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Abstract
Aim: To	verify	which	vegetation	and	environmental	factors	are	the	most	important	
in	determining	the	spatial	and	temporal	variability	of	average	and	maximum	values	
of	radiation	use	efficiency	(RUEann	and	RUEmax,	respectively)	of	cold	and	temperate	
forests.
Location: Forty‐eight	 cold	 and	 temperate	 forests	 distributed	 across	 the	Northern	
Hemisphere.
Major taxa studied: Evergreen	and	deciduous	trees.
Time period: 2000–2011.
Methods: We	analysed	the	impact	of	17	factors	as	potential	determinants	of	mean	
RUE	(at	8	days	interval,	annual	and	interannual	level)	and	RUEmax (at annual and in‐
terannual	level)	in	cold	and	temperate	forests	by	using	linear	regression	and	random	
forests	models.
Results: Mean	annual	RUE	(RUEann,	c.	1.1	gC/MJ)	and	RUEmax (c.	0.8	gC/MJ)	did	not	
differ	between	cold	and	temperate	forests.	However,	 for	cold	forests,	RUEann	was	
affected	by	temperature‐related	variables,	while	for	temperate	forests	RUEann	was	
affected	by	drought‐related	variables.	Leaf	area	index	(LAI)	was	important	for	both	
forest	types,	while	N	deposition	only	for	cold	forests	and	cloud	cover	only	for	tem‐
perate	 forest.	RUEmax	of	 cold	 forests	was	mainly	driven	by	N	deposition	 and	LAI,	
whereas	for	 temperate	forests	only	a	weak	relationship	between	RUEmax	and	CO2 
concentration	was	found.	Short‐term	variability	of	RUE	was	strongly	related	to	the	
meteorological	variables	and	varied	during	the	season	and	was	stronger	in	summer	
than	spring	or	autumn.	Interannual	variability	of	RUEann	and	RUEmax	was	only	weakly	
related	to	the	interannual	variability	of	the	environmental	drivers.
Main conclusions: Cold	and	temperate	forests	show	different	relationships	with	the	
environment	and	vegetation	properties.	Among	the	RUE	drivers	observed,	the	least	
anticipated	was	N	 deposition.	 RUE	 is	 strongly	 related	 to	 short‐term	 and	 seasonal	
changes	 in	meteorological	 variables	 among	 seasons	 and	 among	 sites.	 Our	 results	
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1  | INTRODUC TION

Radiation	 use	 efficiency	 (RUE;	 gC/MJ)	 has	 emerged	 in	 recent	 de‐
cades	 as	 a	 key	 parameter	 to	 determine	 photosynthetic	 carbon	
uptake	by	vegetation,	and	thus	the	carbon	exchange	between	the	at‐
mosphere	and	biosphere	(Monteith,	1972).	RUE	represents	the	effi‐
ciency	of	vegetation	to	transform	absorbed	light	energy	into	organic	
compounds;	it	is	the	ratio	between	gross	primary	production	(GPP;	
gC/m2/year)	 and	 the	 absorbed	 photosynthetically	 active	 radiation	
(APAR;	MJ/m2/year),	with	APAR	being	the	product	of	 the	 incident	
photosynthetically	active	radiation	(PAR;	MJ/m2/year)	and	its	frac‐
tion	absorbed	by	vegetation	(fAPAR)	(Monteith,	1972):

The	 global	 ecological	 modelling	 and	 the	 remote	 sensing	 com‐
munities	are	particularly	interested	in	the	RUE	concept	(e.g.,	Cheng,	
Zhang,	 Lyapustin,	 Wang,	 &	 Middleton,	 2014;	 Grace	 et	 al.,	 2007;	
King,	Turner,	&	Ritts,	2011;	McCallum	et	al.,	2009;	Running	et	al.,	
2004;	Stocker	et	al.,	2018;	Wang,	Prentice,	&	Davis,	2014;	Wang	et	
al.,	 2017;	 Yuan	 et	 al.,	 2014;).	Nevertheless,	 to	 date,	 no	 consensus	
has	 been	 reached	 regarding	 the	 most	 suitable	 algorithm	 for	 RUE	
(Gitelson	&	Gamon,	 2015)	 and	 scientists	 still	 need	 to	 fully	 under‐
stand	 if	 (and	 how)	models	 should	 simulate	 the	 impact	 of	 environ‐
mental	factors	on	RUE	(Baldocchi,	2018).	To	do	this,	first	we	need	to	
find	suitable	proxies	that	capture	well	RUE	variability	in	space	(from	
local	to	global)	and	in	time	(from	daily	to	annual).	RUE	changes	over	
time	because	GPP	is	affected	by	the	current	environmental	condi‐
tions	and	because	the	absorbed	radiation	is	affected	by	changes	in	
incident	 PAR	 and	 leaf	 properties	 (e.g.,	 leaf	 and	 chloroplast	move‐
ment),	which	can	occur	over	short	time	periods.	On	the	other	hand,	
the	impact	of	respiration	variability	on	RUE	is	expected	to	be	low	in	
the	short	term	(when	plant	respiration	is	thought	to	be	independent	
of	 photosynthesis)	 but	 it	 can	 be	 greater	 over	 longer,	 annual	 time‐
scales	(when	plant	respiration	is	thought	to	be	proportional	to	pho‐
tosynthesis)	(Ryan,	Linder,	Vose,	&	Hubbard,	1994).

First,	RUE	was	used	as	a	constant	parameter	(e.g.,	Myneni,	Los,	
&	Asrar,	1995).	Subsequently,	 interannual	variability	has	been	 rec‐
ognized.	The	ratio	between	the	accumulated	GPP	over	the	year	and	
the	total	solar	radiation	absorbed	by	the	canopy	was	then	defined	as	
annual	RUE	(RUEann).	This	definition	has	been	widely	used	in	simple	
crop	growth	models,	based	on	in	situ	observations	(McCallum	et	al.,	
2009),	as	well	as	in	meta‐analyses	seeking	general	ecological	eluci‐
dations	 (Fernández‐Martínez	et	 al.,	 2014).	 Finally,	 the	 intra‐annual	
variability	of	RUE,	due	to	its	dependency	on	seasonal	environmental	

factors,	was	 recognized	 (e.g.,	 Grace	 et	 al.,	 2007).	 Production	 effi‐
ciency	models	define	the	 light	conversion	factor	as	the	product	of	
an	 optimum	 RUE	 value	 (RUE	 potential	 or	 maximum,	 RUEmax)	 and	
other	factors	that	relate	to	the	environmental	variables	that	regulate	
photosynthesis	and	APAR.	For	example,	in	the	moderate	resolution	
imaging	spectroradiometer	(MODIS)	algorithm,	RUE	is	implicitly	cal‐
culated	(to	determine	GPP)	based	on	temperature,	light,	vapour	pres‐
sure	deficit	and	the	biome‐specific	RUEmax	derived	from	a	 look‐up	
table	(Zhao,	Running,	&	Nemani,	2006).	However,	many	studies	con‐
sidering	different	biomes	 (Garbulsky	et	al.,	2010;	Runyon,	Waring,	
Goward,	&	Welles,	1994)	have	shown	that	RUE	might	be	influenced	
not	only	by	environmental	factors,	but	also	by	a	range	of	biophysi‐
cal	and	structural	factors	related	to	plant	properties,	sometimes	af‐
fected	by	ecosystem	management	(e.g.,	irrigation,	fertilization).	Both	
environmental	and	vegetation	factors	that	affect	RUE	are	reported	
in	Table	1	with	the	aim	of	summarizing	the	current	state	of	the	art.

In	detail,	factors	that	have	been	reported	to	date	as	determinants	
of	RUE	are:	(a)	temperature‐related	variables	[air	and	soil	tempera‐
ture,	 length	 of	 the	warm	 period	 (i.e.,	 the	 number	 of	months	with	
mean	temperature	above	5	°C),	thermal	amplitude	(i.e.,	mean	maxi‐
mum	minus	mean	minimum	temperature)];	(b)	water	status	variables	
[vapour	pressure	deficit	(VPD),	precipitation,	intensity	and	duration	
of	drought,	evaporative	fraction,	actual	and	potential	evapotranspi‐
ration,	soil	water	content	and	deficit,	irrigation];	(c)	radiation‐related	
variables	[diffuse	light	and	leaf	area	index	(LAI)];	(d)	variables	related	
to	leaf	and	vegetation	characteristics	[stand	age,	leaf	habit	and	type	
and	biome	type]	and	(e)	fertility‐related	variables	[nitrogen	(N)	depo‐
sition,	leaf	N,	management	and	CO2	concentration].	The	relevance	of	
these	factors	is	reviewed	below	based	on	the	literature.

(a) Temperature‐related variables. The	 impact	of	air	 temperature	
on	 RUE	 has	 been	 tested	 the	 most,	 but	 contrasting	 results	 have	
been	found,	ranging	from	significant	(Chasmer	et	al.,	2008;	Kergoat,	
Lafont,	 Arneth,	 Dantec,	 &	 Saugier,	 2008;	 Mäkelä	 et	 al.,	 2008;	
Schwalm	et	al.,	2006)	to	non‐significant	(Jenkins	et	al.,	2007;	Turner	
et	al.,	2003),	or	with	impact	limited	to	periods	during	the	warm	sea‐
son	(see	above	definition;	Fernández‐Martínez	et	al.,	2014)	or	only	
at	cold	sites	(Garbulsky	et	al.,	2010).	The	latter	evidence	is	the	most	
anticipated,	as	the	positive	effect	of	temperature	on	photosynthesis	
is	larger	in	cold	environments	and	APAR	is	not	expected	to	depend	
significantly	 on	 temperature.	 Furthermore,	 Fernández‐Martínez	 
et	al.	(2014)	tested	the	thermal	amplitude	and	the	length	of	the	warm	
season,	finding	them	not	relevant	to	RUE	variability.

(b) Water status variables.	Water	limitation	is	generally	expected	to	
reduce	RUE	because	of	reduced	photosynthesis	following	reduction	

(1)RUE=
GPP

APAR
=

GPP

fAPAR×PAR

should	 be	 considered	 in	 the	 formulation	 of	 climate	 zone‐specific	 tools	 for	 remote	
sensing	and	global	models.

K E Y W O R D S

meteorological	and	vegetation	influences,	forest	ecosystems,	gross	primary	production,	light	
use	efficiency,	meta‐analysis,	short‐term	variability,	spatial	and	temporal	variabilities
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in	 stomatal	 conductance	 or	 stomata	 closure.	 VPD	 has	 frequently	
been	tested	as	a	potential	driver	of	RUE.	As	can	be	seen	in	Table	1,	
both	significant	(Bracho	et	al.,	2012;	Chasmer	et	al.,	2008;	Mäkelä	
et	al.,	2008;	Runyon	et	al.,	1994)	and	non‐significant	(Garbulsky	et	
al.,	2010;	Jenkins	et	al.,	2007;	Turner	et	al.,	2003)	 impacts	of	VPD	
on	RUE	have	been	 found.	Also	annual	precipitation	was	 identified	
both	as	 a	 significant	 (Garbulsky	et	 al.,	 2010)	 and	a	non‐significant	
driver	of	RUE	(Fernández‐Martínez	et	al.,	2014).	In	the	latter	work,	
the	water	deficit	was	tested	as	potential	driver	of	RUE	(i.e.,	an	indica‐
tor	of	the	intensity	of	water	stress	that	the	vegetation	must	tolerate)	
but	with	a	negative	response.	Soil	water	content	was	reported	as	a	
significant	driver	of	RUE	in	one	study	on	temperate	forests	(Bracho	
et	al.,	2012)	and	one	on	cold	 forests	 (Chasmer	et	al.,	2008),	while	
it	was	not	relevant	in	the	study	of	Mäkelä	et	al.	 (2008),	comparing	
cold	 and	 temperate	 forests.	 The	 evaporative	 fraction	 was	 found	
to	be	a	significant	driver	by	Garbulsky	et	al.	 (2010)	and	Yuan	et	al.	
(2007).	 Actual	 evapotranspiration	 was	 identified	 as	 an	 important	
variable	by	Garbulsky	et	al.	(2010),	but	not	by	Fernández‐Martínez	
et	al.	(2014).	Two	irrigation	experiments	on	temperate	forests	(Allen,	
Will,	McGarvey,	Coyle,	&	Coleman,	2005;	Campoe	et	al.,	2013)	both	
agreed	on	the	potential	influence	of	irrigation	on	RUE.

(c) Radiation‐related variables.	The	role	of	diffuse	 light	has	been	
tested	in	several	studies,	focused	only	on	forests	or	combining	for‐
ests	with	other	biomes	(Table	1).	All	studies	agreed	on	its	potential	
role	 in	defining	RUE	variability	because	the	reduction	that	the	dif‐
fuse	light	triggers	in	APAR	is	larger	than	the	reduction	it	triggers	in	
GPP	(Gu	et	al.,	2002).	The	APAR	term	in	Monteith’s	model	depends	
not	 only	 on	 the	 amount	 of	 PAR,	 but	 also	 on	 the	 PAR	 absorbance	
capacity,	 and	 thus	 canopy	 structure,	 leaf	 area	 index	 (LAI)	 (Bracho 
et	al.,	2012;	Schwalm	et	al.,	2006),	leaf	angle	distribution	and	photo‐
synthetic	pigment	content.

(d) Variables related to leaf and ecosystem characteristics. Stand 
age,	 leaf	 habitat	 and	 type,	 and	 biome	 types	 have	 been	 tested	 as	
potential	 drivers	 of	 RUE.	 Stand	 age	 has	 been	 identified	 both	 as	 a	
significant	(Bracho	et	al.,	2012;	Chasmer	et	al.,	2008)	and	non‐sig‐
nificant	 driver	 of	 RUE	 (Fernández‐Martínez	 et	 al.,	 2014),	 whereas	
leaf	habitat	and	type	were	found	to	be	non‐significant	(Fernández‐
Martínez	et	al.,	2014).	It	has	been	reported	by	several	authors	that	
RUE	varies	with	vegetation	 type	 (Field,	Randerson,	&	Malmstrom,	
1995,	Garbulsky	et	al.,	2010;	Prince	&	Goward	1995;	Schwalm	et	al.,	
2006;	Turner	et	al.,	2003)	because	of	the	different	ratio	of	respira‐
tion	 to	photosynthesis.	RUE	was	 found	 to	be	around	2	gC/MJ	 for	
annual	crops,	for	which	the	ratio	of	respiration	to	photosynthesis	is	
assumed	to	be	low,	whereas	for	woody	plants	the	value	of	RUE	var‐
ies	from	0.2	to	1.5	gC/MJ	because	the	ratio	of	respiration	to	photo‐
synthesis	is	assumed	to	increase	with	plant	size	(Hunt,	1994;	Waring	
&	Running,	1998).

(e) Fertility‐related variables.	 The	 impact	of	 fertility	on	RUE	has	
been	tested	in	two	experiments	on	temperate	forests	but	contrasting	
results	were	found	[significant	in	Campoe	et	al.	(2013),	non‐signifi‐
cant	in	Allen	et	al.	(2005)].	Bracho	et	al.	(2012)	identified	fertility	as	
not	influential	for	RUE	in	drought	conditions.	Leaf	nitrogen	content	
affects	RUE	directly	(mainly	through	its	 impact	on	photosynthesis)	

but	 also	 indirectly	 (through	 its	 impact	on	 leaf	 and	plant	 structure,	
which	influence	light	absorption).	Leaf	N	has	been	therefore	consid‐
ered	as	a	potential	driver	of	RUE	in	manifold	studies	on	forest	eco‐
systems	(Kergoat	et	al.,	2008;	Ollinger	et	al.,	2008;	Peltoniemi	et	al.,	
2012)	but	has	not	been	found	to	be	consistently	significant	(Mäkelä	
et	 al.,	 2008;	 Schwalm	 et	 al.,	 2006).	 In	 a	 recent	 study,	 Fernández‐
Martínez	 et	 al.	 (2014)	 tested	 the	 relationship	 between	 RUE	 and	
N	deposition	but	 no	 significant	 association	was	 found.	 Finally,	De	
Kauwe,	Keenan,	Medlyn,	Prentice,	and	Terrer	(2016)	have	recently	
shown	that	CO2	is	a	key	factor	controlling	RUE	variability.	These	au‐
thors	 found	 a	 large	 increase	 in	RUE	due	 to	 elevated	CO2	 for	 two	
long‐term	free	air	carbon	enrichment	(FACE)	forest	sites	(Oak	Ridge:	
1998–2008	and	Duke:	1996–2007).

Overall,	even	though	the	underlying	mechanisms	for	the	differ‐
ent	potentially	influencing	factors	seem	clear,	our	literature	review	
indicates	that	there	is	still	high	uncertainty	about	the	vegetation	and	
environmental	 drivers	 of	 RUE,	 their	 relative	 importance	 and	 their	
different	 impacts	on	forest	ecosystems	of	different	climate	zones.	
Moreover,	 the	biological	 and	physiological	processes	 that	 regulate	
photosynthesis	and	radiation	absorption	vary	daily	over	the	grow‐
ing	season	and,	potentially,	among	years.	Therefore,	here,	we	aim	to	
elucidate	the	spatial	(across	the	Northern	Hemisphere)	and	temporal	
(short‐term,	annual	and	interannual)	variability	of	RUE	in	temperate	
and	 cold	 forests	 by	 comparing	 the	 impact	 on	RUE	 and	RUEmax	 of	
several	 potential	 drivers.	 The	 short‐term	 variability	 refers	 to	 the	
variability	of	RUE	among	8‐day	time	windows	(RUE8days),	as	8	days	is	
a	common	time	reference	for	remote	sensing.	The	focus	on	RUE8days, 
RUEann	and	RUEmax	offers	the	most	comprehensive	insight	into	RUE	
dynamics	 and	 their	 possible	 implementation	 in	 global	 monitoring	
tools.

2  | MATERIAL S AND METHODS

2.1 | Forest categories and sites

It	 appears	 clear	 that	most	 of	 the	 variables	 (e.g.,	 related	 to	 tem‐
perature,	 water	 status,	 fertility)	 potentially	 affecting	 RUE	 differ	
between	 the	 two	main	 climate	 zones	where	 the	majority	 of	 the	
northern	 forests	 are	 situated,	 that	 is,	 the	 temperate	 and	 cold	
zones.	As	for	most	of	the	previous	studies	on	RUE	variability	(see	
Table	1),	we	therefore	separated	the	two	forest	types	in	our	analy‐
sis.	This	categorization	is	also	important	to	generalize	our	findings	
and	match	the	forest	land	classification	used	in	global	vegetation	
modelling.

The	 categorization	 of	 cold	 and	 temperate	 is	 based	 on	 the	
Köppen–Geiger	classification	 (Peel,	Finlayson,	&	McMahon,	2007),	
using	monthly	 temperature	data	 from	the	European	Commission—
Joint	 Research	 Centre—Monitoring	 Agricultural	 ResourceS	
(EC‐JRC‐MARS,	 https	://ec.europa.eu/jrc/en/mars)	 portal.	 The	
Köppen–Geiger	classification	defines	a	particular	site	as	“cold”	when	
the	temperature	of	the	hottest	month	is	>	10°C,	while	the	tempera‐
ture	of	 the	coldest	month	 is	below	or	equal	 to	0°C.	On	 the	other	
hand,	 sites	 are	 classified	 as	 “temperate”	when	 the	 temperature	of	

https://ec.europa.eu/jrc/en/mars
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the	 hottest	 month	 is	 >	 10°C	 and	 the	 temperature	 of	 the	 coldest	
month	is	between	0	and	18°C.

For	the	analysis	on	spatial	variability	of	RUEann	we	used	26	cold	
and	22	 temperate	 forests	 in	 the	Northern	Hemisphere	 (Figure	 1).	
These	sites	were	selected	because	they	had	both	GPP	derived	from	
eddy	 covariance	 flux	 measurements	 and	 the	 associated	 satellite	
value	 of	 fAPAR	 available	 (see	 below	 for	 fAPAR	 determination).	
Multiple	 years	 were	 considered	 when	 available.	 Total	 site–year	
combinations	were	114	for	cold	and	102	for	temperate	forests	(see	
Supporting	Information	Appendix	S1).	For	the	analysis	of	the	spatial	
variability	of	RUEmax,	only	the	sites	with	seasonal	data	for	GPP	and	
fAPAR	were	selected.	A	subset	of	20	cold	forests	and	20	temperate	
forests	 was	 thus	 used	 (see	 Supporting	 Information	 Appendix	 S1).	
The	temporal	analyses	(interannual	variability	of	RUEann	and	RUEmax 
and	 short‐term	RUE	 variability,	 RUE8days)	were	 conducted	 by	 con‐
sidering	11	sites	that	had	at	least	8	years	of	seasonal	data	for	GPP	
and	fAPAR.

2.2 | PAR, fAPAR, GPP and RUE

PAR.	 The	 cumulative	 annual	 value	 of	 PAR	 (PARann)	 and	 8‐day	 PAR	
(PAR8days)	 were	 calculated,	 for	 every	 site–year	 combination,	 from	
seasonal	daily	data	for	PAR	using	(a)	free	fair‐use	data	files	from	the	
Fluxnet	and	European	Fluxes	Database	Cluster	(69%	of	the	sites)	and	
(b)	the	EC‐JRC‐MARS	data	set	for	the	remaining	sites.	(a)	In	the	Fluxnet	
and	European	Fluxes	Database	Cluster	files	the	measurement	of	the	
incoming	 radiation	 in	 the	PAR	 region	 (400–700	nm)	 is	 reported.	 (b)	
EC‐JRC‐MARS	reports	only	total	shortwave	 incoming	radiation.	We	
therefore	multiplied	the	radiation	by	a	factor	of	0.45,	assuming	that	

about	45%	of	the	total	incoming	shortwave	radiation	is	in	the	PAR	re‐
gion	(Campbell	&	Norman,	1998).	The	physical	unit	of	the	total	short‐
wave	radiation	reported	in	the	EC‐JRC‐MARS	database	is	MJ/m2/day. 
The	physical	unit	of	incoming	PAR	in	the	Fluxnet	and	European	Flux	
Database	 Cluster	 is	 μmol/photons/m2/s.	 We	 converted	 PAR	 from	
μmol/photons/m2/s	to	J/m2/s	using	a	conversion	factor	of	4.55	μmol/J	
as	proposed	by	Goudriaan	and	Van	Laar	(1994).	Finally,	we	obtained	
daily	 values	 in	MJ/m2/day	by	multiplying	by	0.0864.	 For	 sites	with	
availability	of	both,	preliminary	analyses	indicated	a	high	correlation	
between	PAR	data	 from	EC‐JRC‐MARS	and	 the	Fluxnet/	European	
Fluxes	Database	Cluster	(R2 = .8; p	<	.001;	slope	=	1.05).

fAPAR.	8‐day	values	of	fAPAR	(fPAR8days)	were	derived	from	the	
fAPAR/LAI	 product	 (MOD15A2,	 collection	 5)	 from	 the	 MODIS/
TERRA	 satellite	 sensor/platform	 as	 provided	 by	 the	 Oak	 Ridge	
National	 Laboratory	 Distributed	 Active	 Archive	 Center	 (ORNL	
DAAC).	MOD15A2	pixel	values	 represent	 the	optimal	 fPAR8days at 
1‐km	spatial	 resolution	 (Myneni	et	 al.,	2002).	Only	 the	pixels	with	
the	highest	quality	based	on	the	Quality	Assurance/Quality	Control	
flags	provided	by	MODIS	(e.g.,	clear	conditions	without	snow)	were	
selected	and	 retained	 for	computing	 fAPAR	values.	For	each	year,	
annual	fAPAR	(fAPARannW)	was	calculated	from	weighted	fAPAR8days 
data	where	the	weighting	was	provided	by	PAR8days data.

APAR.	Annual	APAR	(APARann)	was	computed	as	fAPARannW mul‐
tiplied	by	the	cumulative	PAR	(PARann).	To	derive	APAR8days, we mul‐
tiplied	fAPAR8days	by	the	PAR8days.

GPP.	GPP	data	(annual	comulative	GPP)	and	8‐day	GPP	(GPP8days)	
were	 derived	 from	 publicly	 available	 databases	 of	 forest	 ecosys‐
tem	 carbon	 fluxes	 (Luyssaert	 et	 al.,	 2007,	 Fluxnet,	 European	 Flux	
Database	Cluster).

F I G U R E  1  Map	with	distribution	of	sites:	cold	forests	and	temperate	forests	are	represented	with	red	and	blue	circles,	respectively	
[Colour	figure	can	be	viewed	at	wileyonlinelibrary.com]

www.wileyonlinelibrary.com
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RUEann, RUEmax and RUE8days.	 According	 to	Monteith’s	 equation	
(Equation	1),	we	calculated	RUEann	as	the	ratio	between	GPPann and 
APARann.	 To	 calculate	RUEmax	 for	 a	 year	we	 computed	8‐day	RUE	
(RUE8days)	values	 for	 the	whole	growing	season	 from	the	 ratio	be‐
tween	GPP8days	 and	APAR8days	 values.	 RUEmax	was	 defined	 as	 the	
maximum	value	of	the	RUE8days	time	series.

2.3 | Explanatory drivers

2.3.1 | Analyses of spatial variability

We	examined	the	following	potential	determinants	of	RUEann and 
RUEmax	that	were	in	common	with	previous	studies:	leaf	type	and	
habit,	 annual	 potential	 evapotranspiration,	 annual	 precipitation,	
mean	annual	temperature,	mean	monthly	minimum	and	maximum	
air	 temperature,	N	deposition,	VPD,	 cloud	 cover	 data,	 LAI,	 arid‐
ity	index,	leaf	N	and	CO2	concentration.	Furthermore,	we	decided	
to	complete	the	group	of	determinants	with	the	addition	of	some	
new	variables	 related	 to	soil	 fertility,	number	of	days	with	mean	
daily	temperature	below	zero	(i.e.,	freezing	period)	and	duration	of	
the	longest	period	without	rain.	These	variables	were	determined	
for	each	site	and	year	for	which	RUEann	was	available,	except	for	
LAI	and	leaf	N	concentration,	for	which	data	were	not	consistently	
available	for	all	years	(averages	were	made	with	the	available	data)	
or	sites	 (leaf	N	concentration	was	available	only	at	about	half	of	
the	sites	and	only	those	sites	were	considered	in	the	data	analysis	
for	leaf	N).

2.3.2 | Analyses of temporal variability

For	the	analysis	of	short‐term	variability	of	RUE8days the available 
(meteorological)	 variables	were:	mean	8‐day	 temperature,	 8‐day	
minimum	and	maximum	temperature,	8‐day	mean	potential	evap‐
otranspiration,	8‐day	mean	VPD	and	8‐day	mean	CO2 concentra‐
tion.	For	the	analysis	of	the	interannual	variability	of	both	RUEann 
and	RUEmax,	we	considered	the	same	meteorological	explanatory	
variables	used	for	the	analysis	of	short‐term	variability	of	RUE8days.

(a) Meteo‐variables

Mean	annual	 temperature,	mean	monthly	minimum	and	maximum	
temperature,	annual	precipitation	and	potential	evapotranspiration,	
yearly	number	of	days	with	mean	daily	temperature	below	zero	and	
the	duration	of	the	longest	period	without	rain	(expressed	in	num‐
ber	 of	 days),	mean	 8‐day	 temperature,	 8‐day	minimum	 and	maxi‐
mum	 temperature,	 8‐day	 mean	 potential	 evapotranspiration	 and	
8‐day	mean	VPD	were	calculated	using	the	EC‐JRC‐MARS	data	set.	
The	evaporation	data	that	we	used	are	derived	from	Penman	(1948)	
and	they	represented	the	annual	potential	evapotranspiration.	We	
calculated	the	annual	aridity	index	as	the	ratio	of	annual	precipita‐
tion	to	annual	evapotranspiration.

VPD	 (in	 kPa)	 is	 the	 difference	 between	 the	 saturation	 vapour	
pressure	(es,	kPa)	at	air	temperature	and	actual	vapour	pressure	(ea,	
kPa)	(Allen,	Pereira,	Raes,	&	Smith,	1998):

where	T	is	the	air	temperature	(°C)	and	RH	is	the	relative	humidity	
(%).	Mean	daily	values	of	VPD	over	an	8‐day	time	window	and	the	
annual	mean	of	daily	 values	were	used	 in	our	analyses.	RH	data	
were	 available	 from	 the	 Fluxnet	 and	 European	 Fluxes	Database	
Cluster	for	89%	of	the	sites,	while	for	the	other	sites	we	used	data	
from	the	public	online	Global	Weather	Data	 for	 soil	&	water	as‐
sessment	tool	(SWAT)	(Dile	&	Srinivasan,	2014;	Fuka	et	al.,	2014)	
that	provides	interpolated	RH	from	local	meteorological	stations.

Cloud	cover	was	used	as	a	proxy	of	diffuse	light,	as	the	latter	is	
a	parameter	 that	 is	not	generally	measured	by	meteorological	sta‐
tions	and	flux	towers.	We	extracted	cloud	cover	data	(mean	annual	
value	as	percentage)	from	Climatic	Research	Unit	(CRU)	Time‐Series	
Version	3.22	(Harris	&	Jones,	2014).

(b) Soil fertility

The	soil	type	of	each	site	was	derived	from	the	food	and	agriculture	
organization	(FAO)	digital	Soil	Map	of	the	World	Version	3.6	(FAO,	
2007).	Subsequently,	soil	types	were	classified	into	three	levels	(H:	
high,	 M:	 medium,	 L:	 low)	 of	 nutrient	 availability	 (see	 Supporting	
Information	Appendix	S1),	based	on	fertility	information	reported	in	
Creutzberg	(1987).

(c) Leaf type and habit

We	 collected	 the	 description	 of	 each	 site	 from	 the	 database	 of	
Luyssaert	 et	 al.	 (2007).	 The	 two	 leaf	 type	 categories	 are	 needle‐
leaved	and	broadleaved,	while	 the	categories	deciduous	and	ever‐
green	represent	the	leaf	habit	of	the	forest	tree	species.

(d) N deposition

In	our	analysis,	N	deposition	was	considered	as	 the	 sum	of	dry	and	
wet	deposition.	We	extracted	these	data	from	the	global	N	deposition	
data	set	simulated	with	goddard	earth	observing	system‐Chem	(GEOS;	
http://acmg.seas.harvard.edu/geos/index.html)	 for	 years	 from	 2004	
to	2006,	at	2°×2.5°	grid	resolution	(Ackerman,	Chen,	&	Millet,	2018).

(e) LAI and leaf N concentration

We	 extracted	 LAI	 data	 from	 the	 forest	 database	 of	 Luyssaert	 et	
al.	 (2007)	and	the	 literature	(see	Supporting	Information	Appendix	
S2).	Leaf	N	was	obtained	from	the	ancillary	files	of	the	Fluxnet	and	
European	Fluxes	Database	Cluster	and	the	literature	(see	Supporting	
Information	Appendix	S3).	For	both	LAI	and	leaf	N	concentration,	we	
used	the	maximum	annual	value.

(f) CO2 concentration

For	 81%	 of	 the	 sites,	 we	 used	 CO2	 concentration	 data	 from	 the	
Fluxnet	database.	For	the	remaining	sites,	we	used	values	provided	

(2)VPD=es - ea

(3)es=0.6108exp

(

17.27T

T+237.3

)

(4)ea=es
RH

100
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in	the	global	data	set	compiled	by	the	Institute	for	Atmospheric	and	
Climate	 Science	 at	 the	 Eidgenössische	 Technische	 Hochschule	 in	
Zürich	 (Switzerland)	 for	 the	 Northern	 Hemisphere	 (https	://www.
co2.earth/	histo	rical‐co2‐datasets).

2.4 | Statistical analysis

2.4.1 | Spatial variability of RUEann and RUEmax

The	 analyses	 of	 RUEann	 and	 RUEmax	 were	 conducted	 separately	
for	 cold	 forests	 and	 temperate	 forests	 (see	Tables	2	 and	3),	with	
the	analysis	on	the	entire	data	set	reported	only	in	the	Supporting	
Information	(see	Appendices	S4	and	S5).	Three	main	analyses	were	
performed:	 univariate	 analysis,	 random	 forest	 and	 linear	 models	
with	multiple	predictors.	Analyses	on	leaf	N	were	limited	to	the	uni‐
variate	analysis	(see	below),	because	we	did	not	have	leaf	N	avail‐
able	for	all	sites	(see	above).	(a)	To	describe	the	correlation	between	
each	 predictor	 and	 RUEann	 and	 RUEmax,	we	 conducted	 univariate	
analysis	 for	 each	 variable.	 We	 used	 single	 linear	 regression	 for	
continuous	variables	and	one‐way	ANOVAs	with	post	hoc	Tukey’s	
honestly	significant	difference	(HSD)	test	for	categorical	variables.	
Shapiro–Wilk’s	 normality	 test	 and	 Levene’s	 test	 for	 homoscedas‐
ticity	 were	 always	 passed.	 (b)	 We	 used	 random	 forest	 analysis	
(Breiman,	 2001)	 to	 estimate	 the	 relative	 importance	 of	 the	 dif‐
ferent	variables.	This	analysis	ranks	the	factors	from	the	one	with	
the	strongest	impact	to	the	one	with	the	lowest	impact,	while	not	
exclusively	considering	linearity	but	also	other,	nonlinear,	types	of	
relationships.	The	ranking	is	based	on	the	mean	decrease	in	accu‐
racy	of	model	prediction	(%IncMSE)	when	the	variable	is	randomly	
permuted.	We	 used	 a	 standard	 random	 forest	 algorithm	 (Liaw	 &	
Wiener,	 2002)	with	 50,000	 trees.	 For	 ranking	 the	 predictors,	we	
preferred	 random	 forest	 to	 multiple	 regression	 analysis	 because	
of	 the	ability	of	 random	forest	analysis	 to	consider	also	nonlinear	
relationships	and	because	 the	 relatively	 small	 sample	 sizes	would	
have	made	the	ranking	with	multiple	regression	analysis	less	robust.	
(c)	 Finally,	we	 built	 linear	models	with	 the	 predictors	 to	 evaluate	
how	much	of	the	variability	in	RUE	could	be	explained	by	combina‐
tions	 of	 predictors.	 To	 build	 these	models,	 we	 first	 detected	 the	
variables	 that	were	 highly	 correlated	 by	 doing	 a	multicollinearity	
test	[recording	the	variance	inflation	factor	(VIF)]	and	by	exploring	
the	relationships	among	all	the	variables	with	a	bivariate	analysis	by	
doing	a	matrix	of	Pearson’s	correlation	coefficients.	Practically,	we	
removed	all	variables	that	had	a	VIF	>	5	or	had	a	correlation	coef‐
ficient	>	|.8|	with	another	variable.	With	the	variables	that	passed	
the	multicollinearity	and	correlation	test,	we	performed	a	stepwise	
backwards	regression	analysis	(SBRA).	This	is	a	process	of	building	a	
model	considering	at	first	all	variables	together	and	successively	re‐
moving	the	least	important	ones.	The	original	model	was	compared	
with	the	new	model,	with	one	variable	removed,	by	using	the	likeli‐
hood	ratio	and	Akaike	information	criterion	(AIC).	The	new	model	
was	not	accepted	if	the	likelihood	ratio	was	significant	(p	<	.05)	or	
the	AIC	 increased	 (i.e.,	we	 considered	 as	 the	 final	model	 the	one	
that	respected	those	assumptions).

2.5 | Temporal analysis of short‐term RUE 
variability

For	this	 test,	we	performed	univariate	analyses	considering	as	de‐
pendent	 variable	 the	 time	 series	 of	 RUE8days	 and	 as	 independent	
variables	 the	 8‐day	 time	 series	 of	 the	 predictors	 (see	 above).	 The	
analyses	were	done	for	each	of	the	11	selected	sites,	separately,	and	
averages	were	done	across	years.	First,	the	analyses	were	done	for	
all	8‐day	periods	within	 the	growing	season.	Second,	 the	analyses	
were	 run	 separately	 for	 three	 periods	 representing	 the	main	 sea‐
sons:	spring	(considering	8‐day	windows	from	15	April	to	15	June),	
summer	(from	16	June	to	15	August)	and	autumn	(from	16	August	
to	15	October).

2.5.1 | Temporal analysis of interannual 
variability of RUEann and RUEmax

This	 analysis	 was	 done	 separately	 on	 the	 selected	 11	 sites	 (see	
above).	We	 conducted	 a	 univariate	 analysis	 to	 evaluate	 the	 good‐
ness	of	the	linear	correlation	between	RUE	(RUEann	and	RUEmax)	of	
each	year	and	the	value	of	each	predictor	variable	(see	above	for	the	
variables	 list).	 For	RUEann,	we	used	annual	 values	of	 the	predictor	
variables.	For	predictors	of	RUEmax,	we	used	the	values	of	the	8‐day	
window	corresponding	to	the	8‐day	period	associated	with	RUEmax.

All	 the	 statistical	 analyses	 were	 done	 using	 R	 (R	 Core	 Team,	
2015).

3  | RESULTS

Mean	RUEann	for	cold	and	temperate	forests	was	very	similar:	1.10	
(SD	 ±0.39)	 gC/MJ	 for	 cold	 forests	 and	1.11	 (SD	 ±0.45)	 gC/MJ	 for	
temperate	 forests.	 The	 variability	 of	 RUEann	 was	 larger	 than	 the	
variability	 of	 annual	 GPP	 [1,221.46	 (SD	 ±412.60)	 gC/m2/year and 
1,510.27	(SD	±329.53)	gC/m2/year	for	cold	and	temperate	forests,	
respectively].	Cold	forests	showed	the	largest	RUEmax	but	also	the	
largest	variability	across	sites	[0.86	(SD	±0.42)	gC/MJ],	whereas	tem‐
perate	forests	presented	slightly	lower	values	[0.79	(SD	±0.26)	gC/
MJ].

The	results	of	the	univariate	analyses	are	shown	in	Tables	2	and	
3	 for	 RUEann	 and	RUEmax,	 respectively,	 for	 both	 cold	 and	 temper‐
ate	forests.	For	cold	forests,	temperate‐related	variables	were	sig‐
nificantly	correlated	with	RUEann,	 in	particular	the	number	of	days	
with	mean	daily	temperature	below	zero	(p	=	.001,	R2	=	.35),	annual	
temperature (p	=	 .03,	R2	=	 .14)	and,	but	with	a	weaker	trend,	Tmin	
(p	 =	 .06,	R2	 =	 .11).	Moreover,	N	deposition	 (p	 =	 .02,	R2	 =	 .18)	 and	
LAI	(p	=	 .05,	R2	=	 .12)	were	also	significant	determinants	of	spatial	
variability	of	RUEann	 (Table	2).	On	the	other	hand,	RUEmax	showed	
a	significant	relationship	only	with	N	deposition	(p	=	 .02,	R2	=	 .20)	
and	LAI	 (p	=	 .05,	R2	=	 .16)	and	only	a	weak	relationship	with	 tem‐
perature (Tmin; p = .07; R2	=	 .13)	 (Table	3).	For	 temperate	 forests,	
a	 different	 picture	 emerged.	 First,	 RUEann	 showed	 dependencies	
with	 variables	 related	 to	 the	water	 status	 instead	of	 temperature,	

https://www.co2.earth/historical-co2-datasets
https://www.co2.earth/historical-co2-datasets
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in particular annual precipitation (p	 =	 .02,	R2	 =	 .19),	 aridity	 index	
(p	=	 .003,	R2	=	 .34),	 longest	period	without	rain	 (p	=	 .01,	R2	=	 .23)	
and	VPD	(p = .05 R2	=	 .13)	 (Table	2).	Second,	RUEann	of	temperate	
forests	 showed	 mainly	 different	 patterns	 from	 those	 of	 RUEann 
of	 cold	 forests	 such	 as	 a	 significant	 relationship	with	 cloud	 cover	
(p	=	.002,	R2	=	.34)	and	a	non‐significant	relationship	with	N	deposi‐
tion (p	=	.62,	R2	=	−.04)	(Table	2).	Finally,	RUEmax	of	temperate	forests	
did	not	show	significant	relationships	with	any	explanatory	variable	

except	a	weak	relationship	with	CO2 concentration (p	=	.09,	R2	=	.10)	
(Table	3).

In	general,	there	was	a	good	agreement	between	the	univariate	
analysis	and	random	forest	analysis	and	the	variables	that	were	sig‐
nificant	in	the	univariate	analysis	also	showed	high	importance	in	the	
random	forest	analysis	 (Figures	2	and	3).	However,	 there	were	ex‐
ceptions.	First,	for	temperate	forests,	the	relation	between	RUEann 
and	maximum	air	temperature	was	not	significant	according	to	the	

TA B L E  2  The	impact	of	vegetation	and	environmental	drivers	on	annual	radiation	use	efficiency	(RUEann)	for	cold	(n	=	26)	and	temperate	
forests	(n	=	22),	from	univariate	analysis	and	stepwise	backwards	regression	analysis	(SBRA)

Potential predictor

Cold forest (n = 26) Temperate forest (n = 22)

Variable typea

Univariate analysisb

SBRAc

Univariate analysisb

SBRAcp value
Adj. R2 
(sign) Post hoc p value

Adj. R2 
(sign) Post hoc

Water‐related

Aridity	index con. .73 −.04	(‐) X .003** .34	(+) X

Longest	period	with‐
out rain

con. .78 −.04	(‐) X .01* .23	(‐) X

Annual	precipitation con. .72 −.04	(+) X .02* .19	(+)

Evapotranspiration con. .62 −.03	(+) X .56 −.03	(‐) X

Vapour	pressure	
deficit

con. .34 −.003	(+) .05○ .13	(‐) X

Temperature‐related

Number	days	under	
0°C

con. .001** .35	(‐) X .27 .01	(+)

Annual	temperature con. .03* .14	(+) .16 .05	(‐) X

Tmin con. .06○ .11	(+) X .25 .02	(‐) X

Tmax con. .99 −.04	(+) X .13 .06	(‐) X

Radiation‐related

Cloud	cover	data con. .93 −.04	(+) .002** .34	(+) X

LAI con. .05○ .12	(+) .01* .24	(+) X

Others

N	deposition con. .02* .18	(+) .1 .09	(+)

Soil	fertilityd cat. .23 L‐H:	
−0.30

.38 M‐H:	
−0.35

X

Leaf	habite cat. .2 BN‐B:	
−0.26

.36 BN‐B:	
0.27

Leaf	typef cat. .28 E‐D:	
−0.27

.74 E‐D:	
−0.12

Leaf	Ng con. .39 −.01	(+) .36 .001	(+)

CO2 con. .73 −.04	(‐) .21 .03	(+)

Stepwise	backwards	
regression	model

R2 = .57 R2	=	.38

Abbreviations	and	symbols:	LAI	=	leaf	area	index;	Tmin	and	Tmax	=	mean	monthly	minimum	and	maximum	air	temperature,	respectively;	Number	
days	under	0°C	=	the	number	of	days	in	a	year	with	mean	daily	temperature	below	zero.	○ = .05 < p < .10; * = .01 < p < .05; ** = .001 < p < .01; 
*** = p	<	.001;	(+)	=	positive	linear	regression;	(‐)	=	negative	linear	regression.	aVariable	type:	“con.”	when	continuous;	“cat.”	when	categorical.	bFor	
continuous	variables,	the	significance	level	of	the	linear	regression	(p)	and	adjusted	R2	are	reported,	with	“sign”	as	the	sign	of	the	linear	regression.	
For	categorical	variables,	we	report	results	of	one‐way	ANOVA	(p	value)	and	post	hoc	Tukey’s	honestly	significant	difference	(HSD)	test	(absolute	
difference	for	two	significantly	different	factors	and	p	value	of	the	difference).	cFor	SBRA,	we	report	the	variables	of	the	final	model,	representing	
the	key	predictors	of	RUE,	and	(in	the	last	row)	the	coefficient	of	determination	(R2)	of	the	final	model;	dSoil	fertility	was	classified	as	H	=	high;	M	=	
medium;	L	=	low.	eLeaf	habit	was	classified	as	N	=	needleleaved;	B	=	broadleaved;	BN	=	mixed	habit.	fLeaf	type	was	classified	as	D	=	deciduous;	E	=	
evergreen. gLeaf	N:	variable	tested	only	for	univariate	analysis	as	with	fewer	sites	than	other	variables	(cold:	n = 11; temperate: n	=	12).
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univariate	analysis	but	was	highly	ranked	in	random	forest	analysis	
(see	Figure	2	 and	Table	2).	 This	 is	 probably	due	 to	 the	hyperbolic	
relationship	between	maximum	temperature	and	RUEann	which	was	
likely	detected	by	the	random	forest	but	not	by	the	univariate	analy‐
sis	(Supporting	Information	Appendix	S6).	However,	we	believe	this	
relationship	 to	 be	 spurious	 as	 it	 is	 driven	by	only	 three	 sites	with	
exceptionally	high	maximum	temperatures	(Supporting	Information	
Appendix	S6).	Second,	similarly	to	the	previous	case,	RUEmax	of	cold	
forests	was	not	significantly	correlated	with	Tmean	in	the	univariate	

analysis	but	Tmean	was	highly	 ranked	 in	 the	 random	forest	analy‐
sis,	likely	because	of	a	few	exceptional	sites	(Supporting	Information	
Appendix	S7).	Third,	for	RUEann	and	RUEmax	of	cold	forests,	LAI	was	
significant	according	to	the	univariate	analysis	but	of	very	 low	 im‐
portance	in	the	random	forest	analysis.	This	suggests	that	for	RUEann 
and	RUEmax	of	cold	forests,	nonlinear	relationships	might	dominate	
and	overshadow	the	linear	dependencies.

Tables	2	and	3	also	show	linear	models	combining	multiple	pre‐
dictors.	The	models	explained	57	and	38%	of	the	spatial	variability	of	

TA B L E  3  The	impact	of	vegetation	and	environmental	drivers	on	maximum	radiation	use	efficiency	(RUEmax)	for	cold	(n	=	20)	and	
temperate	forests	(n	=	20),	from	univariate	analysis	and	stepwise	backwards	regression	analysis	(SBRA)

Potential predictor Variable typea

Cold forest (n = 20) Temperate forest (n = 20)

Univariate analysisb

SBRAc

Univariate analysis(b)

SBRAcp value
Adj. R2 
(sign) Post hoc p value

Adj. R2 
(sign) Post hoc

Water‐related

Aridity	index con. .23 .03	(+) X .26 .02	(+) X

Longest	period	with‐
out rain

con. .36 −.01	(‐) X .11 .09	(‐) X

Annual	precipitation con. .20 .04	(+) X .56 −.04	(+) X

Evapotranspiration con. .79 −.05	(+) X .55 −.03	(‐) X

Vapour	pressure	
deficit

con. .91 −.05	(+) X .45 −.02	(‐) X

Temperature‐related

Number	days	under	
0°C

con. .13 .08	(‐) X .80 −.05	(+) X

Annual	temperature con. .14 .07	(+) X .40 −.01	(‐)

Tmin con. .07○ .13	(+) X .50 −.03	(‐) X

Tmax con. .91 −.05	(‐) X .55 −.03	(‐) X

Radiation‐related

Cloud	cover	data con. .93 −.06	(+) X .23 .03	(+) X

LAI con. .05* .16	(+) .20 .04	(+) X

Others

N	deposition con. .02* .20	(+) X .62 −.04	(+) X

Soil	fertilityd cat. L‐H:	0.77 X L‐H:	0.36 X

Leaf	habite cat. BN‐B:	
0.49

BN‐B:	
0.91

X

Leaf	typef cat. E‐D:	0.49 E‐D:	0.47 X

Leaf	Ng con. .79 −.10	(‐) .29 .02	(+)

CO2 concentration con. .80 −.05	(‐) X .09○ .10	(+)

Stepwise	backwards	
regression	model

R2 = .44 R2 = .88

Abbreviations	and	symbols:	LAI	=	leaf	area	index;	Tmin	and	Tmax	=	mean	monthly	minimum	and	maximum	air	temperature,	respectively;	Number	
days	under	0°C	=	the	number	of	days	in	a	year	with	mean	daily	temperature	below	zero.	○ = .05 < p < .10; * = .01 < p < .05; ** = .001 < p < .01; 
*** = p	<	.001.	(+):	positive	linear	regression;	(‐):	negative	linear	regression.	aVariable	type:	“con.”	when	continuous;	“cat.”	when	categorical.	bFor	con‐
tinuous	variables,	the	significance	level	of	the	linear	regression	(p)	and	adjusted	R2	are	reported,	with	“sign”	as	the	sign	of	the	linear	regression.	For	
categorical	variables,	we	report	results	of	one‐way	ANOVA	(p	value)	and	post	hoc	Tukey’s	honestly	significant	difference	(HSD)	test	(absolute	differ‐
ence	for	two	significantly	different	factors	and	p	value	of	the	difference).	cFor	SBRA,	we	report	the	variables	of	the	final	model,	representing	the	key	
predictors	of	RUE,	and	(in	the	last	row)	the	coefficient	of	determination	(R2)	of	the	final	model.	dSoil	fertility	was	classified	as	H	=	high;	M	=	medium;	
L	=	low.	eLeaf	habit	was	classified	as	N	=	needleleaved;	B	=	broadleaved;	BN	=	mixed	habit.	fLeaf	type	was	classified	as	D	=	deciduous;	E	=	evergreen.	
gLeaf	N	=	variable	tested	only	for	univariate	analysis	as	with	fewer	sites	than	other	variables	(cold:	n = 11; temperate: n	=	12).	
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RUEann	for	cold	and	temperate	forests,	respectively,	and	44	and	88%	
of	the	spatial	variability	of	RUEmax	 for	cold	and	temperate	forests,	
respectively.	However,	 note	 that	 a	 high	number	 of	 variables	were	
retained	in	the	best	models	(see	Tables	2	and	3).

As	mentioned	above,	we	also	carried	out	an	analysis	on	the	en‐
tire	data	set,	without	separating	forests	into	the	cold	and	temperate	
categories.	For	RUEann,	both	temperature‐related	variables	(import‐
ant	 for	 cold	 forests)	 and	 drought‐related	 variables	 (important	 for	

F I G U R E  2  Relative	importance	of	vegetation	and	environmental	drivers	for	annual	radiation	use	efficiency	(RUEann)	for	cold	forests	
(n	=	26)	and	temperate	forests	(n	=	22).	Data	are	from	(a)	random	forest	analysis	(cold	forests:	light	grey	bars,	temperate	forests:	black	bars)	
with	variable	importance	positively	related	to	accuracy	of	model	prediction	(%IncMSE),	and	negative	%IncMSE	indicating	lack	of	importance	
and	(b)	univariate	analysis,	with	significant	(p	<	.10)	drivers	marked	with	“*”	symbol	(see	text	and	Table	2	for	details).	Abbreviations: Tmin and 
Tmax	=	mean	monthly	minimum	and	maximum	air	temperature,	respectively;	N.	days	under	0°C	=	the	number	of	days	in	a	year	with	mean	
daily	temperature	below	0°C

F I G U R E  3  Relative	importance	of	vegetation	and	environmental	drivers	for	maximum	radiation	use	efficiency	(RUEmax)	for	cold	forests	
(n	=	20)	and	temperate	forests	(n	=	20).	Data	are	from	(a)	random	forest	analysis	(cold	forests:	light	grey	bars,	temperate	forests:	black	bars)	
with	variable	importance	positively	related	to	accuracy	of	model	prediction	(%IncMSE),	and	negative	%IncMSE	indicating	lack	of	importance	
and	(b)	univariate	analysis,	with	significant	(p	<	.10)	drivers	marked	with	“*”	symbol	(see	text	and	Table	3	for	details).	Abbreviations: Tmin and 
Tmax	=	mean	monthly	minimum	and	maximum	air	temperature,	respectively;	N.	days	under	0°C	=	the	number	of	days	in	a	year	with	mean	
daily	temperature	below	0°C
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temperate	forests)	were	significant.	Moreover,	other	variables,	sig‐
nificant	for	at	least	one	of	the	two	forest	types,	retained	their	impor‐
tance	(e.g.,	cloud	cover,	LAI,	N	deposition)	(Supporting	Information	
Appendix	S4).	SBRA	on	the	whole	data	set	produced	for	RUEann a 
model with an R2	(.38,	Supporting	Information	Appendix	S4)	similar	
to	that	for	temperate	forests	(see	above).	For	RUEmax,	analyses	on	the	
entire	data	set	showed	only	N	deposition	and	LAI	having	a	significant	
correlation	with	it	 (but	aridity	 index	presented	p = .08; Supporting 
Information	Appendix	S5)	with	a	clear	similarity	to	the	behaviour	of	
cold	forests	(see	Table	3).	SBRA	on	the	whole	data	set	produced	for	
RUEmax a model with an R2	 (.23,	Supporting	 Information	Appendix	
S5)	lower	than	those	obtained	for	cold	and	temperate	forests	sepa‐
rately	(see	above).

RUEmax	 for	 cold	 and	 temperate	 forests	 showed	 significant	
interannual	 variability	 (Table	 4,	 SD	 ±0.24–0.30	 gC/MJ	 for	 both	
forest	types)	but,	within	each	forest	type,	still	slightly	lower	than	
the	 spatial	 variability.	 Soroe	 (DK‐Sor)	 forest	 showed	 the	 highest	
variability	 in	 RUEmax (SD	 ±0.45	 gC/MJ,	 max.	 1.66	 gC/MJ,	 min.	
0.31	gC/MJ)	whereas	Loobos	(NL‐Loo)	forest	showed	the	 lowest	
variability (SD	±0.09	gC/MJ,	max.	0.95	gC/MJ,	min.	0.58	gC/MJ).	
For	RUEann,	the	interannual	variability	was	lower	than	the	interan‐
nual	variability	of	RUEmax	(Table	4,	SD	±0.19–0.23	gC/MJ	for	both	
forest	types).	In	general,	the	interannual	variability	of	RUEann and 
RUEmax	was	weakly	 related	 to	 the	 examined	 variables	 (Table	 5).	
For	RUEann,	for	five	(out	of	six)	cold	forests	and	three	(out	of	five)	
temperate	 forests,	 interannual	 variability	was	not	 related	 to	any	
variable.	Moreover,	 the	other	 sites	only	 showed	 significant	 rela‐
tionships	with	 one	 or	 two	 variables	 per	 site	 (variables	 involved:	
mainly	 evapotranspiration	 and	 precipitation	 but	 also	 Tmax;	 see	
Table	5).	For	RUEmax,	significant	relationships	were	found	only	for	
three	cold	forests	and	one	temperate	forest.	The	interannual	vari‐
ability	of	RUEmax	was	explained	mainly	by	evapotranspiration	and	
precipitation,	with	 some	weak	 relationships	 (.05	 <	 p <	 .10)	with	
temperature‐related	variables	(see	Table	5).

Table	6	and	Supporting	Information	Appendix	S8	report	the	results	
of	the	short‐term	variability	analysis	of	RUE8days	for	the	whole	season	
and	for	each	season	separately	(i.e.,	spring,	summer,	autumn).	The	vari‐
ables	selected	were	generally	correlated	with	RUE8days,	particularly	for	
cold	 forests.	 In	 fact,	 for	 cold	 forests,	RUE8days	was	 significantly	 cor‐
related	with	(a)	potential	evapotranspiration	at	five	sites	(out	of	six),	(b)	
Tmean	and	Tmin	at	four	sites,	and	with	(c)	VPD,	annual	precipitation	
and	Tmax	at	about	half	of	the	sites.	For	temperate	forests,	only	three	of	
the	five	sites	presented	significant	correlations	between	RUE8days and 
the	examined	variables	(Table	6).	SBRA	showed	in	general	R2 between 
.21	and	.61	(Supporting	Information	Appendix	S9).	The	low	R2	of	some	
of	the	SBRAs	may	be	related	to	the	fact	that	important	variables	were	
not	considered	and/or	because	of	nonlinear	relationships.

When	analysed	for	the	three	seasons,	cold	forests	presented	
two	main	 results.	 First,	 cold	 forests	 showed	 the	 strongest	 rela‐
tionships	 between	 RUE8days	 and	 the	 environmental	 factors	 in	
summer,	 for	 both	 temperature‐	 and	 drought‐related	 variables	
and	for	all	sites.	Second,	the	drivers	of	RUE8days	in	spring	(mainly	
VPD,	Tmean	and	Tmin)	were	different	to	the	drivers	of	RUE8days in 

autumn	(mainly	evapotranspiration,	Tmax	and	precipitation)	and	in	
any	case	 less	relevant	 (e.g.,	significant	at	about	half	of	the	sites).	
For	temperate	forests,	RUE8days appeared to be related to environ‐
mental	factors	mainly	in	summer	and	autumn	(with	dependencies	
for	both	temperature‐	and	drought‐related	variables	at	most	sites)	
but	to	be	conservative	in	spring	(with	only	one	variable	important	
at	one	site).

4  | DISCUSSION

One	of	the	main	findings	of	this	study	is	that,	on	average,	cold	and	
temperate	 forests	 exhibit	 very	 similar	 RUEann (c.	 1.1	 gC/MJ)	 and	
RUEmax (c.	 0.8	 gC/MJ)	 but	 their	 relationships	with	 vegetation	 and	
environmental	drivers	differ	significantly.	Also,	the	drivers	of	RUEann 
differ	from	the	drivers	of	RUEmax	within	each	forest	type.	More	 in	
detail,	RUEann	of	cold	forests	is	influenced	by	mainly	variables	related	
to	temperature	(particularly	the	number	of	freezing	days),	whereas	
RUEann	 of	 temperate	 forests	 by	 variables	 related	 to	 water	 status	
(particularly	 aridity	 index).	 LAI	 is	 important	 for	 both	 forest	 types,	
whereas	 cloud	 cover	only	 for	 temperate	 forests	 and	N	deposition	
only	for	cold	forests.	On	the	other	hand,	RUEmax	of	cold	forests	was	
related	to	LAI	and	N	deposition,	whereas	RUEmax	of	temperature	for‐
ests	was	only	weakly	related	to	CO2	concentration.	Concerning	the	
temporal	variability,	our	study	shows	that	interannual	variability	of	
RUEann	and	RUEmax	is	not	primarily	related	to	environmental	factors.	
On	the	other	hand,	we	showed	that	short‐term	(8	days)	variability	of	
RUE	is	strongly	related	to	the	environmental	conditions,	particularly	
in	 summer.	 This	 evidence	was	 valid	 for	 both	 cold‐	 and	 temperate	
forests.

TA B L E  4  Statistics	(mean	and	SD)	for	interannual	variability	in	
annual	(RUEann)	and	maximum	radiation	use	efficiency	(RUEmax)	
in	cold	and	temperate	forests.	Sites’	full	names	can	be	found	in	
Supporting	Information	Appendix	S1

 Forest 
type / 
Site code N. years

RUEann RUEmax

Mean SD Mean SD

Cold	forest

DE‐Hai 8 1.38 ±	0.31 1.06 ± 0.40

DE‐Tha 9 1.39 ± 0.21 0.97 ± 0.18

DK‐Sor 9 1.59 ±	0.23 1.18 ± 0.45

FI‐Hyy 12 0.91 ± 0.11 0.81 ±	0.36

FI‐Sod 8 0.04 ±	0.32 0.75 ± 0.24

IT‐Ren 8 1.02 ± 0.22 0.79 ± 0.16

Temperate	forest

BE‐Bra 10 0.96 ± 0.16 0.82 ± 0.40

BE‐Vie 9 1.59 ± 0.20 0.87 ± 0.27

FR‐Hes 9 1.37 ± 0.27 1.16 ± 0.27

FR‐Pue 8 0.59 ± 0.07 0.51 ± 0.16

NL‐Loo 9 1.21 ±	0.23 0.76 ± 0.09
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The	 fact	 that	 (low)	 temperature	plays	 an	 important	 role	 in	 the	
eco‐physiology	of	trees	in	the	cold	zone	is	not	surprising.	Subfreezing	
temperatures	stop	photosynthesis,	because	leaf	stomata	are	forced	
to	 close	 (Waring	 &	 Running,	 1998).	 Moreover,	 negative	 effects	
of	 freezing	on	RUE	could	be	 related	 to	direct	 frost	damage	 to	 the	
leaves	(Marchand,	1996)	or	to	indirect,	freezing‐induced	damage	to	

the	hydraulic	system	that	supplies	 leaves	with	water	and	nutrients	
(e.g.,	freezing‐induced	xylem	cavitation)	(Jackson,	Sperry,	&	Dawson,	
2000;	Sperry,	Nichols,	Sullivan,	&	Eastlack,	1994;	Sperry	&	Sullivan,	
1992).	Our	temporal	analysis	showed	that	drought‐related	variables	
(e.g.,	VPD)	were	also	important	to	determine	RUE	of	cold	forests	but	
mainly	in	summer.	Thus,	they	should	not	be	neglected	for	seasonal	

TA B L E  6  Results	of	univariate	analysis	for	short‐term	variability	in	radiation	use	efficiency	(RUE8days)	of	cold	and	temperate	forests,	for	
the	whole	growing	season	and	spring,	summer	and	autumn	separately.	Cells	in	orange	are	for	correlations	with	p	≤	.05	and	in	yellow	for	
correlations	with	.05	<	p ≤	.10.	All	detailed	data	(p	and	adjusted	R2)	are	reported	in	Supporting	Information	Appendix	S8.	Data	are	reported	
for	six	cold	and	five	temperate	forest	sites.	Sites’	full	names	and	descriptions	can	be	found	in	Supporting	Information	Appendix	S1

Potential predictor

Cold forest Temperate forest

DE‐Hai DE‐Tha DK‐Sor FI‐Hyy FI‐Sod IT‐Ren BE‐Bra BE‐Vie FR‐Hes FR‐Pue NL‐Loo

All	seasons

Tmean

Tmin

Tmax

Precipitation

Vapour	pressure	
deficit

Evapotranspiration

CO2 concentration

SPRING:	from	mid‐April	to	mid‐June

Tmean

Tmin

Tmax

Precipitation

Vapour	pressure	
deficit

Evapotranspiration

CO2 concentration

SUMMER:	from	mid‐June	to	mid‐August

Tmean

Tmin

Tmax

Precipitation

Vapour	pressure	
deficit

Evapotranspiration

CO2 concentration

AUTUMN:	from	mid‐August	to	mid‐October

Tmean

Tmin

Tmax

Precipitation

Vapour	pressure	
deficit

Evapotranspiration

CO2 concentration

Abbreviations:	Tmean	=	mean	temperature;	Tmin	and	Tmax	=	minimum	and	maximum	air	temperature,	respectively.
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modelling	of	RUE	but	it	is	also	clear	that	they	did	not	emerge	in	the	
annual	analyses	of	either	RUEann	or	RUEmax.

Our	 results	 support	previous	 findings	 that	 identified	drought‐
related	 variables	 (e.g.,	 annual	 precipitation,	 aridity	 index,	 longest	
period	without	rain,	VPD)	as	highly	significant	determinants	of	RUE	
for	temperate	forests.	The	negative	relationship	between	drought	
and	RUE	 in	 temperate	 forests	 is	 related	 to	 the	 fact	 that	 drought	
impacts	 on	 stomatal	 conductance	 and	 restricts	 the	 photosynthe‐
sis	process	(e.g.,	Bracho	et	al.	(2012)).	Moreover,	in	typical	drought	
conditions,	a	canopy	receives	more	direct	light	and	this	has	a	neg‐
ative	 impact	on	RUE	(De	Boeck	&	Verbeeck,	2011).	Our	temporal	
analysis	 for	 temperate	 forests	 showed	 that	 temperature‐related	
variables	are	not	to	be	neglected	for	short‐term	modelling	of	RUE	
in	summer,	but	as	for	the	case	of	drought‐related	variables	for	cold	
forests,	these	variables	are	not	important	in	the	annual	analyses	of	
either	RUEann	or	RUEmax.

Both	 forest	 types	 showed	 relationships	 with	 radiation‐related	
variables.	The	 important	 impact	of	 radiation	type	 (i.e.,	diffuse	ver‐
sus	direct	radiation)	and	radiation	interception	capacity	(i.e.,	LAI)	on	
photosynthetic	efficiency	and	RUE	of	forests	is	well	known.	Diffuse	
radiation	penetrates	deeper	in	the	canopy	and	does	not	saturate	the	
photosynthetic	 capacity	 at	 leaf	 level	 (Gu	 et	 al.,	 2002).	 Therefore,	
greater	cloud	cover	 improves	the	photosynthetic	efficiency	by	de‐
creasing	 the	 denominator	 of	 Equation	 1	 at	 similar	 values	 of	 GPP.	
Furthermore,	more	 leaves	 (i.e.,	 higher	LAI)	 correspond	 to	a	higher	
fAPAR.

The	 key	 role	 of	 nutrient	 availability	 in	 affecting	 plant	 and	
ecosystem	 processes	 is	 well	 known.	 In	 particular,	 high	 N	 avail‐
ability	 allows	 the	maintenance	 of	 high	 Rubisco	 concentration	 in	
the	 leaves,	which	 contributes	 to	 a	 high	 photosynthetic	 capacity	
(Field,	Merino,	 &	Mooney,	 1983).	 However,	 the	 role	 of	 nutrient	
availability	 in	 determining	RUE	was	unclear	 (Table	1).	Our	 study	
shows	no	impact	of	leaf	N	or	site	fertility	but	a	positive	impact	of	
N	deposition.	This	indicates	the	relevance	of	a	fertilization	effect,	
which	might	be	more	important	than	actual	N	pools	(leaf	and	soil	
N)	 and	more	 important	 in	 colder	 (typically	 nutrient	 limited)	 high	
latitude	 areas.	 The	past	 uncertainty	 in	 understanding	 the	 effect	
of	N	deposition	on	RUE	might	also	have	been	related	to	the	qual‐
ity	and	representativeness	of	N	deposition	data.	In	this	work,	we	
used	very	recent	global	simulations	for	N	deposition	for	the	period	
2004–2006	(Ackerman	et	al.,	2018).

The	effect	of	CO2	concentration	was	found	to	be	of	some	signifi‐
cance	but	not	a	key	driver	of	RUE	as	found	by	De	Kauwe	et	al.	(2016).	
This	might	 be	 due	 to	 the	 fact	 that	we	 analysed	 natural	 variability	
of	CO2	concentration	(overall	380	±	8	ppm)	whereas	De	Kauwe	et	
al.	(2016)	analysed	long‐term	FACE	forest	sites	with	CO2 concentra‐
tions	ranging	from	370	to	550	ppm.	A	high	CO2 concentration may 
increase	the	effect	of	CO2	on	RUE.

Our	study	is	difficult	to	compare	to	the	one	of	Wang	et	al.	(2017)	
on	a	universal	mechanism	driving	RUE	across	biomes,	as	the	stud‐
ies	are	methodologically	very	different.	For	 instance,	our	seasonal	
short‐term	 analysis	 of	 RUE	 variability	 could	 have	 not	 taken	 into	

account	factors	found	to	be	important	by	Wang	et	al.	 (2017),	such	
as	 the	 ratio	of	 internal	 leaf	CO2	 to	external	CO2,	 or	elevation.	On	
the	other	hand,	both	studies	found	that	temperature	and	a	drought‐
related	variable	 [Wang	et	 al.	 (2017)	 considered	VPD,	we	potential	
evapotranspiration;	Table	6]	are	crucial	determinants	of	 the	short‐
term	variability	of	RUE.

Two	general	remarks	should	also	be	made	concerning	our	study.	
First,	the	short‐term	temporal	analysis	clearly	revealed	differences	
among	 sites,	 with	 some	 sites	 showing	 stronger	 relationships	 be‐
tween	 RUE	 and	 the	 environment	 than	 others.	 This	 might	 be	 the	
reason	why	so	many	contrasting	results	have	been	found	about	the	
environmental	drivers	of	RUE	dynamics	in	the	past	(Table	1).	Second,	
one	general	difficulty	in	understanding	the	effects	of	environmental	
variables	on	RUE	 is	 finding	a	good	surrogate	of	each	environmen‐
tal	factor	at	the	global	scale	and	their	availability	at	daily	to	annual	
time‐scales.	The	accuracy	of	available	meteorological	data	is	of	par‐
ticular	 importance	 for	modelling	 the	RUE	dynamics	of	ecosystems	
under	stress	conditions	such	as	drought.	Moreover,	note	that	under	
drought	 conditions	other	 specific	 factors	might	also	play	a	 role	as	
determinants	of	RUE	(Garbulsky	et	al.,	2010;	Goerner	et	al.,	2009;	
Stocker	et	al.,	2018).

In	summary,	our	study	synthesized	existing	knowledge	on	 the	
determinants	of	the	variability	of	RUE	in	cold	and	temperate	forests	
and	tested	their	potential	roles	as	predictor	variables	considering	a	
high	number	of	sites	in	the	Northern	Hemisphere.	We	found	that,	
on	 average,	 RUEann	 and	 RUEmax	 do	 not	 differ	 markedly	 between	
cold	 and	 temperate	 forests,	 but	 the	 influence	 of	 different	 veg‐
etation	 and	 environment	 drivers	 on	 RUE	 does	 differ	 significantly	
between	the	two	climatic	zones.	These	findings	primarily	 indicate	
that	global	tools	using	RUE	should	differentiate	their	algorithms	be‐
tween	 climate	 zones.	 For	 instance,	MODIS	GPP	might	 improve	 if	
current	 RUEmax	modulators	 (temperature,	 light	 and	VPD)	 become	
region‐dependent.	Also,	 our	 study	 suggests	 that	 the	 use	of	 envi‐
ronmental	variables	only	does	not	suffice	to	describe	the	variability	
of	RUE,	and	therefore	that	ecological	models	based	on	Monteith’s	
approach	should	include	new	parameters	that	describe	plant	char‐
acteristics	such	as	LAI.	N	deposition	should	also	be	accounted	for	
in	modelling	RUE	of	cold	forests.	Moreover,	our	results	show	that,	
within	each	climatic	zone,	RUEann	and	RUEmax	have	different	rela‐
tionships	with	environmental	and	vegetation	variables.	Therefore,	
equations	parameterized	for	one	index	cannot	be	used	for	the	other	
index.	Our	analysis	showed	also	that	RUEmax	is	less	related	to	envi‐
ronmental	conditions	than	RUEann.	This	helps	modelling	and	remote	
sensing	 applications.	 In	 detail,	 while	 RUEmax	 for	 cold	 forests	 de‐
pends	on	two	variables	(LAI	and	N	deposition),	RUEmax	of	temperate	
forests	is	not	related	to	any	variables.	So,	the	latter	might	be	used	as	
a	constant.	Finally,	concerning	the	temporal	variability,	our	analysis	
at	a	short‐term	scale	(i.e.	8‐day),	indicated	that	the	relationships	be‐
tween	RUE	and	predictors	differ	when	the	whole	growing	season	or	
spring,	summer	and	autumn	are	considered	separately.	On	the	other	
hand,	interannual	variability	of	RUEann	and	RUEmax	was	less	related	
to the environment.
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