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Summary 

In the age-dependent pathway, the microRNA 156 (miR156) is essential for the correct 

timing of developmental transitions. MiR156 negatively regulates several SPL genes, which 

promote the juvenile-to-adult and floral transitions in part through up-regulation of miR172. 

The transcriptional repressors TEMPRANILLO1 (TEM1) and TEM2 delay flowering in 

Arabidopsis thaliana at least through direct repression of FLOWERING LOCUS T (FT) and 
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gibberellins biosynthetic genes, and have also been reported to participate in the length of the 

juvenile phase. TEM mRNA and miR156 levels decrease gradually, allowing progression 

through developmental phases. Given these similarities, we hypothesized that TEMs and the 

miR156/SPL/miR172 module could act through a common genetic pathway. 

 

We analyzed the effect of TEMs on miR156, SPL and miR172 levels, tested binding of 

TEMs to these genes using chromatin immunoprecipitation and analyzed the genetic 

interaction between TEMs and miR172. TEMs played a stronger role in the floral transition 

than in the juvenile-to-adult transition. TEM1 repressed MIR172A, MIR172B and MIR172C 

expressions and bound in vivo to at least MIR172C sequences. Genetic analyses indicated that 

TEMs affect the regulation of developmental timing through miR172.  

 

INTRODUCTION 

 

During their life cycle, plants go through several developmental transitions. The timing of 

these transitions is essential for proper development and adjustment of growth to 

environmental conditions. After germination, plants undergo a juvenile phase of vegetative 

growth, in which they are unable to flower, even under optimal environmental conditions. 

Following the juvenile period, there is a juvenile-to-adult transition, also termed vegetative 

phase change, leading to an adult phase in which plants become competent to flower (Huijser 

& Schmid, 2011). The juvenile-to-adult transition is associated with diverse morphological 

changes, and the appearance of trichomes on the abaxial side of rosette leaves is a 

conventional marker of this transition in Arabidopsis thaliana (Telfer et al., 1997; Huijser & 

Schmid, 2011). In response to environmental and endogenous signals, adult plants experience 

a vegetative-to-reproductive or floral transition (Amasino, 2010; Andrés & Coupland, 2012).  

 

Flowering is an energy-consuming process and therefore plants need to accumulate enough 

reserves before inducing the floral transition. To ensure that flowering occurs under favorable 

conditions, the transition to the reproductive phase is regulated by a complex genetic network 

that responds to environmental and endogenous cues (Amasino, 2010; Andrés & Coupland, 

2012). Arabidopsis flowers earlier under long day (LD) than short day (SD) conditions. We 

have previously shown that TEMPRANILLO 1 (TEM1) and TEM2 (also known as RAV2) 

inhibit flowering at early developmental stages under LDs and SDs (Castillejo & Pelaz, 2008; 

Osnato et al., 2012). TEMs belong to the RAV subfamily of transcription factors (Matías-
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Hernández et al., 2014), which bind DNA at the consensus sequence C(A/C/G)ACA(N)2–

8(C/A/T)ACCTG (Kagaya et al., 1999). TEMs delay flowering through direct transcriptional 

repression of genes encoding the florigen component FLOWERING LOCUS T (FT), its 

paralog TWIN SISTER OF FT (TSF), and the gibberellin (GA) biosynthesis enzymes 

GIBBERELLIN 3-OXIDASE 1 (GA3OX1) and GA3OX2 (Castillejo & Pelaz, 2008; Osnato 

et al., 2012; Marín-González et al., 2015). Thus, in Arabidopsis, RAV proteins act as 

transcriptional repressors (Castillejo & Pelaz, 2008; Ikeda & Ohme-Takagi, 2009; Causier et 

al., 2012; Osnato et al., 2012; Feng et al., 2014; Marín-González et al., 2015). Recently, a 

role for TEMs in the control of juvenility in Arabidopsis has been reported (Sgamma et al., 

2014). Therefore, TEMs play a role in two aspects of developmental timing, the juvenile-to-

adult and the floral transitions. 

 

Among the small RNAs involved in the regulation of plant developmental timing, the 

microRNAs (miRNAs) miR156 and miR172 play a very prominent role (Poethig, 2009; 

Rubio-Somoza & Weigel, 2011). In diverse plant species, miR156 delays vegetative phase 

change and flowering through downregulation of several SQUAMOSA PROMOTER 

BINDING PROTEIN-LIKE (SPL) genes (Wang & Wang, 2015). In Arabidopsis, these 

miR156 target genes include SPL3, SPL4, SPL5, SPL9, SPL10 and SPL15 (Wu & Poethig, 

2006; Gandikota et al., 2007; Schwarz et al., 2008; Wu et al., 2009; Hyun et al., 2016). 

Plants overexpressing miR156 (35S::miR156) show a delayed juvenile-to-adult transition, 

flower late and have reduced SPL mRNA levels (Schwab et al., 2005; Wu & Poethig, 2006; 

Gandikota et al., 2007; Wang et al., 2009; Wu et al., 2009). Conversely, plants in which 

miR156 function is reduced (35S::MIM156 plants) lack the juvenile phase, flower early and 

have increased SPL mRNA levels (Franco-Zorrilla et al., 2007; Wang et al., 2009; Wu et al., 

2009). 

 

Although single mutants of the miR156-targeted SPL genes show very weak or no obvious 

phenotypes under LDs, double spl9 spl15 mutants show delayed juvenile-to-adult and floral 

transitions, revealing functional redundancy within the SPL family (Wu & Poethig, 2006; 

Schwarz et al., 2008; Wang et al., 2008). The function of the miR156/SPL module has also 

been investigated using miR156-resistant versions of SPL genes (rSPL). Plants 

overexpressing rSPL3, rSPL4 or rSPL5 show early vegetative phase change and early 

flowering and plants expressing rSPL9 or rSPL15 under the control of their own promoters 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

show even stronger phenotypes (Wu & Poethig, 2006; Gandikota et al., 2007; Wu et al., 

2009; Hyun et al., 2016). 

 

MiR156 and miR172 show opposite temporal expression patterns, such that miR156 

decreases and miR172 increases with age (Aukerman & Sakai, 2003; Wu & Poethig, 2006; 

Jung et al., 2007; Wang et al., 2009; Wu et al., 2009). MiR156 represses miR172 expression 

via down-regulation of SPL9 and SPL15, which promote miR172 expression (Wu et al., 

2009; Hyun et al., 2016). In turn, miR172 promotes the juvenile-to-adult and the floral 

transitions, given that miR172 overexpression accelerates these transitions and reduced 

miR172 function delays flowering (Aukerman & Sakai, 2003; Chen, 2004; Wu et al., 2009; 

Todesco et al., 2010; Jung et al., 2011). MiR172 down-regulates its target genes, which 

encode six APETALA2 family transcription factors (Aukerman & Sakai, 2003; Chen, 2004). 

All six redundantly repress flowering and at least three of them delay the juvenile-to-adult 

transition (Aukerman & Sakai, 2003; Chen, 2004; Jung et al., 2007; Mathieu et al., 2009; Wu 

et al., 2009; Yant et al., 2010; Jung et al., 2011). Therefore, miR156, SPLs, miR172 and the 

miR172 target genes constitute an age-dependent developmental pathway, in which complex 

feedback regulations have been reported (Schwab et al., 2005; Mathieu et al., 2009; Wu et 

al., 2009; Yant et al., 2010; Jung et al., 2011). 

 

Similar to miR156, TEM1 and TEM2 mRNA levels decline with age (Castillejo & Pelaz, 

2008) and have been reported to participate in juvenility length (Sgamma et al., 2014). Given 

the similar expression patterns and similar phenotypic effects of TEMs and miR156 on 

vegetative phase change and flowering, we hypothesized that TEMs and the 

miR156/SPL/miR172 module may act through a common genetic pathway. We show here 

that TEMs negatively regulate miR172 levels. TEM1 binds to MIR172C chromatin and 

directly regulates its expression, and also regulates that of MIR172A and MIR172B. In 

addition, miR172 partially mediates the effects of TEMs on vegetative phase change and 

flowering. Therefore, we conclude that TEMs regulate developmental timing in part through 

this miRNA involved in the age-dependent pathway. 
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RESULTS 

 

Comparison of phenotypes caused by alterations in TEM1/TEM2 and the age-

dependent pathway 

In order to uncover the mechanism of TEM1/TEM2 action on phase change, we compared 

the phenotypes of plants with altered TEM levels with those of plants affected in the age-

dependent pathway under SDs and LDs. It has been shown that miR156 maintains the 

juvenile traits by repressing SPLs, that in turn activate miR172 which will promote adult 

epidermal identity, such as the appearance of trichomes on the abaxial surface of rosette 

leaves (Poethig 2003, 2013, Huijser and Schmid, 2011, Yu et al., 2015; Wang et al., 2019). 

The timing of abaxial trichome formation is correlated with flowering time, consistent with 

the fact that juvenile-to-adult vegetative phase change contributes to the acquisition of the 

competence to flower. Thus, miR172 is involved in the timing of trichome formation, and its 

AP2 target genes, together with KANADI, have been shown to mediate the temporal and 

spatial integration for abaxial trichome formation (Wang et al., 2019). Interestingly, 

alterations of TARGET OF EAT 1 (TOE1) or miR172 levels affect the timing of abaxial, but 

not adaxial, trichome formation (Wang et al., 2019). Consequently, the length of juvenile or 

adult phases can be determined by counting the leaves without and with abaxial trichomes, 

respectively.  

 

Under SDs, we confirmed previously reported results and used them as control for our tem 

mutant plants growing in parallel. Thus, 35S::miR156 plants showed a dramatically extended 

juvenile phase, consistent with the results of Wu et al. (2009), and a shortened adult phase 

(Figures 1a,b, S1a,b; Table S2a,b), resulting in late flowering compared with wild-type plants 

(Figures 2a,b, S2a,b; Table S3a,b). Plants in which miR156 activity was inhibited 

(35S::MIM156) and plants expressing a miR156-resistant form of SPL9 (pSLP9::rSPL9) 

lacked the juvenile phase, in agreement with a previous report (Wu et al., 2009), and had an 

adult phase similar to that of wild-type plants under SDs (Figures 1a,b, S1a-d; Table S2a,b). 

Therefore, 35S::MIM156 and pSLP9::rSPL9 plants flowered with fewer leaves than wild-

type plants (Figures 2a, S2a,c; Table S3a) due to the absence of the juvenile phase. 

35S::MIM172 plants showed longer juvenile and adult phases than wild-type plants (Table 

S2a,b), and flowered with statistically significant more leaves than wild-type plants (Figures 

2a, S2c; Table S3a), consistent with previous reports (Todesco et al., 2010; Galvão et al., 

2012).  
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Under SDs the length of the juvenile phase of tem1 and tem2 single mutants was not altered, 

whereas tem1 tem2 double mutants displayed a slightly shorter juvenile phase than the wild 

type (Figures 1a,c, S1a,e; Table S2a,c), indicating that TEM1 and TEM2 delay the juvenile-

to-adult transition in a redundant manner. tem2 and tem1 tem2 mutants had a significantly 

shorter adult phase than wild-type plants (Figures 1b,d, S1b,f; Table S2b,d). Consistent with a 

shortened adult phase and with previous reports (Castillejo & Pelaz, 2008; Osnato et al., 

2012), early flowering was observed in tem1, tem2 and, more markedly, in tem1 tem2 

(Figures 2a-d, S2a,b,e,f; Table S3a-d). Plants overexpressing TEM1 (35S::TEM1) had a 

dramatically extended juvenile phase (>113 juvenile leaves) and neither transitioned to the 

adult phase nor flowered for at least 4 months under SDs. Overall, similar results were 

obtained under LDs (Figures 1e-j, 2e-j, S1g-l, S2g-l; Tables S2e-j, S3e-j). Under this 

condition, 35S::TEM1 plants also showed a substantially long juvenile phase, an 

unexpectedly short adult phase (Figures 1i,j, S1k,l; Table S2i,j) and flowered later than the 

wild-type (Figures 2i,j, S2k,l; Table S3i,j). Most 35S::TEM1 plants did not produce leaves 

with abaxial trichomes, probably due to the fact that these plants, in addition to having a late 

juvenile-to-adult transition, produce very few leaf trichomes (Matías-Hernández et al., 2016). 

Due to the similar results obtained with all genotypes under both photoperiods we therefore 

used LD conditions for all subsequent experiments. 

 

Because of the lack of other tem1 and tem2 alleles, we analyzed the length of the juvenile and 

adult phases of RNAi-TEM1/2 plants, in which both TEM1 and TEM2 are partially silenced 

(Castillejo & Pelaz, 2008) to confirm the effect of TEMs on the juvenile-to-adult transition. 

Consistent with the results obtained in tem1 tem2 mutants, RNAi-TEM1/2 plants exhibited 

shorter juvenile and adult phases than wild-type plants under LDs (Figures 3, S3; Table 

S4a,b). RNAi-TEM1/2 also flowered earlier than the wild type under this condition (Figures 4, 

S4; Table S5a,b), in agreement with previous results (Castillejo & Pelaz, 2008). 

 

We can conclude that TEMs and the miR156/SPL module affect the juvenile-to-adult and 

floral transitions to different extents, with the miR156/SPL module having a more dramatic 

effect on the juvenile phase and TEMs affecting more strongly the floral transition, with a 

much smaller effect on the regulation of vegetative phase change. Therefore, our results 

suggest that the miR156/SPL module and TEM1/TEM2 play partially overlapping but 

distinct roles in the regulation of phase transitions. 
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TEMs do not act through MIR156 or SPL genes 

TEMs and miR156 affect the juvenile-to-adult and the floral transitions under both LDs and 

SDs (Figures 1-4, S1-S4; Schwab et al., 2005; Wu & Poethig, 2006; Franco-Zorrilla et al., 

2007; Castillejo & Pelaz, 2008; Wu et al., 2009; Osnato et al., 2012; Sgamma et al., 2014). 

As miR156 and TEM1/TEM2 follow similar temporal expression patterns and have partially 

overlapping phenotypic effects, we tested whether miR156 regulates TEM1/TEM2 levels or 

vice versa. 35S::miR156 and 35S::MIM156 plants did not show significant alterations in 

TEM1 and TEM2 mRNA levels that could correlate with their flowering phenotypes under 

LD and SD conditions (Figure S5). For the analysis of the effect of TEMs on miR156, we 

collected samples at two time points under LD, one during the light period (ZT8), when TEM 

mRNA levels are low (Castillejo & Pelaz, 2008; Osnato et al., 2012) and the miR156-

targeted SPL9 mRNA peaks (Figure S6), and one during the night (ZT18), when TEM 

mRNAs peak (Castillejo & Pelaz, 2008; Osnato et al., 2012). Although RNA blots with 

samples collected at one time point, ZT8 in 10-day-old plants, showed slight differences 

(Figure S7a,b), when we examined miR156 levels in tem1 tem2 mutants at different ages, we 

did not observe substantial differences relative to wild-type plants (Figure S7c). Even the 

miR156 level reduction happened at the same time, after day 12, in both genotypes and, 

therefore, we could not confirm that TEMs have an effect on miR156 (Figure S7c).  

 

Then we tested the effect of TEMs on the expression of SPL genes under LDs. As previously, 

when we studied SPL3, SPL9 and SPL15 expressions at one time point we found that SPL3 

transcript abundance was slightly increased in 10-day-old tem1 tem2 plants (Figure 5a-c) and 

that the expression of all three genes was reduced in 35S::TEM1 plants (Figure 5a-c), but an 

analysis of SPL mRNA levels at different ages confirmed that only SPL3 and SPL9 were 

down-regulated in 35S::TEM1 plants (Figure 5d-i) and none was affected in tem1 tem2 

mutant plants (Figure 5d-i). 

 

TEMs down-regulate miR172 and bind to MIR172C chromatin 

Since TEMs were reported to have a role in the length of the juvenile phase (Sgamma et al., 

2014) and we have not observed expression changes of miR156 or SPL genes in tem1 tem2 

mutant plants, we wondered if the effect on the phase transition could be through miR172 

whose genes transcription is activated by SPLs (Wu et al., 2009). Consistent with this 

hypothesis, we found increased abundance of mature miR172 in tem1 tem2 and reduced 

abundance in 35S::TEM1 when we analyzed 10-day-old plants (Figure 6a,b). Similar results 
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were obtained by RNA blot (Figure 6a,b) and RT-qPCR (Figure S8). 35S::miR156 and 

pSPL9::rSPL9 plants used as controls showed slightly reduced and increased miR172 levels, 

respectively (Figure 6a), as expected (Wu et al., 2009). Then we examined mature miR172 

levels in tem1 tem2 mutants at different ages. Again, we found that tem1 tem2 mutants show 

increased miR172 levels up to day 12 (Figure 6c), indicating that TEMs down-regulate 

miR172 at early developmental stages, consistent with their effect on the juvenile-to-adult 

and floral transitions. 

 

We found putative RAV binding sites in four MIR172 genes (Table S6). We chose MIR172C 

gene because it has several putative RAV binding sites and it was possible to design specific 

oligos to test binding of TEM1 and TEM2 by ChIP. TEM1 clearly bound to a fragment 

containing two putative RAV binding sites and TEM2 also bound to some extent (Figure 6d). 

This suggests that TEMs repress miR172 expression through direct binding to, at least, 

MIR172C chromatin. We used transient expression assays in Arabidopsis protoplasts to test 

whether this is the case. Indeed, we found that TEM1 represses expression of a reporter 

construct that carries a fragment of the MIR172C gene containing the two RAV binding sites 

bound in ChIP experiments (Figure 6e). In addition, MIR172C transcript levels are increased 

in tem1 tem2 and RNAi-TEM1/2 plants, and are decreased in 35S::TEM1 plants (Figure 6f). 

Similarly, we found that MIR172A and MIR172B transcript levels are increased when TEM 

genes are down-regulated and that MIR172A levels are decreased when TEM1 is 

overexpressed (Figure 6f). Upregulation of the three MIR172A, MIR172B and MIR172C 

genes resulted in the high mature miR172 levels observed in tem1 tem2 mutant plants (Figure 

6a,c and S8). TEMs, therefore, down-regulate miR172 levels by binding to at least the 

MIR172C gene and repressing its transcription. 

 

TEMs act partially through miR172  

If the early vegetative phase change and early flowering of tem1 tem2 and RNAi-TEM1/2 

plants is due to increased miR172 abundance, silencing of miR172 should suppress the 

vegetative phase change and flowering phenotypes of tem1 tem2 and RNAi-TEM1/2. 

Unfortunately, we found that several transgenes were silenced when introduced in tem1 and 

35S:TEM1 mutant backgrounds (Figure S9a,b,c). Silencing of transgenes by T-DNA 

insertion mutations has already been reported (e.g. Daxinger et al., 2008; Wu et al., 2009). 

Therefore, to analyze the genetic interaction between TEMs and miR172 we crossed 

35S::MIM172 with RNAi-TEM1/2 and checked that the 35S::MIM172 transgene was not 
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silenced (Figure S10). If miR172 acts downstream of TEM1 to control vegetative phase 

change and flowering, we would expect that inactivation of miR172 would suppress the 

phenotypes of RNAi-TEM1/2 plants. Our results showed that 35S::MIM172 plants had longer 

juvenile and adult phases and flowered later and after producing more leaves than WT plants 

(Figures 7, 8, S11, S12; Tables S7a,b, S8a,b). RNAi-TEM1/2 35S::MIM172 plants had 

intermediate phenotypes between 35S::MIM172 and RNAi-TEM1/2: they had longer juvenile 

and adult phases than RNAi-TEM1/2 plants, but had shorter phases than 35S::MIM172 plants 

(Figures 7, S11; Table S7a,b), and they flowered with more leaves than RNAi-TEM1/2, but 

with fewer leaves than 35S::MIM172 plants (Figures 8, S12; Table S8a). These results 

indicate that 35S::MIM172 suppresses partially the early juvenile-to-adult transition and the 

early flowering of RNAi-TEM1/2. Taking together these results and the effect of TEMs on 

miR172 levels, we can conclude that TEMs delay flowering, and to a lesser extent the 

vegetative phase change, partially through miR172. 

 

DISCUSSION 

 

TEMs regulate miR172 levels  

Several flowering-time regulators, such as FCA, GIGANTEA, SHORT VEGETATIVE 

PHASE, SUPPRESSOR OF OVEREXPRESSION OF CO 1, SPL9, and SPL15, affect 

miR172 levels. Several of these genes regulate transcription of MIR172 genes, whereas others 

affect processing of miR172 primary transcripts (Jung et al., 2007; Wu et al., 2009; Lee et 

al., 2010; Cho et al., 2012; Jung et al., 2012b; Tao et al., 2012; Hyun et al., 2016). In 

addition, proteins of the POLYCOMB REPRESSIVE COMPLEX 1 (PRC1) and PRC2, 

which establish and maintain transcriptional repression through histone modifications, repress 

MIR172B expression (Picó et al., 2015). Our work establishes that TEMs are new miR172 

regulators (Figure 6). Whereas all the previously reported miR172 regulators have been 

shown to affect expression or processing of MIR172A and/or MIR172B, we show here that 

TEMs regulate MIR172A, MIR172B and MIR172C expressions. Therefore, multiple 

flowering-time regulators fine-tune mature miR172 levels by regulating several MIR172 

genes. Further work will be required to understand whether there are interactions among all 

these factors and how they contribute to establish the temporal and spatial pattern of miR172 

expression. 
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TEM1 and TEM2 had been described as transcriptional repressors that directly down-regulate 

FT, TSF, GA3ox1 and GA3ox2 (Castillejo & Pelaz, 2008; Osnato et al., 2012; Marín-

González et al., 2015). We show here that TEMs down-regulate miR172 levels through direct 

binding to at least one MIR172 gene, MIR172C, and transcriptional repression of MIR172A, 

MIR172B and MIR172C (Figure 6). Although the molecular mechanism of this repression has 

yet to be elucidated, TEM1 and TEM2 interact with the transcriptional corepressor TOPLESS 

(Causier et al., 2012), which forms a complex with and requires the activity of histone 

deacetylases (Long et al., 2006; Krogan et al., 2012; Wang et al., 2013). It is possible, then, 

that TEMs repress transcription by recruiting histone modification factors through their 

interaction with TOPLESS, or that these interactions contribute to maintenance of 

transcriptional repression. 

 

Our work and that of other groups suggests that TEMs can repress SPL expression (Figure 5) 

and function through several mechanisms. Given that FT and GAs are positive regulators of 

several SPL genes (Yamaguchi et al., 2009; Galvão et al., 2012; Jung et al., 2012a; Park et 

al., 2013), the repression of FT expression and GA biosynthesis by TEMs (Castillejo & 

Pelaz, 2008; Osnato et al., 2012) may lead to indirect transcriptional down-regulation of 

SPLs. TEMs can also exert post-translational regulation of SPLs through the repression of 

GA biosynthesis (Osnato et al., 2012), as DELLA proteins interfere with SPL transcriptional 

activity through direct interaction, and GA releases this interaction (Yu et al., 2012). We 

hypothesize that TEMs can also indirectly repress SPL expression through feedback loops 

mediated by miR172 target genes. There is feedback regulation of SPL genes by miR172 

target genes, such that miR172 target genes negatively regulate several SPLs or positively 

regulate miR156 (Yant et al., 2010; Jung et al., 2011). This indirect feedback on miR156 

might result in the observed differential effect on SPL expressions, as SPL3 transcript has 

recently been shown to be more sensitive to miR156 cleavage than SPL9 or SPL15 (He et al., 

2018). It is possible, therefore, that the down-regulation of SPL3 and SPL9 observed in 

35S::TEM1 plants (Figure 5a-i) is an indirect consequence of the downregulation of miR172 

(Figure 6b) – and the expected up-regulation of miR172 targets - in these plants. All this 

would contribute to ensure that SPLs do not promote precocious juvenile-to-adult transition 

and flowering. 
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The regulation of flowering by TEMs is partially mediated by miR172 

The flowering phenotypes of tem1 tem2 double mutants and RNAi-TEM1/2 plants are 

stronger than those of tem1 and tem2 single mutants (Figures 2, 4; Castillejo & Pelaz, 2008; 

Osnato et al., 2012), indicating that both TEM1 and TEM2 are required for delaying 

flowering. Our work shows that the early flowering phenotype of RNAi-TEM1/2 plants is 

partially suppressed by the inactivation of miR172 function in RNAi-TEM1/2 35S::MIM172 

plants (Figure 8). Together with the binding of TEMs to MIR172C chromatin, the effect of 

TEMs on MIR172A, MIR172B and MIR172C RNAs and mature miR172 levels (Figure 6), 

indicates that TEMs regulate flowering partly through miR172, by repressing the expression 

of MIR172A, MIR172B and directly that of MIR172C. Taking into account previous reports, 

we can conclude that the regulation of flowering time by TEMs is mainly mediated by FT, 

TSF and gibberellin (Castillejo & Pelaz, 2008; Osnato et al., 2012; Marín-González et al., 

2015), but also partially by miR172. 

 

TEMs play a more modest role in the juvenile-to-adult transition 

We had previously shown that TEM1 and TEM2 play a role in the timing of the floral 

transition in Arabidopsis (Castillejo & Pelaz, 2008; Osnato et al., 2012). We show here that 

they also somewhat affect the timing of vegetative phase change. In a previous work, it was 

showed a more dramatic effect of TEMs on the juvenile phase (Sgamma et al., 2014). 

However, they determined the length of the juvenile phase by the response of flowering to 

inductive photoperiods and measured number of days from germination, whereas we 

measured the number of leaves without abaxial trichomes (Telfer et al., 1997; Huijser & 

Schmid, 2011; Wang et al., 2019). In addition, we cannot rule out that the difference can be 

due to the use of different growth conditions. Taking into account that determining the 

juvenile phase length by measuring the competence to flower after LD exposure may not be 

the same as determining it by counting the number juvenile leaves, our results (Figure 1 and 

3), although with a much weaker effect, seem consistent with those of Sgamma et al. (2014) 

as we both observed that TEM1 and TEM2 redundantly delay vegetative phase change. 

 

Unexpectedly, when TEM1 is overexpressed, instead of an extension of the adult phase, we 

observed a dramatic lengthening of the juvenile phase under both LDs and SDs, together with 

an extreme shortening or even suppression of the adult phase under LDs (Figure 1i,j). 

However, 35S::TEM1 plants show a dramatically reduced trichome density (Matías-

Hernández et al., 2016). Therefore, it is possible that the alteration of the number of leaves 
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without and with abaxial trichomes in these plants is a combination of the effects on the 

juvenile-to-adult transition and on trichome density. 

 

The different genetic pathways acting in the flowering time network share several genes 

(Bouché et al., 2016). By revealing the role of TEMs in the age-dependent flowering 

pathway, our work suggests that TEMs link this pathway to the photoperiod, GA and ambient 

temperature pathways, in which TEMs are also involved (Castillejo & Pelaz, 2008; Osnato et 

al., 2012; Marín-González et al., 2015), pointing to additional genetic pathway inter-

communication within the flowering network. 

 

MATERIALS AND METHODS 

 

Plant material and growth conditions 

Arabidopsis thaliana (L.) Heynh. Columbia-0 (Col-0) was used as the wild type for all the 

experiments. tem1-1, tem2-2, tem1-1 tem2-2, RNAi-TEM1/2, 35S::TEM1, 35S::TEM2, 

pTEM1::GUS, 35S::miR156, 35S::MIM156, 35S::MIM172 and pSPL9::rSPL9 plants have 

been previously described (Schwab et al., 2005; Franco-Zorrilla et al., 2007; Castillejo & 

Pelaz, 2008; Wang et al., 2008; Todesco et al., 2010; Osnato et al., 2012). Seeds were 

stratified on wet filter paper in the dark at 4°C for 3-4 d and then sown on soil and grown in 

controlled environment chambers at 22°C under LDs (16 h light : 8 h dark) or SDs (8 h light : 

16 h dark) at a light intensity of 80-90 µmol m-2 s-1. 

 

Phenotypic analyses 

To determine the juvenile-to-adult transition we counted the rosette leaves without and with 

abaxial trichomes (juvenile and adult leaves, respectively). For flowering time experiments, 

the shoot apex was carefully checked for visible signs of flowering every two days. 

Flowering time was measured as the number of days from sowing to the appearance of the 

floral bud and as the total number of rosette and cauline leaves produced on the main stem. 

We used at least 8 plants per genotype in each experiment, although in most experiments we 

used 15-20 plants per genotype. 
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Analyses of miRNA and transcript levels 

For miRNA analyses, total RNA was extracted from pools of at least 10 plants using the Real 

ARNzol Spin kit (+PVP; Durviz) or using Trizol (Ambion) following manufacturer’s 

instructions. RNAs were treated with DNase I using the DNA-free kit (Ambion) and were 

precipitated with sodium acetate. Stem-loop reverse transcription followed by quantitative 

real time PCR (stem-loop RT-qPCR) and RNA blots were performed as previously described 

(Martin et al., 2009). Primer and probe sequences are shown in Table S1. 

 

For analyses of transcript levels by RT-qPCR, total RNA was extracted from pools of at least 

10 plants with the Real ARNzol Spin kit (+PVP; Durviz), the PureLink RNA Mini kit 

(Ambion) or Trizol (Ambion), and was treated with DNase I using the DNA-free kit 

(Ambion). Reverse transcription was performed with 1-4 µg of RNA using Superscript III 

reverse transcriptase (Invitrogen), following manufacturer’s instructions. qPCR was 

performed on a LightCycler® 480 Real-Time PCR System (Roche Diagnostics Ltd) with 

gene-specific primer pairs. The reactions, performed in triplicate in a volume of 14 µl, 

contained 0.2 μl of cDNA (except for MIR172C, see below), 1X Light Cycler 480 SYBR 

Green I Master mix (Roche), 0.3 μM forward primer and 0.3 μM reverse primer, and were 

incubated at 95°C for 10 min, followed by 45 cycles of 95°C for 15 s and 60°C for 1 min. 

The specificity of PCR was checked with dissociation curves and quantification was 

standardized to UBIQUITIN10 (UBQ10) mRNA levels. Data from RT-qPCR were analyzed 

using the 2–ΔΔC
T method (Livak & Schmittgen, 2001). Primer sequences are listed in Table 

S1. 

 

The analysis of MIR172C RNA levels was performed using TaqMan assays provided by 

Applied Biosystems (assay IDs: ARKA3K9 for MIR172C and At02163341_gH for IPP2). 

The qPCR reactions, performed in triplicate in a volume of 14 µl, contained 2 μl of cDNA, 

1X TaqMan Multiplex Master mix (Applied Biosystems) and 1X TaqMan assay, and were 

incubated as indicated above. Quantification of MIR172C RNA was standardized to IPP2 

mRNA levels and data were analyzed using the 2–ΔΔC
T method (Livak & Schmittgen, 2001). 

 

GUS staining 

Histochemical analyses of GUS expression were performed as previously described 

(Blázquez et al., 1997). 
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Identification of putative RAV binding sites 

To find putative RAV binding sites, sequences of interest were searched for the pattern 

C[ACG][ACG]CAN(2,9)[ACT]NNCTG using Fuzznuc (http://emboss.bioinformatics.nl/cgi-

bin/emboss/fuzznuc) or DNA Pattern Find 

(http://www.bioinformatics.org/sms2/dna_pattern.html). 

 

Chromatin immunoprecipitation analyses 

Chromatin immunoprecipitation (ChIP) experiments were performed using a modified 

version of a previously reported protocol (Matias-Hernandez et al., 2010). Direct binding of 

TEM1 and TEM2 to the regulatory regions of putative targets was assayed using the 

35S:TEM1-HA and 35S:TEM2-HA lines previously described (Castillejo & Pelaz, 2008). 

Wild-type plants were used as negative controls. The crosslinked DNA was 

immunoprecipitated with an anti-HA antibody (Sigma) and purified using Protein A-Agarose 

resin (Millipore). Enrichment of the target regions was determined by qPCR using different 

primer sets specific for putative direct targets, as listed in Table S1. The qPCR assay was 

conducted in triplicate using a SYBR Green Assay (SYBR Green Supermix, Roche) and was 

performed in a Roche LightCycler® 480 System. For the binding of TEM1 and TEM2 to the 

selected genomic regions, the affinity of the purified sample obtained in the 35S:TEM1-HA 

and 35S:TEM2-HA lines was compared with the affinity-purified sample obtained in the 

wild-type background, which was used as negative control. Fold enrichment, relative to wild-

type input DNA immunoprecipitated with no antibody, was calculated using the 2-ΔΔC
T 

method (Livak & Schmittgen, 2001). 

 

Transient expression assays 

To generate the set of reporter vectors, different regions of MIR172C were cloned as SalI-PstI 

fragments in a modified pGreenII 0800-LUC vector carrying p35S::LUC (as reporter) and 

p35S::REN (as internal control to estimate the proportion of transformed protoplasts). 

Arabidopsis protoplasts were isolated from leaf-derived calli by digesting cell walls with 

Macerozyme R-10 and Cellulase (Yakult Pharmaceuticals). Protoplasts were transfected with 

different combinations of effector p35S::TEM1 (Castillejo & Pelaz, 2008) and reporter 

constructs using PEG. After an overnight incubation in darkness at 24°C, transformed 

protoplasts were pelleted and resuspended in homogenization buffer for RNA extraction and 

DNase treatment with the Maxwell RSC Plant RNA kit (Promega), according to 
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manufacturer’s protocol. Transcriptional repression activity of TEM1, based on the relative 

ratio of Luciferase (LUC) and Renilla (REN) mRNA abundance, was assessed by RT-qPCR. 

Primers used to generate the reporter vectors and for qPCR are listed in Table S1. 

 

Genetic crosses 

RNAi-TEM1/2 and 35S::MIM172 plants were crossed and the F1 generation was allowed to 

self-pollinate. F2 plants were selected based on resistance to kanamycin and Basta and were 

genotyped by checking resistance of the F3 generation to kanamycin and Basta. F3 

homozygous plants were used for all the experiments. 

 

Statistical analyses 

Statistical analyses were performed with GraphPad Prism 6 or 7 software (GraphPad 

Software, Inc). Shapiro-Wilk normality tests were performed. For comparisons we used 

Student`s t test and ANOVA analyses, multiple comparisons were then corrected with 

Dunnett’s or Tukey’s test.  

 

Data statement 

Materials and data are available upon request to the corresponding authors. 
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Figure legends 

 

Figure 1. Effect of miR156, SPL9, miR172 and TEMs on the juvenile-to-adult transition in 

Arabidopsis thaliana. (a-j) Boxplots of the number of juvenile (a,c,e,g,i) and adult (b,d,f,h,j) 

leaves of the indicated genotypes grown under short day (SD, a-d) and long day (LD, e-j) 

conditions. The number of juvenile and adult leaves was determined by counting the rosette 

leaves without and with abaxial trichomes, respectively. The lines within the boxes represent 

the median and the whiskers represent the minimum and maximum values. Data represent the 

combination of two (a-d), three (e,f,i,j) or four (g,h) independent experiments, n=15-68. 

Asterisks indicate statistically significant differences relative to the WT (*, P ≤ 0.05, **, P ≤ 

0.01, ***, P ≤ 0.001, ****, P ≤ 0.0001; ns, not significant), using one-way ANOVA followed 

by Dunnett’s multiple comparison test (a-h) or using the Student’s t test (i,j). Histograms and 

statistical analyses of these data are shown in Figure S1 and Tables S2a-S2j, respectively. 
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Figure 2. Effect of miR156, SPL9, miR172 and TEMs on flowering time in Arabidopsis 

thaliana. Boxplots of the number of total leaves (a,c,e,g,i) and days to flowering (b,d,f,h,j) of 

the indicated genotypes grown under short day (SD, a-d) and long day (LD, e-j) conditions. 

The lines within the boxes represent the median and the whiskers represent the minimum and 

maximum values. Data represent the combination of two (a-d,f), three (e,i,j) or four (g,h) 

independent experiments, n=15-68. Asterisks indicate statistically significant differences 

relative to the WT (*, P ≤ 0.05, **, P ≤ 0.01, ***, P ≤ 0.001, ****, P ≤ 0.0001; ns, not 

significant), using one-way ANOVA followed by Dunnett’s multiple comparison test (a-h) or 

using the Student`s t test (i,j). Histograms and statistical analyses of these data are shown in 

Figure S2 and Tables S3a-S3j, respectively. 

 

Figure 3. Juvenile-to-adult transition of Arabidopsis thaliana RNAi-TEM1/2 plants. (a,b) 

Boxplots of the number of juvenile (a) and adult (b) leaves of WT and RNAi-TEM1/2 plants 

grown under long day conditions. The number of juvenile and adult leaves was determined 

by counting the rosette leaves without and with abaxial trichomes, respectively. The lines 

within the boxes represent the median and the whiskers represent the minimum and 

maximum values. Data represent the combination of two independent experiments, n=52-59. 

Asterisks indicate statistically significant differences relative to the WT (***, P ≤ 0.001), 

using the Student`s t test. Histograms and statistical analyses of these data are shown in 

Figure S3 and Tables S4a-S4b, respectively. 

 

Figure 4. Flowering time of Arabidopsis thaliana RNAi-TEM1/2 plants. (a,b) Boxplots of the 

number of total leaves (a) and days to flowering (b) of WT and RNAi-TEM1/2 plants grown 

under long day conditions. The lines within the boxes represent the median and the whiskers 

represent the minimum and maximum values. Data represent the combination of two 

independent experiments, n=51-60. Asterisks indicate statistically significant differences 

relative to the WT (*, P ≤ 0.05, ***, P ≤ 0.001), using the Student`s t test. Histograms and 

statistical analyses of these data are shown in Figure S4 and Tables S5a-S5b, respectively. (c) 

WT and RNAi-TEM1/2 plants grown under LD conditions for 21 days. Bars, 1 cm. 

 

Figure 5. TEM1 and TEM2 affect SPL mRNA levels in Arabidopsis thaliana. (a-i) SPL3 

(a,d,g), SPL9 (b,e,h) and SPL15 (c,f,i) mRNA levels were determined by RT-qPCR in 

rosettes of 10-day-old tem1 tem2 and 35S::TEM1 plants (a-c) or of plants of different ages (d-

i) grown under long days (LDs), collected at ZT8 (a-f) and ZT18 (a-c,g-i). UBQ10 was used 
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as normalization control and normalized levels in the wild type (a-c) or in the wild type at 

day 6 (d-i) were set to 1. Each symbol represents the mean of the combination of 2-5 

independent experiments, n=2-5, and lines represent the standard error of the mean (SEM).  

 

Figure 6. TEM1 and TEM2 regulate miR172 levels in Arabidopsis thaliana. (a-c) Mature 

miR172 levels in tem1 tem2 (a,c) and 35S::TEM1 (b) plants were determined by RNA blot in 

rosettes of 10-day-old plants (a-b) or of plants of different ages (c) grown under long days 

(LDs), collected at ZT8 and ZT18. Hybridization to U6 small nuclear RNA was used as a 

loading control. The numbers below each lane indicate the fold change relative to the miR172 

level in the wild type at the corresponding ZT. (d) Binding of TEM1 to MIR172C chromatin 

by ChIP-qPCR. Chromatin from 11-day-old 35S::TEM1-HA and 35S::TEM2-HA plants 

grown under LDs was immunoprecipitated with an anti-HA antibody. Precipitated chromatin 

was used as template for qPCR using specific primers for a MIR172C fragment containing 

two putative RAV binding sites 109 and 186 nt downstream of the transcription start site. 

Data are presented as fold enrichment relative to WT input DNA immunoprecipitated without 

antibody. Error bars represent the standard deviation of three technical replicates. Three 

independent experiments gave similar results and one was chosen as representative. A 

schematic diagram of the MIR172C gene is shown above the graph. Black boxes indicate 

exons, an arrow indicates the transcription start site, inverted triangles indicate putative RAV 

binding sites and arrowheads indicate the fragment amplified by qPCR. (e) Repression of 

MIR172C expression by TEM1 in transient assays in Arabidopsis protoplasts. RT-qPCR was 

used to determine the relative ratio of Luciferase (LUC) and Renilla (REN) mRNA levels in 

protoplasts transformed with reporter constructs, with or without a p35S::TEM1 effector 

construct. The reporter constructs carried the LUC gene under the control of a 35S promoter 

(p35S::LUC) or this promoter fused to fragments of the MIR172C gene containing or not 

containing putative RAV binding sites [MIR172C(+)-p35S::LUC and MIR172C(-)-

p35S::LUC, respectively]. Data represent the combination of three independent experiments, 

n=3. (f) MIR172C (left), MIR172A (middle) and MIR172B (right) RNA levels in tem1 tem2, 

RNAi-TEM1/2 and 35S::TEM1 plants were determined by RT-qPCR in rosettes of 19-day-old 

plants grown under LDs, collected at ZT8 and ZT18. IPP2 (left) and UBQ10 (middle and 

right) were used as normalization control and normalized levels in the wild type were set to 1. 

The symbols represent the mean of the combination of 3 independent experiments, n=3, and 

lines represent the SEM. Spaces in a) denote the removal of additional lanes bearing 

unrelated samples. 
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Figure 7. Juvenile-to-adult transition of Arabidopsis thaliana RNAi-TEM1/2 35S::MIM172 

plants. (a,b) Boxplots of the number of juvenile (a) and adult (b) leaves of WT, RNAi-

TEM1/2, 35S::MIM172 and RNAi-TEM1/2 35S::MIM172 plants grown under long day 

conditions. The number of juvenile and adult leaves was determined by counting the rosette 

leaves without and with abaxial trichomes, respectively. The lines within the boxes represent 

the median and the whiskers represent the minimum and maximum values. Data represent the 

combination of 3 independent experiments, n=59-60. Asterisks indicate statistically 

significant differences (**, P ≤ 0.01, ****, P ≤ 0.0001; ns, not significant), using one-way 

ANOVA followed by Tukey’s multiple comparison test. Although the WT is shown as 

reference, only the relevant statistical analyses for the transgenic lines are shown. Histograms 

and statistical analyses of these data are shown in Figure S11 and Tables S7a-S7b, 

respectively. 

 

Figure 8. Flowering time of Arabidopsis thaliana RNAi-TEM1/2 35S::MIM172 plants. (a,b) 

Boxplots of the number of total leaves (a) and days to flowering (b) of WT, RNAi-TEM1/2, 

35S::MIM172 and RNAi-TEM1/2 35S::MIM172 plants grown under long day (LD) 

conditions. The lines within the boxes represent the median and the whiskers represent the 

minimum and maximum values. Data represent the combination of 3 independent 

experiments, n=60. Asterisks indicate statistically significant differences (***, P ≤ 0.001; ns, 

not significant), using one-way ANOVA followed by Tukey’s multiple comparison test. 

Although the WT is shown as reference, only the relevant statistical analyses for the 

transgenic lines are shown. Histograms and statistical analyses of these data are shown in 

Figure S12 and Tables S8a-S8b, respectively. (c) WT, RNAi-TEM1/2, 35S::MIM172 and 

RNAi-TEM1/2 35S::MIM172 plants grown under LD conditions for 23 days. Bars, 1 cm. 
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