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ON PLANAR POLYNOMIAL VECTOR FIELDS WITH

ELEMENTARY FIRST INTEGRALS

C. CHRISTOPHER1, JAUME LLIBRE2, CHARA PANTAZI3

AND SEBASTIAN WALCHER4

Abstract. We show that under rather general conditions a polynomial
differential system having an elementary first integral already must ad-
mit a Darboux first integral, and we explicitly characterize the vector
fields in this class. We also investigate some exceptional cases, i.e. equa-
tions admitting an elementary first integral but not a Darboux first inte-
gral. In particular we provide a rather detailed discussion of exceptional
elementary first integrals built from algebraic functions of prime degree.

1. Introduction and survey of results

In the present note we discuss a polynomial vector field

X = P
∂

∂x
+Q

∂

∂y
, briefly X =

(
P
Q

)
(1)

in C2, and the associated ordinary differential equation

ẋ = P (x, y),
ẏ = Q(x, y).

Our focus is on systems which admit a first integral that is elementary over
the differential field K = C(x, y). (The pertinent notions will be introduced
below; in particular we collect some basic definitions and facts in an appen-
dix.) Our approach is based on the classical work [10] by Prelle and Singer.
We recall some of their main results, specialized to the rational function
field.

Theorem 1. (Prelle and Singer [10])

(a) If the polynomial vector field X admits an elementary first integral then
there exist an integer m ≥ 0, algebraic functions v, u1, . . . , um over K
and nonzero constants c1, . . . , cm ∈ C such that

X(v) +

m∑

i=1

ci
X(ui)

ui
= X

(
v +

m∑

i=1

ci log(ui)

)
= 0, (2)

but v +
∑m

i=1 ci log(ui) is not constant. The ci may be chosen linearly
independent over the rational numbers Q.
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(b) If the vector field X admits an elementary first integral then it admits
an integrating factor of the special form

µ = f−d1
1 · · · f−dr

r , (3)

with irreducible and pairwise relatively prime polynomials f1, . . . , fr, and
exponents d1, . . . , dr ∈ Q.

The second statement includes the case when a rational first integral
exists; in the particular case of a polynomial first integral there may be
a constant integrating factor. Note that the existence of a first integral
v +

∑m
i=1 ci log(ui) for (1) is equivalent to the existence of a first integral

exp(v) ·
∏

uci
i . (4)

The aim of the present paper is to gain more insight into the nature of
the algebraic functions v and ui, and to obtain a structural characterization
of the polynomial vector fields which admit such a first integral. Thus we
prove: Whenever the trace of v is not constant or the norm of some ui is
not constant then the existence of a first integral (4) already implies the
existence of a Darboux first integral (i.e., a first integral of this type with
rational functions v and ui). This yields a precise characterization of the
vector fields which admit this first integral. With regard to the exceptional
cases we prove some general results about the simplest one (the case of a first
integral (2) with m = 1), and discuss some examples. Our results indicate
that the name “exceptional” is justified.

Before we state the results in detail, we briefly recall the general setting,
with a particular focus on integrating factors of type (3). By Singer [14]
and Christopher [3], the vector field (1) admits a Liouvillian first integral
if it admits an integrating factor of type (3) with complex exponents di.
Moreover, there exists a Liouvillian first integral if and only if there exists
a Darboux integrating factor. (The existence of a Liouvillian first integral
is not always associated to the existence of some invariant algebraic curve,
see [7].) The special structure of polynomial vector fields admitting an
integrating factor of type (3) (with exponents di ∈ C) has been discussed
in a number of recent papers, e.g. [2, 9, 4, 5, 6]. We will use some of these
results below.

Returning to polynomial vector fields with elementary first integrals, the
particular vector fields which even admit a rational first integral form a
special class. On the one hand such vector fields are easy to construct
by forming the Hamiltonian of a rational function and multiplying it by
a suitable factor to obtain a polynomial (with relatively prime entries, if
desired). On the other hand it may be problematic to decide for a given
polynomial vector field whether it admits a rational first integral. There are
several algorithms to compute rational first integrals of a given polynomial
vector field when degree bounds are given; see e.g. Bostan et al. [1]. But
determining such degree bounds a priori is an unsolved problem.
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We will frequently require that a vector field under consideration does not
admit a rational first integral. This implies in particular (as will be shown
in Section 3 below) that we may assume that v is not constant, m > 0 and
the ui are not constant in (2).

Our principal result states that under rather weak assumptions the ex-
istence of an elementary first integral will already imply the existence of a
Darboux first integral.

Theorem 2. Let the vector field X given in (1) admit the elementary first
integral v+

∑m
i=1 ci log(ui), where m > 0 and v, u1, . . . , um are nonconstant

algebraic functions over K = C(x, y), and furthermore c1, . . . , cm are com-
plex constants linearly independent over Q. If X does not admit a rational
first integral then the following hold.

(a) Whenever some uj has non-constant norm, or whenever v has non-
constant trace, then X admits a Darboux first integral.

(b) Moreover, if (3) is an integrating factor for X, with some uj having non-
constant norm, then it is uniquely determined (up to a nonzero complex
factor) and all di are nonnegative integers.

We will prove this in Section 3. Moreover, given statement (a) of Theo-
rem 2, the corresponding polynomial vector fields can be determined explic-
itly, up to multiplication by a polynomial function, by invoking a result of
Chavarriga et al. [2]; see Theorem 5 and Corollary 1.

Theorem 2 leaves the problem to investigate “exceptional” cases admitting
an elementary first integral (2) with all ui of constant norm, v of constant
trace. In the present work we restrict our attention to the (presumably)
simplest case m = 1. One may then take c1 = 1 with no further loss of
generality. Thus we assume a relation

X(v) +
X(u)

u
= 0, (5)

with u and v non-constant algebraic functions over K (but not both in K),
with u of constant norm and v of constant trace. In Section 4 we will prove:

Proposition 1. Let relation (5) be given, and assume that X admits no
rational first integral.

(a) The intersection K[u] ∩ K[v] is nontrivial, i.e. ̸= K.
(b) If the degree of K[v] over K is a prime number, then K[v] ⊆ K[u]. If

both degrees are prime numbers then K[v] = K[u].

We proceed to discuss the cases when both u and v are contained in an
extension F of K whose degree is a prime number. For quadratic extensions
we give a complete characterization as follows.

Theorem 3. Assume relation (5) with u of constant norm and v of constant
trace, both contained in a degree two extension of K, but neither contained
in K. Then, with no loss of generality, one may take u and v to satisfy

u2 + 2g · u+ 1 = 0 and v = b(g + u)
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with a non-constant rational function g and a nonzero rational function b.

(a) There is a rational function s such that

P = −s ·
(
(g2 − 1)by + (bg − 1)gy

)
,

Q = s ·
(
(g2 − 1)bx + (bg − 1)gx

)
,

defines a polynomial vector field. If one requires P and Q to have rela-
tively prime entries then s is unique up to a factor in C∗.

(b) This vector field admits the elementary first integral v + log u and the

integrating factor (
√
g2 − 1 · s)−1.

(c) If this vector field admits a Darboux first integral then it admits a ratio-
nal first integral.

For the proof see Section 4; we also give some examples which do not
admit a rational first integral.

Turning to extensions of prime degree p > 2, we will show that the hy-
pothesis of Proposition 1 is never satisfied. We have:

Theorem 4. Let F = K[u] = K[v] be an extension of prime degree p, with v
of constant trace and u of constant norm, and consider a polynomial vector
field X admitting the elementary first integral (5). If X admits no rational
first integral then p = 2.

The proof will also be given in Section 4. While this result does not
provide complete information on the possible elementary first integrals of
type (5) (and the corresponding polynomial vector fields), it indicates that
such cases are indeed exceptional.

2. Notions and known facts

We start by recalling some notions and facts (see the appendix for more).
We sketch some proofs, for easy reference and the reader’s convenience.

Definition 1. We call a function

exp(R) ·
∏

Sci
i ,

with rational functions R and Si and complex constants ci, a Darboux func-
tion.

The notions of Darboux first integral and Darboux integrating factor are
then self-explaining.

Lemma 1. Let (1) be given, and H an analytic first integral of this vector
field on an open set U . If the nonzero polynomial vector field

X̃ = P̃
∂

∂x
+ Q̃

∂

∂y

also admits the first integral H on U then there exists a rational function R

such that X̃ = R ·X.
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Proof. There exist analytic µ and µ̃ such that

µX = XH = −Hy ∂/∂x+Hx ∂/∂y = µ̃X̃,

see Section 5. Hence one has X̃ = R ·X on a nonempty open subset of C2,

and (e.g.) R = P̃ /P shows that R is rational. �

The vector fields with non-constant Darboux integrating factor (3) (with
fixed polynomials and exponents) form a linear space F . The so-called
trivial vector fields admitting (3) form a subspace F0 ⊆ F . To construct
these, start with an arbitrary polynomial g and define

Zg = Z(d1,··· ,dr)
g = Hamiltonian vector field of g/

(
fd1−1
1 · · · fdr−1

r

)
.

Then, according to [5], the trivial vector field

fd1
1 · · · fdr

r · Zg = f ·Xg −
r∑

i=1

(di − 1)g
f

fi
·Xfi

(6)

(withXh denoting the Hamiltonian vector field of a function h) is polynomial
and admits (3) by construction.

Proposition 2. If d1, . . . , dr are rational numbers then every element of F0

admits a rational (hence elementary) first integral.

Proof. Some integer power of g/
(
fd1−1
1 · · · fdr−1

r

)
is a rational function. �

We remark that one has F = F0 whenever the geometry of the underlying
curves (including the line at infinity) is nondegenerate; see [4, 5]. In such
cases the above Proposition applies. Next we recall a precise description of
polynomial vector fields which admit a Darboux first integral.

Theorem 5. (See Chavarriga et al. [2], and [9].) Let

H(x, y) = fλ1
1 · · · fλr

r exp(g/(fn1
1 · · · fnr

r ))

be a Darboux function with λ1, · · · , λr ∈ C, n1, · · · , nr ∈ N ∪ {0} and g ∈
C[x, y] coprime with fi whenever ni ̸= 0. Then H is a first integral of the
polynomial vector field

X̂ =

r∏

k=1

fnk+1
k ·

(
r∑

k=1

λkXfk
/fk + Z(n1+1,...,nr+1)

g

)

which, in turn, admits the integrating factor
∏r

k=1 f
−(nk+1)
k . Moreover, any

polynomial vector field admitting the first integral H admits a rational inte-
grating factor.
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Sketch of proof. One verifies (as in [9]) directly that

X̂ =

(
r∏

l=1

fnl
l

)
r∑

i=1

λi




r∏

j = 1

j ̸= i

fj


Xfi

−g
r∑

i=1

ni




r∏

j = 1

j ̸= i

fj


Xfi

+




r∏

j=1

fj


Xg

admits the first integral H. Comparison with equation (6) shows that X̂
admits a representation as stated. The remaining assertions are obvious,
resp. follow from Lemma 1. �

Corollary 1. If the vector field (1) admits a Darboux first integral but not
a rational first integral then it admits (up to constant multiples) a unique
integrating factor, and this integrating factor is rational.

As for a converse, we have the following result which easily follows from
a theorem of Rosenlicht.

Proposition 3. If the vector field (1) admits a rational integrating factor
then it admits a Darboux first integral.

Proof. There exists a rational function µ such that µ ·X is the Hamiltonian
vector field of some analytic function H, hence Hx and Hy are rational. By
Rosenlicht [13], Theorem 3, letting αD = Hx for D = ∂/∂x and αD = Hy

for D = ∂/∂y, there exist ui and v in K, and ci ∈ C such that H =
v +

∑
ci log ui; thus expH is a Darboux first integral. �

3. Elementary and Darboux first integrals

In this section we will prove Theorem 2. By Theorem 1 we may assume
there exists an elementary first integral for X of the form (2), which is built
from algebraic functions over K = C(x, y), and their logarithms.

Given an algebraic function w, we denote its minimal polynomial by

Mw(T ) := T d +

d∑

i=1

giT
d−i ∈ K[T ].

Here −g1 is the trace of w and (−1)dgd is the norm of w. (Trace and
norm are also been used in Prelle and Singer [10]). The other zeros of Mw

(in a suitable extension field F of K) are called the conjugates of w. (For
algebraic notions and facts the reader may consult e.g. Lang [8].) The
following observation is well-known.

Lemma 2. If an algebraic function w is a first integral of (1) then all
nonconstant coefficients of its minimal polynomial are first integrals of (1).
Hence there exist rational first integrals.
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Proof. Indeed, X(w) = 0 implies

0 = X(Mw(w))

= X(w) ·
(
dwd−1 +

∑d−1
i=1 (d− i)giw

d−i−1
)

+
∑d

i=1X(gi)w
d−i

=
∑d

i=1X(gi)w
d−i,

which forces all X(gi) = 0 by uniqueness of the minimal polynomial. �

We note a few more useful properties.

Lemma 3. (a) If the polynomial vector field X admits an elementary first
integral (2) then it admits an algebraic integrating factor µ in F :=
K [v, u1, . . . , um].

(b) Moreover, if X admits no rational first integral and F = K[µ] with [F :
K] = d then µd ∈ K.

Proof. (i) We first show that the partial derivatives of v and all ui are
contained in K[v, u1, . . . , um]. Indeed, let

ve +
e∑

i=1

hiv
e−i = 0; h1, . . . , he ∈ K

be a relation of minimal degree. Differentiate to obtain

0 = vx · (eve−1 +

e−1∑

i=1

hi(e− i)ve−i−1) +

e∑

i=1

hi,xv
e−i

and hence vx ∈ K(v) = K[v], see for more details Proposition 1.4 in
Ch. V of [8]. The same proof applies to vy, and by the same arguments
we obtain that ui,x and ui,y lie in K[ui] for 1 ≤ i ≤ m.

(ii) Thus, setting

H := v +
∑

ci log(ui)

we see that Hx and Hy are contained in F. Since H is a first integral
for X, we have

Hy = µ · P, −Hx = µ ·Q

with some analytic function µ. Since Hx, Hy, P, Q are all contained
in F, the same must hold for µ. Thus part (a) is proven.

(iii) We turn to part (b). From the proof of Proposition 2 in Prelle and

Singer [10] one sees : If F̂ is a normal extension of F with degree

[F̂ : K] = n then µn ∈ K. But since K contains all nth roots of unity,
the polynomial Tn − g splits over F, and therefore F = K[µ] itself is
normal over K (see e.g. Lang [8], Ch. V, Thm. 3.3). Now one can
invoke the argument from Prelle and Singer again.

�
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Since we are interested in vector fields which do not admit a rational
first integral, we may assume that the vector field X given in (1) admits an
elementary first integral (2) with m > 0; equivalently we may require

X

(
exp(v) ·

m∏

i=1

uci
i

)
= 0

with m > 0. We may and will assume that the ci are linearly independent
over the rational number field Q.

Proof of Theorem 2. (i) Let F be the smallest normal extension of K which
contains v and all ui, and denote its Galois group by G. Since K-
automorphisms of F commute with derivations (see e.g. Rosenlicht
[11], Proposition and p. 156), we also have

X (σ(v)) +

m∑

i=1

ci
X (σ(ui))

σ(ui)
= 0,

for all σ ∈ G, and summation yields

X

(∑

σ∈G

σ(v)

)
+

m∑

i=1

ci
X
(∏

σ∈G σ(ui)
)

∏
σ∈G σ(ui)

= 0.

Since R :=
∑

σ∈G σ(v) is a positive integer multiple of the trace of v,
and Si :=

∏
σ∈G σ(ui) is a power of the norm of ui with a positive

integer exponent, 1 ≤ i ≤ m, this identity involves only rational func-
tions.1 In particular, whenever R +

∑
ci logSi ̸= const., equivalently

exp(R) ·∏Sci
i ̸= const., we have a Darboux first integral. Note that

whenever all ui have constant norm then the trace of v must also be
constant since there exists no rational first integral by assumption.

(ii) We show in detail that exp(R) ·∏Sci
i ̸= const. whenever some uk has

non-constant norm. Thus let T be an irreducible polynomial and mk

a nonzero integer such that Sk = Tmk · S̃k, with T dividing neither

numerator nor denominator of S̃k. Likewise we have Si = Tmi · S̃i,
with an integer mi and T dividing neither numerator nor denominator

of S̃i, for all i ̸= k. As a preliminary step we show that
∏
Sci

i ̸= const.
Due to the linear independence of the ci over Q and mk ̸= 0 we have

∏
Sci

i = T
∑

cimi ·
∏

S̃ci
i ,

∑
cimi ̸= 0,

and it suffices to show that

T · S∗ := T ·
∏

S̃ei
i ̸= const., with ei := ci/

∑
cjmj .

There exists (x0, y0) ∈ C2 be such that T (x0, y0) = 0 and S∗ is analytic
and does not vanish in this point. Thus T · S∗ has a zero in (x0, y0)
but is not identically zero.

1The positive integer in question is the degree
[
F : F̂

]
, with F̂ ⊂ F denoting the splitting

field of v, respectively of ui.
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(iii) We next show the full assertion. Let R = T ℓ · R̃, with T not dividing

numerator or denominator of R̃. Whenever ℓ ≥ 0 the argument from
above still works to prove non-constancy. Thus assume ℓ < 0 and
consider

R∗ := T−ℓ (R+
∑
ci logSi)

= R̃+ (
∑
cimi)T

−ℓ log T + T−ℓ
∑
ci log S̃i.

There exists (x0, y0) ∈ C2 at which R̃ and all S̃i are analytic and
nonzero but T (x0, y0) = 0. Let γ(t) = (x0, y0) + t · a, with a ∈ C2

parameterize a transversal line segment to the curve defined by T = 0.
Then standard growth estimates yield

lim
t→0

R∗(t) = R̃(0) ̸= 0, thus |R+
∑

ci logSi| → ∞ as t → 0,

and non-constancy follows as asserted. Thus part (a) is proven.
(iv) The assertion of part (b) follows by Theorem 5 and Corollary 1.

�

4. The simplest exceptional setting

In this section we will discuss exceptional vector fields which, by definition,
admit an elementary first integral but not a Darboux first integral. We
restrict attention to the simplest setting, starting from a first integral v +
log u of X as in relation (5), with u and v nonconstant and algebraic over
K (but not both in K), with u of constant norm and v of constant trace.
Since u may be changed to α · u with some α ∈ C∗ and v may be changed
to v + β with some β ∈ C, we may assume that u has norm one and v has
trace zero.

4.1. Some generalities. In this subsection we prove that K[u] ∩ K[v] ̸= K
under the assumptions of Proposition 1. We first remark that neither u nor
v are elements of K, since this would imply u ∈ C (resp. v ∈ C) and the
existence of a rational first integral follows from Lemma 2.

The assertion of Proposition 1(a) is then a direct consequence of the
following general fact; note that X(u)/u and X(v) are contained in the
intersection due to (5).

Lemma 4. Let s ̸= 0 be algebraic over K with constant norm, Y a derivation
of K[s] extending a derivation of K, and Y (s)/s ∈ K. Then Y (s) = 0, hence
s is constant unless Y admits a rational first integral.

Proof. The minimal polynomial of s yields a relation

sm + g1s
m−1 + · · · + gm−1s+ gm = 0

with all gi ∈ K (g0 := 1) and constant gm. Applying the derivation yields

0 = Y (s) ·
m∑

i=1

gi−1(m− i+ 1)sm−i +
m−1∑

i=1

Y (gi)s
m−i,
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in view of Y (gm) = 0. Letting Y (s) = h · s with h ∈ K, one finds

mhsm +

m−1∑

i=1

((m− i)hgi + Y (gi)) s
m−i = 0.

On the other hand

mhsm +
m∑

i=1

mhgis
m−i = 0

with the same leading coefficient. By uniqueness of the minimal polynomial,
all coefficients must be equal, which implies mhgm = 0, and thus h = 0. So
Y (s) = 0 and consequently s ∈ C unless Y admits a first integral in K. �

Part (b) of Proposition 1 is a direct consequence of part (a) and multi-
plicativity of the degree for field extensions.

Proposition 4. Let F be of prime degree p, and let X admit an elementary
first integral (5) which is not Darboux. Additionally, assume that X admits
no rational first integral. Then the integrating factor µ of X (which is unique
up to a nonzero scalar) satisfies F = K[µ] and there exists g ∈ K which is
not a pth power in K such that

µp − g = 0. (7)

In particular F : K is a cyclic Galois extension of degree p.

Proof. This is a direct consequence of Lemma 3. Note that µ ̸∈ K by
Proposition 3. �

4.2. Quadratic extensions. In this subsection we consider the smallest
possible degrees of K[u] and K[v]. Thus in view of Proposition 1 we assume
relation (5) with u and v contained in a degree two extension F = K[u] =
K[v] of K. With u of norm one, there exists g ∈ K such that

u2 + 2g · u+ 1 = 0. (8)

This relation may be rewritten in the form

(u+ g)2 = g2 − 1 (9)

which in turn implies

ux = − u

u+ g
gx, uy = − u

u+ g
gy. (10)

Moreover

v = a+ bu, with a, b ∈ K and b ̸= 0 (11)

by Proposition 1.

Using (8) and (11) we obtain

v2 = a2 + 2abu+ b2u2

= (a2 − b2) + (2a− 2gb)bu
=

(
a2 − b2 − 2a(a− gb)

)
+ 2(a− gb)v
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and trace zero forces a = gb, therefore

v = b(g + u).

Proof of Theorem 3. The assertions regarding u and v have already been
shown. We determine the Hamiltonian vector field of H := b(u+ g) + log u.
With (10) and (9) one finds

Hx = bx(u+ g) + b(ux + gx) + ux/u
= bx(u+ g) + bggx − gx/(u+ g)
= (u+ g)−1 ·

(
bx(g2 − 1) + gx(bg − 1)

)

= 1/
√
g2 − 1 ·

(
bx(g2 − 1) + gx(bg − 1)

)

and a similar expression for Hy. For the rational vector field

X̂ =

(
−by(g2 − 1) − gy(bg − 1)
bx(g2 − 1) + gx(bg − 1)

)

there obviously exists a unique (up to a scalar factor) rational function s

such that s · X̂ is polynomial with relatively prime entries. Thus part (a)
holds, and (b) is satisfied by construction.

To prove part (c), assume that the vector field admits a Darboux first
integral. Then Corollary 1 yields a contradiction since the integrating factor
from part (b) is not rational. �

Theorem 3 describes all polynomial vector fields which admit an excep-
tional elementary first integral of type (5) with u and v in a quadratic
extension of K. One may start with arbitrary rational functions g (subject
to u ̸∈ K) and b ̸= 0. But one has to ascertain that the vector field admits no
rational first integral. To verify that there actually exist such vector fields,
we discuss two examples.

Example 1. This is known from Example 2 of Prelle and Singer [10]: Let
g = x and b = y. The vector field

X̂ =

(
1 − x2

xy − 1

)

admits the integrating factor 1/
√

1 − x2 and the elementary first integral

H(x, y) = y ·
√
x2 − 1 + log

(
−x+

√
x2 − 1

)
.

Prelle and Singer [10] showed by differential-algebraic arguments that no
rational first integral exists.

Example 2. The polynomial differential system

ẋ = 1 − x2,
ẏ = 1 − x2 − xy,

admits the integrating factor (x2 − 1)−3/2 and the elementary first integral

H = e
y√

x2−1 /
(
x+

√
x2 − 1

)
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(or equivalently logH = y√
x2−1

− log(x +
√
x2 − 1)). In order to show that

this system has no Darboux first integral, it is again sufficient to prove there
is no rational first integral. We proceed here using an argument different
from Prelle and Singer.

Obviously the only stationary points of the system are (1, 0) and (−1, 0),
and the lines defined by x± 1 = 0 are invariant algebraic curves with cofac-
tors −x± 1, respectively.

We show that no other invariant algebraic curves exist. Thus assume that
f(x, y) = 0, with f =

∑N
i=0 ϕi(x)y

i ∈ C[x, y], defines an invariant algebraic
curve C and let (x0, y0) ∈ C with x0 ̸∈ {−1, 1} and ϕN (x0) ̸= 0. Then going
to the splitting field of f over C(x), one gets

f(x, y) = ϕN (x0)(y − ψ1(x)) · · · (y − ψN (x))

with ψ1, · · · , ψN algebraic functions. We may assume that C is defined by
y = ψ1(x) in a neighborhood of (x0, y0). On the other hand the first integral
H implies that

y =
(
c+ log

(
x+

√
x2 − 1

))√
x2 − 1

near (x0, y0), with some c ∈ C. Since this is a transcendental function, we
have a contradiction.

To summarize: The only possible rational first integrals have the form
(x−1)m(x+1)n, with integers m and n. But any integer linear combination
m · (−x + 1) + n · (−x − 1) of the cofactors is nonzero unless m and n are
both zero. Therefore, no rational first integral exists.

4.3. Extensions of odd prime degree. Finally, we will prove Theorem
4. We start with an auxiliary result.

Lemma 5. Let p be a prime number, g ∈ K not a pth power in K, and
F = K[µ] with µp = g. Then C(x) is algebraically closed in F; thus every
ρ ∈ F that is algebraic over C(x) already lies in C(x).

Proof. Since g is not constant, we may assume that gy ̸= 0. Moreover we

may assume that there is a prime polynomial q such that g = qℓg̃, qy ̸= 0, q
divides neither numerator nor denominator of g̃ and ℓ ̸= 0 is not an integer
multiple of p.

(i) We note the identity

µy =
1

p

gy

g
· µ

which follows from logarithmic differentiation of µp = g.
(ii) We first show that ρy = 0. Indeed, from the minimal polynomial of ρ

over C(x) one obtains a relation

ρm +
m−1∑

i=0

aiρ
m−i = 0; a1, . . . , am−1 ∈ C(x),
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of smallest degree m, and differentiation yields

0 = ρy

(
mρm−1 +

m−1∑

i=0

(m− i)aiρ
m−i−1

)

with the term in brackets nonzero.
(iii) Now consider the unique representation

ρ =

p−1∑

i=0

biµ
i with bi ∈ K.

Using part (ii) we find

0 = ρy =

p−1∑

i=0

bi,yµ
i +

p−1∑

i=1

ibiµ
i−1µy

= b0,y +

p−1∑

i=1

(
bi,y +

i

p

gy

g
bi

)
µi

Since all coefficients in the last sum must be zero, we find that

∂

∂y

(
bpi g

i
)

= 0, 0 ≤ i < p.

Thus b0 ∈ C(x), and moreover there exist ki ∈ C(x) such that

bi(x, y)
p = ki(x)/g(x, y)

i, 1 ≤ i < p.

(iv) Now assume ki ̸= 0 and let q ∈ C[x, y]\C[x] be as above. Let bi = qmi ·̃bi
with q dividing neither numerator nor denominator of b̃i. Comparing
exponents of q yields

p · |mi| = i · |ℓ|.
This is a contradiction, since p divides neither factor on the right-hand
side. Therefore all ki = 0, and ρ ∈ K.

�
Proof of Theorem 4. Assume that the prime number p satisfies p > 2, and
that v+log u is an elementary first integral, with F = K[u] = K[v] of degree
p over K. Let µ be an integrating factor for system (1). Then µp = g ∈ K
by Lemma 3, and we have, by the integrating factor condition,

vx +
ux

u
= −µQ.

Denote by ζ a primitive pth root of unity. Applying the automorphism σ
defined by µ 7→ ζµ to this identity (and recalling that σ commutes with all
derivations) we get

σ(v)x +
σ(u)x

σ(u)
= −ζµQ

⇒ ζ−1σ(v)x + ζ−1σ(u)x

σ(u)
= −µQ.
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Combining these relations, we obtain

(
v − ζ−1σ(v)

)
x

− ζ−1σ(u)x

σ(u)
+
ux

u
= 0.

To this relation one can apply the Theorem from Rosenlicht [12], with
the identifications k := C(x), K = F, t = y and .′ = ∂

∂x (hence t′ = 0 ∈
k). The hypotheses of this theorem are satisfied, since by Lemma 5, k is
algebraically closed in K, and due to p > 2 we have that 1 and ζ−1 are
linearly independent over the rational number field. Rosenlicht’s theorem
now implies that u ∈ k = C(x). This in turn implies F = K[u] = K; a
contradiction. �

In the proof of Theorem 4 we did not use all the available information.
We collect some facts to conclude the paper, and to point towards further
research.

Remark 1. (a) In the situation of Lemma 3 we have

K ⊆ K[µ] ⊆ F ⊆ F̂

and K[µ] : K is Galois as well as F̂ : K. Therefore, with the Galois

group G of F̂, K[µ] is the fixed point field of a normal subgroup
H of G, and G/H is cyclic of order d. This shows that strong
restrictions exist with regard to the possible field extensions F related
to elementary first integrals of the form (2) which are not logarithms
of Darboux first integrals.

(b) In particular, Theorem 4 characterizes every field extension F : K
related to an elementary first integral which has the form (5), but is
not a logarithm of a Darboux first integral, with the property that its

smallest normal extension F̂ has a simple Galois group.

5. Appendix

In this section we recall some familiar notions, terminology and facts.

Definition 2. Let U be a nonempty open subset of C2.

We say that a nonconstant (possibly multivalued) function H : U −→ C is
a first integral of the vector field X on U if and only if the relation X(H) = 0
holds on U.

Given some nonconstant analytic function g on U , the analytic vector
field

Xg := −∂g
∂y

∂

∂x
+
∂g

∂x

∂

∂y
is called the Hamiltonian vector field of g. By construction it admits the
first integral g.

We say that a nonconstant (multivalued) function µ : U −→ C is an
integrating factor of the vector field X on U if and only if X(µ) = −(Px +
Qy)µ on U ; in other words div(µ ·X) = 0.
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If H is a first integral of the vector field X, then there is a unique inte-
grating factor µ satisfying

µP =
∂H

∂y
and µQ = −∂H

∂x
.

Next we recall some properties of invariant algebraic curves.

Definition 3. Let f ∈ C[x, y] be an irreducible polynomial. The algebraic
curve defined by f(x, y) = 0 is an invariant algebraic curve of the polynomial
vector field (1) if there exists a polynomial K ∈ C[x, y] (called the cofactor
of f) such that

Xf = Kf.

Such a condition is necessary and sufficient for the curve to be an invariant
set, thus a union of trajectories of the vector field (1).

If the vector field (1) admits an integrating factor (3) then the algebraic
curves defined by fi = 0 are invariant. Moreover, if Ki is the cofactor of fi,
respectively, then ∑

diKi + divX = 0.

We are furthermore concerned with elementary first integrals of (1). Thus
consider the differential field K = C(x, y) with derivations ∂/∂x and ∂/∂y.
Every derivation of K has the form Y = R ∂

∂x + S ∂
∂y with rational R and S.

Definition 4. (a) An extension field L of K is called elementary if there
is a finite tower of extension fields K = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L
such that Li+1 is obtained from Li by adjoining an algebraic element,
an exponential (i.e. an element w such that Y (w)/w ∈ Li for some
derivation Y ) or a logarithm (i.e. an element w such that Z(w) =
Z(a)/a for some a ∈ Li and some derivation Z).

(b) An extension field L is called Liouvillian over K if there is a finite tower
of extension fields K = L0 ⊂ L1 ⊂ · · · ⊂ Ln = L such that Li+1 is
obtained from Li by adjoining an algebraic element, an integral element
(i.e. an element w such that Z(w) = a for some a ∈ Li), or an ex-
ponential. Every element of L is called a Liouvillian function of two
variables.

One may regard such field extensions as abstract objects, but in the
present work we realize them (locally, on suitable open subsets of C2) as
analytic functions of two variables. The class of Liouvillian functions obvi-
ously contains the class of elementary functions, and the inclusion is proper.
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