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ON TOPOLOGICAL ENTROPY, LEFSCHETZ

NUMBERS AND LEFSCHETZ ZETA FUNCTIONS

JAUME LLIBRE1 AND VÍCTOR F. SIRVENT2

Abstract. In the present article we give su�cient conditions for
C∞ self-maps on some connected compact manifold manifolds in
order to have positive entropy. The conditions are given in terms
of the Lefschetz numbers of the iterates of the map and/or its Lef-
schetz zeta function. We consider the cases where the manifold is a
compact orientable and non-orientable surface, the n-dimensional
torus, the product of n spheres of dimension ℓ and the product of
spheres of di�erent dimensions.

1. Introduction

The topological entropy of a topological dynamical system is a non-
negative real number which measures the complexity of the system.
Topological entropy was �rst introduced in 1965 by Adler, Konheim
and McAndrew [1]. Later on Dinaburg [8] and Bowen [7] provided a
distinct, weaker de�nition inspired in the Hausdor� dimension. This
new de�nition clari�ed the meaning of the topological entropy. Thus
for a system de�ned by the iteration of a function, the topological en-
tropy is the exponential growth rate of the number of distinguishable
orbits of the iterates.

Here we provide su�cient conditions in order that the topological
entropy of a map in a compact manifold be positive in terms of the
Lefschetz numbers of the iterates of the map or in function of the
Lefschetz zeta function of the map.

This paper is organized as follows: In section 2 we introduce basic
notions and de�nitions, as entropy, Lefschetz numbers and Lefschetz
zeta functions, we also describe the entropy conjecture. Later in this
section we prove Theorem 6 which gives su�cient conditions for a C∞
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self-maps on a manifold to have positive topological entropy in terms
of its Lefschetz zeta function. In section 3 we consider the case of
compact and connected surfaces, either orientable and non-orientable,
with and without boundary. We give su�cient conditions for C0, as
well as C∞, self-maps on a surface in order to have positive entropy.
The case of orientable surfaces are considered in Theorems 7 and 8 and
non-orientable surfaces in Theorems 9 and 3. In Theorems 7 and 9
the conditions are given in terms of the Lefschetz zeta functions of the
map, these two theorems are based on Theorem 6 and in Theorems 8
and 3 the conditions are given in terms of their Lefschetz numbers.

In section 4 we consider the case of the n-dimensional torus, since the
entropy conjecture is true for continuous self-maps on Tn, we consider
in this section continuous maps on this manifold. In Theorem 11 we
give the su�cient conditions for a continuous map to have positive
entropy in terms of their Lefschetz numbers.

In section 5 we consider the case of the product of spheres. First we
study the product of spheres of the same dimension. In Theorem 14 a
criteria is given in terms of the Lefschetz numbers of the map. We also
consider the case of product of spheres of di�erent dimensions, which is
more elaborated from the combinatorial point of view. In Theorem 16
the conditions are given in terms of the Lefschetz numbers, where as
Corollary 17 deals with the Lefschetz zeta functions of the maps. All
maps considered in this section are C∞.

In section 6, we give some remarks about the relationship between
the entropy of a map and the factorization of its Lefschetz zeta function
in factors of the form (1± tdi)±1, with positive integers di.

Some results related with the ones of this paper can be found in
[12, 15, 17, 19, 24].

2. Basic Notions, definitions and general results

Let X be a topological space and f a continuous self-map on X.

We give the Bowen's de�nition of the topological entropy (cf. [7]).
We suppose that X is a compact metric space, with a metric d. We
de�ne the metric dm on X as

dm(x, y) := max
0≤j≤m

d(f j(x), f j(y)).

A �nite set S is called (m, ϵ)-separated with respect to f if for any
x, y ∈ S we have dm(x, y) > ϵ. We denote by S(m, ϵ) the maximal
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cardinality of an (m, ϵ)�separated set. The topological entropy of f is
de�ned by

h(f) := lim
ϵ→0

(
lim sup
m→∞

1

m
logS(m, ϵ)

)
.

We suppose that X is n�dimensional. The map f induces a homo-
morphism on the k�th rational homology group of X for 0 ≤ k ≤ n,
i.e. f∗k : Hk(X,Q) → Hk(X,Q). The Hk(X,Q) is a �nite dimensional
vector space over Q and f∗k is a linear map whose matrix has integer
entries.

The spectral radii of f∗k are de�ned as

sp(f∗k) := max {|λ| : λ is an eigenvalue of f∗k} ,
and we call the spectral radius of f∗ (sometimes it s also called the
spectral radius of f):

sp(f∗) := max
0≤k≤n

sp(f∗k).

There is a famous and long standing conjecture called the entropy

conjecture that states that if f is a C1 self-map on a compact manifold
then

log(sp(f∗)) ≤ h(f).

This conjecture was stated by Shub in 1974 (cf. [23]). Yomdin proved
it for C∞ maps (cf. [25]):

Theorem 1 (Yomdin). If f is a C∞ self maps on a compact manifold,

then h(f) ≥ log(sp(f∗)).

In the case of self-maps on the n-dimensional torus the conjecture
was proved for continuous maps by Misiurewicz and Przytycki (cf. [22]).
The conjecture is also true for continuous self-maps on nilmanifolds (cf. [21]).

Other important result related to this matter is the following theo-
rem, due to Manning (cf. [20]):

Theorem 2 (Manning). Let f be a C0 self-map on a compact manifold

then h(f) ≥ log(sp(f∗1)).

The Lefschetz number of f is de�ned as

L(f) =
n∑

k=0

(−1)ktrace(f∗k).

The Lefschetz Fixed Point Theorem states that if L(f) ̸= 0 then f
has a �xed point (cf. [6] or [16]).
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The Lefschetz zeta function of f is de�ned as

ζf (t) = exp

(∑

m≥1

L(fm)

m
tm

)
.

Since ζf (t) is the generating function of the Lefschetz numbers, L(fm),
it keeps the information of the Lefschetz number for all the iterates of
f . There is an alternative way to compute it:

(1) ζf (t) =
n∏

k=0

det(Idk − tf∗k)
(−1)k+1

,

where n = dimX, mk = dimHk(X,Q), Idk is the identity map on
Hk(X,Q), and by convention det(Idk − tf∗k) = 1 if mk = 0 (cf. [10]).

We mention an elementary fact about the Lefschetz zeta function
that we use in this article.

Proposition 3. Let f : X → X be a continuous map. If λ ̸= 0 is a zero

or pole of ζf (t) then λ−1 is an eigenvalue of f∗k, for some k. Moreover

0 is never a zero or pole of ζf (t). In particular if the eigenvalues of f∗
are roots of unity then the zeroes and poles of ζf (t) are also roots of

unity.

Proof. Let qk(t) = det(Idk − tf∗k). Note that qk(0) = 1, for all k; so
from (1), we get ζf (0) = 1.

If λ ̸= 0 is a zero or pole of ζf (t) then qk(λ) = 0 for some k. Hence
det(λ−1Id∗k − f∗k) = 0, i.e. λ−1 is an eigenvalue of f∗k.

Note that ω is a root of unity if and only if ω−1 is a root of unity.
Hence if all eigenvalues of f∗ are root of unity then the zeroes or poles
are also roots of unity. �

From (1) it follows the general expression of a continuous self-map
on X is either ζf (t) = 1 or of the form

ζf (t) =
N∏

i=1

qi(t)
si ,

where qi(t) = ci,mi
tmi + · · ·+ ci,0 is a polynomial not necessary monic,

however ci,0 = 1, for all 1 ≤ i ≤ N , we will always assume that the
polynomials qi(t) do not have common factors, and the numbers si are
integers.

We remark that if pi(t) is the characteristic polynomial of f∗i, its
degree is ni = dim(Hi(X,Q)), and qi(t) = det(Idi − tf∗i). Then
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qi(1/t) = t−nip(t), if not all the eigenvalues of f∗i are zero. Note that
qi(t) is a polynomial of degree at most ni, and it is equal to ni if and
only if zero is not a root of pi(t).

First we show two propositions that relate the sizes of the coe�cients
of the polynomials with their roots. We shall use these facts throughout
the article.

Proposition 4. Let s(t) = tm +αm−1t
m−1 + · · ·+α1t+α0 be a monic

polynomial with integers coe�cients. Suppose that all its roots are zero

or roots of unity.

(a) If α0 ̸= 0 then |αm−k| ≤
(
m
k

)
for 1 ≤ k ≤ m− 1.

(b) If α0 = α1 = · · · = αr−1 = 0 and αr ̸= 0 then |αm−k| ≤
(
m−r
k

)

for 1 ≤ k ≤ m− r.

Proof. Vieta's formulae allow to express the coe�cient of the poly-
nomial s(t) in term of its roots. Let λ1, . . . , λm be the roots of the
polynomial s(t).

The Vieta's formulae are

(2)

α0 = λ1 · · ·λm,

α1 =
∑

i1<···<im−1

λi1 · · ·λim−1 ,

...

αm−2 =
∑

i<j

λiλj,

αm−1 = λ1 + · · ·+ λm.

From identity (2) and using the fact that all the roots of s(t) are roots
of unity, we have

|αm−1| ≤
m∑

i=1

|λi| = m.

For the general term:

|αm−k| ≤
∑

1≤i1<···<ik≤m

|λi1 · · ·λik | =
∑

1≤i1<···<ik≤m

1 =

(
m

k

)
.

This proves statement (a).

If α0 = α1 = · · · = αr−1 = 0 and αr ̸= 0 then s(t) = tru(t), where

u(t) = tm−r + αm−1−rt
m−1−r + · · ·+ αr+1t+ αr.

Applying part (a), to the polynomial u(t) we get statement (b). �
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Proposition 5. Let s(t) = tm +αm−1t
m−1 + · · ·+α1t+α0 be a monic

polynomial with integers coe�cients, and q(t) = cm−rt
m−r + · · ·+ c0 a

polynomial with c0 = 1, such that they satisfy q(t) = trs(t−1).

If |cj| >
(
m−r
j

)
for some 1 ≤ j ≤ m− r− 1. Then there exists λ root

of s(t) satisfying |λ| > 1 and moreover λ−1 is a root of q(t).

Proof. If the polynomials s(t) and q(t) satisfy the relation q(t) = trs(t−1)
then cm−j = αj for 0 ≤ j ≤ r.

From Proposition 4 it follows that if all the roots of s(t) are zero or
they have norm equal 1 then |αm−j| ≤

(
m−r
j

)
for 1 ≤ j ≤ m− r. Hence

|cj| ≤
(
m−r
j

)
. Therefore the condition |cj| >

(
m−r
j

)
implies that s(t)

has a root λ, with |λ| ̸= 1. Since α0 is an integer and from formula (2)
we can conclude that |λ| > 1. Clearly λ−1 is a root of q(t). �

Theorem 6. Let f be a C∞ self-map on compact connected di�eren-

tiable manifold X, whose Lefschetz zeta function is of the form

(3) ζf (t) =
N∏

i=1

qi(t)
si ,

where N a positive integer, the si are integers and qi(t) are polynomials

of the form:

(4) qi(t) = ci,mi
tmi + · · ·+ ci,0,

where the coe�cients ci,j are integers, and in particular ci,0 = 1.

If the polynomials qi(t) do not have common factors and for some

(i, j), i.e. qi(t) and qk(t) are co-prime, for every i ̸= k. there exists

|ci,j| >
(
mi

j

)
, then the map f has positive topological entropy.

Proof. Suppose that in the expression of the Lefschetz zeta function of
f as in (3), there is a polynomial qi(t) as in (4), with ci,0 = 1. Hence

qi(t) = ci,mi
tmi + · · ·+ ci,0.

By Proposition 5, if |ci,j| >
(
mi

j

)
then there exists λ a root of qi(t), such

that 0 < |λ| < 1. Hence λ−1 is an eigenvalue of f∗k, for some k. From
Theorem 1, we can conclude that the map f has positive entropy. �
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3. Surfaces

LetX = X+(g, b) be a compact connected orientable surface of genus
g ≥ 0 with b ≥ 0 boundary components, its homology groups are:

Hk(X
+(g, b),Q) =





Q if k = 0,

2g−times︷ ︸︸ ︷
Q⊕ · · · ⊕Q if k = 1 and b = 0,

(2g+b−1)−times︷ ︸︸ ︷
Q⊕ · · · ⊕Q if k = 1 and b > 0,

Q if k = 2 and b = 0,
0 if k = 2 and b > 0.

Let f be a continuous self-map on X+(g, b). If b = 0 its Lefschetz
zeta function is

ζf (t) =
q(t)

(1− t)(1−Dt)
,

where D is the degree of f , i.e. the map f∗2 = (D) and q(t) = det(Id−
f∗1t). Let p(t) be the characteristic polynomial of f∗1, its degree is 2g,
then q(1/t) = t−2gp(t), if not all the eigenvalues of f∗1 are zero. Note
that q(t) is a polynomial of degree at most 2g, and it is equal to 2g if
and only if zero is not a root of p(t). In the case b > 0 the Lefschetz
zeta function is

ζf (t) =
q(t)

1− t
,

where q(t) = det(Id− f∗1t), it is a polynomial of degree at most 2g +
b− 1.

As it can be seen in the previous remark, the eigenvalues of the
induced map on the �rst homology play a very important role in the
expression of the Lefschetz zeta function. Therefore Theorem 2 is very
relevant in this situation. For this reason we can consider C0 maps.
The adapted version of Theorem 6 for self-maps on X+(g, b) is the
following statement:

Theorem 7. Let f be a C0-self map on X+(g, b).

(a) Let b = 0 and the Lefschetz zeta function of f :

ζf (t) =
q(t)

(1− t)(1−Dt)
,
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where D is the degree of f and the polynomial q(t) is of the

form:

q(t) = cm−rt
m−r + · · ·+ c0,

with c0 = 1, m ≤ 2g and 0 ≤ r ≤ m − 1. If |cj| >
(
m−r
j

)
for

some j such that 1 ≤ j ≤ m−r−1, then the map f has positive

topological entropy.

Moreover, if f is C∞ and D ̸= 0, 1,−1 then the topological

entropy of f is positive.

(b) Let b > 0 and the Lefschetz zeta function of f :

ζf (t) =
q(t)

1− t
,

where the polynomial q(t) is of the form:

q(t) = cm−rt
m−r + · · ·+ c0,

with c0 = 1, m ≤ 2g+ b− 1 and 0 ≤ r ≤ m− 1. If |cj| >
(
m−r
j

)

for some 1 ≤ j ≤ m − r − 1, then the map f has positive

topological entropy.

Proof. Since the polynomial q(t) appears in the Lefschetz zeta funtion,
is q(t) = det(Id− tf∗1). Hence p(t) the characteristic polynomial of f∗1
is of the form

p(t) = tr(tm−r + am−1t
m−r−1 + · · ·+ ar),

where cj = am−j for 1 ≤ j ≤ m− r.

We apply Proposition 4 to the polynomial s(t) = tm−r+am−1t
m−r−1+

· · ·+ ar. Hence if r = 0, i.e. a0 ̸= 0, and all the roots of s(t) are roots
of unity then |am−1| ≤ m. So the condition |am−1| > m, which is
|c1| > m, implies that there exits at least one eigenvalue of f∗1 of
modulus greater than 1; hence, by Theorem 2 we conclude h(f) > 0.
Similarly if |am−j| >

(
m
j

)
, i.e. |cj| >

(
m
j

)
, implies h(f) > 0.

If r > 0 then a0 = a1 = · · · = ar−1 = 0. By Proposition 4 |am| ≤
m − r if all the roots of s(t) are roots of unity. Hence the condition
|am| > m − r implies that there exits an eigenvalue of f∗1 outside the
unit circle, by Theorem 2 the map f has positive topological entropy.
Similarly |am−j| >

(
m−r
j

)
, i.e. |cj| >

(
m−r
j

)
, implies h(f) > 0.

On the other hand, since f∗2 = (D) the condition D /∈ {0, 1,−1},
implies that the spectral ratio of f∗ is greater than 1. If f is C∞ then
h(f) > 0, due to Theorem 1. This proves statement (a).
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Statement (b) is proved in a similar manner as in statement (a),
therefore we omit its proof. �

We can also express a su�cient condition for having positive entropy
in terms of the Lefschetz numbers.

Theorem 8. Let f be a C∞ self-map on X+(g, b). If b = 0 and

|L(f)| > 2(g + 1) then f has positive entropy.

Moreover, if f is C0 and |L(f)| > 2g + 1 + |D| then f has positive

entropy.

If f is a C0 self-map on X+(g, b) with b > 0 and |L(f)| > 2g + b then

f has positive topological entropy.

Proof. From the de�nition of the Lefschetz number, we have

L(f) = trace(f∗0)− trace(f∗1) + trace(f∗2)

= 1− (λ1 + · · ·+ λm) +D.

where m = dim(H1(X
+(g, b))), i.e. m = 2g if b = 0 and m = 2g+ b−1

if b > 0, and D = 0 if b > 0.

If all the eigenvalues of f∗1 are root of unity or zero then

|L(f)| ≤ 1 + |λ1|+ · · ·+ |λm|+ |D| ≤ 1 +m+ |D|.
Hence in the case b = 0, if |L(f)| > 1+2g+|D| then the spectral radius
of f∗1 is greater than 1. From Theorem 2 it follows f has positive
topological entropy. However if f is a C∞ map and |D| > 1 then
h(f) > 0; therefore the condition |L(f)| > 2(1 + g) implies that one of
the eigenvalues of f∗ is outside of the unit circle, hence h(f) > 0.

In the case b > 0, we have D = 0, so the condition |L(f)| > 2g + b
implies the existence of an eigenvalue of f∗1 of modulus greater then 1,
hence it has positive topological entropy. �

Let X = X−(g, b) be a compact, connected, non�orientable surface
of genus g ≥ 1 with b ≥ 0 boundary components, its homology groups
are:

Hk(X
−(g),Q) =





Q if k = 0;

(g+b−1)−times︷ ︸︸ ︷
Q⊕ · · · ⊕Q if k = 1.

0 if k = 2.
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Let f be a continuous self-map on X−(g, b), its Lefschetz zeta func-
tion is given by:

ζf (t) =
q(t)

1− t
,

where q(t) = det(Id− f∗1t). Let p(t) be the characteristic polynomial
of f∗1, its degree is g + b− 1, then q(1/t) = t−(g+b−1)p(t). If not all the
eigenvalues of f∗1 are zero. As in the orientable case q(t) is a polynomial
of degree at most g + b − 1, and it is equal to g + b − 1 if and only if
zero is not a root of p(t).

Theorem 9. Let f be a C0 self-map on X−(g, b) with Lefschetz zeta

function

ζf (t) =
q(t)

1− t
,

where q(t) is a polynomial of the form:

q(t) = cm−rt
m−r + · · ·+ c0,

with c0 = 1, m ≤ g+ b−1 and 0 ≤ r ≤ m−1. If |cj| >
(
m−r
j

)
for some

j such that 1 ≤ j ≤ m− r − 1, then the map f has positive topological

entropy.

The proof of this theorem follows the same arguments as the proof
of Theorem 7, for this reason we omit it here.

Theorem 10. Let f be a C0 self-map of X−(g, b). If |L(f)| > g + b
then f has positive entropy.

Proof. From the de�nition of the Lefschetz number, we have

L(f) = trace(f∗0)− trace(f∗1) + trace(f∗2)

= 1− (λ1 + · · ·+ λg+b−1) + 0,

where the λi's are the eigenvalues of f∗1.

If |L(f)| > g + b then there exits one λi with |λi| > 1. Hence the
topological entropy of f is positive. �

4. The n-dimensional torus: Tn

In this section we set X = S1 × · · · × S1

︸ ︷︷ ︸
n−times

= Tn, the n dimensional

torus.

As it was mention in section 2, in the entropy conjecture is true for
continuous self-maps on Tn (cf. [22]). Therefore, in this section we
consider continuous maps, i.e. C0 maps.
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Theorem 11. Let f : Tn → Tn be a continuous map. If |L(f)| > 2n

then h(f) > 0.

Proof. The Lefschetz numbers for f satisfy L(f) =
∏n

i=1(1−λi), where
the λi's are the eigenvalues of f∗1 (cf. [5]). If all the eigenvalues of f
are zero or root of unity then

|L(f)| ≤
n∏

i=1

|1 + λi| ≤
n∏

i=1

(1 + |λi|) ≤ 2n.

Hence if |L(f)| > 2n there exits i ∈ {1, . . . , n} such that |λi| > 1.
Therefore, from Theorem 1, it follows the topological entropy of f is
positive. �

Now we will consider criteria for a continuous self-map on Tn to have
positive entropy in terms of the Lefschetz zeta function. It is known
that the Lefschetz zeta function for a map whose eigenvalues are not
zero, is a rational function such that the degree of the polynomial on
the numerator and the degree of the polynomial on the denominator
are the same (cf. [2]). Furthermore if the eigenvalues of f∗1 are root of
unity then the Lefschetz zeta function of f is of the form (cf. [3]):

ζf (t) =
N∏

i=1

(1± tdi)ri ,

or ζf (t) = 1, with positive integers di and integers ri. Moreover in [3]
there are explicit formulae for the values of di and ri in terms of the
characteristic polynomial of f∗1.

Proposition 12. Let f be a continuous self-map on Tn if its Lefschetz

zeta function is not constant and it cannot be factorized in the form

(5) ζf (t) =
N∏

i=1

(1± tdi)ri ,

where N , di are positive integers and ri integers. Then h(f) > 0.

Proof. If h(f) = 0 then all the eigenvalues of f∗1 are roots of unity. It is
well known that 1 is an eigenvalue of f∗1 if and only if ζf (t) = 1 (cf. [13]).
So if 1 is not an eigenvalue of f∗1 then the Lefschetz zeta function of f
can be factorized in the form of

ζf (t) =
N∏

i=1

(1± tdi)ri ,

with N , di positive integers and ri integers, ([3]). �
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Theorem 6 is valid for continuous self maps on the n-dimensional
torus.

In the following example we show the importance of the fact that the
polynomials qi(t) in the Lefschetz zeta function in the expression (3),
do not have common factors. Let f be a map on T3 given by the integer
matrix in R3:

A =




R 0 0
0 −1 0
0 0 1


 ,

where R > 1 is a integer.

The map f has positive entropy since the eigenvalues of f∗1 are R, 1
and −1. However its Lefschetz zeta function is: ζf (t) = 1, as many
maps of topological entropy zero, for example if R = ±1. As we re-
marked before the Lefschetz zeta function, of a continuous self-map on
Tn, is equal 1 if and only if 1 is an eigenvalue of f∗1 (cf. [13]).

5. The product of spheres

LetX = Sℓ1×· · ·×Sℓn . Using the Künneth Theorem (see for instance
[14]), we compute the homology groups of X over the rational numbers
Q. They are given by

Hk(X,Q) =





Q⊕ · · · ⊕Q︸ ︷︷ ︸
bk

if bk ̸= 0,

{0} if bk = 0,

with 0 ≤ k ≤ ℓ1 + · · · + ℓn; where bk is the number of ways that k
can be obtained as by summing up subsets of (ℓ1, . . . , ℓn), i.e. bk is the
cardinality of the set

(6)

{
S ⊂ {1, . . . , n} :

∑

j∈S
ℓj = k

}
.

The numbers bk are the Betti numbers of X.

First we consider the product of spheres of the same dimension: Let
X = X(ℓ, n) = Sℓ × · · · × Sℓ

︸ ︷︷ ︸
n times

. If ℓ1 = · · · = ℓn = ℓ, then

bk =





(
n
j

)
if k = jℓ,

0 if k is not a multiple of ℓ.
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For the Lefschetz numbers of self-maps on X(ℓ, n), we recall the fol-
lowing theorem:

Theorem 13 ([4]). Let f : X(ℓ, n) → X(ℓ, n) be a continuous map.

Then, for all m > 0,

L(fm) = det(Id+ (−1)ℓfm
∗ℓ ),

where Id is the identity map on Qn. In particular,
{

L(fm) = Cfm
∗ℓ (1) if ℓ is odd,

L(fm) = (−1)nCfm
∗ℓ (−1) if ℓ is even,

where CH(t) := det(t Id−H) denotes the characteristic polynomial of

the linear map H.

Theorem 14. Let f : X(ℓ, n) → X(ℓ, n) be a C∞ map. If |L(f)| > 2n

then h(f) > 0.

Proof. The proof goes along the same idea as in Theorem 11. By
Theorem 13,

|L(f)| = | det(Id+ (−1)ℓf∗ℓ)| = |
n∏

i=1

(1 + (−1)ℓλi)| ≤
n∏

i=1

(1 + |λ|i|),

where the λi's are the eigenvalues of f∗ℓ So if L(f) > 2n there exists
λi, for some 1 ≤ i ≤ n, such that |λi| > 1. Hence h(f) > 0. �

As in the case of the n-dimensional torus if the eigenvalues of f∗ℓ are
root of unity then the Lefschetz zeta function of f is of the form (cf. [4]):

ζf (t) =
n∏

i=1

(1± tdi)ri ,

or ζf (t) = 1, with di positive integers and ri integers. So we have the
following result, which is similar to Proposition 12.

Proposition 15. Let f be a C∞ self-map on X(ℓ, n) if its Lefschetz

zeta function is not constant and it cannot be factorized in the form

ζf (t) =
n∏

i=1

(1± tdi)ri ,

with di are positive integers and ri integers. Then h(f) > 0.

In the following lines we will consider the product of spheres with
di�erent dimensions, i.e. X = Sℓ1 × · · · × Sℓn , with ℓ1 < · · · < ℓn.
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Let

M = M(ℓ1, . . . , ℓn) :=
n∪

s=1

{ℓi1 + · · ·+ ℓis : i1 < · · · < is}.

We suppose that ℓ1 < · · · < ℓn. By elementary combinatorics we have
that the cardinality of the set M is at most 2n − 1. We shall assume
that the cardinality of M is exactly 2n − 1, i.e. the numbers ℓ1, . . . , ℓn
are such that all the sums de�ned in the set M are di�erent. In this
condition is satis�ed we say that M is a sum free set. In this case the
Betti numbers of X are bk = 1 if k ∈ M and bk = 0 otherwise, i.e.

Hk(X,Q) = Q if k ∈ {0}
n∪

s=1

{ℓi1 + · · ·+ ℓis | i1 < · · · < is},

and trivial otherwise.

Let f : X → X be a continuous map, since the homology groups
are either 1-dimensional or trivial, its induced maps on homology are
f∗k = (ak) if k ∈ M and f∗k = 0 otherwise.

Theorem 16. Let X = Sℓ1 × · · · × Sℓn and f be a C∞ self-map on X.

We assume that the set of partial sums of the indexes of the dimension

of the spheres, M(ℓ1, . . . , ℓn), is a sum free set. If L(f) > 2n then the

topological entropy of f is positive.

Proof. The Lefschetz numbers for f are:

L(fm) = 1 +
∑

k∈M
(−1)kamk ,

for all integer m > 0. So |L(f)| ≤ 1+
∑

k∈M |ak|. Since the cardinality
of the set M is 2n − 1, if the condition |L(f)| > 2n holds, then there
exist j ∈ M , such that |aj| > 1. Then the positive entropy of f is
positive. �

According to (1) the Lefschetz zeta function of the map f in the case
of the sum-free condition is

ζf = (1− a0t)
−1
∏

k∈M
(1− tak)

(−1)k+1

=

∏

k∈M
(1− tak)

(−1)k+1

1− t
.

Clearly if ak are di�erent from 0, 1 or −1 then f has positive entropy.

In the following lines we describe the Lefschetz zeta function of f ,
when the sum-free condition is not satis�ed. For this we need to give
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a partition of the set M . We recall that the Betti number bk is the
cardinality of the set described in (6). If r ̸= 0, we introduce

Mr :=

{
k =

∑

j∈S
ℓj : S ⊂ {1, . . . , n}, |S| = r

}
.

In other words the set Mr consists of the numbers k's such that can
be obtained as r di�erent sums of elements of the set {ℓ1, . . . , ℓn}.
Clearly they form a disjoint partition of M : M = ∪R

r=1Mr, where
R = max1≤k≤L bk and L = ℓ1 + · · · + ℓn. The set M is sum-free if and
only if M = M1. From the de�nition follows that k ∈ Mr if and only
if bk = r.

We will give an example: Let ℓ1 = 1, ℓ2 = 3, ℓ3 = 5, ℓ4 = 6, them

M1 = {1, 3, 4, 5, 7, 8, 9, 10, 11, 14, 15}, M2 = {6, 9};
since 6 = ℓ4 = ℓ1 + ℓ3 and 9 = ℓ2 + ℓ4 = ℓ1 + ℓ2 + ℓ3.

From (1) the Lefschetz zeta function of the map f , ζf (t) is of the
form:

L∏

k=0

det(Idk − tf∗k)
(−1)k+1

= (1− t)−1
∏

k∈M
det(Idk − tf∗k)

(−1)k+1

=

= (1− t)−1

R∏

r=1

∏

k∈Mr

det(Idk − tf∗k)
(−1)k+1

=

∏
k∈M1

(1− tak)
∏

k∈M2
det(Idk − tf∗k)(−1)k+1 · · ·∏k∈MR

det(Idk − tf∗k)(−1)k+1

1− t
.

Let qk(t) := det(Idk − tf∗k). Note that det(Idk − tf∗k) is a polynomial
of degree at most bk if k ∈ Mbk . So

qk(t) = ck,mk−rkt
mk−rk + · · ·+ ck,0,

with ck,0 = 1 and mk − rk ≤ bk, if k ∈ Mbk .

In the example of X = S1 × S3 × S5 × S6, here L = 15 and R = 2,
since bk = 1 for k ∈ M1, bk = 2 for k ∈ M2, and bk = 0 otherwise. The
Lefschetz zeta function of a self map f , ζf (t), on this space is of the
form:

15∏

k=0

det(Idk − tf∗k)
(−1)k+1

=

(1− t)−1
∏

k∈M1

det(Idk − tf∗k)
(−1)k+1

∏

k∈M2

det(Idk − tf∗k)
(−1)k+1

=

(1− ta1)(1− ta3)(1− ta5)(1− ta7)(1− ta9)(1− ta11)(1− ta15)

(1− t)(1− ta4)(1− ta8)(1− ta10)(1− ta14)
· q9(t)
q6(t)

,
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where

q6(t) = c6,2t
2 + c6,1t+ c6,0, q9(t) = c9,2t

2 + c9,1t+ c9,1,

with c6,0 = c9,0 = 1.

Theorem 6 for self-maps on X = Sℓ1 × · · · × Sℓn is the following
statement:

Corollary 17. Let f be a C∞ self-map on X = Sℓ1 × · · · × Sℓn.

(a) If |ak| > 1, for some k ∈ M1 then h(f) > 0.
(b) If the polynomials qk(t) do not have common roots and there ex-

its a coe�cient ck,j, with |ck,j| >
(
mk−rk

j

)
. Then the topological

entropy of f is positive.

6. Remarks

For self-maps on Tn and X(ℓ, n), we have seen in Propositions 12
and 15, that if its Lefschetz zeta functions are not constant and they
cannot be factorized on the form (5), i.e.

ζf (t) =
N∏

i=1

(1± tdi)ri ,

with positive integers N , di and integers ri; then the maps have positive
entropy. In general if the Lefschetz zeta function is factorized as in (5),
i.e. all its zeros and poles are roots of unity, it does not mean that the
spectral radius of f∗ is greater than 1. Since there could be eigenvalues
λi of f∗k, for some k, such that the corresponding factors 1−λit in ζf (t)
cancel out. The maps whose Lefschetz zeta function is of the form (5)
or constant, are called almost quasi-unipotent, and they were studied
in [18]. The map shown in the example given in section 4 is an almost
quasi-unipotent map, with an eigenvalue of modulus bigger than 1.

We would like to remark the fact that the factorization of the Lef-
schetz zeta function in the form (5) is a necessary condition for a map
to have a �nite number of periodic points (cf. [9, 11]), provided that
the space is a di�erentiable manifold and the map di�erentiable.

As for necessary conditions for a map to have positive entropy, we
wonder if the reciprocal of Proposition 12 is true.

Question: Let f be a continuous self-map on Tn with positive topo-
logical entropy and 1 is not an eigenvalue of f∗1. Does ζf (t) have a pole
or zero which is not root of unity?
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