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ABSTRACT  46 

 47 

Plants have evolved two major ways to deal with nearby vegetation or shade: 48 

avoidance and tolerance. Moreover, some plants respond to shade in different 49 

ways; for example, Arabidopsis thaliana undergoes an avoidance response to 50 

shade produced by vegetation, but its close relative Cardamine hirsuta tolerates 51 

shade. How plants adopt opposite strategies to respond to the same 52 

environmental challenge is unknown. Here, using a genetic strategy, we 53 

identified the C. hirsuta slender in shade1 (sis1) mutants, which produce 54 

strongly elongated hypocotyls in response to shade. These mutants lack the 55 

phytochrome A (phyA) photoreceptor. Our findings suggest that C. hirsuta has 56 

evolved a highly efficient phyA-dependent pathway that suppresses hypocotyl 57 

elongation when challenged by shade from nearby vegetation. This suppression 58 

relies, at least in part, on stronger phyA activity in C. hirsuta; this is achieved by 59 

increased ChPHYA expression and protein accumulation combined with a 60 

stronger specific intrinsic repressor activity. We suggest that modulation of 61 

photoreceptor activity is a powerful mechanism in nature to achieve 62 

physiological variation (shade tolerance vs. avoidance) for species to colonize 63 

different habitats.  64 

 65 

INTRODUCTION  66 

Understanding how plants colonize different habitats requires identifying 67 

the genetic differences underlying physiological variation between species. In 68 

this work, we focus on angiosperm responses to changes in light produced by 69 

nearby vegetation, perception of which alerts the plant to potential resource 70 

competition by other plants. Nearby vegetation is perceived as changes in light 71 

parameters: whereas sunlight has a high red (R) to far-red light (FR) ratio 72 

(R:FR, >1.1), proximity to vegetation lowers this ratio (Smith, 1982). Because 73 

vegetation specifically reflects FR, proximity to other plants initially results in a 74 

mild reduction in R:FR (<0.7) due to the FR enrichment. Eventually, when the 75 

vegetation canopy closes, sunlight is filtered by photosynthetic tissues, strongly 76 

reducing the intensity of the photosynthetic active radiation (PAR, between 400 77 

to 700 nm, which includes blue and R) while marginally affecting FR. As a 78 

result, R:FR resulting from natural canopy shade typically drops to lower values 79 

(<0.05) (Casal, 2012; de Wit et al., 2016; Martinez-Garcia et al., 2014; Smith, 80 

1982). In the laboratory, both vegetation proximity and canopy shade can be 81 

simulated by providing plants grown under white light (W, high R:FR) varying 82 

amounts of supplemental FR (W+FR; low or very low R:FR) while maintaining 83 
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total PAR, a treatment known as simulated shade (Casal, 2012; Roig-Villanova 84 

and Martinez-Garcia, 2016).  85 

Plants have two main strategies to acclimate to vegetation proximity and 86 

shade: avoidance or tolerance. In the early stages of development, shade-87 

avoider species invest energy into promoting elongation to overgrow their 88 

neighbors as part of the so-called shade avoidance syndrome (SAS). By 89 

contrast, shade-tolerant plants adopt other physiological and metabolic 90 

responses to adapt to a highly conservative utilization of resources, commonly 91 

accompanied by very low growth rates, i.e., do not involve promotion of 92 

elongation growth (Smith, 1982; Valladares and Niinemets, 2008). 93 

Analyses of the shade-avoider Arabidopsis thaliana laid the basis for our 94 

knowledge of the genetic components and mechanisms involved in the 95 

regulation of the SAS (Casal, 2012; Martinez-Garcia et al., 2010; Roig-Villanova 96 

and Martinez-Garcia, 2016). The shade signal is perceived by the phytochrome 97 

photoreceptors: phytochrome B (phyB) and phyA have major and antagonistic 98 

roles (respectively) in hypocotyl elongation, the most conspicuous A. thaliana 99 

response to low R:FR (Casal, 2012; Mathews, 2010). Lowering the R:FR to 100 

resemble either vegetation proximity or canopy shading, deactivates phyB in 101 

wild-type seedlings, resulting in the hypocotyl elongation promotion. By 102 

contrast, phyA accumulates and is strongly activated under very low R:FR to 103 

prevent excessive seedling elongation (Martinez-Garcia et al., 2014; Yang et 104 

al., 2018). Consistent with this, A. thaliana phyB-deficient mutants display 105 

constitutive shade responses under high R:FR whereas phyA mutant seedlings 106 

show enhanced hypocotyl elongation only under very low R:FR conditions, 107 

which indicates that phyA antagonizes phyB activity under these specific 108 

canopy shade conditions (Casal et al., 2014; Martinez-Garcia et al., 2014; Yang 109 

et al., 2018; Yanovsky et al., 1995).  110 

SAS responses are mainly initiated because of the interaction of active 111 

phytochromes with PHYTOCHROME INTERACTING FACTORs (PIFs), 112 

eventually triggering rapid changes in the expression of dozens of genes that 113 

implement the SAS responses. Genetic analyses in A. thaliana indicate that 114 

PIFs, which are basic-helix-loop-helix transcription factors, have a role in 115 

positively regulating the shade-triggered hypocotyl elongation. The active form 116 

of phyB interacts with PIFs and inhibits their transcriptional activity (Casal, 117 
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2012; Martinez-Garcia et al., 2010). After exposure to shade, the proportion of 118 

active phyB decreases and PIF activity increases. Enhanced PIF binding to G-119 

boxes of auxin biosynthetic genes (e.g. YUCCA genes) then promotes their 120 

expression, which results in a rapid (1-4 h) increase in free IAA that is required 121 

for the promotion of shade-induced hypocotyl elongation (Bou-Torrent et al., 122 

2014; Hornitschek et al., 2012; Li et al., 2012; Tao et al., 2008). In addition, 123 

nuclear-pore complex components and chloroplast-derived signals also prevent 124 

an excessive response to shade, providing additional regulatory levels of this 125 

response (Gallemi et al., 2016; Ortiz-Alcaide et al., 2019). 126 

There are, however, still major gaps in understanding the genetic and 127 

molecular regulation of SAS and, by extension, shade-tolerance traits. 128 

Comparative analyses using shade-avoiding and shade-tolerant species is 129 

expected to identify regulators of traits associated with shade tolerance habits 130 

(Gommers et al., 2013). Indeed, a comparative transcriptomic approach using 131 

two Geranium species with divergent petiole responses to shade unveiled 132 

components that might suppress growth in the shade-tolerant species 133 

(Gommers et al., 2017; Gommers et al., 2018). The use of related species but 134 

amenable for genetic analyses is expected to push this effort further to find 135 

regulatory components used in nature to modulate these divergent responses. 136 

This is what we are addressing in this work.  137 

Comparing A. thaliana and its close relative Cardamine hirsuta to 138 

understand the genetic basis for trait diversification between species is a 139 

powerful strategy to understand the evolution of morphological traits. Key to this 140 

approach is the wide morphological and physiological diversity between these 141 

species, such as differences in leaf morphology and seed dispersal mechanism 142 

among others (Barkoulas et al., 2008; Hay et al., 2014; Hofhuis et al., 2016; 143 

Vlad et al., 2014; Vuolo et al., 2016). Like A. thaliana, C. hirsuta has a short 144 

generation time, small size, inbreeding habit, abundant progeny and ease of 145 

large scale cultivation (Hay and Tsiantis, 2016; Hay et al., 2014). It is a diploid 146 

species with a small genome and eight chromosomes that has been completely 147 

sequenced (Gan et al., 2016). Genetic transformation by floral dipping, a dense 148 

genetic map and chemically mutagenized populations, provide the tools to 149 

identify the genetic components and molecular mechanisms underlying 150 

diversification or morphology and response to environment (Hay and Tsiantis, 151 
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2016). C. hirsuta is an invasive herbaceous plant that can grow in open sun but 152 

it is often found in shaded or semi-shaded areas. Indeed, C. hirsuta does not 153 

need much light to grow and their stems become purplish (likely to prevent 154 

oxidative damage) in strong sun 155 

(http://edis.ifas.ufl.edu/pdffiles/EP/EP51100.pdf; 156 

http://practicalplants.org/wiki/Cardamine_hirsuta; 157 

http://www.asturnatura.com/especie/cardamine-hirsuta.html; 158 

http://dnr.wi.gov/topic/Invasives/documents/classification/LR_Cardamine_hirsut159 

a.pdf; https://www.wildfooduk.com/edible-wild-plants/hairy-bittercress/). These 160 

observations are consistent with C. hirsuta being shade-tolerant (Bealey and 161 

Robertson, 1992). In agreement, whereas seedlings of A. thaliana elongate in 162 

response to shade, those of C. hirsuta are unresponsive to the same stimulus 163 

(Hay et al., 2014).  164 

The divergent hypocotyl response to shade of A. thaliana and C. hirsuta 165 

species led us to take a comparative approach to understand the genetic basis 166 

of the evolution of this physiological trait. We found that C. hirsuta has acquired 167 

a highly-efficient phyA-dependent pathway that represses hypocotyl elongation 168 

and other SAS-associated responses when exposed to simulated shade. After 169 

complementing A. thaliana phyA mutant plants with endogenous or C. hirsuta 170 

phyA molecules we concluded that these two photoreceptors are not 171 

exchangeable. Differences in phyA intrinsic activity hence contribute to a 172 

different response of C. hirsuta and A. thaliana to shade exposure.  173 

 174 

RESULTS  175 

C. hirsuta seedlings perceive low R:FR but do not elongate  176 

A recent study revealed that different species of the Tradescantia genus 177 

with divergent tolerance to shade showed clear differences in maximum 178 

quantum efficiency of photosystem II (Fv/Fm) upon variations of the growth light 179 

(Benkov et al., 2019). In particular, the sun-resistant T. sillamontana (a 180 

succulent growing in semi-desert regions of Mexico and Peru, hence adapted to 181 

high light intensities) was more tolerant to changes in irradiation intensity (i.e. 182 

showed a more constant Fv/Fm) than the shade-tolerant T. fluminensis 183 

(habitant of tropical rainforests and other shaded areas in south-eastern Brazil 184 

and hence adapted to grow under low light intensities).  185 

http://edis.ifas.ufl.edu/pdffiles/EP/EP51100.pdf
http://practicalplants.org/wiki/Cardamine_hirsuta
http://www.asturnatura.com/especie/cardamine-hirsuta.html
http://dnr.wi.gov/topic/Invasives/documents/classification/LR_Cardamine_hirsuta.pdf
http://dnr.wi.gov/topic/Invasives/documents/classification/LR_Cardamine_hirsuta.pdf
https://www.wildfooduk.com/edible-wild-plants/hairy-bittercress/
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Using a similar experimental system, we aimed to confirm whether C. 186 

hirsuta is a shade-tolerant plant compared to A. thaliana (a broadly accepted 187 

shade-avoider). Indeed, when wild-type seedlings of these two species (ChWT 188 

and AtWT) were transferred from normal white light (W) to conditions in which 189 

PAR was first increased 10-fold (high light, HL) and then reduced 5-fold relative 190 

to W (low light, LL) or viceversa, Fv/Fm changes were much more pronounced 191 

in ChWT (Supplemental Figure 1A). The lower capacity of ChWT to adapt to 192 

intense irradiation was confirmed by the bleaching symptoms (e.g., lower 193 

chlorophyll contents) observed in ChWT (but not in AtWT) upon transferring to HL 194 

(Supplemental Figure 1B). ChWT seedlings only showed a better performance 195 

than AtWT when transferred from W to LL. Rapid light curve (RLC) analysis 196 

confirmed that ChWT was better able to maintain its level of photosynthetic 197 

activity under LL conditions than AtWT (Supplemental Figure 1C), as expected 198 

for a shade-tolerant plant (Han et al., 2015).  199 

Besides differentially responding to decreased light quantity, plant 200 

species from open habitats show a stronger elongation response to reduced 201 

R:FR (i.e. light quality) compared to those from woodland shade habitats 202 

(Gommers et al., 2017; Smith, 1982). Further supporting the conclusion that C. 203 

hirsuta tolerates shade, ChWT failed to elongate their hypocotyls when exposed 204 

to a range of low R:FR treatments (i.e., W+FR), that mimic vegetation proximity 205 

(intermediate or low R:FR; 0.09 - 0.07) and canopy shade (very low R:FR; 0.02) 206 

(Supplemental Figure 2, Figure 1). W-grown ChWT hypocotyls, as well as 207 

cotyledons, are substantially longer than those of AtWT growing under the same 208 

conditions. ChWT hypocotyls were also longer than those of AtWT when growing 209 

in the dark (Figure 1C), indicating that C. hirsuta is overall bigger than A. 210 

thaliana. More importantly, when treated with growth stimulants, such as 211 

gibberellic acid (Hay et al., 2014) or picloram (PIC, a synthetic auxin), 212 

hypocotyls of both species elongate (Figure 1D). We therefore concluded that 213 

the elongation of C. hirsuta hypocotyls is not generally compromised, arguing 214 

against the possibility that this species displays a constitutive SAS phenotype.  215 

In A. thaliana, exposure to simulated shade also triggers the elongation 216 

of leaf petioles. We quantified the elongation response of the petiole and rachis 217 

in 2-week-old ChWT and AtWT plants subjected to 7 days of high (W) or low R:FR 218 

(W+FR). In agreement with previous studies (de Wit et al., 2015; Kozuka et al., 219 
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2010; Sasidharan et al., 2010), shade-treated AtWT leaves showed substantially 220 

longer petioles than those of plants grown under W. Petiole and rachis length in 221 

ChWT, however, was similar in leaves from plants grown under W or W+FR 222 

(Figure 1E, Supplemental Figure 3). These results together suggest that 223 

elongation responses to low R:FR are dramatically arrested in C. hirsuta plants.  224 

 225 

C. hirsuta shows other attenuated responses to shade  226 

Beyond elongation responses, low R:FR triggers a reduction in the levels 227 

of photosynthetic pigments, i.e., carotenoids and chlorophylls (Bou-Torrent et 228 

al., 2015; Cagnola et al., 2012; Roig-Villanova et al., 2007). While these 229 

pigments were also significantly reduced in shade-treated ChWT seedlings 230 

(Figure 1F), the decrease was less prominent than in AtWT. These results 231 

indicated that not all SAS responses are equally compromised in C. hirsuta.  232 

We next used RNA sequencing (RNA-seq) to compare the genome wide 233 

expression patterns of 7-day-old AtWT and ChWT whole seedlings in W versus 1 234 

h of simulated shade (W+FR) (Figure 2). Incorporating knowledge about gene 235 

orthology, 432 differentially expressed genes (DEGs) were categorized as 236 

rapidly regulated by shade in one species or in both. Plotting the W+FR vs. W 237 

fold-change in C. hirsuta against the same ratio in A. thaliana resulted in a 238 

linear regression equation with a slope of 0.54 (Figure 2B), which supported 239 

that shade-modulated changes in gene expression are also attenuated in C. 240 

hirsuta compared to A. thaliana. In A. thaliana, shade treatment induced 246 241 

(fold change>1.5, p<0.05,) and repressed 58 genes (fold change<-1.5, p<0.05,). 242 

In C. hirsuta, this same treatment induced 181 and repressed 54 genes 243 

(Supplemental Figure 4A, Supplemental Data Sets 1–4). From the set of 244 

induced DEGs, 102 responded in both species. They included several of the 245 

well-known shade-marker genes in A. thaliana and other species, such as 246 

ARABIDOPSIS THALIANA HOMEOBOX PROTEIN 2 (ATHB2), 247 

BRASSINOSTEROID-ENHANCED EXPRESSION 1 (BEE1), BES1-248 

INTERACTING MYC-LIKE1 (BIM1), LONG HYPOCOTYL IN FR 1 (HFR1) or 249 

XYLOGLUCAN ENDOTRANSGLYCOSYLASE 7 (XTR7) (Cifuentes-Esquivel et 250 

al., 2013; Karve et al., 2012; Procko et al., 2014; Ueoka-Nakanishi et al., 2011).  251 

Gene ontology (GO) and MapMan-Bin (MMB) functional prediction of 252 

these up-regulated gene group indicated that terms related to auxin were 253 
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significantly overrepresented (Supplemental Data Sets 5 and 6), suggesting an 254 

early role for auxins in both A. thaliana and C. hirsuta. Indeed, W+FR treatment 255 

for 1 h increased auxin (IAA) levels not only in AtWT, as published (Bou-Torrent 256 

et al., 2014; Hersch et al., 2014; Hornitschek et al., 2012; Tao et al., 2008), but 257 

also in whole ChWT seedlings (Figure 2C).  258 

Using public transcriptomic data, we identified a group of 13 genes 259 

whose expression was induced in A. thaliana wild-type seedlings but not in 260 

mutants that do not accumulate auxins (shade avoidance 3-2, (sav3-2) and pif7-261 

1) after 1 h of shade treatment (Bou-Torrent et al., 2014; Li et al., 2012; Tao et 262 

al., 2008). Based on our RNAseq data, the expression of these genes was 263 

significantly upregulated in AtWT and, to a lower extent, ChWT seedlings 264 

(Supplemental Figure 5), consistent with the observed increase in IAA content 265 

in both species. Since only A. thaliana elongates in response to shade 266 

exposure, either the observed early changes in gene expression and auxin 267 

levels are not reflecting the differences in hypocotyl growth between these 268 

species, or the elongation is consequence of differential later events.  269 

In our RNAseq analyses, 55 and 49 DEGs were specifically repressed in 270 

either AtWT or ChWT seedlings, respectively, and just 3 genes were repressed in 271 

both species. Regarding up-regulated genes, 142 and 79 DEGs were 272 

specifically induced either in AtWT or in ChWT, respectively (Supplemental Figure 273 

4A). GO and MMB functional prediction of the 142 DEGs specific for AtWT 274 

showed genes related to several aspects of plant development, whereas the 79 275 

DEGs specifically induced in ChWT showed enrichment for genes related with 276 

the photosynthetic machinery. Particularly, C. hirsuta rapidly responds by 277 

inducing the expression of genes encoding components of both photosystems I 278 

and II, the NADH dehydrogenase-like complex (involved in chlororespiration) 279 

and both small and large subunits of plastidial ribosomes (Supplemental Figure 280 

5B, Supplemental Data Sets 5 and 6). Whether these rapid changes are 281 

maintained after prolonged exposure to shade or have any functional relevance 282 

is unknown. Nonetheless, these transcriptome differences support that the two 283 

mustard species employ alternative strategies to adapt to plant proximity and 284 

shade that go further from the modulation of elongation growth.  285 

Comparative approaches have been used before to investigate the 286 

differential response to shade of related species. Transcriptomic analyses using 287 
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two Geranium species that display divergent shade-induced petiole elongation 288 

(G. pyrenaicum as a shade avoider or responsive, and G. robertianum as a 289 

shade tolerant) identified a series of 31 up-regulated genes that included a 290 

number of candidate regulators of differential shade avoidance (Gommers et al., 291 

2017). In these two species, putatively orthologous transcript groups (OMCL) 292 

were defined, and the best BLAST hit with the A. thaliana transcriptome was 293 

used to name Geranium OMCL groups (Gommers et al., 2017). When we 294 

compared our lists of shade-regulated genes with the Geranium OMCLs 295 

differentially regulated after 2 h of low R:FR in the petioles, we found that the 296 

number of genes up-regulated in both shade-tolerant and shade-avoider 297 

species was higher for the AtWT/ChWT pair than between the Geranium species 298 

(Supplemental Figure 4C; Supplemental Data Sets 7 and 8). GO analyses did 299 

not identify any function from the lists of genes specifically induced in either G. 300 

pyrenaicum or G. robertianum. Overlap was very limited between the sets of 301 

repressed genes. Together, the contrasting rapid shade-induced gene 302 

expression changes might either support differences in the early molecular 303 

mechanisms between the Geranium and mustard groups, or just reflect the 304 

differences in tissues (whole seedlings vs. leaf petioles) and/or shade and 305 

growth conditions (continuous light vs. photoperiod) between experiments.  306 

We also analyzed the changes in gene expression of PIF3-LIKE 1 (PIL1) 307 

and ATHB2, two typical shade-marker genes, in response to longer (up to 8 h) 308 

exposure to low R:FR. Expression of PIL1 and ATHB2 were rapidly induced in 309 

both mustard seedlings after simulated shade exposure. However, the relative 310 

induction of the expression of these genes was attenuated in ChWT compared to 311 

AtWT (Figure 2D). Together, our results indicate that C. hirsuta seedlings sense 312 

plant proximity and respond molecularly and metabolically to it; however, this 313 

signal does not promote hypocotyl elongation in C. hirsuta as it does in the 314 

shade-avoider A. thaliana.  315 

 316 

Shade-induced elongation in C. hirsuta is repressed  317 

To explain the hypocotyl elongation differences between A. thaliana and 318 

C. hirsuta, we hypothesized two mutually exclusive mechanisms: (i) 319 

uncoupling: shade perception is specifically unplugged from the endogenous 320 

mechanisms of control of hypocotyl elongation, or (ii) suppression: there are 321 
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mechanisms that strongly suppress the shade-induced elongation of 322 

hypocotyls. To distinguish between these possibilities, a genetic screening 323 

looking for C. hirsuta seedlings with long hypocotyls under simulated shade (> 6 324 

mm long) was carried out, using an EMS-mutagenized population (Vlad et al., 325 

2014). If suppression mechanisms exist, then loss-of-function mutants that 326 

unleash shade-induced hypocotyl elongation might be recovered. Indeed, from 327 

the various long hypocotyl seedlings identified we focused in two slender in 328 

shade (sis) mutants, shown to be recessive and allelic. After backcrossing these 329 

mutants twice with the ChWT plants, homozygous mutants had slightly longer 330 

hypocotyls in W than the wild type, and very long hypocotyls under W+FR. We 331 

named the mutants as sis1-1 and sis1-2 (Figure 3). These results indicated that 332 

(1) loss-of-function (recessive) mutations support the “suppression” 333 

mechanisms in C. hirsuta to establish shade-tolerance; and (2) a single gene, 334 

SIS1, is able to repress the elongation response to shade in C. hirsuta. 335 

As a first step to explore SIS1 identity, we determined whether light 336 

perception was altered in sis1 mutants by analyzing hypocotyl length after de-337 

etiolation under monochromatic lights. We noticed that ChWT seedlings were 338 

quite hyposensitive to R compared to AtWT (Figure 3B), suggesting that an 339 

attenuated phyB signaling might result in a constitutive SAS hypocotyl 340 

response, causing the observed suppression of the shade-induced hypocotyl 341 

elongation. Considering the relationship between the attenuated 342 

responsiveness to R and the strength of the shade-induced hypocotyl 343 

elongation of the weak phyB-4 and strong phyB-1 A. thaliana mutant seedlings 344 

(Figure 3C,D), the hyposensitivity to R observed in ChWT might contribute but is 345 

not enough to fully suppress the shade-induced hypocotyl elongation in this 346 

species. Therefore, additional components are required to establish the shade-347 

tolerant hypocotyl habit in C. hirsuta. Indeed, mutant sis1 seedlings, although 348 

slightly hyposensitive to R and blue light, were fully blind to FR compared to 349 

ChWT seedlings (Figure 3B).  350 

A very similar pattern of response was also shown by A. thaliana phyA-351 

deficient phyA-501 seedlings (Figure 3B) (Li et al., 2011), which suggested that 352 

sis1 seedlings might be deficient in phyA activity or signaling. Sequencing of the 353 

C. hirsuta PHYA (ChPHYA) gene from sis1-1 and sis1-2 plants showed point 354 

mutations (transitions) that introduced either a nonsense mutation in Gln935 (in 355 
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sis1-1) or a missense mutation in the conserved Gly913 (in sis1-2) (Figure 3E, 356 

Supplemental Figure 6A). Immunoblot analyses using a specific monoclonal 357 

antibody against phyA (073D), indicated that only sis1-1 was lacking phyA 358 

(Figure 3D). Consistent with this, C. hirsuta lines with reduced activity of phyA 359 

by overexpressing an RNA interference construct directed towards the ChPHYA 360 

gene (lines 35S:RNAi-ChPHYA) also resulted in a sis phenotype (Supplemental 361 

Figure 6B-D). Together, these results indicated that sis1 are C. hirsuta phyA 362 

deficient mutants (for clarity, we will keep the sis1 mutant name along the 363 

manuscript to distinguish it from the phyA mutants from A. thaliana). They also 364 

suggested that shade tolerance in C. hirsuta might be caused by the existence 365 

of a phyA-dependent suppression mechanism that represses the hypocotyl 366 

elongation response to shade.  367 

Molecular analyses showed that the relative induction of PIL1 and 368 

ATHB2 expression was enhanced in both sis1 mutants compared to ChWT 369 

seedlings after more than 4 h of simulated shade exposure (Figure 4). This 370 

relatively late effect of ChPHYA absence (sis1) on gene expression is 371 

consistent with what was observed in A. thaliana phyA mutants (Ciolfi et al., 372 

2013). We also measured the levels of photosynthetic pigments (carotenoids 373 

and chlorophylls) after long-term exposure to low R:FR, in wild-type and phyA-374 

deficient A. thaliana and C. hirsuta seedlings. Simulated shade triggered a 375 

stronger decrease in the accumulation of these pigments in phyA-501, sis1-1 376 

and sis1-2 seedlings compared to wild-type controls (Figure 4B), hence 377 

indicating that phyA represses this trait in both species, likely to avoid 378 

exaggerated losses of photosynthetic pigments in response to vegetation 379 

proximity and shade.  380 

Phytochrome A represses the shade-induced hypocotyl elongation in A. 381 

thaliana caused by the deactivation of phyB only under conditions that mimic 382 

closed canopies, i.e., under very low R:FR (Casal et al., 2014; Martinez-Garcia 383 

et al., 2014; Yanovsky et al., 1995). Indeed, A. thaliana phyA deficient mutants 384 

behaved almost like AtWT seedlings under various shade mimicking conditions 385 

except for the lowest R:FR tested (Figure 4C). By contrast, C. hirsuta sis1 386 

mutants behaved differently than its ChWT under all the low R:FR applied 387 

(Figure 4D), indicating that phyA has a broader role in suppressing the shade-388 

induced hypocotyl elongation in C. hirsuta than in A. thaliana.  389 
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 390 

C. hirsuta has higher phyA activity than A. thaliana  391 

Our results suggested the possibility that phyA activity is higher in the 392 

shade-tolerant C. hirsuta than in the shade-avoider A. thaliana. Higher phyA 393 

activity can be achieved by at least two alternative and non-exclusive ways: 394 

higher phyA levels and/or higher specific (intrinsic) activity of the photoreceptor. 395 

To analyze these possibilities, we first aimed to compare PHYA expression 396 

levels in AtWT and ChWT seedlings. Data extracted from our RNAseq experiment 397 

indicated that the expression of several commonly-used reference genes, such 398 

as EF1α or YLS8 (Gallemi et al., 2017b; Hornitschek et al., 2009; Kohnen et al., 399 

2016), was within the same range (Supplemental Table 1). Then, we quantified 400 

PHYA expression levels in AtWT and ChWT seedlings growing under W or W+FR 401 

(Figure 5) using primers that recognize the sequence of the target gene (PHYA) 402 

and three normalizer genes (EF1, SPC25, YLS8) in both species 403 

(Supplemental Figure 7). Expression of PHYA was significantly higher in C. 404 

hirsuta than in A. thaliana seedlings (two-way ANOVA tests, p<0.05) in 405 

seedlings of different ages grown under W or W+FR conditions (Figure 5B).  406 

Higher expression of PHYA in C. hirsuta might result in higher phyA 407 

protein levels, contributing to an increased phyA activity in this species. Our 408 

immunoblot analyses showed that PHYA protein levels were significantly higher 409 

in C. hirsuta than A. thaliana etiolated seedlings (Figure 5D). More importantly, 410 

whereas PHYA levels almost disappear after 6 h of W exposure in both species, 411 

C. hirsuta seedlings maintained higher PHYA levels than A. thaliana when 412 

exposed to W+FR for 6-10 h (Figure 5C-D). Together, these results support that 413 

PHYA levels in C. hirsuta are generally higher than in A. thaliana seedlings, 414 

even under shade conditions. This observation is consistent with the strongest 415 

difference in hypocotyl length under W of wild-type and phyA-deficient seedlings 416 

from C. hirsuta compared to A. thaliana (Figure 4C-D, Supplemental Figure 6D) 417 

(Martinez-Garcia et al., 2014). Furthermore, transgenic overexpression of PHYA 418 

has been shown to attenuate shade-triggered hypocotyl elongation in A. 419 

thaliana seedlings and stem elongation in other species (Heyer et al., 1995; 420 

Robson et al., 1996; Roig-Villanova et al., 2006). 421 

To compare AtphyA and ChphyA specific (intrinsic) activities, 422 

complementation analyses of the A. thaliana phyA-501 mutant were carried out 423 
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with the AtPHYA or ChPHYA genes under the control of the endogenous 424 

promoter of AtPHYA (pAtPHYA:AtPHYA or pAtPHYA:ChPHYA, respectively). 425 

The resulting lines were named as phyA>AtPHYA and phyA>ChPHYA (Figure 426 

6). We obtained a total of 5 independent phyA>AtPHYA lines and 7 427 

independent phyA>ChPHYA lines with different transcript and protein levels 428 

(Supplemental Figure 8). To estimate PHYA protein levels we used etiolated 429 

seedlings, as phyA is photolabile. Because PHYA expression is repressed by 430 

light via phyA and phyB (Canton and Quail, 1999), RNA was extracted from 431 

seedlings either grown in the dark or under W+FR (Supplemental Figure 8A). 432 

PHYA expression in seedlings grown in these two conditions correlated 433 

positively in both phyA>AtPHYA (R2=0.79) and phyA>ChPHYA lines (R2=0.79) 434 

(Supplemental Figure 8B). The slope of these equations, however, was 435 

significantly higher (p<0.05) for phyA>AtPHYA (7.49) than phyA>ChPHYA 436 

(2.81) lines. Specifically, phyA>AtPHYA and phyA>ChPHYA lines with 437 

comparable PHYA expression levels in the dark showed lower PHYA 438 

expression under simulated shade when complemented by ChPHYA 439 

(phyA>ChPHYA) compared to AtPHYA (phyA>AtPHYA). These results pointed 440 

to a stronger activity for the ChphyA protein in repressing its own (PHYA) 441 

expression.  442 

For the comparison of AtphyA and ChphyA activities, we initially studied 443 

their effect on the promotion of the shade-induced hypocotyl elongation in 444 

transgenic lines. AtWT and phyA-501 seedlings were incorporated as controls. In 445 

these experiments, the difference in hypocotyl length between seedlings grown 446 

under W+FR vs. W (HypW+FR-HypW) provided values indicative of the 447 

complementation level (or phyA biological activity) for the response analyzed. 448 

Consequently, in these analyses, the lower the HypW+FR-HypW value, the higher 449 

the phyA activity. Opposite to that observed with transcript levels (Supplemental 450 

Figure 8C), HypW+FR-HypW correlated well with ChPHYA but not with AtPHYA 451 

protein levels (Supplemental Figures 8D). These results together indicate that 452 

the two photoreceptors are not fully exchangeable and suggest different intrinsic 453 

qualities (i.e., biological activity) between the phyA receptors of A. thaliana and 454 

C. hirsuta. 455 

When lines with comparable PHYA protein levels were selected (Figure 456 

6B), the response to shade (HypW+FR-HypW) was more strongly attenuated by 457 
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ChPHYA (Figure 6C-D). As an additional way to test for phyA activity, we 458 

estimated hypocotyl elongation in seedlings etiolated (HypD) and deetiolated 459 

under monochromatic FR (HypFR). In this case, the higher the difference 460 

between these two values (HypD-HypFR), the stronger the activity of phyA. 461 

Similar to the shade response analyses, ChphyA showed a stronger activity 462 

than AtphyA in deetiolating seedlings under FR (Figure 6E-F). A good 463 

correlation between these two phyA-mediated responses was also found when 464 

all the lines were considered together (Supplemental Figure 8E), reinforcing our 465 

interpretation that ChphyA is intrinsically more active than AtphyA.  466 

The expression of dozens of auxin-responsive genes is repressed by 467 

phyA after just 1 h of very low R:FR treatment (Yang et al., 2018). As an 468 

additional and complementary test of phyA biological activity different from 469 

hypocotyl elongation we evaluated the repressive effect of AtphyA and ChphyA 470 

on the expression of these genes. First, we selected 1-AMINO-471 

CYCLOPROPANE-1-CARBOXYLATE SYNTHASE 8 (ACS8), GRETCHEN 472 

HAGEN 3.3 (GH3.3), INDOLE-3-ACETIC ACID INDUCIBLE 19 (IAA19) and 473 

IAA29, four auxin-responsive genes described as repressed phyA targets (Yang 474 

et al., 2018). As expected, the shade-induced expression of these genes was 475 

attenuated in AtWT compared to phyA-501 seedlings, but under our shade 476 

conditions the differences were most obvious after long exposure to W+FR 477 

(Figure 7).  478 

The expression of the same genes was next quantified in seedlings from 479 

the various phyA>AtPHYA and phyA>ChPHYA lines grown for 24 h under 480 

W+FR. When plotting transcript levels of phyA target genes as a function of 481 

PHYA expression in these lines, the clouds of data corresponding to 482 

phyA>ChPHYA lines (red) were separated from that of phyA>AtPHYA lines 483 

(blue) (Figure 7B). Importantly, the expression of all phyA target genes tested 484 

was overall lower in phyA>ChPHYA than phyA>AtPHYA lines, indicating that 485 

ChphyA repressed more efficiently gene expression than AtphyA (Figure 7B). 486 

Consistent with this conclusion, the expression of these and other phyA target 487 

genes (Yang et al., 2018) was attenuated in shade-induced seedlings of ChWT 488 

compared to AtWT (Supplemental Figure 9). Together, these data further support 489 

that ChphyA is intrinsically more active than AtphyA.  490 

 491 
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DISCUSSION 492 

Currently, the genetic basis of shade tolerance is poorly understood. To 493 

address this open question, we have focused on comparative analyses of the 494 

hypocotyl response to shade in young seedlings of two related mustards, A. 495 

thaliana and C. hirsuta. Shade avoidance and tolerance are ecological concepts 496 

originated from the natural habitats of plants species (Callahan et al., 1997). 497 

Hence, defining the shade habit of a species is difficult because shade 498 

tolerance is not an absolute value but a relative concept; indeed, plants may 499 

exhibit different strategies during the juvenile and adult phases of their lives 500 

(Valladares and Niinemets, 2008). Despite the uncertainty, A. thaliana is 501 

generally considered as shade avoider and it is a model broadly used to study 502 

the SAS hypocotyl response, but there is little information referring to its 503 

physiological shade-responsiveness habit. C. hirsuta, by contrast, has been 504 

previously described as a shade tolerant species whose hypocotyls are 505 

unresponsive to shade (Bealey and Robertson, 1992; Hay et al., 2014), but little 506 

is known about other shade response mechanisms. Here we confirm that, as 507 

expected for a shade-tolerant species, C. hirsuta showed a much better 508 

capacity to acclimate to LL than to HL compared to A. thaliana (Supplemental 509 

Figure 1). Most strikingly, C. hirsuta seedlings failed to elongate in response to 510 

simulated proximity or canopy shade (Figure 1). Such a dramatic hypocotyl 511 

elongation response compared to A. thaliana makes these two related species 512 

good candidates for comparative analyses of divergent responses to shade.  513 

Our comparative and genetic analyses suggest that the absence of a 514 

shade-induced hypocotyl elongation in C. hirsuta is not caused by defects on 515 

the rapid biosynthesis of auxin in seedlings (Figure 2). Although we cannot 516 

exclude local defects in auxin biosynthesis (e.g., in hypocotyls) that might be 517 

masked by collecting whole seedlings, our conclusion is consistent with the lack 518 

of effect of phyA on the rapid shade-induced biosynthesis of auxin (Yang et al., 519 

2018). On the contrary, we favor that the differences in hypocotyl elongation 520 

between these species is the result of a suppression mechanisms sustained by 521 

the stronger activity of the ChphyA photoreceptor, likely enhanced by the 522 

attenuated ChphyB activity (Figure 3B). A stronger intrinsic (specific) repressor 523 

activity of ChphyA would result in a strong suppression of the elongation of C. 524 

hirsuta seedlings when exposed to shade (Figure 8). The underlying 525 
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mechanism likely relies, at least partly, upon suppression of auxin signaling via 526 

phyA directly binding and stabilizing AUX/IAA proteins, as it has been shown in 527 

A. thaliana (Yang et al., 2018). In this scenario, ChphyA seems to suppress not 528 

auxin biosynthesis but signaling more strongly than AtphyA, as deduced from 529 

the results with transgenic lines (Figure 7B) but also from the stronger 530 

repression in shade of auxin-responsive genes with a putative role in auxin-531 

signaling (e.g., several IAA and SAUR genes) detected in ChWT compared to 532 

AtWT (Supplemental Figure 9).  533 

AtphyA and ChphyA might achieve different activities by changes in 534 

particular residues that could alter susceptibility to post-translational 535 

modifications. For instance, phyA stability, Pfr to Pr reversion rate upon shade 536 

treatment or/and interaction with protein partners (e.g., PIF1/PIF3, FHY1/FHL, 537 

AUX/IAA) affect phyA activity in A. thaliana (Dieterle et al., 2005; Genoud et al., 538 

2008; Kim et al., 2004; Oka et al., 2012; Seo et al., 2004; Sheerin et al., 2015). 539 

These intrinsic differences might be also enhanced by changes in protein 540 

abundance of phyA or/and other components in its signaling pathway 541 

specifically acting in light-grown seedlings (see below). Comparison of the 542 

amino acid sequences of AtphyA and ChphyA, however, did not point to any 543 

obvious specific residue or region that could be responsible for the observed 544 

intrinsic differences in activity (Supplemental Figure 10). This is an issue that 545 

would need future research.  546 

The genetic mechanisms underlying physiological evolution remain 547 

largely unknown, but changes in the timing, location and levels of gene 548 

expression (i.e., cis-regulatory evolution of key genes) have caused much of 549 

morphological evolution changes (Carroll, 2008). Our data on PHYA expression 550 

and PHYA protein levels (Figure 5) agree with this view, but they go a step 551 

beyond by showing that differences in protein (ChphyA and AtphyA) intrinsic 552 

activities also contribute to differential responses to shade (Figure 6-7). As both 553 

components (levels vs. intrinsic activity) are intimately connected (e.g., phyA 554 

represses its own expression in a light-dependent manner), at this stage it is 555 

difficult to quantify the specific contribution of each one. Moreover, additional 556 

components might contribute: while we show that phyA is a central component 557 

of a range of regulators that can be modulated in nature to implement shade 558 

tolerance, the observation that none of the phyA>ChPHYA lines display a 559 
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shade-tolerant habit (Supplemental Figure 8D) strongly suggests that additional 560 

downstream components of the shade-regulatory network are also participating 561 

in suppressing this response in C. hirsuta (e.g., differences in phyB activity). 562 

Indeed, it cannot be excluded that the mutant screen, despite identifying an 563 

important regulator, did not establish the causal difference between the two 564 

species in terms of shade-induced hypocotyl elongation. Nonetheless, our 565 

results unveil the importance of modulating photoreceptor activity as a powerful 566 

evolutionary mechanism in nature to achieve physiological variation between 567 

species, hence enabling the colonization of new, different habitats. In addition, 568 

searching for variability in phyA function could provide a suitable tool to modify 569 

the impact of neighbors’ cues in crops to minimize yield losses.  570 

 571 

MATERIALS AND METHODS  572 

Plant material and plant growth conditions 573 

Plants of Arabidopsis thaliana Col-0 (AtWT) phyA-501 (in Col-0 background), 574 

phyB-1, phyB-4 (both phyB deficient lines are in Ler background), and 575 

Cardamine hirsuta, of the reference Oxford (Ox) accession (ChWT), have been 576 

described (Hay et al., 2014; Martinez-Garcia et al., 2014; Reed et al., 1993). 577 

Plant growth conditions have been described elsewhere (Gallemi et al., 2016; 578 

Martinez-Garcia et al., 2014). Normal light conditions refer to W produced by 579 

cool-white vertical fluorescent tubes (PAR of 20-24 µmol·m-2·s-1). Low and high 580 

light conditions corresponded to PAR values of 4 and 200 µmol·m-2·s-1, 581 

respectively. Shade treatments in seedlings were provided by enriching W 582 

(R:FR of 2.5) with different intensities of FR LEDs (730-nm peak; Philips 583 

Greenpower Research modules) to produce the indicated R:FR (0.091 to 0.021) 584 

without altering PAR. Light spectra are presented in Supplemental Figure 2. For 585 

estimating petiole and rachis length, rosette plants were grown under long day 586 

(LD, 16 h light, 8 h dark) photoperiods, in which W was generated by cool-white 587 

horizontal fluorescent tubes (PAR of 100 µmol m-2 s-1, R:FR of 3.0); for shade 588 

treatments, W was supplemented with FR (W+FR, PAR of 100 µmol m-2 s-1, 589 

R:FR of 0.05). Fluence rates were measured with a Spectrosense2 meter 590 

associated with a 4-channel sensor (Skye instruments Ltd., 591 

www.skyinstruments.com) which measures PAR (400-700 nm) and 10 nm 592 

windows in the blue (464-473 nm), R (664-673 nm) and FR (725-734 nm) 593 

http://www.skyinstruments.com/
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regions (Gallemi et al., 2017b). Light spectra were generated using a Flame 594 

Model Spectrometer with Sony Detector (FLAME-S) (https://oceanoptics.com).  595 

 596 

Hypocotyl, petiole and rachis measurements  597 

For hypocotyl measurement, about 30 seeds of each genotype were 598 

germinated on the plates for observing the seedling phenotype and at least 20 599 

seedlings were measured for quantification of hypocotyl length. All experiments 600 

were repeated at least three times with consistent results. Hypocotyl 601 

measurements from all the different experiments were averaged. For petiole 602 

measurement, about 30 seeds of each genotype were germinated under 603 

continuous W. One week later, 20 seedlings in a similar stage of development 604 

were transferred to individual pots and moved to a LD growth chamber (R:FR of 605 

3.0). After one week, half of the rosette plants stayed under W and the other 606 

half were moved to a W+FR shelf (R:FR of 0.05). After one week of differential 607 

R:FR treatment, leaves were harvested and petiole was measured; in the case 608 

of complex leaves from C. hirsuta, rachises were measured, covering the 609 

distance from the base of the leaf until the base of the main leaflet 610 

(Supplemental Figure 3). At least 8 leaves were measured for quantification of 611 

petiole and rachis length for each leaf number. Experiments were repeated four 612 

times with consistent results. Petiole and rachis measurements from all four 613 

experiments were averaged.  614 

 615 

Photosynthetic pigment quantification and chlorophyll fluorescence. 616 

Whole 7-day-old seedlings of the indicated genotypes and grown under W or 617 

W+FR (Figures 1 and 4) or transferred to HL conditions (Supplemental Figure 618 

1B) were harvested, ground in liquid nitrogen, and the resulting powder was 619 

used for quantification of chlorophylls and carotenoids spectrophotometrically or 620 

by HPLC, as described (Bou-Torrent et al., 2015).  621 

Fluorescence measurements were carried out on seedlings grown under 622 

different light regimes using a MAXI-PAM fluorometer (Heinz Walz GmbH). For 623 

every measurement the whole cotyledons of 7 seedlings were considered. 624 

Maximum quantum yield of photosystem II (PSII), Fv/Fm, was calculated as 625 

(Fm-Fo)/Fm, where Fm and Fo are respectively the maximum and the minimum 626 

fluorescence of dark-adapted samples. For dark acclimation, plates were 627 
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incubated for at least 30 minutes in darkness to allow the full relaxation of 628 

photosystems. Rapid light curves (RLCs) were constructed with 10 incremental 629 

steps of actinic irradiance (E; 0, 1, 21, 56, 111, 186, 281, 396, 531, 701 μmol 630 

photons m-2 s-1). For each step, the effective quantum yield of PSII (ΔF/Fm’) 631 

was monitored every min and relative electron transport rate (rETR) was 632 

calculated as E×ΔF/Fm’. The light response was characterized by fitting 633 

iteratively, using MS Excel Solver, the model of Platt (1980) to rETR versus E 634 

curves. The fit was very good in all the cases (r>0.98).  635 

 636 

Expression analyses by RT-qPCR and RNA-seq  637 

RNA was extracted from whole seedlings of A. thaliana and C. hirsuta (grown 638 

as detailed in each experiment, three biological replicates per time point, each 639 

biological replicate composed of 30-40 seedlings) using commercial kits 640 

(RNAeasy Plant Mini kit; Qiagen; www.qiagen.com; or the semi-automatic 641 

Maxwell SimplyRNA kit; Promega; www.promega.com). For real-time qPCR 642 

analysis, two micrograms of RNA were reverse-transcribed using the M-MLV 643 

Reverse Transcriptase (Invitrogen, www.lifetechnologies.com) or Transcriptor 644 

First Strand cDNA synthesis (Roche, lifescience.roche.com). Reference genes 645 

used were UBQ10, EF1α, SPC25 or/and YLS8.  646 

For RNA-seq analyses, quantification of gene expression was performed 647 

as indicated elsewhere (Gan et al., 2016) and detailed as Supplemental 648 

information. From the lists of genes, we selected as differentially expressed 649 

those whose fold change was significantly (p adjusted < 0.05) and higher than 650 

1.5 (Supplemental Data Sets 1 and 3) or lower than 0.67 (Supplemental Data 651 

Sets 2 and 4) in seedlings treated for 1 h with W+FR compared to those grown 652 

under W in either C. hirsuta (Supplemental Data Sets 1 and 2) or A. thaliana 653 

(Supplemental Data Sets 3 and 4).  654 

 655 

Gene Ontology (GO) and MapMan analysis  656 

A strict synteny based approach was used to identify conserved orthologs 657 

between the two species. The A. thaliana orthologs of the C. hirsuta genes were 658 

used for getting the GO term annotations and MapMan-Bins. The GO term 659 

annotations for A. thaliana genes, used as a reference, were obtained from The 660 

Gene Ontology Consortium (http://www.geneontology.org/) (Ashburner et al., 661 

http://www.qiagen.com/
http://www.promega.com/
http://www.geneontology.org/
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2000). The results are presented as Supplemental Data Set 5. For the 662 

MapMan-Bin analyses, each list of genes were submitted to the “Mercator” 663 

gene function prediction pipeline (Lohse et al., 2014), that annotates the query 664 

genes with the hierarchical ontology MapMan-Bins (Klie and Nikoloski, 2012; 665 

Thimm et al., 2004). Based on these MMB annotations, exact Fischer tests for 666 

function enrichment within the six groups of differentially expressed genes were 667 

carried out and interpreted (Supplemental Data Set 6).  668 

 669 

Protein extraction and immunoblot analysis  670 

Methods for extracting and detecting phyA protein levels in A. thaliana or C. 671 

hirsuta seedlings (Gallemi et al., 2017b; Martinez-Garcia et al., 1999) are 672 

detailed as follows. Protein extracts from C. hirsuta seedlings analyzed in 673 

Figure 3 and Supplemental Figure 6 were prepared following the direct extract 674 

protocol (Martinez-Garcia et al., 1999) with the modifications described below. 675 

Extracts were prepared from ChWT, sis1 and RNAi-ChPHYA seedlings 676 

germinated and grown in the dark for 4 days. Ten seedlings per genotype were 677 

harvested in the dark and extracted in 1.5 mL microfuge tubes containing 300 678 

µL of Laemmli buffer supplemented with protease inhibitors (10 µg/mL 679 

Aprotinin, 1 µg/mL E-64, 10 µg/mL Leupeptin, 1 µg/mL Pepstatin A, 100 µM 680 

PMSF). These extracts were prepared in duplicate and similar results were 681 

observed. Plant material was ground using disposable grinders in the 682 

Eppendorf tube at room temperature until the mixture was homogeneous 683 

(usually less than 15 s). Once all the samples were prepared, tubes were 684 

placed in boiling water for 3 minutes. Tubes were centrifuged in a microfuge at 685 

maximum speed (13000 g, 10 min) immediately before loading. Fifteen µL of 686 

each extract, equivalent to about 0.5 seedlings, were loaded per lane in an SDS 687 

- 8% PAGE.  688 

Protein extracts analyzed in Figure 5 were prepared from AtWT and ChWT 689 

seedlings grown as indicated in the figure legend. Extracts were obtained from 690 

four biological replicates. Protein extracts analyzed in Figure 6 were prepared 691 

from AtWT, phyA-501, phyA>AtPHYA and phyA>ChPHYA seedlings germinated 692 

and grown in the dark for 4 days, as described (Gallemi et al., 2017a). Extracts 693 

were obtained from three biological replicates. Each biological replicate was 694 

obtained from about 100 seedlings. Protein concentration in these extracts was 695 
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determined using the Pierce BCA Protein Assay kit (Cat no. 23225; 696 

www.thermofisher.com). Five or 7.5 µg of each extract were loaded per lane in 697 

an SDS - 8% PAGE.  698 

Immunoblot analyses of PHYA and TUB were performed at the same 699 

time with the antibodies (073D, commercial anti-TUB) and dilutions indicated 700 

elsewhere (Martinez-Garcia et al., 2014). Anti-mouse horseradish peroxidase-701 

conjugated antibody (www.promega.com) was used as a secondary antibody. 702 

ECL or ECL-plus chemiluminescence kits (www3.gehealthcare.com) were used 703 

for detection. Signal was visualized and quantified using the ChemiDoc Touch 704 

Imaging System (www.bio-red.com).  705 

 706 

Hormone analyses 707 

Hormone extraction and analysis were carried out as described (Durgbanshi et 708 

al., 2005) with a few modifications. Briefly, 0.02 g of dry tissue (about 150 AtWT 709 

seedlings and 100 ChWT seedlings) was extracted in 1 mL of ultrapure water 710 

after spiking with 50 ng of [2H2]-IAA, in a ball mill (MillMix20, Domel, Železniki, 711 

Slovenija). After centrifugation at 4000 g at 4ºC for 10 min, supernatants were 712 

recovered and pH adjusted to 3 with 30% acetic acid. The water extract was 713 

partitioned twice against 2 mL of diethyl ether and the organic layer recovered 714 

and evaporated under vacuum in a centrifuge concentrator (Speed Vac, Jouan, 715 

Saint Herblain Cedex, France). Once dried, the residue was resuspended in a 716 

10:90 MeOH:H2O solution by gentle sonication. The resulting solution was 717 

filtered through 0.22 µm polytetrafluoroethylene membrane syringe filters (Albet 718 

S.A., Barcelona, Spain) and directly injected into an ultra performance LC 719 

system (Acquity SDS, Waters Corp., Milford, MA, USA). Chromatographic 720 

separations were carried out on a reversed-phase C18 column (Gravity, 50 × 721 

2.1 mm, 1.8-µm particle size, Macherey-Nagel GmbH, Germany) using a 722 

MeOH:H2O (both supplemented with 0.1% acetic acid) gradient at a flow rate of 723 

300 µL min−1. IAA was quantified with a TQS triple quadrupole mass 724 

spectrometer (Micromass, Manchester, UK) connected online to the output of 725 

the column though an orthogonal Z-spray electrospray ion source.  726 

 727 

Data availability 728 

http://www.thermofisher.com/
http://www.bio-red.com/
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The Illumina RNA-seq reads are available from the website 729 

http://chi.mpipz.mpg.de/assembly. Source code of BAMLINK is available at 730 

http://chi.mpipz.mpg.de/software. The data that support the findings of this 731 

study are also available from the corresponding author on request.  732 

 733 

Accession Numbers 734 

Sequence data from this article can be found in the Arabidopsis Genome 735 

Initiative or the C. hirsuta (http://chi.mpipz.mpg.de/assembly) databases under 736 

the following accession numbers: AtATHB2 (At4g16780), ChATHB2 737 

(CARHR223400), AtPIL1 (At2g46970), ChPIL1 (CARHR142340), AtUBQ10 738 

(At4g05320), AtPHYA (At1g09570), ChPHYA (CARHR009540), ACS8 739 

(At4g37770), GH3.3 (At2g23170), IAA19 (At3g15540), IAA29 (At3g15540), 740 

AtEF1α (At5g60390), ChEF1α (CARHR274060 and CARHR274080), SPC25 741 

(At2g39960), ChSPC25 (CARHR134880 and CARHR134890), YLS8 742 

(At5g08290) and ChYLS8 (CARHR204840).  743 

 744 

Supplemental Data  745 

Supplemental Figure 1. Photosynthetic-related responses of A. thaliana and 746 

C. hirsuta seedlings to changing light conditions.  747 

 748 

Supplemental Figure 2. Light spectra of the treatments used in this study.  749 

 750 

Supplemental Figure 3. Longitudinal length of A. thaliana and C. hirsuta 751 

leaves respond differently to simulated shade.  752 

 753 

Supplemental Figure 4. A. thaliana and C. hirsuta seedlings change gene 754 

expression differently in response to simulated shade.  755 

 756 

Supplemental Figure 5. The expression of a set of shade-induced but auxin-757 

dependent genes, identified in A. thaliana, is also shade-induced in C. hirsuta.  758 

 759 

Supplemental Figure 6. Reduction of phyA activity in C. hirsuta seedlings 760 

results in a sis phenotype.  761 

 762 

http://chi.mpipz.mpg.de/assembly
http://chi.mpipz.mpg.de/assembly
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Supplemental Figure 7. Partial alignment of ChPHYA/AtPHYA, 763 

ChEF1/AtEF1, ChSPC25/AtSPC25 and ChYLS8/AtYLS8 sequences. 764 

765 

Supplemental Figure 8. Strategies to compare biological activity between 766 

AtphyA and ChphyA in transgenic lines. 767 

768 

Supplemental Figure 9. The expression of a set of shade-induced phyA-769 

repressed genes, identified in A. thaliana, is attenuated in C. hirsuta.  770 

771 

Supplemental Figure 10. Alignment of C. hirsuta and A. thaliana phyA amino 772 

acid sequences.  773 

774 

Supplemental Table 1. RPKM of eight genes commonly used for normalizing 775 

in RT-qPCR analyses.  776 

777 

Supplemental Table 2. Primers used in this work. 778 

779 

Supplemental Data Set 1. Bioset of up-regulated genes in C. hirsuta seedlings 780 

in response to simulated shade. 781 

782 

Supplemental Data Set 2. Bioset of down-regulated genes in C. hirsuta 783 

seedlings in response to simulated shade.  784 

785 

Supplemental Data Set 3. Bioset of up-regulated genes in A. thaliana 786 

seedlings in response to simulated shade.  787 

788 

Supplemental Data Set 4. Bioset of down-regulated genes in A. thaliana 789 

seedlings in response to simulated shade. 790 

791 

Supplemental Data Set 5. Results of Venn Diagrams of the GO categorization. 792 

793 

Supplemental Data Set 6. Functional enrichment groups based on the 794 

MapMan-Bin analyses. 795 

796 
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Supplemental Data Set 7. Bioset of shade-regulated OMCL groups in 797 

Geranium pyrenaicum petioles in response to simulated shade. 798 

 799 

Supplemental Data Set 8. Bioset of shade-regulated OMCL groups in 800 

Geranium robertianum petioles in response to simulated shade. 801 

 802 

Supplemental Data Set 9. Summary of statistical tests.  803 
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841 

FIGURE LEGENDS 842 

843 

Figure 1. A. thaliana and C. hirsuta differ in the hypocotyl elongation 844 

response to neighboring vegetation. (A) Phenotype of representative 845 

seedlings of wild-type A. thaliana (AtWT) and C. hirsuta (ChWT) after 3 days 846 

grown in W and retained in W (left panels) or transferred to W+FR (R:FR of 847 

0.02; right panels) until day 7 (d7). Scale bar, 5 mm. (B) Hypocotyl length of d7 848 

AtWT and ChWT seedlings grown for the last 4 days under the indicated R:FR. 849 

(C) Hypocotyl length of d4 AtWT and ChWT seedlings grown in darkness. (D) 850 

Hypocotyl length of d7 AtWT and ChWT seedlings grown under W in media 851 

supplemented with increasing concentrations of picloram (PIC). (E) Petiole and 852 

rachis length of 3-week-old leaves of AtWT and ChWT plants grown for the last 7 853 

days under the indicated R:FR. (F) Carotenoid (CRT) and chlorophyll (CHL) 854 

levels of AtWT and ChWT seedlings grown in W and W+FR (as detailed in A). 855 

Values are means and s.e.m. of three to five independent samples. Asterisks 856 

indicate significant differences (**p<0.01) relative to W-grown plants. 857 

858 

Figure 2. A. thaliana and C. hirsuta seedlings respond to neighboring 859 

vegetation by altering gene expression. (A) RNA-seq was performed with 860 

RNA extracted from AtWT and ChWT seedlings that were grown in W for 7 days 861 

(d7) and then treated for 1 h with W+FR (R:FR = 0.02). White circles indicate 862 

the moment of harvesting for RNA extraction. Three independent biological 863 

replicates were used for each genotype and treatment. (B) Correlation between 864 
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log-transformed fold-change of 432 DEGs in AtWT and ChWT. The estimated 865 

regression equation is shown at the top of the graph. (C) IAA content in AtWT 866 

and ChWT seedlings grown and harvested as indicated in A. Whole seedlings 867 

were collected and lyophilized to measure IAA levels. Data are presented as the 868 

means and s.e.m. of three (AtWT) or four (ChWT) biological replicates. DW, dry 869 

weight. (D) Effect of W+FR treatment on PIL1 and ATHB2 expression in AtWT 870 

and ChWT seedlings (R:FR = 0.02). W-grown d7 seedlings of Col-0 and Ox were 871 

treated for 0, 1, 4 and 8 h with W+FR. Transcript abundance, normalized to 872 

EF1 is shown. Values are means and s.e.m. of three independent RT-qPCR 873 

biological replicates relative to values at 0 h for each species. In C and D, 874 

asterisks indicate significant differences (**p<0.01, *p<0.05) relative to 0 h 875 

samples.  876 

877 

Figure 3. Mutant sis1 seedlings of C. hirsuta are deficient in phyA activity. 878 

(A) Phenotype of representative seedlings of ChWT, sis1-1 and sis1-2 after 3 879 

days grown in W and retained in W (white panels) or transferred to W+FR 880 

(R:FR of 0.02; pink panels) until day 7 (d7). All panels are to the same scale. 881 

(B) Hypocotyl length of AtWT, phyA-501 (A. thaliana), ChWT, sis1-1 and sis1-2 882 

(C. hirsuta) lines grown for 4 days in darkness (Dark) or under monochromatic 883 

FR (2.6 µmol·m-2·s-1), R (38.9 µmol·m-2·s-1) and blue (B, 1.9 µmol·m-2·s-1) light. 884 

(C) Hypocotyl length of A. thaliana Ler, phyB-4 and phyB-1 seedlings grown for885 

4 days in darkness (Dark) or under monochromatic R (40.6 µmol·m-2·s-1) light. 886 

(D) Hypocotyl length of A. thaliana Ler, phyB-4 and phyB-1 seedlings under the887 

indicated R:FR. Seedlings were grown for 2 days in W (R:FR > 2.5) and then 888 

kept in W (R:FR > 2.5) or transferred to W+FR (R:FR of 0.06 or 0.02) until day 7 889 

(d7). (E) Schematic diagram of the lesions found in the ChPHYA gene in the 890 

sis1-1 and sis1-2 alleles compared to the wild-type sequence (ChWT) and the 891 

predicted changes in the amino acid sequence. (F) Immunoblot detection of 892 

phyA and tubulin with mouse monoclonal anti-phyA (073D) and anti-TUB 893 

antibodies in extracts of etiolated seedlings of ChWT, sis1-1 and sis1-2 lines.  894 

895 

Figure 4. C. hirsuta sis1 seedlings are impaired in their tolerance to plant 896 

proximity. (A) Effect of W+FR treatment on PIL1 and ATHB2 expression in 897 

ChWT sis1-1- and sis1-2 seedlings. Seedlings were grown as in Figure 2D. 898 
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Transcript abundance, normalized to EF1 is shown. Values are means and 899 

s.e.m. of three independent RT-qPCR biological replicates relative to values at900 

0 h for each genotype. Asterisks indicate significant differences (**p<0.01) 901 

relative to 0 h samples. (B) Carotenoid (CRT) and chlorophyll (CHL) levels of 902 

AtWT and phyA-501 A. thaliana and ChWT, sis1-1 and sis1-2 C. hirsuta seedlings 903 

grown in W and W+FR (as detailed in Figure 1A). Values are means and s.e.m. 904 

of five independent samples. Asterisks indicate significant differences 905 

(**p<0.01) relative to W-grown plants. (C,D) Hypocotyl length of d7 AtWT, phyA-906 

501 (A. thaliana) (C) and ChWT, sis1-1, sis1-2 (C. hirsuta) (D) seedlings grown 907 

for the last 4 days under the indicated R:FR. Asterisks indicate significant 908 

differences (*p<0.05, **p<0.01) relative to the corresponding wild-type plant 909 

grown under the same R:FR. In D, asterisks apply for both sis1 mutants.  910 

911 

Figure 5. C. hirsuta seedlings have higher phyA levels than those of A. 912 

thaliana. (A) Cartoon showing the design of the experiment. Wild-type 913 

seedlings of A. thaliana (AtWT) and C. hirsuta (ChWT), grown as in Figure 1A, 914 

were harvested at the indicated times of W or W+FR treatments (asterisks) for 915 

RNA extraction. (B) Evolution of PHYA transcript levels in A. thaliana and C. 916 

hirsuta wild-type seedlings grown as detailed in A. Primers used (Supplemental 917 

Figure 8A) allow quantifying and comparing expression levels by RT-qPCR 918 

between both species. PHYA transcript abundance was normalized to three 919 

reference genes (EF1, SPC25 and YLS8). Values are means and s.e.m. of 920 

three independent RT-qPCR biological replicates relative to PHYA transcript 921 

levels of d3 A. thaliana seedlings. Two-way ANOVA showed that PHYA levels 922 

are significantly different (**p<0.01) between species under either W or W+FR. 923 

(C) Immunoblot detection of phyA and tubulin with the antibodies indicated in924 

Figure 3C in extracts of AtWT and ChWT seedlings grown as detailed at the top of 925 

the section: 5-day-old etiolated seedlings were exposed to W light and material 926 

was harvested before and after 6 h of W-exposure (arrows). (D) Evolution of 927 

relative phyA protein levels (PHYA:TUB) in AtWT and ChWT seedlings exposed to 928 

simulated shade, as detailed at the top of the section: 5-day-old etiolated 929 

seedlings were exposed to W+FR light and material was harvested before and 930 

after 6, 8 and 10 h of simulated shade exposure (arrows). Values are means 931 

and s.e.m. of four independent biological replicates relative to PHYA:TUB levels 932 
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of etiolated AtWT seedlings. Two way ANOVA showed that relative PHYA levels 933 

under W+FR are significantly increased (**p<0.01) in C. hirsuta than A. thaliana.  934 

 935 

Figure 6. ChphyA has a stronger activity than AtphyA in repressing 936 

shade-induced hypocotyl elongation. (A) Cartoon detailing the constructs 937 

used to complement A. thaliana phyA-501 mutant plants. (B) Relative 938 

PHYA:TUB in etiolated seedlings of AtWT, phyA-501, and selected 939 

phyA>AtPHYA (blue bars) and phyA>ChPHYA (red bars) complementation 940 

lines. Seedlings were grown as indicated in Supplemental Figure 8. Values are 941 

means and s.e.m. of four independent biological replicates relative to 942 

PHYA:TUB levels of etiolated AtWT seedlings. (C) Cartoon illustrating how phyA 943 

activity in simulated shade was established as differences in hypocotyl length 944 

between simulated shade- and the W-grown seedlings (HypW+FR-HypW). 945 

Seedlings were grown for 2 days under W then for 5 additional days under W or 946 

W+FR (R:FR = 0.02), when hypocotyls were measured. (D) HypW+FR-HypW in 947 

seedlings of AtWT, phyA-501, and selected phyA>AtPHYA (blue bars) and 948 

phyA>ChPHYA (red bars) complementation lines. (E) Cartoon illustrating how 949 

phyA activity in de-etiolation was established as differences in hypocotyl length 950 

between dark- and FR-grown seedlings (HypD-HypFR). Seedlings were grown as 951 

indicated in Figure 3B. (F) HypD-HypFR in seedlings of AtWT, phyA-501, and 952 

selected phyA>AtPHYA (blue bars) and phyA>ChPHYA (red bars) 953 

complementation lines. In C and E, mutant phyA-501 seedlings have no phyA 954 

activity.  955 

 956 

Figure 7. ChphyA has a stronger activity than AtphyA in repressing 957 

shade-induced expression of ACS8, GH3.3, IAA19 and IAA29 genes. (A) 958 

Effect of phyA in the shade-induced expression of ACS8, GH3.3, IAA19 and 959 

IAA29. W-grown d5 seedlings of AtWT and phyA-501 were treated for 0, 1, 8 and 960 

24 h with W+FR (R:FR = 0.02), when material was harvested for RNA 961 

extraction, as indicated at the top of the panel. Transcript abundance, 962 

normalized to EF1 is shown. Values are means and s.e.m. of three 963 

independent RT-qPCR biological replicates relative to values at 0 h for AtWT. 964 

Asterisks indicate significant differences (**p<0.01, *p<0.05) between phyA-501 965 

and AtWT seedlings exposed for the same time to W+FR. (B) Correlation 966 
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between ACS8, GH3.3, IAA19 and IAA29 expression and relative levels of 967 

PHYA protein in the seedlings of AtWT, phyA-501, phyA>AtPHYA (blue lines and 968 

dots) and phyA>ChPHYA (red lines and dots) complementation lines. Gene 969 

expression was quantified in W-grown d5 seedlings exposed to W+FR 970 

(R:FR=0.02) during 24 h, as indicated at the top of the panel. Transcript 971 

abundance was normalized to EF1. Relative phyA protein levels (PHYA:TUB, 972 

data already shown in Supplemental Figure 8) were estimated in etiolated 973 

seedlings. Values are means and s.e.m. of three independent RT-qPCR 974 

biological replicates relative to values of AtWT. The estimated regression lines 975 

for the phyA>AtPHYA (blue line) and phyA>ChPHYA (red line) 976 

complementation lines are shown for each correlation. 977 

978 

Figure 8. Model of how increased phyA activity in C. hirsuta might 979 

implement the shade tolerance of hypocotyl elongation. Increases in phyA 980 

activity caused by the constitutive overexpression of PHYA also attenuate the 981 

shade-induced hypocotyl elongation in transgenic plants, and it results in 982 

partially tolerant A. thaliana seedlings. 983 
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Figure 1. A. thaliana and C. hirsuta differ in the hypocotyl elongation response to neighboring 
vegetation. (A) Phenotype of representative seedlings of wild-type A. thaliana (AtWT) and C. hirsuta (ChWT) 
after 3 days grown in W and retained in W (left panels) or transferred to W+FR (R:FR of 0.02; right panels) 
until day 7 (d7). Scale bar, 5 mm. (B) Hypocotyl length of d7 AtWT and ChWT seedlings grown for the last 4 
days under the indicated R:FR. (C) Hypocotyl length of d4 AtWT and ChWT seedlings grown in darkness. (D) 
Hypocotyl length of d7 AtWT and ChWT seedlings grown under W in media supplemented with increasing 
concentrations of picloram (PIC). (E) Petiole and rachis length of 3-week-old leaves of AtWT and ChWT plants 
grown for the last 7 days under the indicated R:FR. (F) Carotenoid (CRT) and chlorophyll (CHL) levels of 
AtWT and ChWT seedlings grown in W and W+FR (as detailed in A). Values are means and s.e.m. of three to 
five independent samples. Asterisks indicate significant differences (**p<0.01) relative to W-grown plants. 
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Figure 2. A. thaliana and C. hirsuta seedlings respond to neighboring vegetation by altering gene 
expression. (A) RNA-seq was performed with RNA extracted from AtWT and ChWT seedlings that were grown 
in W for 7 days (d7) and then treated for 1 h with W+FR (R:FR = 0.02). White circles indicate the moment of 
harvesting for RNA extraction. Three independent biological replicates were used for each genotype and 
treatment. (B) Correlation between log-transformed fold-change of 432 DEGs in AtWT and ChWT. The 
estimated regression equation is shown at the top of the graph. (C) IAA content in AtWT and ChWT seedlings 
grown and harvested as indicated in A. Whole seedlings were collected and lyophilized to measure IAA 
levels. Data are presented as the means and s.e.m. of three (AtWT) or four (ChWT) biological replicates. DW, 
dry weight. (D) Effect of W+FR treatment on PIL1 and ATHB2 expression in AtWT and ChWT seedlings (R:FR 
= 0.02). W-grown d7 seedlings of Col-0 and Ox were treated for 0, 1, 4 and 8 h with W+FR. Transcript 
abundance, normalized to EF1  is shown. Values are means and s.e.m. of three independent RT-qPCR 
biological replicates relative to values at 0 h for each species. In C and D, asterisks indicate significant 
differences (**p<0.01, *p<0.05) relative to 0 h samples.  
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Figure 3. Mutant sis1 seedlings of C. hirsuta are deficient in phyA activity. (A) Phenotype of 
representative seedlings of ChWT, sis1-1 and sis1-2 after 3 days grown in W and retained in W (white panels) 
or transferred to W+FR (R:FR of 0.02; pink panels) until day 7 (d7). All panels are to the same scale. (B) 
Hypocotyl length of AtWT, phyA-501 (A. thaliana), ChWT, sis1-1 and sis1-2 (C. hirsuta) lines grown for 4 days 
in darkness (Dark) or under monochromatic FR (2.6 µmol·m-2·s-1), R (38.9 µmol·m-2·s-1) and blue (B, 1.9 
µmol·m-2·s-1) light. (C) Hypocotyl length of A. thaliana Ler, phyB-4 and phyB-1 seedlings grown for 4 days in 
darkness (Dark) or under monochromatic R (40.6 µmol·m-2·s-1) light. (D) Hypocotyl length of A. thaliana Ler, 
phyB-4 and phyB-1 seedlings under the indicated R:FR. Seedlings were grown for 2 days in W (R:FR > 2.5) 
and then kept in W (R:FR > 2.5) or transferred to W+FR (R:FR of 0.06 or 0.02) until day 7 (d7). (E) 
Schematic diagram of the lesions found in the ChPHYA gene in the sis1-1 and sis1-2 alleles compared to the 
wild-type sequence (ChWT) and the predicted changes in the amino acid sequence. (F) Immunoblot detection 
of phyA and tubulin with mouse monoclonal anti-phyA (073D) and anti-TUB antibodies in extracts of etiolated 
seedlings of ChWT, sis1-1 and sis1-2 lines.  
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Figure 4. C. hirsuta sis1 seedlings are impaired in their tolerance to plant proximity. (A) Effect of 
W+FR treatment on PIL1 and ATHB2 expression in ChWT sis1-1- and sis1-2 seedlings. Seedlings were grown 
as in Figure 2D. Transcript abundance, normalized to EF1α is shown. Values are means and s.e.m. of three 
independent RT-qPCR biological replicates relative to values at 0 h for each genotype. Asterisks indicate 
significant differences (**p<0.01) relative to 0 h samples. (B) Carotenoid (CRT) and chlorophyll (CHL) levels 
of AtWT and phyA-501 A. thaliana and ChWT, sis1-1 and sis1-2 C. hirsuta seedlings grown in W and W+FR (as 
detailed in Figure 1A). Values are means and s.e.m. of five independent samples. Asterisks indicate 
significant differences (**p<0.01) relative to W-grown plants. (C,D) Hypocotyl length of d7 AtWT, phyA-501 (A. 
thaliana) (C) and ChWT, sis1-1, sis1-2 (C. hirsuta) (D) seedlings grown for the last 4 days under the indicated 
R:FR. Asterisks indicate significant differences (*p<0.05, **p<0.01) relative to the corresponding wild-type 
plant grown under the same R:FR. In D, asterisks apply for both sis1 mutants.  
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Figure 6. ChphyA has a stronger activity than AtphyA in repressing shade-induced hypocotyl 
elongation. (A) Cartoon detailing the constructs used to complement A. thaliana phyA-501 mutant plants. (B) 
Relative PHYA:TUB in etiolated seedlings of AtWT, phyA-501, and selected phyA>AtPHYA (blue bars) and 
phyA>ChPHYA (red bars) complementation lines. Seedlings ere grown as indicated in Supplemental Figure 
8. Values are means and s.e.m. of four independent biological replicates relative to PHYA:TUB levels of
etiolated AtWT seedlings. (C) Cartoon illustrating how phyA activity in simulated shade was established as
differences in hypocotyl length between simulated shade- and the W-grown seedlings (HypW+FR-HypW). 
Seedlings were grown for 2 days under W then for 5 additional days under W or W+FR (R:FR = 0.02), when 
hypocotyls were measured. (D) HypW+FR-HypW in seedlings of AtWT, phyA-501, and selected phyA>AtPHYA 
(blue bars) and phyA>ChPHYA (red bars) complementation lines. (E) Cartoon illustrating how phyA activity in 
de-etiolation was established as differences in hypocotyl length between dark- and FR-grown seedlings 
(HypD-HypFR). Seedlings were grown as indicated in Figure 3B. (F) HypD-HypFR in seedlings of AtWT, phyA-
501, and selected phyA>AtPHYA (blue bars) and phyA>ChPHYA (red bars) complementation lines. In C and 
E, mutant phyA-501 seedlings have no phyA activity. 
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Figure 7. ChphyA has a stronger activity than AtphyA in repressing shade-induced expression of ACS8, GH3.3, 
IAA19 and IAA29 genes. (A) Effect of phyA in the shade-induced expression of ACS8, GH3.3, IAA19 and IAA29. W-
grown d5 seedlings of AtWT and phyA-501 were treated for 0, 1, 8 and 24 h with W+FR (R:FR = 0.02), when material was 
harvested for RNA extraction, as indicated at the top of the panel. Transcript abundance, normalized to EF1α is shown. 
Values are means and s.e.m. of three independent RT-qPCR biological replicates relative to values at 0 h for AtWT. 
Asterisks indicate significant differences (**p<0.01, *p<0.05) between phyA-501 and AtWT seedlings exposed for the 
same time to W+FR. (B) Correlation between ACS8, GH3.3, IAA19 and IAA29 expression and relative levels of PHYA 
protein in the seedlings of AtWT, phyA-501, phyA>AtPHYA (blue lines and dots) and phyA>ChPHYA (red lines and dots) 
complementation lines. Gene expression was quantified in W-grown d5 seedlings exposed to W+FR (R:FR=0.02) during 
24 h, as indicated at the top of the panel. Transcript abundance was normalized to EF1α. Relative phyA protein levels 
(PHYA:TUB, data already shown in Supplemental Figure 8) were estimated in etiolated seedlings. Values are means and 
s.e.m. of three independent RT-qPCR biological replicates relative to values of AtWT. The estimated regression lines for
the phyA>AtPHYA (blue line) and phyA>ChPHYA (red line) complementation lines are shown for each correlation.
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Figure 8. Model of how an increased phyA activity in C. hirsuta might implement the shade tolerance 
of hypocotyl elongation. Increases in phyA activity caused by the constitutive overexpression of PHYA also 
attenuate the shade-induced hypocotyl elongation in transgenic plants, and it results in partially tolerant A. 
thaliana seedlings. 
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