

printed over a flexible substrate (usually plastics) to make a cost efficient, compatible, flexible 

and easy to handle or use device. The ability to form nanoscale patterns and features over the 

flexible substrates offers us the advantage of more sensitivity and precision in the sensing 

devices along with low cost and easy handling. Several printing techniques like screen 

printing, inkjet printing, roll-to-roll, wax transfer/stamping technique etc. (Søndergaard, R. et 

al 2012; Li, J. Et al, 2015; Baptista-Pires, L. Et al, 2016; Mattana, G. and Briand D., 2016)   

are being used for the fabrication of electrodes. However, it is important to select a particular 

technique for a particular application. Particularly, our objective is the development of a 

Point-of-Care (POC) device, which requires  a fabrication technique that doesn’t need any 

post printing step for keeping the biomaterial unharmed, being wax stamping technique ideal 

in this case. POC have been widely used for decades now but is yet continuously refined 

according the user and manufacturer’s needs. The important features to be  fulfilled for POCs 

are (a) ease of fabrication, (b) cost effectiveness and (c) easy handling. The advancements in 

recent years have provided us with loads of new technological strategies to make improved 

devices for biorecognition, interactions and sensing (Quesada-Gonzalez, D., Merkoçi, A., 

2018) .   
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In this work, we used chemically exfoliated graphite as it promotes cost effective, large scale 

production of Graphene Oxide (GO; graphene sheets containing Oxygenated groups such as 

epoxides, alcohols or carboxyl groups on the surface or the edges of the sheets). The presence 

of these groups makes GO water dispersible which further helps in making water based inks 

for printing purposes. Such material was later reduced to reduced Graphene Oxide (rGO) and 

mixed with already conjugated gold nanoparticle/single stranded DNA probe 

(AuNPs/ssDNA). Later, wax stamping technique was applied to create the working electrode 

pattern made of the rGO/AuNPs/ssDNA composite over already screen-printed counter 

(carbon) and reference (Ag/AgCl) electrodes, allowing us to have a ready-to-use one-step 

electrochemical biosensor This strategy for patterning rGOe composite  doesn’t require harsh 

or toxic solvents helping us to get rid of the post printing steps (annealing) that could affect 

the functioning of the biorecognition element (DNA in this case). At the end, we get a sensing 

platofrm with uniform patterns integrated with the biorector,which is ready to be tested 

without any further steps (Figure 1). 
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Figure 1: DNA sensing principle. After stamping on the PET substrates, rGO/AuNPs /ssDNA is incubated with   the target 

ssDNA. DNA duplex formation causes an increase in impedance that is related with the amount of analyte. 

 

2. EXPERIMENTAL SECTION 

2.1. Oligonucleotides 

Synthetic oligonucleotides were obtained for Sigma-Aldrich. The target sequence employed 

corresponds to a region characteristic of the ECHO virus  (Coxsackie virus B3).  

Probe:   5’-Thi CCTGAATGCGGCTAATCCTA – 3’ 

Target:  5’-TAGGATTAGCCGCATTCA - 3’ 

Non-Complementary DNA : 5’ GCATCATAGGCAGTCAGGT 3’  

Oligonucleotide solutions were prepared in TE buffer, pH 8 (10mM Tris-HCl buffer solution, 

1 mM in EDTA) and maintained at -20ºC. Working solution of the oligonucleotide probe was 

made in 0.1M Tris. pH 7.2 buffer, while thiol labeled oligonucleotide target strand was 

diluted in a 2 x SSC buffer (300mM sodium chloride/30mM sodium citrate),pH 7.2. This 

solution was stored at 4ºC.  
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2.2. Chemicals and equipment 

The GO (Graphenea Graphene Oxide, 4 mg/ml) was purchased from Graphenea Inc 

(Cabridge, MA 02142, U.S.A). Sodium Citrate (HOC(COONa)(CH2COOH)2, Sodium 

chloride (NaCl), ascorbic acid (C6H8O6), BSA (Bovine serum albumin), Trizma® base 

(NH2C(CH2OH)3) and Gold(III) chloride hydrate (HAuCl4·H2O) were purchased from 

Sigma-Aldrich Quimica SL (Madrid, Spain). Potassium Haxacyanoferrate K3[Fe(CN)6]/ 

K4[Fe(CN)6], was purchased from Panreac Quimica S.L.U. Rest of the general chemicals 

were purchased from Sigma Aldrich (Spain). All chemicals were of analytical grade and used 

as received and All the aqueous solutions were prepared in Milli-Q water. 

Characterization of the materials, composites and prints were performed using Scanning 

Electrochemical Microscopy FEI Quanta 650 FEG ESEM  and FEI Magellan 400L (high 

resolution, HR-SEM) (The Netherlands), High resolution transmission electron microscopy 

(TEM) FEI Tecnai F20, , ultra-violet visible spectroscopy (UV-Vis),Cary 4000 UV-Vis 

Spectrophotometer, Agilent technologies, X-ray photoelectron Sepctroscopy (XPS), SPECS 

PHOIBOS 150 analyser (SPECS GmbH, Berlin, Germany). 

Xerox ColourQube 8570 wax printer  (compatible with WindowsTM, MacOSTM and UNIX) 

and Corel Draw software, Screen printing was performed using DEK 248 semi-automatic 

creenprinter (England) and the electrochemical studies were carried out using Autolab302 

Potentiostat/galvanostat PGST30 with the software GPES for cyclic voltammetry and FRA 

for impedace measurements. 
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2.3. Methods 

 Synthesis of rGO 

10 mg/mL Graphene oxide (GO) was provided by angstrom materials. It was reduced by 

exposing 100 mL of 1mg/mL GO (solution to 100 mg of ascorbic acid in an autoclave at 

121 ͦC for 45 min. 

AuNPs synthesis and conjugation with probe single-stranded DNA (ssDNA) 

16 nm sized AuNPs were synthesized using turkevich’s method (Turkevich, J. et al, 1951) . 

Briefly, 50 mL of 1% HAuCl4 solution was heated in an Erlynmeyer flask under vigorous 

stirring until boiling starts. Then, 1.25 mL of 1% sodium citrate was added while stirring 

continued. The reaction was kept under same conditions until 10 min and then the heating was 

stopped andthe reaction was let to cool. The color of the solution changes from deep blue to 

wine red, indicatingAuNPs formation. AuNPs suspension was stored at 4 ͦC protected from 

light until further use. 

 2.2.3. Conjugation of AuNPs with probe DNA (ssDNA) 

The particles were then conjugated with the thiol modified ssDNA probe sequence using the 

protocol described and pioneered by Mirkin et al (Mirkin, C. A. et al, 1996). For this, 190 µL 

of AuNPs were mixed with 10 µL of 1500 µg/mL thiolated sequence at 250 rpm for 20h at 25 

 ͦC. Later 50 µL of 10 mM phosphate buffer (pH 7) / 0.1M NaCl was added to the above 

solution and let it stand for 44h. Finally a centrifugation step at 14000 rpm at 4  ͦC for 20 min 

was carried out to extract the conjugated DNA which was reconstituted in 200 µL Mili-Q 

water for further use. Later, 0.1% BSA solution in milli-Q water was added to graphene and 

conjugated AuNPs in separate eppendorf tubes and mixed for 1h at 600rpm at room 

temperature and 4 ͦC respectively.  
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Figure 2 : Schematic of the printing strategy (top) pictures of the sensing platform (bottom). (a) wax printed design 

over the filter membrane; (b)  sequential filtering of the two solutions to form two layers;  (c) stamping of the filtered 

layer; (d) fully-printed electrode consisting of fully functional 3 electrodes for electrochemical measurements; (e) 

attachment of Kapton layer for insulation. 

 

  rGO and rGO/AuNPs/ssDNA patterning 

A hydrophilic nitrocellulose membrane (purchased from Merck) with a pore size of 25 µm 

and diameter of 47 mm was used for making patterns using the wax printer followed by 

filtration of the water based solutions were done- i) First layer of 3mL solution containing 1.7 

mL rGO (1.7mL; 0.25 mg/mL) hand mixed with 300 µL AuNPs/ssDNA was filtered and then 

ii) second layer was formed by adding 10 mL of 0.6 mg/mL rGO solution very carefully (not 

to disturb the already filtered layer) over the first layer. This was removed from the vacuum 

machine and then stamped over the already patterned (counter and reference) screen printed 

electrodes. Figure 2(a-e) shows the schematic printing steps (top) and corresponding pictures 

of the sensing platform (bottom). The procedure is done in the following way: at first, a 

specific design is wax printed onto the 25nm pore sized filter membranes (a), (b) which is 

then used for filtration of two solutions sequentially (First the mixture of rGO/AuNPs/ssDNA 
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and on top just rGO), (c) this filtererd membrane is then attached to the desired substrate 

(PET) and passed through the rollers that are already installed in the wax printer to provide 

the pressure. The substrate is made ready for this step by printing the other electrodes prior to 

wax stamping, that consisted of 2 steps (i) printing of silver layer for better conductivity and 

(ii) printing of counter layer (carbon) and reference layer (Ag/AgCl). (R.E and C.E 

respectively) using a screen-printer. the patterns were left to dry at 100  ͦC overnight to dry the 

solvents The working area however was left blank intentionally for stamping of Graphene or 

Graphene composites later. (d) is the printed electrode that is insulated with the kapton tape 

(e), ready to use for further measurement. Without any further modifications, these electrodes 

were used for electrochemical tests and biosensing. For hybridization step, 30µL of different 

concentrations of complementary and non-complementary DNAs (in 2 x SSC buffer, pH 7.2) 

(De la Escosura-Muñiz et al., 2007) were added to the working electrode of the sensor and 

incubated for 1 h at room temperature. It was then washed using PBS solution pH 7.4 before 

obtaining the electrochemical response. 

Long-term stability of the sensors was evaluated by storing rGO/AuNPs/ssDNA electrodes at 

4ºC when not used and hybridizing with the complementary ssDNA after 0,  5, 10, 15 and 20 

days.  

 

 Electrochemical set-up  

Once the electrodes were fabricated, their electrochemical performance was evaluated. The 

electrochemical studies of the printed electrode were always performed in a solution of 10mM 

PBS (Phosphate Buffer Saline) containing 20mM [Fe(CN)6]3-/4- as redox active probe. Firstly, 

Cyclic Voltammetry was  performed within the voltage range -0.5 to 0.8 V vs Ag/AgCl that 

provided us the oxidation and reduction peaks of Fe(III)/(II) which were taken as the 

reference peaks. It involved a preliminary study on the graphene concentrations as well as the 
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behavior of different modified printed electrodes. Later, DNA quantification studies were 

made using Electrochemical Impedance Spectroscopy (EIS) with the software FRA, carried 

out in the frequency range of 1000Hz to 0.05Hz. For all the measurements, 200µL of the 

electrolyte solution were placed on the electrode area (covering all the electrodes) under room 

temperature without interruption. The electrodes were connected with the potentiostat using a 

homemade edge connector module. 

3. RESULTS AND DISCUSSION 

3.1 Morphological characterizations 

Figure 3 : :Optical characterizations. HR-SEM images of the top view (a and b), cross sectional view (c and d), TEM 

images (e and f) of printed rGO and AuNps/rGO respectively. Insets SAED patters of rGO fig. 3(e) and AuNps size 

fig. 3(f) 
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 Figure 3 (a and b) shows the high resolution scanning electron microscopy (HR-SEM) top 

view images of printed rGO and rGO/AuNPs, whereas Figure 3 (c and d) shows SEM 

images corresponding to cross sectional view of the prints over the PET susbtrate. It was 

observed that the two layers were placed uniformly over the desired area of the electrode and 

that the conjugated AuNPs appeared only on the surface and not in the bulk. 

This was a strategy adopted to have mainly two benefits a) uniform deposition of the 

conjugated nanoparticles throughout the working electrode and b) to minimize quantity of the 

biorecognition element used. Another option was to use the rGO/AuNPs/ssDNA directly as 

the working electrode instead of filtering 2 layers. The transmission electron microscopy 

(TEM) image of graphene and its mixture with AuNPs is shown in Figure 3 (e and f 

respectively). It shows a thin and transparent morphology of the graphene nanosheets along 

with large size 3(e) and uniform AuNPs distributions in 3(f). The selected area electron 

diffraction pattern confirms the formation of graphene (inset). From Figure 3 (f) inset, it can 

be seen that AuNPs have a diameter of ~20 nm and are uniformly attached/adsorbed onto the 

graphene sheets.  

X-ray Photoelectron spectroscopy was utilized further to evaluate the elemental ratios of the 

binding states of the materials, as shown at Figure 4 (a-e).  To prepare it, layer of GO, rGO 

and rGO/AuNPs/ssDNA were filtered on different nitrocellulose filter membranes and used 

directly for the measurement. A very high degree of oxidation is shown for GO as seen from 

its C 1s spectra, Figure 4(b). It shows the different carbon oxygen bonds like Carboxyl 

(289eV), epoxide/hydroxl bonds (286.7eV). These peaks were changed after the reduction of 

GO in ascorbic acid was performed. In Figure 4 (c), a highest peak at 284.8eV was observed 

after the reduction procedure which corresponds to the graphitic carbon i.e. the energy of sp2 

C-C bonds along with drastic decrease in all the peaks related to the oxygen species (Hossain, 

M. F. and Park J. Y., 2014; Arul, R et al, 2016; Xu, J. et al, 2017;  Yu, X. et al, 20018) . Also, 
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mixture of rGO/AuNPs/ssDNA with BSA (used as blocking reagent for avoiding unspecific 

(used as blocking reagent for avoiding unspecific adsorptions) was studied using this 

technique. Two obvious peaks observed at 84 eV and 87.6 eV for Au 4f 7/2 and Au 4f5/2 

respectively with a difference of 3.6eV is an indication for the presence of Au nanoparticles , 

Figure 4(e) (H H Mevold, A. et al, 2015; Krishnan, G. and John S. A., 2015; Govindaraju, S. 

et al, 2017)  was observed. Figure 4 (d) shows the N 1s spectra of the mixture that 

corresponds to tertiary amines at 400.3 eV and protonated primary amines at 401.6eV (Zhang, 

F. and Srinivasan M. P., 2004; Yang, Y. et al 2009;  Stevens J. S. et al, 2013)  most likely 

coming from the BSA that is used to modify Graphene and AuNPs.adsorptions) was studied 

using this technique. Two obvious peaks observed at 84 eV and 87.6 eV for Au 4f 7/2 and Au 

4f5/2 respectively with a difference of 3.6eV is an indication for the presence of Au 

nanoparticles , Figure 4(e) (H H Mevold, A. et al, 2015; Krishnan, G. and John S. A., 2015; 

Figure 4 : X-ray Photoelectron spectroscopy (a)overall spectra of GO, rGO and rGO/AuNPswith BSA, core level XPS spectra of 

C 1s of (b) GO and (c) rGO, (d)N 1s and (e)Au 4f of rGO/Au nps modified with BSA  . (f) UV-Visible  spectra of GO, rGO, 

AuNPs and rGO/AuNPs 
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Govindaraju, S. et al, 2017) . Figure 4 (d) shows the N 1s spectra of the mixture that 

corresponds to tertiary amines at 400.3 eV and protonated primary amines at 401.6eV (Zhang, 

F. and Srinivasan M. P., 2004; Yang, Y. et al, 2009;  Stevens J. S. et al, 2013; Yu, B. et al, 

2014)  most likely coming from the BSA that is used to modify Graphene and AuNPs. Figure 

4(f) shows the UV-vis spectra of GO, rGO and rGO/AuNPs with BSA. Reduction of GO to 

rGO is visible from the spectra where GO shows the typical humps at 230 and 300 nm that 

corresponds to π-π* transitions of C=C bonds and n- π* transitions of C=O bonds respectively 

and changes to only one peak at 273nm due to a red shift and the peak at 300nm is 

disappeared indicating the formation of reduced graphene oxide. The presence of AuNPs can 

be confirmed with the peak spotted at 525 nm, however, after modifying the particles with 

BSA, the peaks shifted slightly to 528 nm suggesting successful modification with the 

protein. BSA is a protein that consists of The interaction of BSA with AuNPs can be 

explained by the hydrophobic interactions, the thiol-Au interactions (thiol or disulfide groups 

present in the amino acids of BSA; cysteine) or due to the interaction of amines or 

carboxylate groups with AuNPs (Zhang, Z. et al 2011; Amouzadeh Tabrizi, M. et al, 2014; 

Binaymotlagh, R. et al, 2016) .  

3.2 Electrochemical Testing 

3.2.1 Electrodes characterization using Cyclic voltammetry (CV)  

Cyclic voltammetry (CV) was initially employed to test the performance of the electrodes 

using 5.0 mM [Fe(CN)6]3-4-/0.1 M PBS as redox probe. At first, different concentrations of 

GO were tested in order to optimize the best thickness needed for conductivity and 

robustness. Figure 5 (a) shows the optical images (inset) and the CV for rGO filtered ranging 

from 0.1 to 1mg/mL. It was observed that at higher concentrations (>0.6mg/mL), the prints 

were non-uniform and uneven (inset) and the oxidation/reduction peaks shifted towards more 

positive/negative potential respectively without any considerable increase in the current 

Field Code Changed



 - 16 - 

values. At low concentrations (<0.6mg/ml), the current values where extremely low making it 

inefficient for further measurements (CV in Figure 5a). Consequently. 0.6 mg/mL was 

chosen as optimum concentration for all the final measurements. Next, study on 

electrochemical behavior of the optimized electrode was continued using CV. Figure 5(b) 

shows that the peak currents (Ipa and Ipc) linearly increase with the increasing scan rate. This 

is indicative of the fact that the ongoing electrochemical process of Fe(II) to Fe(III) was 

diffusion controlled. Also, the shift in oxidation/reduction peak positions with increasing scan 

rates demonstrates that the process was quasi- reversible since in a reversible process, the 

peak position is independent of the scan rate. This linear dependency of peak potential was 

plotted against the square root of scan rate, given in Figure 5c. Figure 5(d) are the signals 

obtained from electrodes of different printed materials. The signal decreases after the presence 

of ssDNA due to electrostatic repulsion from negatively charged DNA strands. This was 

decreased further after modifying the material with BSA, evidencing successful blocking of 

free sites that could cause non-specific adsorption. Later, after addition of 1µM target ssDNA, 

the current was seen decreasing more due to enhanced repulsion between the negatively 

charged DNA and negative ions from the electrolyte that hinders the charge transfer at 

electrode/electrolyte interface. 
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Figure 5 : (a) optimization of the rGO concentrations from 0.1 to 1mg/ml (i – v) with the images in the inset and their 

corresponding CV response, CV response of the electrode studied at  (a) different scan rates from 5 to 150mV/s b), Plot of 

Current vs the square  root of scan rate. Furthermore, at figure (c) is the response of different materials and target analytes at 

50mV/s (d) 

 

3.2.2 DNA quantification using Electrochemical Impedance Spectroscopy (EIS)  

After optimizing the graphene electrode and its quality testing, the electrodes were further 

used for performing impedance measurements. Electrochemical impedance spectroscopy 

(EIS) is very useful electrochemical technique that is generally performed to obtain more 

sensitive information about the changes and interactions going on at the interface. One of the 

way to interpret the data is through the Nyquist plot which typically consists of a semicircle at 

high frequency regions corresponding to blocking of the transferred charges at 

electrode/electrolyte interface. This is called the charge transfer resistance (RCT) which can be 

calculated by directly measuring the diameter of the semicircle. At high frequency regions it 

shows a line with a slope of around 45 ͦ which demonstrates a diffusion controlled process. 
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This typical behavior was exhibited by our graphene electrodes (as displayed in Figure 6a. 

Graphene electrodes showed a very low charge transfer resistance of 1.3kΩ which was seen 

increasing after modifying its surface by addition of conjugated AuNPs (rGO/AuNPs/ssDNA) 

to 2.7 kΩ . This correlates with the CV results and the explanation that the coated layer was 

blocking the electron transfer from [Fe(CN)6]3-/4- to the electrode surface as a result of 

electrostatic repulsion. It was observed that AuNPs treated with BSA exhibited larger Rct 

value than without the treated ones. This implied that the free sites on the synthesized AuNPs 

were successfully covered and the non-specific adsorption/attachment was minimized if not 

completely eliminated. Figure 6(a) shows the increase of resistance observed with increasing 

concentrations of the target probe from 0.01 to 25 µM increases of 3.5, 4.7, 5.6, 6.5 and 7.6 

kΩ were observed for 0.01, 0.1, 1, 10, 20 µM target ssDNA respectively. . For normalizing 

the response of the different electrodes, the increase in Rct for each sensor before and after the 

hybridization is considered as the analytical signal. Figure 6(b) gives the quantitative 

information on the increase in the value of such analytical signal with the amount of target 

ssDNA. A logarithmic range of response from 0.01 to 20 µM was observed, adjusted to the 

following equation: 

Increase in Rct (KΩ) = 148.82 ln [conc. ssDNA (M)] + 1344.5 

 with a correlation coefficient (r) of 0.994, with an average relative standard deviation (RSD) 

of 13%. A  limit of detection (LOD, calculated as the analyte concentration giving a signal 

equal to the blank signal +three times its standard deviation) of 0.18 nM of ssDNA is 

estimated. A linear range from 0.01 to 20 µM was observed with a correlation coefficient (r) 

of 0.97. Limit of detection (LOD, calculated as the analyte concentration giving a signal equal 

to the blank signal + three times its standard deviation) of 2.5 nM with an average relative 

standard deviation (RSD) of 13% was calculated. A non-significant increase in resistance was 

observed with the addition of blank buffer and 0.1µM non complementary ssDNA, 

demonstrating the specificity ssDNA due to electrostatic repulsion from negatively charged 
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DNA strands. This was decreased further after modifying the material with BSA, evidencing 

successful blocking of free sites that could cause non-specific adsorption. Later, after addition 

of 1µM target ssDNA (as an example), the current was seen decreasing more due to enhanced 

repulsion between the negatively charged DNA and negative ions from the electrolyte that 

hinders the charge transfer at electrode/electrolyte interface. Long-term stabilty study results 

suggest that the sensor performance remain unaffected during at least up to three weeks (see 

supporting information). Longer times were not evaluated in this preliminary work.  

The proposed biosensor showed comparable or enhanced performance than recently reported 

DNA sensors on  conventional screen printed electrodes, where detection limits at the nM 

levels are achieved i.e.4.7nM for  ebola Virus (Ilkhani, H. and Farhad S., 2018) and  35 and 

21nM for influenza genes (Subak, H. and Ozkan-Ariksoysal D., 2018).   Although, modifying 

graphene surfaces prior to printing and later DNA detection has result in sensors  with higher 

sensitivities, even at fM levels, (Chen, M. Et al, 2016; Chen, S. et al, 2016) ; , our approach 

exhibit clear advantages in terms of integration, simplicity and low time of analysis  It must 

also be noted that in this work, no additional conducting layer has been utilised for transfer of 

charges:graphene is the sole carrier for conduction as well as for anchoring AuNPs and 

ssDNA. This also opens the possibility directly adsorbing probe ssDNA (labelled or un 

labelled)  via π-π bonding onto graphene substrates and checking the elecrtrochemical or 

optical signals. 
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Figure 6: a) Impedimetric response of the electrode towards different concentrations of the complementary DNA (0.01 to 20 

µM) on different electrodes and (b) the  change of resistance for different target ssDNA concentrations as well as for the 

blank and the negative control 

4. CONCLUSION 

An innovative strategy of printed sensing platform  that requires only one step modification of 

the working electrode has been proposed and demonstrated. A composite containing the 

electrode material (rGO) as well as AuNPs connected with the  biorecognition element 

(ssDNA), was stamped onto a PET substrate.Such strategy eliminates the need of 

conventional modification steps of the electrode prior to testing. The electrode properties and 

materials were characterized and the printing procedure was carefully optimized. ssDNA 

characteristic of a virus was selected as model analyte, for the demonstration of the proof-of-

concept, based on changes in the impedimetric signal of the electrode, reaching a detection 
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limit of 2.5 nM. The performance of the system is comparable with those previously reported 

using conventional screen-printed carbon electrodes, but with clear advantages in terms of 

simplicity, integration and time of analysis. This successful proof-of-concept can be extended 

to other affinity biosensors, taking advantage of the integration of the bioreceptor (antibody, 

enzyme, etc) on the sensor surface. Such ready-to-use biosensor would lead to a one-step 

electrochemical detection.  

. 
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