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On the basis of first-principles DFT calculations the wave vector and temperature dependen-
cies of the Lindhard response function of the blue bronze K0.3MoO3 have been calculated. The
kI
F + kII

F inter-band component of the response, which is responsible for the Peierls instability,
has been quantitatively analyzed. It is found that (i) the electron-hole coherence length of this
response determines the length scale of the experimental intra-chain CDW correlations, and (ii)
the intra-chain q‖ dependence of such response also determines the shape of the Kohn anomaly
experimentally measured. These findings provide compelling evidence that the Peierls transition
of the blue bronze K0.3MoO3 follows the weak electron-phonon coupling scenario in the adiabatic
approximation, something that had not yet been proved on the basis of first-principles calculations
for a real material. It is proposed that the CDW interchain coupling occurs through a Coulomb
coupling between dipolar CDWs. The nature of the phonon mode leading to the dipolar nature of
the CDWs is also discussed, and the relevance of these results to rationalize the CDW instabilities
in other oxides and bronzes is pointed out. These findings are also contrasted with recent results
for other CDW materials like chalcogenides and tellurides.

I. INTRODUCTION

Many low dimensional metallic systems exhibit a
charge density wave (CDW) ground state where the elec-
tronic density is modulated with a wave number related
to the shape of their Fermi surface [1–3]. In experimen-
tal situations reported in the literature, the electronic
modulation is stabilized by a periodic lattice distortion
(PLD) [4]. Thus, electronic and lattice degrees of free-
dom are coupled by the electron-phonon coupling [5, 6].
The electronic energy gain is caused by the fact that the
new periodicity of the PLD opens a full gap in the band
structure for 1D electronic systems or partial gaps in elec-
tronic systems of higher dimension [7]. In the case of 1D
systems, the CDW/PLD modulation is accompanied by
a metal-insulator transition (i.e. Peierls transition in the
literature) and the modulation wave vector, 2kF , is sim-
ply twice the Fermi wave vector [8].

In the standard description of the Peierls transition [8]
the electron-phonon coupling is assumed to be small so
that the electronic wave functions are weakly perturbed
by the lattice vibrations. In this limit, which relies on
a PLD of small amplitude, the instability towards the
formation of electron-hole pairs is driven by the thermal
divergence at a well defined critical wave vector (qc= 2kF
in the 1D case) of a sharp electron-hole (i.e. Lindhard [9])
response function of the non-perturbed electron gas. This
response can be written as

χ(q) = −
∑
i,j

∑
k

fF (εi(k))− fF (εj(k + q))

εi(k)− εj(k + q)
, (1)

where fF is the Fermi function and εi(k) are the band
eigenvalues.

In the weak electron-phonon coupling limit and within
the adiabatic approximation where Ω0τeh < 1 (Ω0 be-
ing the frequency of the bare critical phonon Kohn
anomaly and τeh the lifetime of the electron-hole pair),
the electron-hole pairs fluctuate so fastly during the
phonon oscillation period that they screen the coupling
between the atoms. This leads to a phonon softening
around qc (i.e. to the occurrence of a Kohn anomaly) for
lattice modes whose frozen displacements stabilize the
PLD below the Peierls transition. In the adiabatic ap-
proximation, the critical lattice dynamics is of the dis-
placive type with a progressive softening of the frequency
of the Kohn anomaly when approaching the Peierls tran-
sition, following the thermal divergence of the electron-
hole response [8]. In this limit the width of the disper-
sion of the Kohn anomaly is related to the width of the
electron-hole response around qc (2/ξeh, where ξeh is the
coherence length of the electron-hole pair). Finally, in the
standard theory of the Peierls transition, the entropy of
the critical phonon mode is neglected, an approximation
valid if the Kohn anomaly involves only a small fraction
of the Brillouin zone (i.e. if ξeh2kF >> 1 in 1D). In the
weak coupling limit, the theory of the Peierls transition is
of the BCS type [8]. Note that in the presence of a broad
electron-hole response spreading over a sizeable fraction
of the Brillouin zone (i.e. if ξeh2kF ∼ 1 in 1D) the phonon
entropy cannot be neglected [10]. In that case it is needed
to go beyond the weak coupling BCS formalism to de-
scribe the Peierls instability and theoretical treatments
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suggest more likely strong electron-phonon coupling sce-
narios.

In the non-adiabatic approximation (Ω0τeh > 1) the
critical qc phonon fluctuates very fastly during the life-
time of the electron-hole pairs so that phonon modes can-
not efficiently couple with the electron-hole condensate.
There is no screening and thus no critical softening of a
phonon branch. The long-living electron-hole condensate
induces, via the electron-phonon coupling, a quasi-static
local PLD quite well decoupled from the phonon spec-
trum. The critical lattice dynamics of the Peierls transi-
tion is thus of relaxation or order-disorder type [11]. Note
that such dynamics is also found in the strong electron-
phonon coupling limit [12] where the PLD fluctuations
are of large amplitude.

The largest contribution of the Lindhard function
(Eq. 1) originates from electronic energies leading to a
vanishing denominator. This occurs for electronic states
located at the Fermi level such that

EF (k + q) = EF (k) (2)

Eq. (2) defines k states of the Fermi surface (FS) which
coincide with other states of the FS after application of
a q translation. If there are large portions of the FS ex-
hibiting such a property the nesting of the FS by q will
dominantly contribute to χ(q) [7]. Such nesting process
can simply account for the maxima of χ(q) and provide
a simple explanation for the occurrence of charge and
spin density wave instabilities found in many experimen-
tal systems [13]. For example, in 1D systems where the
FS is made of two planes at the +kF and -kF wave vec-
tors, the translation wave vectors q = ±2kF nest com-
pletely the FS leading to a divergence of χ(q) and to the
stabilization of a CDW-Peierls ground state [8]. How-
ever, at finite T , because of the Fermi-Dirac distribution
spreading over several kBT on each side of EF , the con-
tributions to the Lindhard function are not restricted to
the Fermi level. This is the case for a single band disper-
sion where FS nesting connecting also electronic states
with opposite Fermi velocities preserves the divergence.

FIG. 1. Schematic illustration of why for a 1D system with
two partially filled bands with different Fermi velocities only
certain inter-band nestings may be effective.

However, for a more complex band structure with dif-
ferent Fermi velocities, FS nesting is not a sufficient con-

dition to obtain a maximum of χ(q). We illustrate this
statement using a simple model for a 1D metal with two
conduction bands having the Fermi wave vector ±kIF and
±kIIF . If the dispersion of the two bands is parallel, the
nesting process linking band dispersions with opposite
Fermi velocities leads to maxima of χ(q) for q = 2kIF ,
2kIIF and kIF + kIIF but not for kIF − kIIF (Fig. 1a). This
situation is relevant for the blue bronze considered be-
low [14]. If the dispersion of the two bands is inverted,
the nesting process linking band dispersions with oppo-
site Fermi velocities leads to maxima of χ(q) for q = 2kIF ,
2kIIF and kIF − kIIF but not for kIF + kIIF (Fig. 1b). This
situation is relevant for the charge transfer salts of the
TTF-TCNQ family [15]. In conclusion, the sign of the
Fermi velocity of the different bands connected by the
nesting process determines the type of inter-band con-
tribution leading to maxima of the Lindhard function.
With more complex band structures it has been also re-
ported that maxima of χ(q) could differ from the best
FS nesting condition [16]. It is thus necessary to go be-
yond the simple consideration of the nesting properties
of the FS and to perform the direct calculation of the
Lindhard function to obtain the critical wave vectors of
the CDW instability. In the case of the blue bronze, the
CDW-Peierls instability has been proposed to be caused
by the inter-band kIF + kIIF nesting proces [14, 17].

The Mo blue bronze A0.3MoO3, where A= K, Rb or Tl
is a monovalent atom, exhibits a complex C-type centred
monoclinic structure [18]. Fig. 2a shows that this struc-
ture is built from (b, a+2c) layers of MoO6 octahedra.
In the perpendicular interlayer 2a*-c* direction vacan-
cies incorporate an ordered sub-lattice of A atoms. The
essential building blocks of the layers are the clusters of
ten MoO6 octahedra highlighted in Fig. 2b (see Sect. III
for a detailed structural discussion). Both tight bind-
ing [14] and Density Functional Theory (DFT) [19] elec-
tronic structure calculations as well as ARPES measure-
ments [20] show that the blue bronze exhibits a quasi-1D
band structure with two parallel conduction bands lead-
ing to a slightly warped double sheet open Fermi surface.
The repeat unit of the crystal structure in the 1D di-
rection is the cluster of ten octahedra. As monovalent
A atoms provide 3 electrons per cluster, the two bands
are partially filled with ρ= 3 electrons. The blue bronze
is a 1D metal with a sizeable RT conductivity of σb ∼
103 S/cm and an anisotropy of conductivity [21] which
follows the structural anisotropy σb : σa+2c : σ2a∗−c∗ ∼
1:10−2:10−3. Polarized reflectance measurements show
that the blue bronze is a true 1D metal exhibiting a
metallic Drude behaviour only if the light is polarized in
the chain direction [22]. At Tp= 180 K the blue bronze
exhibits a Peierls metal-insulator transition accompanied
by the setting of a CDW/PLD modulation of critical
wave vector qc= (0, 1-(kIF + kIIF ), 0.5) or equivalently,
within a reciprocal wave vector, of qc= (1, kIF +kIIF , 0.5).
At low temperature, the value of kIF+kIIF is≈ 0.75 [21]. It
exhibits a very sizeable regime of quasi-1D CDW fluctua-
tions [17] above Tp and the occurrence of a Kohn anomaly
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in the phonon spectrum whose frequency continuously
softens as Tp is approached [23, 24].

FIG. 2. Crystal structure of the blue bronzes. The lattice vec-
tors shown in (a) are those of the C-centered cell of Graham
and Wadsley[18]. The three different types of MoO6 octahe-
dra are shown with different colors. The elementary building
block of the structure (i.e. a cluster of ten octahedra) and the
octahedral chains it generates along the b direction are shown
in (b). An alternative description of the octahedral chains
associated with the red dashed line in (a) and the hump oc-
tahedra is shown in (c).

In this work we confirm the interband kIF +kIIF nesting
mechanism by a direct calculation of the Lindhard func-
tion using the real DFT band structure for the undis-
torted, high-temperature metallic phase of K0.3MoO3.
Our calculation of the thermal dependence of the shape
and width of the peaks of the Lindhard function for the
metallic phase allows to quantitatively account for the
standard weak coupling scenario of the Peierls transi-
tion. Our results do not provide direct insight on the
CDW phase, such as the lattice distortions or the spe-
cific displacements of the phonon mode exhibiting the
Kohn anomaly, but on the driving mechanism for the
Peierls transition originating from the instability of the
electron gas, and the physical regime of weak electron-
phonon coupling and adiabatic limit. To the best of our
knowledge, this type of validation of the weak coupling
scenario based on actual data for a real material has never
been reported in the literature.

II. COMPUTATIONAL DETAILS

DFT calculations [25, 26] were carried out using a
numerical atomic orbitals approach, which was devel-
oped for efficient calculations in large systems and im-
plemented in the Siesta code [27, 28]. We have used
the generalized gradient approximation (GGA) to DFT
and, in particular, the functional of Perdew, Burke and
Ernzerhof [29]. Only the valence electrons are considered
in the calculation, with the core being replaced by norm-
conserving scalar relativistic pseudopotentials [30] factor-
ized in the Kleinman-Bylander form [31]. The non-linear
core-valence exchange-correlation scheme [32] was used
for all elements. We have used a split-valence double-ζ
basis set including polarization functions [33]. The en-
ergy cutoff of the real space integration mesh was 350
Ry. To build the charge density, the Brillouin zone (BZ)
was sampled with the Monkhorst-Pack scheme [34] using
grids of (21×45×21) k-points. The Lindhard response
function (Eq. 1) was obtained from the computed DFT
values of the band eigenvalues εi(k). The integral over
k-points of the BZ was approximated by a direct sum-
mation over a dense, regular grid of points. As the
Lindhard function is more sensitive to the accuracy of
the BZ integration than the total energy, especially in
very anisotropic systems, and/or in the presence of hot
spots in the band structure (e.g. saddle points with the
corresponding van Hove singularity in the DOS), the k-
points grid used for its calculation must be more dense
than in the standard self-consistent determination of the
charge density and Kohn-Sham energy. The calculations
are done, nevertheless, using the eigenvalues obtained in
the DFT calculation for the coarser grid, and interpolat-
ing their values in the denser grid, using a post-processing
utility available within the Siesta package. In this work,
for the calculation of the Lindhard response function, the
BZ was sampled using a grid of (256×256×16) k-points.
The two partially filled bands were those taken into ac-
count in the calculations.

III. ELECTRONIC STRUCTURE OF K0.3MOO3

K0.3MoO3 crystallizes in a centered monoclinic struc-
ture and contains twenty formula units per unit cell, i.e.
K6Mo20O60 (Fig. 2)[18, 35]. In our DFT calculations
we used a half-sized unit cell based on the centrosym-
metric nature of the crystal where the lattice parameters
used are a′ = 1/2(a + b) + c, b′ = b and c′ = c where
a, b and c are the lattice constants reported by Graham
and Wadley.[18] The crystal structure consists of slabs of
MoO6 octahedra with the alkali metal atoms in between
these slabs. As mentioned, the structure contains three
inequivalent Mo atoms and thus three different types of
MoO6 octahedra (see Fig. 2). Although the structure of
the blue bronzes is usually discussed on the basis of the
clusters of ten octahedra shown in Fig. 2b, an alternative
description is more convenient in order to understand the
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FIG. 3. DFT band structure (a) and density of states (DOS)
(b) for K0.3MoO3. In (a) the size of the blue, red and green
dots are proportional to the Mo I, Mo II and Mo III character.
respectively. Γ= (0, 0, 0), X′= (1/2, 0, 0), Y′= (0, 1/2, 0)
and Z′=(0, 0, 1/2) in units of the a′*, b′* and c′* reciprocal
lattice vectors (see beginning of Sect. III and Fig. 4). (b) In
(b) the total DOS and Mo I, Mo II and Mo III projected DOS
are shown. The DOS is given in units of states per eV per
unit cell of 10 Mo and per spin direction.

nature of the electronic structure [36] (Fig. 2c). The Mo
II and Mo III type octahedra form units of four corner-
shared octahedra (marked with a dashed red segment
in Fig. 2a) which lead to quadruple chains along the b
axis by further corner-sharing along this direction. The
Mo I hump octahedra fill one every two outer holes of
these quadrupole chains in an zigzag way sharing two
edges with Mo II octahedra (Fig. 2c). Consequently, the
chains along b are really built from a repeat unit of ten
octahedra: two rows of the four octahedral units and two
type I hump octahedra. The cluster of ten Mo octahe-
dra which is the repeat unit of this chain is structurally
equivalent to that highlighted in Fig. 2b. The layers of
the blue bronze result from the condensation of these
chains along the a+2c direction through edge-sharing of
octahedra of the different chains.

The calculated band structure of K0.3MoO3 along the
three main directions of the Brillouin zone is shown in
Fig. 3a. The Fermi level cuts two bands dispersive along
Γ−Y′ (i.e. not far from the intra-chain b direction, Γ-Y)
but only slightly dispersive along Γ-X′ (i.e. the inter-

FIG. 4. DFT Fermi surface for K0.3MoO3: (a) Representation
using the rhombohedral Brillouin zone, and (b) View along
the perpendicular to the (a*,b*) plane.

chain direction) and with a nil dispersion along Γ−Z′
(i.e. the inter-layer direction). The band structure of
Fig. 3a is in very good agreement with the results of pre-
vious DFT calculations [19, 37] and different ARPES
studies [20, 38–45]. For instance, the calculated val-
ues of the kIF and kIIF Fermi wave vectors are found to
be 0.59π/b and 0.91π/b respectively, which are within
the range of values determined in different ARPES stud-
ies: between 0.55 and 0.69 for kIF and between 0.86 and
0.97 for kIIF [20, 38–45]. In addition, the two calculated
band dispersions are also in good agreement with the
ARPES studies. The ratio of the calculated Fermi ve-
locities of the two bands in the Γ-Y direction is ≈ 4.5
which compares well with the more recent ARPES stud-
ies, ≈ 4.6 [45]. Note also that in the Peierls theory of
inter-band nesting [17] an effective Fermi velocity can be
defined as vF = 2v1F v

2
F /(v

1
F + v2F ), where v1(2)F is the

Fermi velocity of band 1 (2). Using the ARPES results
of reference [45] one obtains vF ≈ 1.9 eV.Å, which is in
nice agreement with the vF ≈ 2 eV.Å value that we cal-
culate from the slope of the thermal dependence of the
electron-hole inverse coherence length (see Fig.7). Thus,
in contrast with earlier tight-binding calculations [14],
which led to a pair of bands with similar and consider-
ably smaller dispersion, DFT provides a sound picture of
the electronic structure of the blue bronzes. Also shown
in Fig. 3a is the contribution of the three different Mo
atoms to the different bands. Mo I does not contribute
to the two partially filled bands. In fact the orbitals of Mo
I only participate in levels between 1.0 and 2.5 eV higher
than the Fermi level (see Fig. 3b). The reason is that the
Mo I octahedra exhibit two strong O-Mo...O short/long
bond alternations in the basal plane as a consequence of
the fact that half of the octahedron shares edges with Mo
II and Mo III octahedra whereas the other half does not
share any edge, thus leading to a strong distortion. This
structural feature leads to a strong destabilization of the
three t2g orbitals of the Mo I atom [36]. Consequently,
the carriers associated with the two partially filled bands
of K0.3MoO3 are confined within the quadruple chains of
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Mo II and Mo III octahedra. This is in agreement with
the fact that the participation of the Mo I atoms in the
structural modulation of the blue bronzes was found to
be practically nil in the X-ray study of Schutte and De
Boer [46]. It is however remarkable that, as discussed
in detail by Machado-Charry et al. [47], using DFT cal-
culations very similar to the present ones, the brightest
spots of the scanning tunneling microscope images of the
modulated blue bronzes originate from oxygen atoms of
these Mo I octahedra. These atoms are the uppermost
oxygen atoms of the surface and the STM experiment is
mostly measuring the differences in the local density of
states of these O atoms as a result of the CDW.

The two partially filled bands result from the mixing of
the Mo II and Mo III orbitals (as well as the associated
O p orbitals), although Mo III dominates in the lower
band whereas Mo II dominates in the upper one. These
bands are almost exclusively built from the Mo dxz or-
bitals (here we assume a local system of axis with z along
the chain b direction and x along the dashed red line in
Fig. 2a). This feature originates from the local distor-
tions of the Mo II and Mo III octahedra, which lead to
one strong O-Mo...O alternation in the basal plane of the
octahedra along the inter-layer direction. Such alterna-
tion strongly destabilizes the Mo dyz and dx2−y2 orbitals
but does not noticeably affect the dxz orbital. The rea-
son is that the Mo dyz and dx2−y2 orbitals make π-type
antibonding interactions with the O pz and py orbitals,
respectively, and the destabilizing effect due to the short
Mo-O distance largely outweights the stabilizing effect of
the long Mo-O distance [36]. The inner Mo III octahe-
dra dominate in the lower band because the octahedral
distortion is weaker than in Mo II octahedra. The dxz
orbitals of the more distorted Mo II octahedra dominate
in the upper partially filled band. K0.3MoO3 is thus a
pseudo-1D metal because the dxz orbitals of the Mo II
and Mo III quadruple units undergo strong antibonding
π-type interactions with the O px orbitals along the chain
direction but only weak inter-chain interactions as a re-
sult of the unfavourable orientation of the dxz in different
chains.

The calculated Fermi surface for K0.3MoO3 is reported
in Fig. 4. It contains two pairs of slightly warped sheets
perpendicular to the b quadruple chains direction. The
red sheets, originating from the Mo II octahedra are
found to be slightly more warped. The computed Fermi
surface compares very well with those determined by
ARPES [42, 45] which exhibit a weak but definite warp-
ing. In fact, as it will be shown in the next section,
the warping is practically irrelevant around the tempera-
ture of the metal to insulator transition, Tp= 180 K [21]
so that the four sheets may be nested by a single inter-
band nesting vector, q. The calculated Lindhard response
function associated with the two partially filled bands is
shown in Fig. 5 where a clear cusp occurs for q= 0.25b*
(note that the chain direction is along Γ-Y, the green
dashed line in Fig. 5). Two weaker maxima are also visi-
ble along the Γ-Y line. In the next sections we discuss in

detail the significance of these results to understand the
workings of the CDW/PLD modulation at the origin of
the metal to insulator transition of K0.3MoO3.

IV. QUANTITATIVE ANALYSIS OF THE
LINDHARD FUNCTION

A. The three individual responses

The Lindhard function (Fig. 5) is made of three re-
sponses corresponding to three different nesting processes
between the four sets of open Fermi surfaces. Scans along
the b* chain direction (see Fig. 6) show (using the la-
belling of Fig. 1a) three peaks at: (i) 1-2kIIF = 0.09b* cor-
responding to the intra-band nesting of the blue FS, (ii)
1-2kIF= 0.41b* corresponding to the intra-band nesting of
the red FS and (iii) 1-(kIF + kIIF ) = 0.25b* correspond-
ing to the inter-band FS nesting. The strongest response
is for the inter-band FS nesting. This nesting process
achieves the Peierls transition of the blue bronze. With
a single modulation all four FS sheets can be connected
and thus a gap opens on the entire FS. The intra-band
I response is stronger than the intra-band II response,
which agrees with a lesser degree of warping of the cor-
responding FS. Upon cooling the intensity of these re-
sponses increases but does not diverge at low T . Diver-
gence is predicted in the case of nested planar FS [7].
Here, the formation of residual pockets in the nesting
process between warped FS stops the divergence. Be-
cause of the presence of nesting breaking pockets, the
three responses exhibit a slightly anisotropic profile at
low T . The kIF + kIIF inter-band response exhibits a
cusp anomaly whereas a shoulder is exhibited by the 2kIF
response and a tilted plateau by the 2kIIF response (see
Figs. 5 and 6). The maximum of the inter-band response
occurs for kIF + kIIF =0.75b*, which corresponds to the
intra-chain component of the experimental modulation
wave vector measured at low T [17]. However, the exper-
imental intra-chain component decreases significantly by
a few percent upon heating [17] while Fig. 6 shows that
the maximum of the Lindhard function stays constant
at 0.25b* for whole temperature range considered. Thus,
our calculation shows that the experimental decrease of
kIF + kIIF is not due to a shift of the q dependence of
the Lindhard function induced by thermal population ef-
fects of the curved conduction bands, as previously sug-
gested [48]. This point will be further considered at the
end of section IVC.

B. Electronic parameters of the inter-band nesting
process and validation of the weak coupling scenario

Except at very low T when nesting breaking effects
are relevant, each individual Lindhard component ex-
hibits a lorentzian profile in q. The half-width at half-
maximum (HWHM) of the Lorentzian in the chain direc-
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FIG. 5. DFT Lindhard response function for K0.3MoO3 at 10 K
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FIG. 6. Scans of the Lindhard response function along the Γ-Y chain direction for different temperatures. This figure clearly
shows the individual responses of the three Fermi surface nesting processes (i), (ii) and (iii) defined in the text.

tion gives the inverse coherence length of the fluctuating
1D electron-hole pair, 1/ξeh‖(T ), which depends on the
temperature T and on the microscopic parameters of the
1D electron gas [49]. Fig. 7 gives the thermal depen-
dence of 1/ξeh‖(T ) for the inter-band response compo-
nent. This quantity increases linearly with the temper-
ature, but does not vanish at 0 K, as expected for pla-
nar nested FS. The intercept, which amounts to 1/ξ0eh‖
= 0.015Å−1= 1.8%b*, represents the longitudinal size of
the pocket due to imperfect longitudinal nesting. One
thus has

1/ξeh‖(T ) = 1/ξ0eh‖ + 1/ξTeh‖ (3)

where 1/ξTeh‖ is the thermal length associated with the
broadening of the FS at T . According to the microscopic
theory of refs. [49, 50]

ξTeh‖ = ~vF /πkBT. (4)

For the inter-band nesting process vF is an effective Fermi
velocity defined in ref [17]. Dividing Eq. 3 by <kF> =
(kIF + kIIF )/2 (= 0.31 Å−1) leads to the dimensionless
expression

1/[< kF > ξeh‖(T )] = 1/[< kF > ξ0eh‖] + T/Teff (5)

which, according to the data of Fig 7, gives a Teff ≈
2400 K.

Using the data of Fig. 7 it is found that above TP the
value of < 2kF > ξeh‖(T ) is ≈ 16 at TP and ≈ 11 at room
temperature (RT). Thus, only a very small fraction of the
Brillouin zone is affected by the Peierls critical instability.
This justifies the criteria for which the phonon entropy
change can be neglected at the Peierls transition. Conse-
quently the weak coupling theory of the Peierls transition
should apply to the blue bronzes. Using Teff the cut-off
energy (Ecut−off ) entering the standard theory of the
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FIG. 7. Thermal dependence of the inverse coherence lenghts
along the chain (‖) and the intra-layer (⊥) directions. These
quantities are compared (dashed dotted lines) with the inverse
experimental CDW correlation lengths reported in ref[51]

Peierls transition can be obtained as [7, 15, 50]

πkBTeff = ~vF < kF >= 0.65 eV (6)

This energy is comparable to the average Fermi energy
of the two conduction bands determined by DFT calcu-
lation (see Fig. 3) and ARPES measurements [20]. Eq. 6
gives an effective Fermi velocity of vF ≈ 2 eV·Å.

For a 1D free electron gas with perfect longitudinal 2kF
nesting, the Lindhard function should thermally diverge
as [50]

χ(2kF ) = N(EF ) ln(Ecut−off/πkBT ) (7)

where N(EF ) is the density of states at the Fermi level
and where the cut-off energy Ecutoff is of the order of
EF , as given by Eq. 6. This divergence does not really
occur at low T in the blue bronze because of the presence
of residual pockets due to the imperfect longitudinal nest-
ing. Under such conditions it is better to use 1/ξeh‖(T ),
as given by Eq. 3, instead of the scaling variable T . This
leads to

χ(2kF ) ∝ ln[kF ξeh‖(T )] (8)

and, as shown in Fig. 8, this logarithmic dependence is
fulfilled by the peak intensity of the inter-band Lindhard
function of the blue bronze for all the temperature range.

The BCS weak coupling relationship relates the Peierls
gap at 0 K, 2∆0, with the reduced electron-phonon cou-
pling constant λ [7, 15, 50]. For a parabolic band disper-
sion agreeing with the DFT calculation (see Fig 3a) and
ARPES measurements [20] it is found that

∆0 = 4EF e
−1/λ (9)

Then, using the half-optical direct gap in the Peierls
ground state [22], ∆0= 75 meV, and EF ≈ 0.65 eV
(Eq. 6), a value of λ ≈ 0.28 is obtained. Using the explicit
expression for the reduced electron-phonon coupling [7]

λ = 2g2N(EF )/~Ω0, (10)

one can obtain, using the DFT density of states at the
Fermi level, N(EF )= 2.36 eV−1 per cluster and spin di-
rection (see Fig. 3b), together with a bare critical phonon
frequency of Ω0= 1.7 THz (determined in Fig. 9), g =
20 meV. This quantity is more than twice larger than
the electron-phonon coupling g determined by the same
method for molecular conductors [52].

FIG. 8. Logarithmic dependence of the electron-hole response
for the inter-band nesting process of the blue bronze according
to Eq. 8.

The finding of λ<1 and of ∆0 << EF sustains the
weak coupling approximation for the blue bronze. Fig. 7
compares the thermal dependence of the electron-hole
coherence length (ξeh‖(T )) with the longitudinal CDW
structural correlation length (ξCDW‖(T )) measured by
X-ray scattering [17, 21, 51] and whose divergence drives
the Peierls transition at TP . The CDW/PLD fluctua-
tion divergence is driven by the coupling of the 1D elec-
tron gas with the critical phonon modes via the electron-
phonon coupling g [53, 54]. More precisely, Fig. 7 shows
that at high temperature (i.e. above RT) ξCDW‖(T )
tends asymptotically towards ξeh‖(T ). Thus, above ∼
2 TP , when the coupling to the lattice is not yet critical,
the length scale of the CDW fluctuations amount to the
electron-hole coherence length, as expected in the weak
coupling scenario of the Peierls transition.

C. Relation with the dynamics of the Peierls
transition

Using the relation

ξeh‖ = vF τeh, (11)
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FIG. 9. Fitting of the square of the frequency Kohn anomaly
measured at 230 K in ref [24] (see also Fig. 13a) with the
calculated Lindhard function. The best fit allows to determine
the base line corresponding to the square of the bare critical
phonon mode Ω2

0(q).

it is possible to obtain the lifetime of the electron-pair.
It amounts to τeh ≈ 10−16s at room temperature. Thus
with Ω0= 1.7 THz, a very small dimensionless quantity
Ω0τeh ≈ 1.7·10−4 << 1 is obtained. This means that the
electron-hole pairs fluctuate so fastly during the phonon
oscillation period that they are able to screen the cou-
pling constant between the atoms. The Peierls transition
of the blue bronze is thus located in the adiabatic limit
where the screening effects lead to the formation of a
well defined Kohn anomaly in the vicinity of 2kF . Such
a phonon anomaly is experimentally observed [24]. With
the screening effects treated in the RPA approximation
the square of the Kohn anomaly frequency is given as [8]

ω2
K(q, T ) = Ω2

0(q)[1− λχ(q, T )/N(EF )], (12)

which involves the Lindhard function χ(q, T ). In Eq. 12
we have explicitly included the 3D dependence of the
Kohn anomaly (with q= (q‖, q⊥)). Fig. 9 shows that
Eq. 12 quantitatively accounts for the q‖ dependence of
the Kohn anomaly of the blue bronze in the chain di-
rection at 230 K using the Lindhard function calculated
with DFT. Note that the best fit of the experimental data
with the calculated Lindhard function shown in Fig. 9,
allows the determination of the square of the bare critical
phonon frequency, Ω2

0(q). It is found that Ω0(kIF +kIIF ) ≈
1.7 THz, which coincides with the frequency of the am-
plitude mode at low T [24, 55].

Note that in the fit of Fig. 9, the qb values of the
Lindhard response function have been shifted by about
-0.02b*. The reason is the following: whereas the com-
puted electron-hole response function exhibits a maxi-
mum at 0.25b* for the whole temperature range (Fig. 6)

because the total number of electrons filling the two con-
duction bands in the calculation remains constant, the
wave vector of the experimental minimum frequency of
the Kohn anomaly or the qb maximum of the CDW fluc-
tuations [17] continuously increases upon cooling to reach
0.25b* at low temperature. The origin of such a wave vec-
tor shift is unclear. Beside the simple yet unlikely expla-
nation that, for some unknown reason, the total number
of electrons is changing with temperature, it is possible
that the reduced electron phonon coupling λ in Eq. 12 de-
pends upon qb. According to Eq. 10, λ should vary if the
bare phonon frequency Ω0 and/or the electron-phonon
coupling constant g change with qb. The fit in Fig. 9
shows that this is indeed the case for Ω0. The other pos-
sibility, a variation of g with qb, should also be seriously
considered because, as shown by Fig. 13 and discussed in
the appendix, the Kohn anomaly develops in a phonon
branch resulting from a strong hybridization between the
transverse acoustic TA2 branch and a low frequency op-
tical branch. The two vibration modes certainly involve
different atomic displacements so that these lattice defor-
mations should lead to a different electron-phonon cou-
pling. Thus, with a mode mixture changing substantially
with qb in the vicinity of kIF +kIIF , one should expect that
the electron-phonon coupling g should exhibit a strong qb
dependence.

D. Inter-chain coupling

In a purely 1D electron-phonon coupled system the
intra-chain correlation length diverges at 0 K because the
structural fluctuations prevent any ordering at finite tem-
perature [53, 54]. The observation of a Peierls transition
at finite T is due to the inter-chain coupling between the
CDW fluctuations [54]. In general inter-chain coupling
can occur through three different mechanisms [11, 54]:

(i) A transverse nesting of the FS. In that case the
Lindhard function should exhibit an inter-chain wave vec-
tor dependence (i.e. q⊥) along which direction the FS is
warped,

(ii) An inter-chain Coulomb coupling between CDW’s,
since each individual CDW exhibits a charge modulation,
or

(iii) A transverse wave vector, q⊥, dependence of the
bare critical phonon Ω0(q).

It is worth considering the likeliness of the three cou-
pling mechanisms for the blue bronze. Let us start with
mechanism (i). Fig. 10 presents thermal scans of the
Lindhard function along the a + 2c ≈ 2a*+c* intra-
layer transverse direction (see Fig. 2). It exhibits a very
broad response centered at q⊥= 0 (in the a*,b* frame
defined in Fig. 4b) corresponding to an inter-chain cou-
pling in-phase along the a+2c direction. This wave vec-
tor achieves the best FS nesting of band I to band II, as
outlined in previous band structure calculations [14, 19].
Note however that mechanisms (b) and (c), which will
be considered below, give a similar phasing. However the
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FIG. 10. Scans of the Lindhard response function along the intra-layer transverse direction for different temperatures. Note
that the maxima at about 0.12a’* corresponds to 0a*.

present calculation shows that the transverse response of
the Lindhard function is quite broad. From its HWHM
on gets an inverse inter-chain electron-hole coherence
length ξ−1eh⊥ ≈ 0.19 Å−1 at RT which very slightly de-
creases upon cooling (Fig 7 ), reaching 0.18 Å−1 at TP .
The inverse of this quantity leads to a coherence length
of ∼5.5 Å which is about the distance between the two
outer Mo III of the cluster but twice smaller than the
distance (12 Å) between the two outer Mo II of the seg-
ment defined in Fig. 2c. ξ−1eh⊥ is larger than the inverse
CDW structural correlation length ξ−1CDW⊥ ∼ 0.14-0.17
Å−1 measured along the 2a*+c* direction at RT [17, 51].
In addition, the non-detection of a transverse plasma
edge for light polarized in the transverse direction [51]
shows that the warping effect of the FS is not thermally
relevant above TP . The blue bronze thus remains a true
1D metal in the CDW fluctuating regime above TP . We
thus conclude that mechanism (i) is not relevant for the
blue bronze and we must concentrate on the other two
mechanisms.

Let us first consider mechanism (ii) which was pre-
viously discussed in ref. [11]. According to the struc-
tural refinement of the modulated structure of the blue
bronze below TP [46] there is basically a longitudinal dis-
placement of the Mo atoms in the direction of each lin-
ear segment of four corner-sharing MoO6 octahedra (see
Fig. 2c). This in-phase displacement induces a ferroelec-
tric polarization of the segment, and the CDWmodulates
along b the amplitude of polarization of linear segments
with the 2kF= 0.75b* wave number. In this scenario, the
inter-chain electrostatic coupling mechanism occurs be-
tween dipolar CDW. Such a coupling is quite anisotropic
and as shown in Fig. 11:

- the intra-layer coupling along a+2c between polar

FIG. 11. Lateral phasing of the dipolar CDWs in K0.3MoO3.

CDWs in the dipole direction, W‖, leads to a uniform
inter-chain CDW order,

- the inter-layer coupling along 2a*-c* between polar
layers of CDWs in the perpendicular direction,W⊥, leads
to a staggered inter-layer CDW order.

From the anisotropy of inter- and intra-layer transverse
correlation lengths [4] one gets an anisotropy of couplings
of W‖ ≈ 8W⊥ (see Fig. 11).

Finally, let us consider mechanism (iii) above TP . This
mechanism is compatible with mechanism (ii) below TP .
Mechanism (iii) relies on the presence of an incipient
anisotropic valley of low frequency phonons whose bare
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frequency Ω0(q) sizably varies with q. In the blue bronze
such an anisotropic dispersion along q⊥ is observed for
the acoustic phonon branch polarized along a+2c mixed
with a polar optical branch (see Appendix for experi-
mental evidence taken from the phonon spectrum). This
composite mode involves optical-like uniform off-center
Mo displacements within the four MoO6 octahedra of
each segment. The correlated Mo displacement between
neighboring corner-sharing octahedra should induce a lo-
cal polarization (Fig. 12a). When the correlated Mo
displacements are in-phase between neighboring overlap-
ping segments of four octahedra separated by a/2+c (see
Fig. 2a), a frequency softening of the composite acous-
tic/optical phonon branch should occur. This softening
persists along the b* and 2a*-c* perpendicular propa-
gating wave vectors starting from each 2π/ | a/2 + c |
reciprocal position. In reciprocal space this should give
rise to a sheet of low frequency phonons perpendicular to
the polar segment direction (Fig. 12c). The trace of such
sheet of low frequency phonons leads to an enhanced X-
ray planar diffuse scattering (Fig. 12b) which has been
detected in the blue bronze at RT (see ref. [11, 21]). The
CDW/PLD instability and the associated Kohn anomaly
develop inside this valley of soft phonons. Such a pre-
existing valley imposes the intra-layer CDW component
q⊥= 0. We thus suggest that mechanisms (ii) and (iii)
are strongly intermingled and are at the origin of the
inter-chain coupling in the blue bronzes.

Similar low frequency planar valleys of mixed acous-
tic/polar phonons are observed in ferroelectric per-
ovskites such as BaTiO3 KNbO3 and KTaO3 [56–58]
or the chain-like ferroelectric SbSi [59]. Note that
features similar to those of the blue bronze are ob-
served in the CDW monophosphate tungsten bronzes,
(PO2)4(WO3)2m, which are built from segments of m
corner-sharing WO6 octahedra and which exhibit a ten-
dency to ferroelectricity. Note that WO3, which cor-
responds to the limit of this family when m → ∞ is
an antiferroelectric. The CDW/PLD instability in the
monophosphate tungsten bronzes develops inside a pla-
nar valley of low frequency phonons also perpendicular
to the segment directions [60, 61]. The possible link be-
tween the CDW/PLD instabilities of the blue bronzes,
γ− and η−Mo4O11 Magnéli phases and monophosphate
tungsten bronzes suggested by our discussion is thus a
challenging issue in the quest for a full understanding of
microscopic origin of the CDW instabilities in oxides and
bronzes.

V. COMPARISON WITH OTHER CHARGE
DENSITY WAVE SYSTEMS

The present study shows that the CDW instability and
the Peierls transition of the blue bronze can be quantita-
tively understood within the weak electron-phonon cou-
pling scenario. As a consequence, there is a clear soft-
ening above TP of a sharp Kohn anomaly driven by the

FIG. 12. Illustration of the low-frequency phonon coupling
mechanism for inter-chain coupling in the blue bronze and its
detection. (a) Local polarization induced by the correlated
Mo displacements in neighboring corner sharing octahedra.
(b) Planar diffuse scattering developed in X-ray scatering
measurements due to (c) a sheet of low-frequency phonons
perpendicular to the polarization direction when the corre-
lated Mo displacements are in-phase between neighboring seg-
ments.

divergence of the electron-hole response function (Fig. 9).
This well pronounced Kohn anomaly leads to the emer-
gence below TP of two collective excitations of the ampli-
tude and phase of the incommensurate CDW modulation
whose dispersion has been clearly measured by inelas-
tic scattering [24, 62, 63]. The phase excitation mode
whose frequency tends to zero at the 2kF wave vector and
which stiffening of the linear dispersion increases upon
cooling [62, 63], is a basic ingredient allowing to under-
stand the sliding of the CDW of the blue bronze under
electric fields [1–3]. This situation should be contrasted
with the case of NbSe3 where analogous CDW sliding ef-
fects have been reported [64]. Two differences are worth
noting. First, the Lindhard function of the blue bronze
shows a well decoupled 2kF sharp response for the dif-
ferent intra- and inter-band FS nesting processes (Fig. 6)
while NbSe3 shows a broad electron-hole response in the
chain direction where the different intra- and inter-band
FS nesting processes are superposed [65]. Second, up
to now no Kohn anomaly has been detected in NbSe3
by neutron and X-ray inelastic scattering methods [66].
Such absence of Kohn anomaly has been interpreted as
providing evidence for a strong coupling scenario of the
Peierls transition [66]. Note however that these measure-
ments report an anomalous drop of the frequency of the
longitudinal acoustic (LA) branch for wave vectors tend-
ing to the zone boundary. Thus, it is expected that in
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the next Brillouin zone the LA branch transforms into
an longitudinal optical (LO) branch. This LO branch,
which has the right symmetry to achieve the out-of-phase
longitudinal deformation of first neighbor coupled NbSe3
chains required to form a π shifted CDW [67], could
exhibit a soft frequency on a large intra-chain wave vec-
tor range around the CDW critical wave number. In
this respect note that, in agreement with this hypothesis,
both the Lindhard function calculation [65] and the mea-
surement of the intra-chain CDW correlation length [68]
give a small ξeh ∼ 5-10 Å at RT which leads to a prod-
uct 2kF ξeh ∼ 2-4, more than three times smaller than
2kF ξeh ≈ 11, estimated here for the blue bronze. This
indicates that the phonon entropy should certainly not be
neglected when considering the mechanism of the Peierls
transition of NbSe3. In this respect, NbSe3 could bear
a resemblance to the 2D CDW systems which will be
considered below.

It is also interesting to compare these findings to those
for 2D CDW systems such as the RTe3 (where R is a rare
earth atom) tellurides and the transition metal dichalco-
genides. In TbTe3, the CDW lattice instability is re-
vealed by the formation of a broad Kohn anomaly in
an optical branch where frequency softens and damping
increases at the critical CDW wave number when ap-
proaching the Peierls transition (TP= 330 K) [69]. Fur-
thermore, below TP the CDW modulation develops with
a critical wave vector slightly off the best nesting FS wave
vector [16, 69]. It is thus proposed [69] that a wave vector
dependent electron-phonon coupling could be responsible
for this effect.

Controversial interpretations have been proposed dur-
ing many years concerning the mechanism of the CDW
instability of the layered transition metal dichalco-
genides. According to a recent review [70], predic-
tions based on the mean-field model agree only semi-
quantitatively with experimental data and it appears
that generally there is no real dominant factor favoring
the CDW formation. A recent inelastic X-ray investi-
gation of 2H-NbSe2 evidences the formation of a broad
and damped Kohn anomaly in a longitudinal acoustic
branch whose frequency critically softens at the CDW
wave number when reaching TP= 33 K (contrary to ear-
lier neutron scattering investigations) with a damping
diverging at the CDW transition [71]. As it is the case
for TbTe3 [69], it was proposed [71] that in the presence
of a broad electron-phonon response, which does not re-
ally select a particular FS nesting mechanism [16], the
q-dependent electron-phonon coupling should be incor-
porated into the explanation of the CDW instability.

Compared to NbSe3, rare-earth tellurides and transi-
tion metal dichalcogenides, the blue bronze, which ex-
hibits a CDW instability that can be accounted for by the
standard (weak electron-phonon coupling) Peierls sce-
nario, appears to be unique. This is due to the fact
that it exhibits a sharp 2kF electron-hole response, due
to a simple FS nesting mechanism, which drives the for-
mation of a sharp Kohn anomaly which softening drives

the Peierls/CDW instability. In rare-earth tellurides and
transition metal dichalcogenides, the electron-hole re-
sponse is broad and leads to the formation of a broad
Kohn anomaly. In the latter 2D CDW metals the way
by which the critical CDW wave vector is selected re-
mains unclear. It has been recently proposed that a
wave vector dependent electron-coupling is essential for
that purpose [71]. Another important question concerns
the mechanism of the CDW/Peierls instability. In the
presence of a broad Kohn anomaly, where the softening
involves a large number of wave vectors of the Brillouin
zone, the lattice degrees of freedom play a more impor-
tant role (in particular through its entropy) than that
assigned in the standard theory of the Peierls transition,
where only the elastic energy cost is considered. A full
account of lattice effects, considered earlier by McMil-
lan [10], should invalidate the BCS-type theory for the
Peierls transition and should lead to strong coupling sce-
narios.

Finally, let us mention that other 2D transition metal
Mo and W metallic oxides and bronzes exhibit a succes-
sion of CDW instabilities [1, 3]. In contrast with the tran-
sition metal dichalcogenides, the electronic structure of
these oxides can be described by a 2D lattice of interpen-
etrating and differently oriented chains [72]. As a con-
sequence, their Lindhard function, which is dominated
by the 2kF FS nesting processes of individual chains, ex-
hibits in reciprocal space a collection of differently ori-
ented and well-defined chain-like electron-hole responses
similar to that calculated for the blue bronze [73, 74].
The CDW instability occurs at the crossing point of
the differently oriented chain responses, whose associ-
ated 1D-like CDW fluctuations have been detected by
X-ray diffuse scattering methods [75]. The CDW tran-
sition of these materials thus presents a Peierls charac-
ter [61]. However since inelastic scattering measurements
have not been performed, the CDW lattice dynamics is
still unknown.

VI. CONCLUDING REMARKS

The wave vector and temperature dependencies of the
electron-hole (i.e. Lindhard) response function of the
blue bronze K0.3MoO3 have been calculated on the basis
of its first-principles DFT electronic structure. This re-
sponse has three components corresponding to three pos-
sible nesting processes of its warped double sheet quasi-
1D FS. We have quantitatively analyzed the kIF + kIIF
inter-band electron-hole component which is responsible
for the Peierls instability of the blue bronze. We have
shown that the electron-hole coherence length of this re-
sponse determines the length scale of the experimental
intra-chain CDW correlations. In addition, the intra-
chain q‖ dependence of such response also determines the
shape of the Kohn anomaly experimentally measured.
All these features prove that the Peierls transition of
the blue bronze can be well accounted for by the weak
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electron-phonon coupling theory of this transition in the
adiabatic approximation. To the best of our knowledge
this is the first time that such theory, already established
in the 1970s, is quantitatively verified. Finally, the calcu-
lation of the intra-layer transverse q⊥ dependence of this
response shows that the warping effect of the FS above
TP does not provide a pertinent mechanism for the CDW
interchain coupling. We propose that such inter-chain
coupling is achieved through the Coulomb coupling be-
tween dipolar CDWs. Furthermore, we show that the
dipolar nature of the CDW modulation is due to the
condensation at TP of a critical phonon mode resulting
from the hybridization of an acoustic branch polarized in
the MoO6 intra-layer segment direction, and an optical
polar branch similar to those found in ferroelectric per-
ovskites. We suggest that such an inter-chain coupling
mechanism also occurs in CDW oxides and bronzes such
as the monophosphate tungsten bronzes.
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Appendix: Critical low frequency phonon branches
of K0.3MoO3

The phonon spectrum of K0.3MoO3 is quite complex
because it contains many optical branches of low fre-
quency which hybridize with acoustic branches. Figure
13a shows the dispersion of some of these branches mea-
sured by inelastic neutron scattering between 225 K and
RT along the reciprocal directions defined in Figs. 13b
and 13c [24, 76]. Since previous neutron scattering stud-
ies focused on the dynamics of the Kohn anomaly, the
phonon spectrum of the blue bronze has never been an-
alyzed. In this respect the true polarization of the crit-
ical phonon branch has never been considered. This is
the purpose of this appendix. Let us first consider the
acoustic branches. The orthogonal frame used to label
the acoustic modes is based on the structural anisotropy
(see Fig. 2a) according to the decrease in the bonding
strength:

- the monoclinic b direction: label 1,
- the [102] direction: label 2,
- the perpendicular to the (-201) layer of MoO6 octa-

hedra: label 3.
Using the slope of the acoustic branch one obtains the

elastic constants given in Table I. The relative Cij values
follow the structural anisotropy:

- for the compression deformation: C22> C11 » C33,
the deformation energy of the chain of clusters is stronger
than that between clusters along the [102] direction of
the layer and much stronger than that in the inter-layer
direction incorporating alkaline atoms.

- for the shear deformation: C66> C44 ≈ C55, the shear
deformation energy of the (-201) layer of octahedra is
stronger than that associated with their relative shift.

The dispersion of the phonon branch bearing the Kohn
anomaly is not straightforward to analyze because it re-
sults from the hybridization of the acoustic mode polar-
ized in the segment direction (label 2 and red lines in
Fig. 13a) with a low lying optical phonon mode (blue
lines in Fig. 13a) whose frequency is 1.4 THz at the Γ
point and 1.8 THz at the A point (blue empty circles
in Fig. 13a; the Γ and A points are defined in Figs. 13b
and c). Although not measured from a (2ξ, 0, -ξ) scan
along ΓM, the TA2 branch should be very close to the
TA1 branch because C44 ≈ C55 (see Table I). At the
zone boundary M point one expects a mixing of the TA2

branch with the above mentioned optical branch reach-
ing 0.9 THz at the M point along a different (2ξ, 0, ξ)
scan (see Fig. 13a). Another mixing between the two
modes occurs near the A point, very close to the posi-
tion of the Kohn anomaly. As a result, the low frequency
phonon branch sustaining the Kohn anomaly should be
strongly hybridized in the MA direction. The (2ξ, 0, ξ)
scan clearly shows an avoided crossing near the Γ point
between the bare LA2 and the 1.4 THz optical branches.
Beyond this crossing point the frequency of the optical
branch stays nearly constant until the γ zone boundary
crossing point. Then, the γM scan shows that its fre-
quency drastically decreases to reach 0.9 THz at the M
point (where it should mix with the TA2 branch). Such
dispersion, which recalls that depicted in Fig. 12c, is the
cut of a preexisting valley of soft phonons discussed in
the main text, where the frequency softening should be
associated to correlated 1D Mo displacements, ξ. From
the inverse of the half-width of the wave vector softening
along γM it can be inferred a correlated Mo displace-
ment on ξ ≈ 9 Å, which is about the distance between
two neighboring clusters in the transverse layer direc-
tion (Fig. 2a).The dispersion along MA of the bottom
of the valley of soft acoustic/optic phonon is represented
in Fig. 13a. Note that this dispersion exhibits an ex-
tra screening with the 1D electron gas near 2kF , which
leads to the formation of a Kohn anomaly in the phonon
spectrum.

Another difficulty to analyze the Peierls lattice in-
stability resides in the presence of four additional low-
lying phonon modes at the position of the Kohn anomaly
(empty green circles in Fig. 13a).
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FIG. 13. (a) Dispersion of the low-lying phonon branches of the blue bronze measured between 225 and 295 K. The acoustic
branches are labelled according to their polarization defined in the text. The hybridized phonon branches involved in the Peierls
instability are colored in red and blue for the acoustic and optic counterparts respectively. The empty green circles outline the
phonon modes in the vicinity of the Kohn anomaly drawn at 230 K. (b) and (c): Sections of the Brillouin zone scanned during
the inelastic scattering investigations (adapted from refs. [21, 76]).
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