
This is the submitted version of the following article:

Zhang X., Luo J., Lin H.-F., Tang P., Morante J.R., Arbiol J.,
Wan K., Mao B.-W., Liu L.-M., Fransaer J.. Tailor-made
metal-nitrogen-carbon bifunctional electrocatalysts for
rechargeable Zn-air batteries via controllable MOF units.
Energy Storage Materials, (2019). 17. : 46 - .
10.1016/j.ensm.2018.11.034,

which has been published in final form at
https://dx.doi.org/10.1016/j.ensm.2018.11.034 ©
https://dx.doi.org/10.1016/j.ensm.2018.11.034. This
manuscript version is made available under the CC-BY-NC-ND
4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/



Tailor-made metal-nitrogen-carbon catalysis for rechargeable Zn-air batteries via controllable MOF unit design 

1 
 

Tailor-made metal-nitrogen-carbon bifunctional electrocatalysts for 

rechargeable Zn-air batteries via controllable MOF units 

 

Abstract: The majority of chemical syntheses involve the use of catalysts, which play a crucial role in the yield and 

conversion rates of chemical reactions. In view of the increasing demand for chemical commodities and specialties 

linked to the growth of the world’s population and the living standards, highly efficient and low-cost catalysts are 

urgently required. The metal-nitrogen-carbon (M-N-C) catalysts family is one of the most promising candidates. In 

this work, a series of benzene-1,3,5-tricarboxylate linker based metal organic frameworks (MOFs) were used as 

self-sacrificial templates and tunable platform for designable preparation of M-N-C catalysts. Changing the pillars 

between the 2D layers and the nature of the metal ions in the pristine MOFs significantly influenced the structure, 

chemical composition and catalytic activity of the resulting M-N-C catalysts for the oxygen reduction reaction 

(ORR). Furthermore, the influence of the MOF units on the catalyst performance, the role of the metals in the 

M-N-C catalysts and the primary catalytically active sites for ORR were explored by a combination of density 

functional theory (DFT), in-depth structural and chemical/elemental characterizations, and electrochemical studies. 

Among the prepared catalysts, Co-BTC-bipy-700 exhibited the highest electrocatalytic activity for oxygen 

reduction reaction (ORR), which showed a larger limiting current density and similar half-wave potentials with less 

catalyst degradation and much higher methanol tolerance than the commercial Pt/C catalyst. Meanwhile, as a 

bifunctional electrocatalyst, Co-BTC-bipy-700 catalyst was also employed for oxygen evolution reaction (OER) 

and demonstrated a lower overpotential (lowered by 140 mV at a current density of 10 mA cm
−2

) and better 

durability than IrO2. Furthermore, in terms of device performance, the Zn-air battery enabled by Co-BTC-bipy-700 

catalyst reached a maximum specific energy as high as 1009.8 Wh kg
−1

, which is 76.5% of the theoretical value 

(1320 Wh kg
−1

), and demonstrated higher discharge potential and lower charge potential than that based on the Pt/C 

catalyst. Importantly, the presented strategy for tailor-made M-N-C catalysts by controlling the synthesis of the 

pristine MOFs could offer a guide map for the future design of M-N-C catalysts family not only for electrochemical 

reactions but also beyond electrochemistry.  

 

Keywords: metal-organic frameworks; anodic electrodeposition; Metal-Nitrogen-Carbon catalysis; oxygen 

reduction reaction; oxygen evolution reaction; rechargeable Zn-air batteries. 

Introduction 

Without catalysts, our lifestyle would be significantly different. More than 80% of all chemicals and 

pharmaceuticals are made by catalysts.
1
 Although tremendous efforts have been made by the chemical industry, 

noble metal catalysts still dominate the market of energy-related catalysis and fine chemistry.
2
 It is urgent to find a 

suitable alternative due to the prohibitive cost and scarcity of these noble metals. Different types of transition metal 

based catalysts have been widely studied.
3
 Among various alternatives, a new class of metal (or metal 

compound)-nitrogen-carbon (M-N-C) catalysts have emerged as one of the most promising candidates, and they are 
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used in a wide range of chemical reactions such as transesterification
4
, hydrogenation

5-7
, oxidative degradation

8
, 

Fischer–Tropsch synthesis
9, 10

 and especially for electrochemical reactions (e.g. hydrogen evolution reaction 

(HER)
11-15

, oxygen evolution reaction (OER)
16-20

, oxygen reduction reaction (ORR)
21-28

 and carbon dioxide 

reduction 
29, 30

).  

  The traditional methods for preparing M-N-C catalysts can roughly be divided into two categories. The first one 

is the two-step method in which N-doped carbon materials are subsequently loaded with metals. For example, 

Shaabani et al. synthesized three-dimensional nitrogen-doped graphene frameworks by hydrothermal and 

freeze-drying process, and then immobilized nickel nanoparticles on the prepared substrate.
31

 The second method is 

the one-step method in which a mixture of carbon, nitrogen and metal precursors is pyrolized. Metal/N4 macrocycle 

complexes together with some carbon source are often used for fabricating M-N-C catalysts.
26, 32, 33

 Common 

inorganic salts (sulfates, acetates and chlorides) and organic compounds (including dicyandiamide, melamine and 

tripyridyl) have also successfully been employed as M-N-C catalyst precursor materials.
34-36

 Moreover, in order to 

improve the mass transport properties and increase the exposure of the active sites, templates were introduced into 

the synthesis process, such as SBA-15
37, 38

 and SiO2 nanoparticles
25, 39

. 

  In view of the above, metal-organic frameworks (MOFs), constructed from metal ions or clusters bridged by 

organic ligands, have been considered as ideal self-sacrificial templates for M-N-C catalysts due to their highly 

ordered cavities, open channels and rational composition and structure.
2, 40

 These unique characteristics of MOFs 

allow them to serve as both template and precursor materials (metal, carbon and nitrogen). Furthermore, the highly 

ordered structure and chemical composition result in a homogeneous distribution of heteroatom and metal particles, 

which could provide more active sites after pyrolysis. Therefore, different kinds of MOFs have attracted attention 

as precursors for preparing M-N-C catalysts, such as cobalt-4′-(4-pyridyl)-4,2′,6′,4′-terpyridine
41

, 

cobalt-imidazolate
42

, cobalt-benzimidazole
43, 44

, ZIF-67
45-47

, ZIF-8
48, 49

, MIL-101
50

, MIL-100
51

, MIL-88B-NH3
52

, 

Co-BDC
53

 CPM-24
54

 and enantiotopic chiral 3D MOFs (Co-BTC-MIDPPA L and R) 
55

. However, they are only the 
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tip of the iceberg as more than 20,000 different MOFs have been created and the number is still increasing
56, 57

. The 

large quantities of MOFs offer extensive possibilities for the M-N-C catalyst family but at the expense of endless 

lab work. The previous studies often suffer from the unclear influence of different metal nodes and linkers on the 

resulted catalysts. Similar studies for conventional method (mix metal salts with carbon resource, which could be 

easily adjusted) have been well discussed recently. However, it is hard to achieve this goal for MOF-derived 

materials due to the complexity of MOF structures. The separated studies and unclear influence of MOF units 

hampered scientific and industrial progress of MOF-derived catalysts. Therefore, for the sake of minimizing 

unnecessary lab work and to avoid both the consumption of time and resources, the critical problem is to gain 

rational and comprehensive insight into the influence of MOF units (i.e. organic ligands, metal units and 

interactions of these two parts) on key parameters of catalyst performance via experiments and computational 

chemistry. Unfortunately, the related research in this aspect is still very scarce. Due to the complexity of MOF 

structures, the role of metal and linkers in M-N-C structures based on MOFs is much more difficult to study than 

that of M-N-C structures prepared via common or conventional methods which mix precursors of metals, carbon, 

and nitrogen. In order to further improve the performance of MOF-derived materials, it is urgent to find a suitable 

platform enabled by rational methodologies.  

  In this work, rechargeable metal-air batteries, which are one of the most promising energy storage devices for 

practical domestic/industrial applications because of their high theoretical energy density, environmental benignity, 

safety and low cost,
58-62

 were chosen as the targeted application. For rechargeable metal-air batteries, OER and 

ORR are involved in the charge-discharge process. Therefore, designing an effective bifunctional catalyst is 

essential for rechargeable metal-air batteries. According to previous studies,
16, 19, 40, 63-66

 the following concerns are 

important for ORR and OER of M-N-C catalysts: (1) large effective surface area for catalytic active sites; (2) high 

degree of graphitization and conductivity; (3) homogeneous distribution of heteroatoms and metal particles; (4) 

high Nitrogen content and suitable forms of N-C structure; (5) active metal species sites; (6) intimate connection 
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between carbon and metal. Bearing these considerations in mind, a series of benzene-1,3,5-tricarboxylate (BTC) 

linker based MOFs, which work as a tunable platform due to the well-defined two-dimensional (2D) plane layers, 

have been successfully prepared by electrodeposition. The characteristics of the MOF units are changed via 

tailoring the pillars between the 2D layers and the central metal ions. After pyrolysis, significant differences in 

catalytic performance can be seen with different pristine MOFs. A combination of density functional theory (DFT) 

computation, in-depth structural and chemical/elemental characterizations, and electrochemical studies were used 

to explore (i) the influences of MOFs unit changes on the catalyst performance, (ii) the role of metal in M-N-C 

catalysts, and (iii) the primary catalytically active site of M-N-C structure for ORR. Among the prepared catalysts, 

Co-BTC-bipy-700 exhibited excellent electrocatalytic activity for both ORR and OER. For the rechargeable Zn–air 

battery test, this catalyst exhibited higher discharge potential and lower charge potential than Pt/C catalyst. 

Moreover, the specific energy of Zn-air battery based on Co-BTC-bipy-700 catalyst reached 1041 Wh kg
−1

 at 3 mA 

cm
−2

, which is 80% of the theoretical value (1320 Wh kg
−1

). These results show that Co-BTC-bipy-700 catalysts 

are promising catalyst materials for rechargeable Zn-air batteries. 

Results and discussion  

Tuned properties of M-N-C catalysts via MOFs units design (including thermal stability, carbon structure, N 

content, distribution, structure and electrochemical double-layer capacitances) 

A series of benzene-1,3,5-tricarboxylate (BTC) based MOFs, which act as a tunable platform due to the 

well-defined two-dimensional (2D) layers, have been successfully prepared by anodic electrodeposition (Figure 1). 

Ni(HBTC)(DMF)2 (abbreviated as Ni-BTC-DMF herein) was constructed by offset stacking of 2D layers with 

honeycomb pores. In each layer, Ni (II) is bonded to three BTC linkers, with one bidentate carboxylic group and 

two monodentate carboxylic groups. The free carbonyls in the monodentate carboxylic groups are further bonded to 

a proton through hydrogen boding, forming an overall neutral framework. The axial position of Ni (II) was 

occupied by DMF molecules. The sheets are pillared by 4,4’-bipyridine along the c axis to form 3D porous 
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framework structure (Ni(HBTC)(4,4'-bipy)). Ni(HBTC)(4,4'-bipy)  possesses two types of channels: honeycomb 

channels along the [001] direction and rectangular channels along the [110] direction. The Ni(HBTC)(4,4'-bipy) 

(abbreviated as Ni-BTC-bipy herein) was further tailored by replacement of Ni (II) with Co (II) to obtain 

Co(HBTC)(4,4'-bipy) (abbreviated as Co-BTC-bipy herein). As evidenced by the SEM images (Figure 1), all the 

MOFs exhibited similar hexagonal morphology. The XRD patterns of different MOFs (Figure S1−S3) are in 

agreement with the theoretical XRD patterns. These results demonstrate the successful electrodeposition of the 

desired MOFs. In addition, the XRD patterns of Ni-BTC-bipy and Co-BTC-bipy are very similar, indicating that 

the crystal structures of these two kinds of MOFs are almost the same. As the coordinating ability of Ni (II) and Co 

(II) are different, Co-BTC-bipy was prepared at a lower temperature (30 °C). This phenomenon is consistent with 

the previous report by Li et al. using solvothermal methods.
67

 Compared with solvothermal methods, the visible 

and adjustable electrodeposition process is easier to control the reaction process and avoids the influence of anions 

from salts.
68, 69

 SEM images of the as-prepared electrodes by anodic electrodeposition of Co-BTC-bipy at 60 °C 

and 120 °C are presented in Figure S4. Additionally, the feasibility of large scale production is important for 

practical industrial applications. Herein, when two electrodes connected in series, there is no difference for 

electrodeposition of Co-BTC-bipy (Figure S5), which shows that this method could be used for preparing 

multi-electrodes simultaneously. The same cobalt plate was used 10 times as the substrate for anodic 

electrodeposition of Co-BTC-bipy. After each time, the cobalt plate was dipped into dilute HCl solution and 

polished with sand paper. After 10 times, the Co-BTC-bipy covered cobalt plate looks the same as that after the first 

time (the inset of Figure S5). This proves that our procedure has the potential for large scale production.  

In order to get M-N-C catalysts, the as-prepared MOFs were pyrolyzed under N2 atmosphere at different 

temperatures. Based on the thermogravimetric analysis (TGA) results (Figure S6), it is concluded that the onset 

temperature of carbonization of the framework for Ni-BTC-DMF, Ni-BTC-bipy and Co-BTC-bipy are 395 °C, 

379 °C and 312 °C, respectively. Because of the decreased coordination ability of Co (II), the decomposition 
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temperature of Co-BTC-bipy is lower than Ni-BTC-bipy. Before decomposition of the framework, there is one 

weight loss event each for Ni-BTC-bipy and Co-BTC-bipy, which corresponds to the release of adsorbed molecules 

(around 15% and 10% weight loss, respectively). In addition, when the linker is changed, there is no obvious 

decomposition temperature changes are observed between Ni-BTC-DMF and Ni-BTC-bipy. However, multi-steps 

weight loss events can be observed for Ni-BTC-DMF, with around 45% weight loss, which is probably caused by 

the loss of DMF molecules in the structure of Ni-BTC-DMF.
70

 Based on the composition of Ni-BTC-DMF, DMF 

was considered as N source for M-N-C catalysts. Therefore, the loss of DMF molecules from the structure of 

Ni-BTC-DMF could lead to the low N content for Ni-BTC-DMF derived from Ni-BTC-DMF.  

The composition and structure of M-N-C catalysts derived from MOFs were investigated by Raman spectroscopy, 

CHN analysis, XPS and TEM. Raman spectroscopy was used to analyze the degree of structural order with respect 

to a perfect graphitic carbon structure. Generally speaking, the D-band at ~1350 cm−1
 and a G-band at ~1585 cm−1

 

are reflection of ideal and disordered graphitic lattices, respectively. The intensity ratio of D and G bands (ID/IG) 

can be regarded as a measure of the carbon crystalline order of carbon materials.
71

 A reduction of ID/IG ratio of 

carbon materials means an increase of graphitic content, which would benefit the charge transfer for 

electrochemical catalysts.
72

 Based on Raman spectra (Figure S6-S9), the ID/IG ratios of different catalysts are 

obtained (Figure 2a). The ID/IG values are 1.13, 0.88, 1.47, 0.92, 0.84, and 0.72 for Ni-BTC-DMF-700, 

Ni-BTC-DMF-900, Ni-BTC-bipy-700, Ni-BTC-bipy-900, Co-BTC-bipy-700 and Co-BTC-bipy-900 catalysts, 

respectively. With increase of the pyrolysis temperature, the ID/IG ratio decreases a lot for all the MOFs derived 

catalysts. Compared with Ni-BTC-DMF based catalysts, Ni-BTC-bipy show higher ID/IG ratio, which indicates that 

the 4,4’-bipyridine linker can result in more heteroatoms in the carbon structure after pyrolysis. This result is in 

agreement with TGA test. Among these pristine MOFs, Co-BTC-bipy based catalyst shows the lowest ID/IG ratio. 

The difference of ID/IG ratio between Co-BTC-bipy and Ni-BTC-bipy based catalysts could be caused by the 

different catalytic ability of different metals for carbon graphitization. The detailed mechanism of metal 
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nanoparticles in catalytic graphitization is still not clear, which are probably related to carbon solubility and carbon 

diffusion coefficients in the different metal.
73

 It is worth mentioning that Co-BTC-bipy-700 (ID/IG = 0.84) and 

Co-BTC-bipy-900 (ID/IG = 0.72) show even lower ID/IG ratio than multi-walled carbon nanotubes (MCNTs), whose 

ID/IG ratio is 0.92 (Figure S10).  

The bulk N content (at.%) of catalysts were explored by CHN analysis (Figure 2b). With increase of the 

pyrolysis temperature, the N content decreases for all the samples. Comparing with Ni-BTC-DMF and 

Ni-BTC-bipy, Ni-BTC-bipy derived catalysts (5.9 at.% for 700 °C and 2.8 at.% for 900 °C) show much higher N 

content than Ni-BTC-DMF (1.9 at.% for 700 °C and 1.3 at.% for 900 °C), which is related to the loss of DMF 

molecules in the structure of Ni-BTC-DMF during pyrolysis, which can be proved by TGA results (Figure S6). 

These results reveal that the MOF ligand has a big influence on the N content of the as-prepared catalysts. When 

two MOFs which have similar N content in the structural unit are pyrolized, the resulting M-N-C catalyst show 

higher N content when the metal atoms are directly coordinated to the N atoms. In addition, the type of metal ion 

has some effect on the N content as well, which is probably caused by the difference in thermal stability and the 

ability to catalyze carbon growth between Ni-BTC-bipy and Co-BTC-bipy. A similar influence of metal particles on 

nitrogen content of N-C materials was observed by Kudashov et al. as well.
74

 The N contents of Co-BTC-bipy 

based catalysts are 5.0 at.% and 2.2 at.% at the pyrolysis temperature of 700 °C and 900 °C, respectively. 

Furthermore, the metal content was calculated from the CHN analysis and metal oxide residues (based on phase 

diagrams of Ni-O2 and Co-O2 binary systems shown in Figure S11), and the results are displayed in Table S2. 

The electrochemical double-layer capacitance, which is related to the electrochemical surface area of different 

catalysts (mass loading: ~0.25 mg cm
−2

) were measured by cyclic voltammetry (CV) on a rotating disk electrode 

(RDE) in a non-Faradaic region (Figure S12−S17).  As these catalysts are composite materials, it is difficult to 

accurately quantify their electrochemical surface areas. However, for qualitative analysis, the electrochemical 

double-layer capacitances are still very useful for comparing similar materials with the same mass loading. At a 
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mass loading of 0.25 mg cm
−2

 on the RDE, the electrochemical double-layer capacitance of Ni-BTC-DMF-700, 

Ni-BTC-DMF-900, Ni-BTC-bipy-700, Ni-BTC-bipy-900, Co-BTC-bipy-700 and Co-BTC-bipy-900 are 2.06, 1.44, 

0.81, 0.57, 2.87, and 1.43 mF cm−2
, respectively. Comparing the influence of different pillar linkers, the 

Ni-BTC-DMF derived materials exhibit higher capacitance than Ni-BTC-bipy based materials. It is speculated that 

the intermolecular short contact interactions between coordinated pillar (organic solvent) and coordinated 

carboxylate group in Ni-BTC-DMF is weaker than that in Ni-BTC-bipy, leading to obviously release of DMF 

pillars. Therefore, more pores and space will be produced during pyrolysis. Concerning different metals, the 

detailed function of metal particles during pyrolysis is still unclear. It is well known that different metals have 

different catalytic ability for carbon growth, which could eventually lead to different carbon net structures. 

Furthermore, the near-surface elemental compositions (atomic percentage) based on full scan survey XPS spectra 

for different catalysts are shown in Table S3. There is a huge difference between the full scan survey XPS spectra 

and CHN analysis for metal contents, because the metal nanoparticles are covered by a carbon layer while for XPS 

tests, the information depth is less than 10 nm.
19, 75, 76

 Furthermore, the high-resolution XPS spectra of the Ni 2p 

(Figure S18a) and Co 2p (Figure S18b) were used for determining chemical states of transition metals. Because of 

low metal content on the surface of Ni-BTC-DMF-900 and Co-BTC-bipy-700, it is hard to get sharp peaks of Ni 2p 

or Co 2p. For the other Ni based catalysts, the XPS spectra of the Ni 2p (Figure S18a) all exhibit two main peaks at 

853.3 ± 0.3 eV and 870.5 ± 0.3 eV without any obvious satellites, corresponding to the metallic dominant structure. 

Two weak peaks are assigned to NiNx (855.3 ± 0.3 eV) and NiO (856.8 ± 0.3 eV, oxidized in the air), 

respectively.
77-80

 The similar results for Co based catalysts with different locations of peaks (for Co
0
, CoNx and 

CoO)
16, 81-83

 are shown in (Figure S18b), which indicates Co
0
 as the dominant chemical states of Co. These results 

are in good agreement with HRTEM observations. Elemental compositions (atomic percentage) based on XPS 

spectra (full scan survey) show lower N content but the similar trend that the total N content decreases with 

increasing temperature for all catalysts. To further comprehend the chemical states of N-heteroatoms, the 
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high-resolution XPS spectra of the N 1s (Figure 3) are used to investigate N-heteroatom species. All the samples 

show obvious peaks of N 1s. The binding energies of about 398.5 ± 0.2 eV, 400.5 ± 0.3 eV and 401.3 ± 0.3 eV were 

assigned to pyridinic N, pyrrolic N and graphitic N, respectively. In addition, transition metals could be coordinated 

with different number of pyrrolic or pyridinic N atoms in the conjugate carbon plane, namely M-Nx site. Therefore, 

the peak intensity for pyridinic N and pyrrolic N should also include a contribution from M-N bonds.
25, 40, 84

 Upon 

deconvolution of the N 1s, the relative contents (based on N content) of different N-heteroatom species are 

presented in Figure 3. The graphitic N is most stable at high temperature. The relative content (based on N content) 

of pyridinic N was dramatically decreased with increasing temperature. Interestingly, the relative content of 

pyrrolic N is almost the same for all samples, even though pyrrolic N is not stable at high temperatures (above 

700 °C).
85, 86

 This could be caused by the change of the formation energy of pyrrolic N in the M-N-C structure, 

which in good agreement with the EELS mapping and DFT results. It is discussed in detail in the EELS mapping 

analysis. Combining high-resolution XPS spectra with CHN analysis, the contents of different N-heteroatom 

species are shown in Table S4. The different linkers have significant influence on N content, which is confirmed by 

CHN analysis. Among these catalysts, Ni-BTC-bipy-700 shows the highest N content (5.9 at.% based on total 

amount of C, H and N), including 2.2 at.% pyridinic N, 1.4 at.% pyrrolic N and 2.3 at.% graphitic N. The different 

N-heteroatom species can have a significant influence on the catalytic activity. The details of different 

N-heteroatom species in potential microstructures for each elementary steps of ORR are discussed in the section of 

“DFT calculation of active sites in M-N-C structure”. 

The general view and magnified details of the ADF-STEM images are displayed in Figure 4 and Figure 

S19−S22. For all the samples, the metal-containing nanoparticles are covered by a carbon layer or embedded in the 

carbon layer. The diameters of these particles are in the range of 10 to 100 nm. Moreover, the relative compositions 

of Co, N, O and C elements of these samples have been mapped by means of EELS analysis using the 

Hartree-Slater model for signal quantification and power law for background removal.
87

 In order to extract the 
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maps and compute the relative composition, we have analyzed the corresponding K-edge for C (284 eV), N (401 

eV) and O (532 eV) and the L2,3-edge in the case of Co (779 eV). The relative composition maps of C and N were 

explored by EELS analysis as well, except for Ni-BTC-DMF based catalysts due to their low N content. The N 

content based on total amount of C and N by EELS analysis are 7.70 ± 2.13 at.%, 3.08 ± 0.82 at.%, 6.1 ± 2.9 at.% 

and 3.7 ± 2.3 at.% for Ni-BTC-bipy-700, Ni-BTC-bipy-900, Co-BTC-bipy-700 and Co-BTC-bipy-900 catalysts, 

respectively. With increasing temperature, the N content decreases. These results are in good agreement with XPS 

and CHN analyses. EELS chemical composition maps clearly show a N content in the carbon layer, which 

originates from the C-N structure. In addition, it is worth mentioning that metal particles covered by the carbon 

layer are often adjacent or close to nitrogen atoms (the relative composition of N in the metal nanoparticles region 

is much higher than that on the region without metal particles), suggesting possible M-N bonding,
88

 which is in 

agreement with the XPS analysis. Therefore, the high N atomic content around the metal nanoparticles should 

originate from the M-N-C structure. Furthermore, there are some rich C-N cavities produced by the metal 

nanoparticles etched from the C-N shell support (Figure 4). The presence of rich C-N cavities together with the 

high relative composition of N near the metal particles indicates that the metal nanoparticles could stabilize N in the 

graphite framework. This phenomenon might be caused by the change of formation energy of C-N structure after 

formation of the M-N-C structure. Even the influences of metal source on the N content in conventional method 

have been reported by previous researchers, a reasonable theoretical explanation is still unseen. Formation energies 

(in eV) of potential configurations of M-N-C microstructures presented in this work based on DFT were shown in 

Table S5, the formation energies of Ngraphite-G (0.62 eV) structure are smaller than both of Ni-Ngraphite-C (4.20 eV) 

and Co-Ngraphite-C (5.34 eV).
89

 However, the formation energies of Npyrid-G (3.32 eV) and Npyrro-G (10.21 eV) are 

dramatically reduced after forming the M-N-C structure. The formation energies of Co-Npyrid3-C, Co-Npyrid4-C, 

Co-Npyrro2-C and Co-Npyrro3-C are 2.61 eV, 1.31 eV, 7.70 eV and 6.59 eV, respectively. Therefore, the N would be 

enriched around metal particles and more for pyridinic N and pyrrolic N, which is in good agreement with XPS 
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results as well. In addition, all the Ni-based M-N-C structures show smaller formation energies than corresponding 

Co-based materials. This might be the reason why Ni-based materials show higher N content than Co-based 

materials even with the same structure of the pristine MOFs and using the same pyrolysis condition. Meanwhile, 

based on the STEM-EELS mapping, the O signal seems to be always accompanied by C and N signals rather than 

metal signal, meaning that the metal nanoparticles are mainly present in their metallic form and M-Nx compounds. 

The HRTEM micrographs of Co-BTC-bipy-700 and Co-BTC-bipy-900 (Figure 5) show the morphology of the 

nanoparticles, which are surrounded by a graphitic C-N shell. The HRTEM image and its corresponding colored 

power spectrum (FFT) obtained on the red square region indicate that the nanoparticle crystallized in the hexagonal 

Co crystal phase, [P63/MMC]-space group 194, with lattice parameters of a = b = 0.24968 nm, c = 0.40308 nm and 

α = β = 90°, γ = 120°, as visualized from the [0001̅] direction. Upon increasing pyrolysis temperature, the crystal 

phase of the Co nanoparticles does not change. 

DFT calculation of active sites in M-N-C structure  

Although Co-N-C or Ni-N-C for ORR has been explored by DFT in previous studies, only few potential 

configurations of M-N-C microstructures have been considered.
90, 91

 However, different potential configurations of 

M-N-C microstructures may exist within the same material for heteroatom doped carbon based catalysts.
92

 There 

are eight different basic configurations of M-N-C microstructures in the M-N-C structure (Figure 6a). Different 

N-heteroatom species and structures influence the catalytic activity of overall ORR steps differently. Therefore, it is 

important to know which kind of configurations of M-N-C microstructures are primary catalytically active sites for 

ORR. 

In this work, the performances of different potential microstructures as an ORR catalyst were evaluated 

theoretically by computing their free energy diagram for ORR with each elementary steps (four-electron way) at a 

fixed overpotential (η = 0.4 V), which is based on real conditions. The different N-heteroatom species and 

structures have a significant influence on the catalytic activity of overall ORR steps (Figure 6a). Firstly, all reaction 
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steps on the Ni-Ngraphite-C surfaces are downhill except for the OH* formation, which is 1.44 eV uphill. This step is 

the rate-determining step (RDS) of the overall ORR for the Ni-Ngraphite-C catalyst. When Co replaces Ni, the OH* 

formation is thermodynamically favorable. However, the last step, OH* desorption, is 1.89 eV uphill. Hence, a 

four-electron oxygen reduction mechanism should be thermodynamically unfavorable on both Ni-Ngraphite-C and 

Co-Ngraphite-C surfaces. There are four kinds of potential configurations of M-Npyrid-C microstructures (Figure 6b). 

The step from O2* to HOO* is the RDS during the overall ORR on the Ni-Npyrid-C surface. The corresponding free 

energy differences for RDS of Ni-Npyrid-C structures are 0.31 eV, 0.45 eV, 0.51 eV and 0.74 eV for Ni-Npyrid1-C, 

Ni-Npyrid2-C, Ni-Npyrid3-C and Ni-Npyrid4-C, respectively. These Ni-Npyrid-C structures show more favorable for ORR 

than Ni-Ngraphite-C structures with free energy difference of the rate-determining-step as high as 1.44 eV for the 

OH* formation. But all RDS of Ni-Npyrid-C structures are still uphill. Interestingly, for the Co-Npyrid3-C and 

Co-Npyrid4-C structure, all the steps are downhill, indicating a four-electron ORR pathway could be 

thermodynamically favorable on these structures. However, with the number of connected N atoms decreases, 

Co-Npyrid2-C and Co-Npyrid1-C seem to be unfavorable for the OH* desorption. The last possible N-heteroatom 

species is pyrrolic N. All ORR steps on the surface of Ni-Npyrro1-C (Figure 6) show downhill except for the OH* 

desorption which is slightly uphill (0.03 eV). When the N content increases in the microstructures, the formation of 

HOO* becomes unfavorable. Because Ni-Npyrro1-C shows the lowest free energy difference of RDS (0.03 eV) 

among all potential configurations of Ni-N-C microstructures (0.31 eV for Ni-Npyrid1-C and 1.44 eV for 

Ni-Ngraphite-C), Ni-Npyrro1-C might be the most promising active site for the four-electron ORR.  

For the different Co-Npyrro-C microstructures, a four-electron ORR can only happen favorably on the surface 

of Co-Npyrro2-C with all ORR steps going downhill. Therefore, the active sites of Co-Npyrid3-C, Co-Npyrid4-C and 

Co-Npyrro2-C could be the primary catalytically active site for ORR in Co-N-C catalysts. It is worth stressing that 

Co-Npyrid4-C is not the only active site in Co-N-C catalyst. In fact, Co-Npyrid3-C and Co-Npyrro2-C can play an 

important role as well, which is proven by DFT calculations for the first time. This useful information would 
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clearly guide the further improvement of Co-N-C catalysts. Based on the DFT calculation results, it is concluded as 

follows: (i) the primary catalytically active sites for ORR in Co-N-C catalysts include Co-Npyrid4-C, Co-Npyrid3-C 

and Co-Npyrro2-C; (ii) the N content of pyridinic N and pyrrolic N could play an important role in the ORR for both 

Co-N-C catalyst and Ni-N-C catalyst; (iii) Co-N-C catalysts could show better ORR catalytic performance than 

Ni-N-C catalysts. However, in the real conditions, the situation will be much more complicated. A lot of other 

factors would have influenced the ORR performance of the M-N-C catalysts. For example, there is no perfect 

graphene framework for loading M-N-C structure. In the following parts, we will discuss the present M-N-C 

catalysts for the ORR under practical conditions by electrochemical methods. 

Enhancement of catalytic performance based on MOFs units design 

The catalytic performance of as-prepared catalysts was explored by LSV (Figure 7). Compared to the blank 

electrode, all catalysts show obvious catalytic performance for ORR. Firstly, the effect of the pyrolysis temperature 

is studied (Figure 7a−7c). For the Ni-BTC-DMF based catalyst, Ni-BTC-DMF-900 displays better catalytic 

performance than Ni-BTC-DMF-700, even though Ni-BTC-DMF-700 shows higher N content and electrochemical 

double-layer capacitance (indicating larger electrochemical surface area).
93

 However, the N content of both 

Ni-BTC-DMF-700 and Ni-BTC-DMF-900 are very low (especially pyridinic N and pyrrolic N, whose total content 

is less than 0.5 at.%). Among all M-N-C structures, the Ni-Npyrro-C and Ni-Npyrid-C structures are related to active 

sites for the ORR based on the DFT results, the structure of carbon might dominate the catalytic performance of 

Ni-BTC-DMF based catalysts. Because of this, we call this C-dominant behavior. After changing the pillars to 

4,4’-bipyridine, the N content of MOFs-derived catalysts (i.e. M-BTC-bipy-700 and M-BTC-bipy-900 ) increased a 

lot. For Co-BTC-bipy based materials, both of these two catalysts show very low ID/IG ratios, meaning high 

graphitization of these materials. Therefore, the real structure might be close to the DFT configurations. 

Co-BTC-bipy-700 shows better performance than Co-BTC-bipy-900 because Co-BTC-bipy-700 has a higher N 

content (especially, pyridinic N and pyrrolic N are almost 5 times higher) and larger electrochemical surface area 
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(i.e. higher electrochemical double-layer capacitance). These results are in good agreement with DFT and XPS 

results. As in this situation, the number of effective active sites might dominate the catalytic performance, which 

can be denoted as “N-dominated behavior”. The Ni-BTC-bipy-700 shows slightly higher limiting current density 

than Ni-BTC-bipy-900 (Figure 7b). This is caused by the change of N content, which is similar to the 

Co-BTC-bipy based materials. On the other hand, this N-dominated behavior effect is not as strong as for 

Co-BTC-bipy based materials. This is possible because of the high ID/IG ratio of Ni-BTC-bipy. When the pyrolysis 

temperature increases, the ID/IG ratio decreases significantly, which would benefit the ORR. A similar phenomenon 

is also observed in Ni-BTC-DMF based materials. Therefore, for Ni-BTC-bipy based materials, the structure of the 

carbon, the electrochemical surface area and the N content show a synergistic effect for the ORR, which can be 

classified as “synergistic effect behavior”.  

Compared to Ni-BTC-DMF based catalysts, Ni-BTC-bipy based catalysts show better performance at both 

pyrolysis temperatures, although Ni-BTC-DMF based catalysts show smaller ID/IG ratio and higher electrochemical 

double-layer capacitance than Ni-BTC-bipy. This is caused by the large difference in the N content. With increasing 

pyrolysis temperature, the differences in catalytic ability between Ni-BTC-bipy-900 and Ni-BTC-DMF-900 are 

smaller than at low pyrolysis temperature. This is probably due to the decrease of the N content for Ni-BTC-bipy 

based catalyst at high pyrolysis temperatures and the lower ID/IG ratio of Ni-BTC-DMF based catalyst. Therefore, 

when the metal atoms are directly connected to N atoms in the pristine MOF, the resulting M-N-C material has 

more favorable catalytic behavior for the ORR. Co-BTC-bipy-700 exhibits better catalytic activity for ORR than 

Ni-BTC-bipy-700 (Figure 7e). This could be attributed to two reasons: (1) The metal ions of MOFs will lead to 

different active sites (Co-Nx-C show better catalysts performance than Ni-Nx-C), which is proven by DFT results as 

well; (2) Different metals have different ability to catalyze carbon growth, which will have an influence on the 

structure of the carbon after pyrolysis and on the electrochemical surface area.  

The commercial Pt/C (10 %) catalyst was used as reference sample at same mass loading as Co-BTC-bipy-700. 
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At this mass loading of commercial Pt/C (10%), the mass loading of Pt is around 50 μg cm
−2

 (higher than “standard” 

loading of 20 μg cm
−2

). Interestingly, the onset potential of Co-BTC-bipy-700 is lower than Pt/C catalyst (Figure 

8a), but with a larger limiting current density and similar half-wave potentials. While long-term stability is an 

important parameter for high-performance catalysts, Co-BTC-bipy-700 catalyst again outperforms the Pt/C catalyst. 

After 2000 CV cycles (in the range of 0.5 V−1 V vs. RHE), the LSV curve of Co-BTC-bipy-700 catalyst shows 

only minor changes whereas the limiting current density of the Pt/C catalyst decreased a lot.  

Furthermore, another advantage of Co-BTC-bipy-700 catalyst is the excellent tolerance to methanol (Figure 

8b). With the addition of 1 M methanol, Pt/C catalyst shows an obvious peak of methanol oxidation and the 

cathodic peak corresponding to the ORR disappears. On the contrary, there is no change for the Co-BTC-bipy-700 

catalyst, revealing its potential applications in direct methanol fuel cells. Moreover, considering economic and 

environmental impact, the recycling of catalysts is a big issue. Magnetic separation was recognized as a gentle and 

economical way to solve this issue.
94-96

 The recycling of Co-BTC-bipy-700 catalyst by magnetic separation in 1 M 

KOH solution proves that magnetic separation is an effective way to recycle Co-BTC-bipy-700 catalyst (Figure 

S23 a−b). Even after one month, the Co-BTC-bipy-700 catalyst can be easily recycled by magnetic separation 

(Figure S23 c-d), which can be attributed to the protection of the cobalt by the carbon layer. 

To know the electron transfer process of the ORR involving the as-prepared samples, LSV on RDE were 

recorded at rotation speeds from 400 rpm to 2000 rpm as shown in Figure S24a−S31a. Based on Koutecky-Levich 

(K−L) plots (Figure S24b−S31b), the electron transfer numbers (n) per oxygen molecule is calculated in the 

potential range 0.45 V−0.6 V. Commercial MCNTs and Pt/C were explored using the same method as control 

groups,. The calculated values of n at various potentials are presented in Figure 9a. Among these catalysts, MCNTs 

show the smallest n values (~1.7) for ORR. The electron transfer numbers of Pt/C and Co-BTC-bipy-700 catalysts 

for ORR are 3.9 and 4.0, respectively, which is typical for the 4-electron ORR. The kinetic differences of catalytic 

ORR between different samples are investigated by Tafel plots (Figure 9b). Generally speaking, lower Tafel slopes 
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imply faster kinetics.
97

 The Tafel slopes calculated from Figure 9b are given in Table S6. All the MOF derived 

catalysts show low Tafel slopes, ranged from 53 mV dec
−1

 to 64 mV dec−
1
. Obviously, the Tafel slope of 

Co-BTC-bipy-700 catalyst (53 mV dec
−1

) is the lowest. Compared with Pt/C whose Tafel slope is 74 mV dec
−1

, the 

Co-BTC-bipy-700 catalyst exhibit more desirable ORR kinetics. 

In order to figure out the role of the metal in Co-BTC-bipy-700 catalyst for ORR, cyanide anions (CN−) was 

used as a molecular probe to explore active ORR catalytic sites on Co-BTC-bipy-700 catalyst as they readily 

coordinate with the Co center.
98

 In addition, the control electrode of cobalt-covered RDE was prepared by 

electrodeposition. The cobalt covered RDE did not show catalytic activity for ORR (Figure S32a), indicating that 

metallic cobalt is not the active site for ORR, justifying that the contribution of metallic phase to catalytic 

performance can be ignored. After the addition of CN
−
, the onset potential and the diffusion-limiting current density 

of the ORR polarization curve of the Co-BTC-bipy-700 electrocatalyst decrease significantly (Figure S32b), 

suggesting the blocking of the cobalt sites in Co-BTC-bipy-700 catalyst by CN
−
 ions. This behavior strongly 

suggests that cobalt in the M-N-C structure is directly involved in the ORR process. On the other hand, metals can 

catalyze the formation of N-C and improve the degree of sp2-hybridized carbon and stabilized N structure in 

graphene framework based on XPS, Raman, CHN analysis, CVs and TEM results. All these results suggest that 

cobalt in M-N-C structure plays an important role in the ORR activity in both direct and indirect ways. 

Another key reaction for rechargeable metal-air battery is the OER,
47, 99

 corresponding to the charging process. 

The OER catalytic activity of Co-BTC-bipy-700, Pt/C and IrO2 were explored by LSV on RDE at a rotation speed 

of 1600 rpm in 0.1 M KOH. Compared to Pt/C and IrO2 catalysts, Co-BTC-bipy-700 catalyst shows lower onset 

potential (1.54V vs. RHE) and lower potential at a current density of 10 mA cm
−2

 (1.63 V vs. RHE) as shown in 

Figure 10a. Based on Tafel plots obtained from Figure 10a, the Tafel slopes of Co-BTC-bipy-700 and Pt/C and 

IrO2 are 77, 98 and 298 mV dec
−1

, respectively, indicating that the OER was kinetically faster on the 

Co-BTC-bipy-700 catalyst. To assess the OER stability of catalysts, chronoamperometric test is carried out at 1.7 V 
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vs. RHE. As shown in Figure 10c, IrO2 catalyst suffers a rapid current loss at the initial stage and the total current 

loss was about 66% after 24,000 s. On the contrary, more than 95% current can be remained for Co-BTC-bipy-700 

catalyst, indicating a high stability for OER. After stability tests, there is no obviously change on the LSV for 

Co-BTC-bipy-700 catalyst (Figure 10d). 

Home-made Zn-air battery performance 

A home-made Zn-air battery was used to study the catalyst performance under real conditions. A Zn plate 

catalyst covered electrode and 6 M KOH with 0.2 M zinc acetate solution were used as the anode, cathode and 

electrolyte, respectively. The open circuit voltage of Zn-air battery based on Co-BTC-bipy-700 catalysts is around 

1.49 V (Figure S33). .Figure 11a presents the i−V polarization curves of Zn−air batteries based on different 

catalysts. The Pt/C-IrO2 (the mass ratio of the two catalysts is 1:1) mixed catalyst was chosen for comparison. 

Clearly, Co-BTC-bipy-700 shows higher polarization current density than Pt/C-IrO2 (Figure 11a), which benefits 

from better ORR and OER performance of Co-BTC-bipy-700. Moreover, the corresponding power density and 

current density during the discharging is shown in Figure 11b. The maximum power density of the assembled 

zinc-air battery based on  Co-BTC-bipy-700 is determined to be 336 mW cm
−2

, which is higher than that of the 

zinc-air battery based on Pt/C-IrO2 (270 mW cm
−2

). In order to compare with previous works, the Tafel slop for 

each reaction and the overvoltage between ORR and OER (𝐸OER@10 mA cm−2 − 𝐸ORR@3 mA cm−2  base on the 

three-electrode system) is used as a descriptor for evaluating the bifunctional electrocatalytic activity of a catalyst 

(Table S8). The Co-BTC-bipy-700 catalyst shows that the value of 𝐸OER@10 mA cm−2 − 𝐸ORR@3 mA cm−2 reaches 

0.84 V, which is comparable with the highest level of bifunctional electrocatalysts reported recently (Table S8), 

including novel metal based catalysts, transition metal based catalysts, doped carbon based catalysts and 

metal-doped carbon based catalysts as well as other MOF-derived catalysts. Moreover, the comparison of the peak 

power densities of the Zn-air battery based on the as-prepared 2D-CMO electrode in this work and those based on 

other electrodes reported in the literature is shown in Figure S34. Even if Co-BTC-bipy-700 is not the best ORR 
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electrocatalyst, it surpasses most bifunctional electrocatalysts reported to date considering both ORR and OER, 

leading to the high Zn-air battery performance. Compared with Pt/C-IrO2 catalyst, the Co-BTC-bipy-700 catalyst 

enables the Zn-air battery a higher voltage platform during the discharge process (benefiting from the high catalytic 

activity for ORR) and a lower voltage platform during the charge process (benefiting from the high catalytic 

activity for OER) at all the tested current densities (Figure 11c). At a current density of 3 mA cm
−2

, the specific 

energy density of the Zn-air battery based on the Co-BTC-bipy-700 catalyst equals 1009.8 Wh kg
−1

 (based on the 

mass of Zn), which is around 76.5% of the theoretical value (1320 Wh kg
−1

). Meanwhile, the specific energy 

density of the Zn-air battery based on the whole system (including anode, electrolyte, cathode, and all other 

components of the device) is 4.37 Wh kg
−1

. Furthermore, long term charge-discharge tests were carried out with 

different catalysts. As shown in Figure S35, after 45 cycles, the degradation of the discharge voltage platform for 

Zn-air batteries based on Pt/C-IrO2 and Co-BTC-bipy-700 catalysts are around 8%. The decrease of catalyst 

performance is probably caused by the passivation of the zinc plate side and the corrosion of the carbon structure or 

the carbonate precipitation on the gas diffusion electrode side.
100-103

 The Zn-air battery based on Co-BTC-bipy-700 

catalyst shows lower charging voltage and higher discharging voltage at all cycles than Pt/C catalyst. In addition, 

the design diagram of the cell and the demonstration of the Zn-air battery (based on Co-BTC-bipy-700) with an 

OCV of around 1.51 V are given in Figure S36. 

Conclusions 

In summary, a series of benzene-1,3,5-tricarboxylate (BTC) linker based MOFs have been successfully prepared 

via tailoring the pillars between the 2D layers and the metal ions. Subsequent pyrolysis leads to the formation of 

M-N-C composites catalysts. The influence of the MOFs unit, including linker and metal ions, on the resulting 

M-N-C catalyst performance for ORR were explored by a combination of DFT calculations, morphology and 

composition characterization, and electrochemical studies. It is found that (i) the key parameters (such as N content, 

N-heteroatom species, electrochemical surface area, and the structure of carbon) of M-N-C catalyst for ORR are 
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significantly affected by the MOF units; (ii) Based on DFT computation, the Co-Npyrid3-C, Co-Npyrid4-C and 

Co-Npyrro2-C are the primary catalytically active sites for ORR in the Co-N-C structure; (iii) Metal particles in 

M-N-C structure play an important role for the ORR activity in both direct and indirect ways. Among the prepared 

catalysts, Co-BTC-bipy-700 exhibits high catalytic capacity for both ORR and OER, which is beneficial for 

rechargeable Zn-air battery. In battery tests, this catalyst exhibited higher discharge potential and lower charge 

potential than Pt/C catalyst. The specific energy density of Zn-air battery based on Co-BTC-bipy-700 catalyst was 

1009.8 Wh kg
−1

 at 3 mA cm
−2

, which is around 76.5% of the theoretical energy density (1320 Wh kg
−1

). These 

results show that the catalytic capacity of M-N-C catalyst can be easily tailored by designable MOFs unit. It is still 

difficult to quantitatively control each key parameter of the M-N-C catalyst for chemical reactions. Fortunately, the 

present work could offer new guidelines for the molecular design of M-N-C catalysts, which are promising 

candidate catalysts for various reactions. 

Methods 

Electrodeposited MOFs: All MOFs were synthesized by anodic electrodeposition. Nickel plate (99.8% purity, 

Goodfellow, UK). and cobalt plate (99.9% purity, Goodfellow, UK) were carfully polished before used as an anode 

electrode. The cathode and anode material were the same. The metal plate was partially immersed in the different 

synthesis solutions. By applying a current for 8 h, MOFs were grown on the surface of the metal plate. After 

completion of the MOF growth, the MOFs were carefully removed from the electrode. The resulting powder was 

washed with DMF and EtOH to remove excess ligand. The solution, temperature and current for the synthesis of 

different kinds of MOFs were as follows:  

Ni(HBTC)(DMF)2: Ni(HBTC)(DMF)2 covered electrodes were synthesized in a solution containing 3 g 

1,3,5-benzenetricarboxylic acid (H3BTC, 98% purity ABCR Germany) per 100 mL solvent, including 67 mL 

N,N-dimethylformamide (DMF, ≥ 99% Chem-Lab) and 33 mL ethanol (EtOH, 99.9% purity, VWR France), at a 

temperature of 120 °C and a current density of 2 mA cm
−2

 .  



Tailor-made metal-nitrogen-carbon catalysis for rechargeable Zn-air batteries via controllable MOF unit design 

20 
 

Ni(HBTC)(4,4′-bipy): Ni(HBTC)(4,4′-bipy) covered electrodes were synthesized in a solution containing 3 g 

H3BTC and 1 g 4,4-dipyridyl (bipy, 98 % purity ACROS ORGANIC) per 100 mL DMF at a temperature of 120 °C 

and a current density of 2 mA cm
−2

 .  

Co(HBTC)(4,4′-bipy): Co(HBTC)(4,4′-bipy) covered electrodes were synthesized in a solution containing 3 g 

H3BTC and 1 g 4,4-dipyridyl per 100 mL DMF at three different temperatures (30, 60 and 120 °C ) and the current 

density of 2 mA cm
−2

.  

Preparation of MOF derived M-N-C catalyst: The different MOFs were pyrolized at 700 °C and 900 °C for 8 h in 

a nitrogen atmosphere with a flow rate of 300 cm
3
 min

−1
, respectively. The temperature inside the furnace was 

gradually increased from room temperature at a heating rate of 5 °C min
−1

. After pyrolysis, the sample was cooled 

down at a cooling rate of 5 °C min
−1

 in a flowing nitrogen atmosphere until room temperature. The as-prepared 

black powder was first washed with 30% H2SO4 with ultrasound (half hour), then maintained at 60 °C overnight to 

remove uncovered (carbon) metal nanoparticles. The resulting samples were washed with DI water and EtOH 

repeatedly until pH ≈ 6, and then dried at 60 °C. The preparation details of the different MOFs derived M-N-C 

catalysts are shown in Table S1.  

Material characterizations: X-ray diffraction (XRD) patterns of the samples were recorded on a Bruker AXS D8 

diffractometer using Cu Kα radiation (λ = 0.15405 nm) and Ni filter with 2θ ranging from 5° to 30° and a step size 

of 0.02° (2 s per step). Thermogravimetric analysis (TGA) was performed in a nitrogen atmosphere on a 

thermogravimetric analyzer (AutoTGA 2950HR V5.4A, TA Instruments) using platinum pans at a heating rate of 

5 °C min
−1

. The onset temperature of the weight loss in the TGA was used as the decomposition temperature (Td). 

The morphologies and structures of the samples were observed on a FEI/Philips XL30 FEG microscope (SEM). In 

order to improve the electronic conductivity of the MOF, the MOF-covered metal plate was sputtered with a 10 nm 

layer of Pt. High resolution transmission electron microscopy (HRTEM) and annular dark field (ADF) scanning 

transmission electron microscopy (STEM) images were obtained on an FEI Tecnai F20 field emission gun 
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microscope operated at 200 kV with a point-to-point resolution of 0.19 nm, which is equipped with an annular dark 

field (ADF) and an electron energy loss spectroscopy (EELS) detectors. In addition, the obtained images and 

spectra were analyzed by Gatan Digital Micrograph software. X-ray photoelectron spectroscopy (XPS) was 

recorded with an ESCALAB250 (monochromatic Al Kα with 1486.6 eV). The binding energy was calibrated by 

placing the principal C1speak at 284.6 eV. CHN analyses were carried out on a Thermo Scientific Flash 2000 

Organic Elemental Analyzer. 

Electrochemical characterizations:  

Preparation of working electrodes: All catalyst inks were prepared by dispersing 5 mg of catalyst in 1 mL of 

isopropanol solvent containing 40 µL of 5 wt.% Nafion (Alfa Aesar Germany) through sonication for 30 min. Then, 

for the ORR test, 20 µL of the catalyst ink was loaded onto a glass-carbon electrode (GCE) of 5 mm in diameter 

(loading: 0.50 mg cm
−2

). In order to reduce the influence of oxygen bubbles on the OER test caused by high mass 

loading, 10 µL of the catalyst ink was loaded onto a glassy carbon electrode (GCE) of 5 mm in diameter (loading~ 

0.25 mg cm
−2

). For comparison, multi-walled carbon nanotubes (MCNTs, Nanocyl, Belgium), Pt/C catalyst (10% 

of platinum, Alfa Aesar Germany) and IrO2 (P40V020, particles from Premetek Co.) were conducted on the same 

electrochemical tests with the same mass loading. Here, the mass loading Pt is around 50 μg cm
−2

, which is higher 

than the “standard” loading (20 μg cm
−2

).
36

 In addition, the cobalt-covered electrode was electrodeposited at a 

current density of -40 mA cm
−2

 in CoCl2 (0.9 mol L
−1

) aqueous solution with LiClO4 (0.1 mol L
−1

) as the 

supporting electrolyte at room temperature until a mass loading of 0.50 mg cm
−2

 (based on Faraday's law) was 

obtained on the GCE. The details were shown in previous work.
70, 104

 As the catalysts in this study are composite 

materials, electrochemical surface area (ECSA) measured by electrochemical double-layer capacitance or 

Brunauer-Emmett-Teller (BET) might lead to errors for current normalization.
105 

Therefore, the geometrical surface 

area of the GCE and constant catalyst mass loading for all catalysts were used as current normalization method. 
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Catalytic performance: All the electrocatalytic measurements are carried out in a three-electrode cell using a 

rotating disk electrode (RDE, PINE Research Company). Before measuring, the electrolyte was purged with O2 (for 

ORR) or N2 (for OER) for at least 45 minutes. During the test, the electrolyte was continuously bubbled with O2 or 

N2. The ORR and OER catalytic performance of the samples were characterized by linear sweep voltammetry 

(LSV), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques on an Autolab 

electrochemical workstation at 25 °C. An automatic thermostat bath was used to control the temperature (Julabo 

F25, Germany). The supporting electrolyte in all electrochemical experiments is 0.1 M KOH. The currents of the 

LSV and CV are normalized by the mass of the active materials and the geometrical area of the glassy carbon 

electrode (GCE). The EIS measurements were recorded in a frequency range from 10
−2

 to 10
4
 Hz at open circuit 

potential with a peak-to-peak amplitude of 5 mV. The catalyst covered GCE, a graphite plate (3.5 cm × 5 cm) and a 

Hg/HgO electrode were used as the working electrode, the counter electrode and the reference electrode, 

respectively. All potentials are referred to the reversible hydrogen electrode (RHE) potential, which was converted 

from the Hg/HgO electrode using the following equation: 

𝐸𝑅𝐻𝐸 = 𝐸𝐻𝑔/𝐻𝑔𝑂 + 0.098 + 0.059 × pH 

All potentials were iR-corrected to compensate for the influence of solution resistances, using the following 

equation
72, 106, 107

: 

𝐸𝑖𝑅−𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝐸 − 𝑖𝑅 

where i is the current and R is the uncompensated ohmic electrolyte resistance measured by EIS at high frequency. 

Electrode kinetic data were calculated based on Koutecky-Levich (K−L) equation: 

1

𝑗
=

1

𝑗𝐿
+

1

𝑗𝐾
=

1

𝐵𝜔1/2
+

1
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where j is the measured current density (A m
−2

), jL is the diffusion-limited current density (A m
−2

), jK is the kinetic 

current density (A m
−2

), 𝜔 is the the angular velocity of the rotating electrode (s
−1

), F is the Faraday constant 
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(96485 C mol−
1
), c∞ is the bulk concentration of O2 in 0.1 M KOH (1.2 mol m−3

 ), n is the number of transferred 

electrons, Do is the diffusion coefficient of O2 in 0.1 M KOH (1.9×10
−9

 m
2
 s−

1
), and ʋ is the kinematic viscosity of 

the electrolyte (10
−6

 m
2 
s

−1
), respectively.

45, 108, 109
 

Rechargeable Zn-Air battery tests: For the full-cell test of our catalysts, we prepared a zinc plate as an anode, 

and 6 M KOH with 0.2 M zinc acetate solution was used for the electrolyte (Figure S36). The different air cathodes 

were prepared by a mixture of different catalysts with 5 wt.% Nafion solution with the same ratio for half reaction 

test (ORR and OER), and a mass loading of 3.5 mg cm
−2

 on a gas diffusion electrode (carbon fiber paper). All the 

Zn-air batteries were tested under ambient atmosphere without a separator for anode and cathode. An assembled 

full-cell was characterized by chronopotentiometry (CP) at several charge and discharge currents. 

First-principles calculations: All calculations were performed using plane-wave density functional theory (DFT) 

employing periodic boundary conditions as implemented in the VASP code
110, 111

. The electronic 

exchange-correlation energy was modeled using the Perdew-Burke-Ernzerhof (PBE) functional 
112

 within the 

generalized gradient approximation (GGA). The projector augmented wave (PAW) method was used to describe 

the ionic cores
113, 114

. For the plane-wave expansion, a 550 eV kinetic energy cut-off was used after testing a series 

of different cut-off energies. To model metal-nitrogen-carbon (M-N-C) structures, the  (5×5×1) supercell M, N 

co-doped graphene with lattice parameters of a = b = 12.28 Å was constructed by a periodic boundary condition, 

and the vacuum layers were set to be larger than 20 Å to avoid periodic interaction. A Monkhorst-Pack 3 × 3 × 1 

k-point grid was used to sample the Brillouin zone 
115

. The convergence criterion for the electronic structure 

iteration was set to be 10
-4

 eV, and that for geometry optimizations were set to be 0.01 eV/Å on force. To better 

describe the dispersion interaction within water adsorption systems, vdW correction was considered by adopting 

the Grimme’s D2 scheme 
116

. 

In order to understand the mechanism and the active site of the oxygen reduction pathway on the M, N co-doped 

graphene, we use the free energy change (G) for each ORR step as the criterion for assessing the ORR activity. 
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Specifically, we considered the four-electron reaction pathway for ORR in alkaline media, as listed in 

Supplementary equations (2) to (5), which is the dominated mechanism for doped graphene catalysis
117

. The 

free-energy diagrams in the reaction pathways were calculated on the basis of a standard hydrogen electrode (CHE) 

model that was introduced by Nørskov et al
118

. For each step of ORR, the Gibbs free energy of formation is given 

by the following equation: 

ΔG = ΔE +ΔZPE –TΔS –eU  

where ΔE, ΔZPE, and ΔS are the changes of DFT total energy, zero-point energy, and entropy from the initial state 

to the finial state, respectively; T is temperature; U is the electrode potential; e is the charge transfer. ΔZPE, and ΔS 

can be obtained by the thermodynamics table for gaseous molecules
119

 and by calculating the vibrational 

frequencies for the oxygenated intermediate (see Table S7), respectively.  
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Figures & Tables 

 

Figure 1. Schematic illustration of the synthesis of MOFs on substrates, schematic views of the crystal structures 

showing the coordinative environments around the center metal atoms in Ni-BTC-DMF, Ni-BTC-bipy and 

Co-BTC-bipy (all H atoms are omitted for clarity), and view of supramolecular frameworks from the b axis. SEM 

images of (a) Ni-BTC-DMF, (b) Ni-BTC-bipy and (c) Co-BTC-bipy electrodeposited on substrates are also given.  
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Figure 2. (a) The ID/IG ratios of different catalysts based on Raman spectra (Figure S7− S9). (b) N content (at.%) 

of different MOFs after pyrolysis under different temperatures, determined by CHN analysis based on total amount 

of C, H and N. 
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Figure 3. High-resolution XPS spectra of different N-heteroatom species and their relative content in (a) 

Ni-BTC-DMF-700 and Ni-BTC-DMF-900 catalysts, (b) Ni-BTC-bipy-700 and Ni-BTC-bipy-900 catalysts, and (c) 

Co-BTC-bipy-700 and Co-BTC-bipy-900 catalysts. 
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Figure 4. EELS chemical composition maps of Co-BTC-bipy-700 (top image) and Co-BTC-bipy-900 (bottom 

image) electrocatalysts obtained from the blue rectangular area of the ADF-STEM micrograph. Individual C 

K-edge (red), N K-edge (green), O K-edge (blue), Co L2,3-edge (pink) composite maps and the relative composition 

maps of C (at 94.0 ± 2.9 %) and N (at 6.1 ± 2.9%) for Co-BTC-bipy-700 and the relative composition maps of C (at 

94.9 ± 11.6 %) and N (a: 3.7 ± 2.3%) for Co-BTC-bipy-900. 
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Figure 5. TEM images and corresponding power spectra (FFT) of (a) Co-BTC-bipy-700 and (b) Co-BTC-bipy-900 

electrocatalysts.  
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Figure 6. (a) Free energy variations of ORR elementary steps and (b) rate-determining steps for different M-N-C 

structures. Inset in (b) shows top views of the potential configurations of M-N-C structure surfaces. Gold, white and 

blue balls represent C, N and M (M = Ni or Co) atoms, respectively. 
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Figure 7. Linear scan voltammograms of different catalysts at a rotating speed of 1600 rpm in O2-saturated 0.1 M 

KOH at a scan rate of 10 mV s
−1

: (a) Ni-BTC-DMF-700 and Ni-BTC-DMF-900 electrocatalysts; (b) 

Ni-BTC-bipy-700 and Ni-BTC-bipy-900 electrocatalysts; (c) Co-BTC-bipy-700 and Co-BTC-bipy-900 

electrocatalysts; (d) Ni-BTC-DMF-700, Ni-BTC-DMF-900, Ni-BTC-bipy-700 and Ni-BTC-bipy-900 

electrocatalysts; (e) Ni-BTC-bipy-700 and Co-BTC-bipy-700 electrocatalysts. 
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Figure 8. (a) Linear scan voltammograms (LSV) of Pt/C and Co-BTC-bipy-700 electrocatalysts on a RDE at a 

rotation speed of 1600 rpm in O2-saturated 0.1 M KOH at a scan rate of 10 mV s
−1

 before and after cycling tests (in 

the range of 0.5 V−1 V vs. RHE). (b) Cyclic voltammograms (CV) of Pt/C and Co-BTC-bipy-700 electrocatalysts 

at a scan rate of 50 mV s
−1

 without the addition of methanol and after the addition of 1 M methanol. 
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Figure 9. (a) Corresponding electron transfer number during ORR tests at various potentials based on 

Koutecky-Levich plots of different electrocatalysts (Figure S24b−S31b). (b) Tafel plots derived from the 

polarization curves (Figure S24a−S31a) at a rotating speed of 1600 rpm in O2-saturated 0.1 M KOH at scan rate of 

10 mV s
−1

.  
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Figure 10. (a) OER polarization curves of Pt/C, IrO2 and Co-BTC-bipy-700 catalysts on a RDE rotating at 1600 

rpm in 0.1 M KOH; (b) Corresponding Tafel plots obtained from the polarization curves; (c) OER stability test of 

IrO2 and Co-BTC-bipy-700 catalysts with a constant applied potential of 1.7 V vs. RHE in 0.1 M KOH; (d) OER 

polarization curves of IrO2 and Co-BTC-bipy-700 catalysts at a rotation speed of 1600 rpm in 0.1 M KOH before 

and after stability tests. 
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Figure 11 The i−V polarization (a) and power density (b) curves of Zn-air batteries based on Pt/C-IrO2 and 

Co-BTC-bipy-700 catalysts. (c) Charge-discharge curves of Zn-air batteries based on Pt/C-IrO2 and 

Co-BTC-bipy-700 catalysts at different current densities after 30 cycles. 


