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Competitive Segmentation Performance on
Near-lossless and Lossy Compressed Remote
Sensing Images

Joaquin Garcia-Sobrino, Armando J. Pinho, Member, IEEE, and Joan Serra-Sagrista, Senior Member, IEEE

Abstract—Image segmentation lies at the heart of multiple
image processing chains, and achieving accurate segmentation
is of utmost importance as it impacts later processing. Image
segmentation has recently gained interest in the field of remote
sensing, mostly due to the widespread availability of remote
sensing data. This increased availability poses the problem of
transmitting and storing large volumes of data. Compression is
a common strategy to alleviate this problem. However, lossy or
near-lossless compression prevents a perfect reconstruction of the
recovered data. This letter investigates the image segmentation
performance in data reconstructed after a near-lossless or a
lossy compression. Two image segmentation algorithms and
two compression standards are evaluated on data from sev-
eral instruments. Experimental results reveal that segmentation
performance over previously near-lossless and lossy compressed
images is not markedly reduced at low and moderate compression
ratios. In some scenarios, accurate segmentation performance can
be achieved even for high compression ratios.

Index Terms—Remote sensing data, image segmentation, lossy
compression, near-lossless compression, maximum likelihood,
successive band merging, JPEG 2000, JPEG-LS.

I. INTRODUCTION

MAGE segmentation is generally defined as the process of

partitioning an image into regions (or segments). The un-
derlying idea consists of dividing an image into homogeneous
segments by grouping neighbouring pixels that follow a sim-
ilarity criteria. The main purpose is to estimate the structure
of the scene and to extract image objects and boundaries for
subsequent object-based analysis.

In the field of remote sensing, image segmentation is an
essential step of low-level image analysis and is usually per-
formed in the first stages of a processing chain [1]. Efficiently
segmented images are required in a wide variety of applica-
tions, such as object detection [2], land cover classification [3],
or landscape change detection [4].

Advances in remote sensing technology have led to im-
prove the quality of the harvested data in terms of spectral
and spatial resolution, and allowed to reveal more ground
details. Segmentation results have thus been improved due
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to the rich information contained in the images. Several
of the existing segmentation algorithms rely on two main
traditional strategies: 1) region-based methods, which depend
on region information, and 2) edge-based methods, which look
for boundaries between objects to find them [5], [6]. Both
strategies have proven to achieve competitive segmentation
results.

However, improving the quality of the acquired data has
also led to increase the size of the collected data, requiring
more means for transmission and storage. Data compression
is an effective way to reduce the volume of the collected
data. Nonetheless, achieving high compression ratios usually
entails some level of distortion in the recovered scene, which
may compromise the usefulness of the reconstructed data and
prevent achieving good segmentation results. Texture blurring
and unclear edges between objects can be a consequence of
near-lossless and lossy compression. These effects can make
image segmentation a major challenge, because of difficulties
in detecting homogeneous regions or boundaries [7].

The impact of a near-lossless or lossy compression stage on
subsequent processes is lately receiving a lot of attention: in
the scope of classification applications, different strategies to
perform classification on previously compressed images were
presented in [8]-[11]. Results revealed that the classification
accuracy was still reliable after the compression stage, even at
high compression ratios. Similar conclusions were yielded for
anomaly detection [12], [13] for linear spectral unmixing [14],
[15], and for statistical retrieval algorithms [16]-[18]. To the
best of our knowledge, a similar study on the impact of
compression on image segmentation has not been presented.

The aim of this work is to investigate the performance of im-
age segmentation in remote sensing images reconstructed after
a near-lossless or a lossy compression. This analysis, carried
out in an early stage of the processing chain, can determine the
usefulness of the data for subsequent processing (classification,
detection, ...). Segmentations on the reconstructed scenes are
evaluated with respect to segmentations on the original scenes
to determine the impact of compression.

For near-lossless compression, we employ the JPEG-LS
standard [19], which has been widely used in compression
of high-resolution remote sensing data due to the speed and
efficiency provided. For lossy compression, the JPEG 2000
standard [20] is employed, because it supplies a set of fea-
tures that are important in the field of remote sensing, such
as competitive low bit-rate performance, progressive quality
image transmission, random codestream access, etc. These
features make both JPEG-LS and JPEG 2000 standards highly
attractive in the context of remote sensing applications.

For the segmentation stage, two segmentation algorithms are
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employed: Maximum Likelihood (ML) [21] and Successive
Band Merging (SBM) [22]. ML is a simple segmentation
technique, whose low computational complexity is suitable for
remote sensing imagery. It has become an accepted estimate
used as the baseline for more complex algorithms [23], [24].
SBM is a recent segmentation algorithm specifically designed
for multispectral remote sensing images.

The remainder of the letter is organized as follows. Sec-
tion II describes the compression techniques and the segmen-
tation algorithms used in the experiments. Section III presents
the data collection and the parameter setting. Section IV
reports the experimental results. Conclusions are drawn in
Section V.

II. METHODS

This section describes the segmentation techniques and the
compression standards used in the experiments.

A. Segmentation Algorithms

For image segmentation we use two methods: an algorithm
based on the well-known ML approach and a novel method
based on Markov Random Fields (MRF), the SBM algorithm.
Both methods have shown good performance on several re-
mote sensing datasets [22], [25].

The ML algorithm computes the probability that a specific
pixel belongs to a particular region. The algorithm assumes
that the statistics for each region in the scene follow a normal
distribution. Each pixel will be part of the region that has the
highest probability, considering that, if the highest probability
falls below a given threshold, then the pixel will not be
assigned to any region. SBM is a segmentation algorithm
devised to work with multispectral remote sensing images. The
segmentation process is carried out through three stages. In the
initial step, the maximizer of the posterior marginals (MPM)
is estimated. In the second stage, contextual information
is included in a nonparametric way. Finally, each pixel is
assigned to a region in the scene [22].

B. Compression Standards

For image compression we consider two paradigms: near-
lossless and lossy compression. On the one hand, near-lossless
compression is used to control the maximum absolute error
per sample introduced in the reconstructed data. On the other
hand, lossy compression is employed to control the overall
bit-rate. Two standard coding techniques are employed in
the experiments: JPEG-LS for near-lossless compression and
JPEG 2000 for lossy compression. JPEG-LS is a lossless and
near-lossless compression standard that provides simplicity,
low computational complexity and memory requirements.
JPEG 2000 is an international standard that provides an
extensive range of features in a single compressed bit-stream
for a large amount of applications, such as remote sensing
imagery, medical diagnostic imaging, and mobile communi-
cations, among others.

III. DATA AND EXPERIMENTAL SETTINGS

This section presents the datasets and the parameter config-
urations used in the experiments.

TABLE I: Characteristics of the datasets. Number of scenes
per instrument and sizes are reported.

Average size

Instrument Number of (spectral channels x
scenes
rows X columns)
AVIRIS 2 212 x 160 x 160
Landsat 8 1 8 x 800 x 500
QuickBird 20 4 x 1052 x 1182
ROSIS 2 103 x 642 x 416

A. Data Collection

To conduct the experiments, 25 images from four different
remote sensing instruments were studied. We selected images
and ground truth data devised for the testing of segmentation
algorithms. In order to study a set of representative data,
the tested datasets included images with different spectral
and spatial resolution, dissimilar number of spectral channels,
obtained from different instruments, and scanned on distinct
scenarios. The scenes were captured over rural and urban areas
and contain buildings, roads, grass, trees, crops, water, and
railways, among other objects. Table I provides the charac-
teristics for the datasets. Most of the images are public and
available at [26], [27].

B. Experimental Settings and Software

For near-lossless compression, the maximum absolute error
per sample introduced in the data was controlled using seven
Peak Absolute Errors (PAE), § € {1, 3, 7, 15, 31, 63, 127}.
Higher values of the PAE originate higher compression ratios,
but the level of distortion introduced is also increased. For
lossy compression, the overall bit-rate was controlled using six
target bit-rates, distributed between 4 and 0.1 bits per pixel per
component (bpppc). It is expected that providing an analysis
of the signal in terms of frequency components benefits the
coding. Therefore, the wavelet transform was used to provide a
more decorrelated and compact representation of the signal. In
the experiments, six levels of the Discrete Wavelet Transform
(DWT) were applied in the spatial dimension to exploit the
spatial redundancy present in the scene.

The segmentation stage was carried out on the original
and on the reconstructed data. Both the ML and the SBM
algorithms were evaluated on the four datasets. To start the
segmentation process, the selected algorithms needed an initial
segmentation. All experiments started from an initial segmen-
tation obtained from k-means [28]. Default options were used
for the remaining parameters.

To achieve a fair comparison, the parameter configuration
was kept constant for all compression and segmentation ex-
periments, in such a way that we used suitable settings for the
characteristics of all the images. The software implementations
employed for compression were: JPEG-LS software [29] for
JPEG-LS and Kakadu software [30] for JPEG 2000. The
segmentation stage (ML and SBM algorithms) was carried out
using the Markov-Models toolbox [31] employed in [22].

IV. EXPERIMENTAL RESULTS

This section presents the experimental results. The proposed
sequential chain includes first a compression stage. At the
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TABLE II: Region and content of the scenes.

Instrument Identifier Region Content
AVIRIS Indian Pines Rural area (Indiana) Alfalfa, corn, grass, wheat, woods, and buildings, among others
Landsat 8 Humid Pampas Rural area (Argentina) Wildfire, corn, fallow land, and water, among others
QuickBird zhl1 Urban area (Zurich town) Roads, buildings, trees, grass, water, and railways, among others
ROSIS Pavia University Urban area (Pavia town) Asphalt, meadows, trees, buildings, and shadows, among others
Indian Pines Humid Pampas zh11 Pavia University
1 1 1 1
ML ML ML ML
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Fig. 1: Segmentation performance in x (higher is better) for near-lossless (upper row) and lossy compression (lower row). In
the plots, the vertical axis represents the segmentation performance (%) and the horizontal axis represents the compression ratio.
Results using reconstructed data are plotted in solid lines and results using uncompressed data (original image) are plotted in
dashed lines. Each mark represents the segmentation performance achieved when the scene has been previously compressed
at a particular compression ratio. Results for the ML algorithm are plotted in green lines and results for the SBM algorithm
are plotted in blue lines. Each column shows results for a particular scene.

receiver side the scene is decoded, then image segmentation
is carried out on the reconstructed data.

A. Segmentation Assessment

The segmentation performance was assessed with respect to
handmade ground truth segmentations. Following the strategy
used in [22], we used Cohen’s kappa coefficients (k) [32] to
compare the performance of the different schemes adopted.
The % coefficient provides a measure of agreement between
the machine segmentation and the human ground truth. Com-
plete agreement corresponds to K = 1, and lack of agreement
corresponds to Kk = 0.

Here, segmentation results are reported for four scenes (one
from each dataset). Results for the remaining images from
each dataset are similar. Table II provides characteristics for
the scenes reported. Detailed experimental results for the 25
scenes described in Table I are provided as supplementary
material at http://gici.uab.cat/pub/coding_segmentation/.

Figure 1 illustrates the segmentation performance for the
near-lossless and lossy compression settings proposed. Plots
show the % coefficients for different compression ratios when
the ML and SBM algorithms are used in the segmentation
stage. Results using original data (uncompressed) are also
provided for comparison purposes. The relationship between
PAEs/target bit-rates and compression ratios and the SNR
Energy achieved by each compression setting are reported in

Table III. One can see that, for near-lossless, compression
ratios of about 10:1 allow to achieve at least the same
segmentation performance as with the original data. Only
the Indian Pines scene requires lower compression ratios of,
approximately, 4:1 to keep the segmentation results unchanged
when the SBM algorithm is employed. SBM uses the spectral
information to obtain the most probable state of each pixel.
When the compression ratio increases, too much distortion
may be introduced in the spectral dimension, which is reflected
in the performance of the SBM algorithm.

In a lossy scenario, compression ratios of about 25:1 allow
to retain enough features to achieve the same segmentation
performance as with uncompressed data. As for the case of
near-lossless compression, the Indian Pines scene begins to
decrease the segmentation performance at lower compression
ratios of, approximately, 8:1 when the SBM algorithm is
employed. It is interesting to note that the ML algorithm
achieves higher k coefficients compared to the SBM method
when the spatial resolution of the scene is high and vice
versa. While ML does not take into account relations between
neighboring pixels, SBM does. If there are no relations, the
performance might decrease, which is likely to occur when
the spatial resolution is high.

The reported results reveal that the segmentation perfor-
mance over previously near-lossless and lossy compressed
scenes is not markedly reduced at low and moderate compres-
sion ratios. Nonetheless, lossy compression allows to keep the
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TABLE III: For Near-lossless (Peak Absolute Error, PAE) and Lossy(target bit-rate, BR) compression, compression ratio
(CR), Bpppc and SNR Energy (in dB) are reported. The dynamic range of the original image is provided in parenthesis. The
corresponding experiments for the segmentation results reported in Fig.2 are here marked in italic font.

Indian Pines (14 bpppc)

| Humid Pampas (15 bpppc) |

zh11 (12 bpppc)

| Pavia University (13 bpppc) |

| PAE | CR bpppc SNR | CR bpppc SNR | CR bpppc SNR | CR bpppc SNR |
1 2.4:1 5.8 71.6 2.0:1 7.5 85.1 3.1:1 39 50.5 1.7:1 7.6 66.1
3 2.9:1 4.8 63.8 2.3:1 6.5 77.3 4.3:1 2.8 42.8 2.0:1 6.5 58.4
7 3.7:1 3.8 57.1 2.8:1 54 70.6 6.2:1 1.9 36.3 2.4:1 54 51.7
15 4.8:1 2.9 50.9 3.4:1 44 64.3 8.6:1 1.4 30.2 3.0:1 43 453
31 6.6:1 2.1 45.0 4.2:1 3.6 58.1 12.1:1 1.0 24.3 3.9:1 3.3 39.2
63 9.4:1 1.5 39.1 5.4:1 2.8 52.1 18.1:1 0.7 18.5 5.2:1 2.5 33.1
127 14.0:1 1.0 333 7.3:1 2.1 46.2 32.0:1 0.4 12.8 7.2:1 1.8 27.3
| BR | \
4 3.8:1 3.7 56.9 4.0:1 3.8 59.8 3.0:1 4.0 53.2 3.3:1 3.9 41.5
2 7.6:1 1.8 44.5 8.1:1 1.9 46.5 6.0:1 2.0 41.5 6.6:1 2.0 30.5
1 15.0:1 0.9 36.7 16.0:1 0.9 39.8 12.1:1 1.0 335 13.2:1 1.0 24.4
0.5 30.0:1 0.5 31.4 32.5:1 0.5 35.2 24.2:1 0.5 27.7 26.2:1 0.5 20.3
0.25 60.9:1 0.2 28.0 65.3:1 0.2 327 48.4:1 0.3 23.3 52.0:1 0.25 17.3
0.1 150.5:1 0.1 25.1 161.5:1 0.1 29.5 120.0:1 0.1 18.7 130.4:1 0.1 14.3

segmentation results unchanged at higher compression ratios
compared to near-lossless compression. This is due to the
different nature of the distortion introduced by near-lossless
and lossy compression. The impact of compression is the same
for both the ML and SBM algorithms. Only in the case of
the Indian Pines scene, the SBM algorithm is affected more
significantly by compression than the ML algorithm.

Figure 2 reports the handmade ground truth employed to
assess the segmentation performance and some segmentation
results for the ML and SBM algorithms. This figure shows
the segmented images when the original scene and the re-
constructed data from near-lossless and lossy compression are
used in the segmentation stage. For reconstructed data, the
higher compression ratio that allows to achieve competitive
segmentation performance for both the ML and SBM algo-
rithms is displayed.

V. CONCLUSIONS

In this letter, the performance of image segmentation on
scenes that had gone through a compression and decom-
pression stage was investigated. In the compression stage,
the JPEG-LS and the JPEG 2000 standards were used to
perform near-lossless and lossy compression, respectively.
Image segmentation was carried out using the ML and SBM
algorithms.

Experimental results revealed that low and moderate com-
pression ratios do not reduce the performance of the segmenta-
tion algorithms when reconstructed data is used. Near-lossless
compression allowed to produce the same segmentation per-
formance as with the original data at compression ratios of, ap-
proximately, 10:1. For lossy compression, unchanged segmen-
tations were achieved at compression ratios of, approximately,
25:1. The impact of compression was similar for both the
ML and SBM algorithms and the different scenarios analyzed.
Only in the case of the Indian Pines scene, segmentation results
remained unchanged at compression ratios of 4:1 and 8:1 for
near-lossless and lossy compression, respectively, when the
SBM algorithm was used. These observations are consistent
with similar results reported for other scientific areas and
may benefit the development of upcoming remote sensing

instruments, image processing chains, and image analysis
applications.
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Fig. 2: Ground truth and segmentation results of the original and the reconstructed data. Each row shows a particular scene.
Results are plotted for both the ML and SBM algorithms. The PAFE/target bit-rate (BR) used in the compression stage and the
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