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Abstract
The propagation front of a crack generates large strain gradients and it is
therefore a strong source of gradient-induced polarization (flexoelectricity).
Herein, we demonstrate that, in piezoelectric materials, a consequence of
flexoelectricity is that crack propagation is helped or hindered depending on
whether it is parallel or antiparallel to the piezoelectric polar axis. The
discovery of crack propagation asymmetry implies that fracture physics
cannot be assumed to be symmetric in polar materials, and it demonstrates
that flexoelectricity must be incorporated in any realistic model. The results
also have potential practical repercussions for electromechanical fatigue of
ferroelectric films and piezoelectric transducers, and provide a new degree of

freedom for crack-based nanopatterning.



Crack propagation causes materials to break, and forms basis of fracture physics a
vital element of materials science and engineering as it determines the mechanical resilience
of devices.2 Fascinatingly, controlled cracking has also been proposed as a mechanism for
device nano-patterning,® turning the harnessing of crack propagation into a constructive
pursuit. In the specific case of piezoelectric and ferroelectric materials, fracture physics is
additionally important because voltage-induced strains cause the appearance and propagation
of microcracks that result in material fatigue and ultimate failure of piezoelectric
transducers.*®  The fracture physics of piezoelectrics is therefore a fundamental problem
with important practical ramifications. Here we show that crack-generated flexoelectricity
causes in ferroelectrics an original valve-like or “crack filter” behavior, whereby crack
propagation is facilitated or impaired depending on the sign of the ferroelectric polarization.

In other words, the toughness of ferroelectrics is, like their polarization, switchable.

Flexoelectricity®® has disruptive consequences for the physics of materials, enabling
new behaviors #2 For example, it has recently been predicted12! and demonstrated(13' that
ferroelectrics can have an asymmetric mechanical response to inhomogeneous deformations.
Because fracture fronts concentrate the biggest local deformations that a solid can withstand,
flexoelectricity is also expected to affect fracture behavior. For example, the flexoelectric
fields generated by cracks are strong enough to be able to trigger the self-repair process in
bone fractures.*4 The present work demonstrates a new fracture phenomenon due to the
interplay between flexoelectricity and ferroelectricity: that crack propagation in ferroelectrics
is asymmetric and switchable, so that cracks propagating parallel to the ferroelectric

polarization become longer than those travelling against it.

In the present experiment, Vickers Indentation Tests were performed on a Rb-doped
KTiOPO4 (RKTP) single crystal with the polarization in-plane. We chose this ferroelectric

because it is uniaxial, and thus ferroelastic effects can be excluded. RKTP is also a
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technologically relevant material, commonly used as a frequency conversion device in
nonlinear optics.l15-16! For such applications, a bulk periodic domain pattern with alternating
domain orientations (periodic poling) is created in the crystal. The procedure for this is well-
established,*s! which facilitates the in-plane poling the crystal. Poling of antiparallel domains
on the same crystal was used, in order to ensure that geometrical effects such as a slight tilt or
miscut of the crystal surface did not affect the results. By poling two domains of antiparallel
orientation, indents could be performed on domains of opposite polarity on the same crystal
surface and in the same experiment, as sketched in Fig. 1(a). That way, the effect of
alternating polarity was tested without affectation from any other spurious effect such as

variations in sample geometry or chemistry.

Mechanical tests were conducted by applying sets of 200mN and 300mN loads, with
the orientation of the indenter being such that two of its four corners were parallel to the polar
axis and the other two perpendicular. In order to control for statistical fluctuations in fracture
toughness, 30 indents for each force (15 for each domain polarity) were performed, with each
indent generating four cracks along the parallel, antiparallel and perpendicular directions. In
total, 240 cracks were hence analyzed. The radial crack lengths, from the corners of the
indents (see inset in Fig. 1(a)), were measured with an optical microscope and Atomic Force
Microscopy (AFM) immediately after indentation. A sketch of the experiment is in Fig. 1(a),

and two indentation samples can be seen in Fig. 1(b) and 1(c).

After measuring the length of the cracks (1), the length asymmetry along the polar axis
was calculated for each indentation. To verify that the results were not artefacts, we also
measured the asymmetry in the direction perpendicular to the polar direction, where in theory

there should be none. We define the asymmetry coefficient as

t—1-
{0

%Asy = * 100, (1)



where I* is the crack length parallel to the polarization, and I is the crack length antiparallel
to the polarization (up or down in the plan-view photos). For cracks perpendicular to the

poling direction, + and — designate right or the left directions, respectively, in the plan-view

+ —
photos. The average crack length is (l) = % Positive (negative) asymmetry indicates a

longer (shorter) crack than the average. When cracks have the same length, the asymmetry

coefficient is zero.

Figure 2(a) shows the asymmetry of the cracks perpendicular to the polar axis. For
these, as expected, there is no asymmetry within statistical error. This lack of perpendicular
asymmetry provides a safety check for the robustness of the experimental results. In contrast
to the perpendicular cracks, Fig. 2(b) shows that cracks parallel to the poling direction are
asymmetric: for P* domains, a positive asymmetry is measured, and the asymmetry is
reversed for the P~ domains. In other words: crack length parallel to the polarization is
always greater than crack length antiparallel to the polarization, irrespective of the polarity of

the domain.

The asymmetry of crack length can be used to quantify the asymmetry in fracture

toughness, the stress intensity required for creating a crack.[17! Fracture toughness is given by

[18]

Kic = 0.016 (5)1/2 (CL) H=—, 2

where E is the Young Modulus, H the Vickers hardness, F the indent load, c is the distance
from the center of the indentation impression to the tip of the crack, and 2a is the diagonal of
the indent (see inset in Fig.1(a)). Using the values obtained from our tests, Kic was obtained

for each crack, and using the expression (1) the asymmetries were calculated.



Figures 2(c) and 2(d) show the asymmetry for the perpendicular and parallel
direction, respectively. As explained, there is asymmetry only along the polar axis, i.e. when
ferroelectric and flexoelectric polarizations are parallel (crack propagating in the same
direction as the ferroelectric polarization), or antiparallel (crack propagating in the opposite
direction as the ferroelectric polarization). The average value of the fracture toughness for
cracks parallel to the polarization was ~ 0.24 + 0.02 MPa-m%2, whereas for the ones
antiparallel to the polarization it was ~ 0.29 + 0.03 MPa-m*2, In other words, in ferroelectric
RKTP, fracture toughness is enhanced (yielding to shorter cracks) by 20% when

flexoelectricity and ferroelectricity are antiparallel compared to when they are parallel.

As discussed earlier, since all indentations are performed under the exact same
geometrical conditions (same surface, same indenter, same experiment), the asymmetry
cannot be a geometrical artifact. The fact that the crack-length asymmetry is reversed for
domains of opposite polarization implies that the origin is linked to polarity. Differences in
surface adsorbates or near-surface defects can be excluded; even if such differences did exist
(and none should be expected given that the polarization is in-plane), each pair of cracks is
generated in the same spot and encounters identical surface conditions. The asymmetry in
crack propagation is therefore intrinsic and linked to polarity: ferroelectricity acts as a sort of

fracture “valve” that can be switched to facilitate or impair crack propagation.

The basis of the asymmetry is the interplay between flexoelectricity and
piezoelectricity.l12: 13- 191 The local deformation at the tip of the crack generates a
flexoelectric polarization that may be parallel or antiparallel to the ferroelectric polarization,
resulting in different mechanical response.l? For ferroelectrics, there is in theory an
additional consideration, which is that the flexoelectric field near the tip of the crack may be
large enough to cause local switching of the polarization,20217 thus providing an additional

path for energy dissipation that further reduces the available energy for mechanical fracture.
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This process, akin to transformation toughening, is known as switching-induced
toughening.l2224 Switching-induced toughening has so far been studied in ferroelastic-
ferroelectrics (i.e. ferroelectric materials where mechanical stress can switch the direction of
the polar axis), but flexoelectricity in principle also enables purely ferroelectric (180 degree)
switching in non-ferroelastic uniaxial ferroelectrics.” Here we examine the extent to which

such effect can contribute to the observed cracking asymmetry of our samples.

Considering a uniaxial ferroelectric, and adding a flexoelectric term to the energy

balance, switching should occur when:
fijki€j AP, + E{AP; = 2PE, 3)

where fija is the flexocoupling tensor, €; , is the strain gradient, and AP; are the changes in
the spontaneous polarization during the switching, Ps is the magnitude of the spontaneous
polarization, and E. the coercive electric field. Since there is no external electric field, we can
discard the second term, and AP; = 2P, for 180° domain switching.[23! The condition for
switching thus simplifies to f;; € = E.. In other words, switching happens when the

flexoelectric field (left side of the equation) exceeds the coercive field (right side term).

To estimate the size of the switched region, we have considered the longitudinal,
transverse, and shear components of the strain gradient, assuming flexocoupling coefficients
of the order of f = 10V, as generally observed for ceramics.® 21 With these simplifications,

switching should occur in the region of the ferroelectric crystal that satisfies the condition:

6633 6611 6631) E.
> =
( 6x3 + 8x3 + 8x3 - f (4)

Considering the coercive field of RKTP (Ec = 3.7x108 Vm™)[?¢l, and with the aforementioned

simplifications, a total strain gradient of ~3.7x10° m™ is theoretically required to induce



switching in RKTP. To see whether such strain gradients are reached in the vicinity of the

crack, we have used elastic theory to calculate the strain field27!

el _ 1+v v
Eij _To-ij_3go—m6ij’ (5)

where o;; is the stress applied to the crack in each direction, and its expression depends on
the propagation modes; o, is the average stress; E is the Young’s Modulus; and v is the

Poisson ratio. Focusing on crack mode | (tensile loading), the stress fields in this type of

crack are given by the following equations,

01 = =L cos? (1—smg sin—ge) (6)
1= 2mr 2 2 2
K; 0 ( .6 . 30
=—=cos- (1 - —) 7
022 = 75 C0S 5 +sin sin— (7
K; 6 . 8 30
Ty = ——=C0S=Sin— —
12 = 50085 Sin;cos—, (8)

where K; is the intensity factor (fracture toughness for this calculation). Transforming
equations (6), (7) and (8) to Cartesian coordinates and using Mathematica?®! for the
calculations, we have computed analytically the strain field in equation (5), and the strain
gradient associated with it. The value used for the intensity factor (fracture toughness) was
the one obtained in this study, K, = 0.29MPa-m'?; all other values were taken from the

literature.

The calculated flexoelectric field map around a crack tip in RKTP is plotted in Fig.
3(a). The dashed line outlines the region within which flexoelectricity is large enough to
induce local switching of the polarization. The calculated size of this switching region
(~20nm), however, is very small. It is at the edge of thermodynamic stability of a switched
domain embedded in a non-switched matrix,?* 301 so switch-back is almost certain to

happen, plus the domain size is also close to the resolution limit of Piezoresponse Force



Microscopy (PFM). We examined the cracks by PFM finding no evidence of 180° local

switching near them.

In order to look for evidence of crack-induced flexoelectric switching, we turn to
another uniaxial ferroelectric, Lithium Niobate (LN). Since flexoelectricity is proportional to
dielectric permittivity,[32! it is to be expected that the higher dielectric constant of LN
(&-(LN) = 37; &.(KTP) = 13),® the local flexoelectric switching may be enhanced. Using
the coercive field for LN E; = 2.1x107 Vm?, B4 and its flexocoupling coefficient,13! the strain
gradient required to induce local switching is 4.2x10° m. Using equations (5) — (8), and the
elasticity values in the literature,35 ¢ we mapped the flexoelectric field (Fig. 3(b)) and
found that the switching radius is ~ 40 nm around the tip, which is theoretically big enough to
be stable and detectable at room temperature. This prediction was experimentally tested in a

crystal of LN, y-cut, indented in the same conditions as with the RKTP sample.

The Lateral Piezoresponse Force Microscopy (LPFM) images of the resulting indent
and cracks are shown in Fig. 4. In LN, the easy fracture plane is at 60 degrees with respect to
the polar axis, and the cracks tend to zig-zag instead of following a clean straight line along
the polar axis. Although this makes it impossible to reliably measure and compare their
lengths, it does not affect their ability to generate flexoelectric fields. Indeed, the PFM
images in Fig. 4(b) and 4(c) show that cracks with a propagation component antiparallel to
the polarization induce local 180 degree switching, leaving a trail of needle domains in the
crack’s wake. This “flexoelectric switching” is analogous to the mechanical writing of
ferroelectric domains using Atomic Force Microscopy (AFM) tip indentation.20' The
mechanical consequences, however, are profound: since switching dissipates energy, the
cracks that switch polarization dissipate more energy and thus cannot grow as long as those

that do not. Consequently, fracture patterns in ferroelectrics must necessarily be asymmetric.



In summary, the interaction between flexoelectricity and ferroelectricity in fracture
fronts leads to qualitatively new phenomena. First, the observation that crack-induced
flexoelectricity can cause ferroelectric switching shows that crack propagation can modify
polarity. Second, and conversely, polarity affects crack propagation, making it asymmetric.
These findings have practical implications, as they suggest that fatigue due to microcracking
could be mitigated or enhanced according to the poling direction of the ferroelectric.
Finally, crack-diode-like functionality offers a new degree of freedom for crack-based
nanopatterning.t®! The discovery also implies that the assumption of mechanical inversion
symmetry is fundamentally wrong for situations involving inhomogeneous deformation of
piezoelectric materials. The results demonstrate that flexoelectricity has to be taken into

account in any realistic model of fracture in such materials.
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Figure 1: (a) Schematic of the Vickers Indentation test showing the top view of
typical radial crack propagation for indentation fracture toughness measurement with
corresponding crack (I) and diagonal lengths (2a). AFM topography of Vickers indent

in RKTP showing the radial crack propagation for (b) up (lﬁ“ =10.85um; I} =
9.87 um; Iy = 8.53 um; 17 = 10.51ym) and (c) down (I =8.88um; I} =

11.04 ym; I = 10.74 um; 17 = 11.35 pum) polarization.

Top view

radial cracks |
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Figure 2: Crack length asymmetry (a) perpendicular and (b) parallel to the polar axis.

Fracture toughness asymmetry (c) perpendicular and (d) parallel to the polar axis.
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Figure 3: Calculated distribution of the flexoelectric field around the apex of a crack
in (@) RKTP, and (b) in LN. The black line marks the region where the gradient-
induced electric field is strong enough to be able to induce local switching of the

polarization.
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Figure 4: (Center) AFM topography of Vickers indent in LN y-cut showing the radial
crack propagation. LPFM amplitude and phase of crack propagating parallel (left)
and antiparallel (right) showing local switching as the crack propagates opposite to
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