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Abstract. We study the global dynamics of the completely inte-
grable Armbruster-Guckenheimer-Kim galactic potential. In these
cases this system has two first integrals H1 and H2 independent
and in involution. Let Ih1

and Ih2
be the set of points of the phase

space on which H1 and H2 take the values h1 and h2, respectively.
The sets Ih1h2

= Ih1
∩Ih2

are invariant by the dynamics. We char-
acterize the global flow on these sets and we describe the foliation
of the phase space by the invariant sets Ih1h2 .

1. Introduction

The Armsbruster-Guckenheimer-Kim potential is a galactic potential
introduced in [2] that studies the dynamics for the interchanging of
nearly nondegenerate modes with square symmetry. They derived the
model starting with a normal form given by a system of differential
equations which represented the codimension two bifurcation problem.
More precisely, the Hamiltonian function that they provided is

H(x, px, y, py) =
1

2
(p2x + p2y) +

1

2
(x2 + y2)− a

4
(x2 + y2)2 − b

2
x2y2,

where a, b are arbitrary constants. If we add the term −ω(xpy − ypx)
then the system describes the dynamics of rotation of a nearly ax-
isymetric galaxy rotating with a constant velocity ω around a fixed
axis. The existence of such ω denotes that the rotation of the galaxy
must be taken into account when we study the stellar orbits (see [8]).
Many studies concerning the integrability and non-integrability of such
systems have been done (see for instance [1, 4, 5]) using different tech-
niques such as the Painlevé analysis and the Morales-Ramis theory as
well as the study of the existence of periodic orbits which was done in
[7]. In particular, it was proved in [5] that if b = 2a or b = −a the
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system is completely integrable but the authors do not describe com-
pletely the dynamics of the integrable systems form the point of view
of the Liouville-Arnold theorem (see section 2). This is the main aim
of this paper.

When b = 2a the Hamiltonian has the form

H =
1

2
(p2x + p2y) +

1

2
(x2 + y2)− a

4
(x2 + y2)2 − ax2y2.

Introducing the new variables

u =
1√
2

(x− y), v =
1√
2

(x+ y), pu =
1√
2

(px− py), pv =
1√
2

(px + py),

it can be written as

H(x, px, y, py) =
1

2
(p2x + p2y) +

a

4
(x4 + y4)− 1

2
(x2 + y2)

=H̃1(x, px) + H̃2(y, py),

where a ∈ R, we have renamed the variables (u, v) again as (x, y) and

H̃1(x, px) =
1

2
p2x +

a

4
x4 − 1

2
x2, H̃2(y, py) =

1

2
p2y +

a

4
y4 − 1

2
y2.

Note that H̃i : R2 → R while H : R4 → R. In all the paper we will de-
note by H the Hamiltonian associated to a system with two degrees of
freedom and so H = H(x, px, y, py) : R4 → R, Hi = Hi(x, px, y, py) : R4 →
R for i = 1, . . . , 4, and we will denote by H̃ the Hamiltonian associated
to a system with one degree of freedom and so H̃1 = H̃1(x, px) : R2 → R
and H̃2 = H̃2(y, py) : R2 → R.

We observe thta H1 and H2 are two first integrals, independent and
in involution. Hence, the Hamiltonian system associated to the Hamil-
tonian H is

(1) ẋ = px, ẏ = py, ṗx = −ax3 + x, ṗy = −ay3 + y

and it is completely integrable. We recall that H1 and H2 are indepen-
dent if the matrix (

H1x H1px H1y H1px

H2x H2px H2y H2px

)

has rank 2 in any point of R4 except, perhaps in a zero Lebesgue-
measure set. As usual Hiy = ∂Hi/∂y. Moreover, we say that H1 and H2

are in involution if their Poisson bracket is zero. Finally, a Hamiltonian
system with two degrees of freedom is completely integrable if it has two
independent first integrals in involution.
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Note that the phase space of system (1) is R4. Since H1 and H2 are
fist integrals the sets

Ih1 ={(x, px, y, py) ∈ R4 : H1 = h1} = {(x, px) ∈ R2 : H̃1 = h̃1} × R2

=Ih̃1
× R2,

Ih2 ={(x, px, y, py) ∈ R4 : H2 = h2} = {(y, py) ∈ R2 : H̃2 = h̃2} × R2

=R2 × Ih̃2
,

as well as

Ih1h2 = {(x, px, y, py) ∈ R4 : H1 = h1, H2 = h2}
= {(x, px, y, py) ∈ R4 : H1 = h1} ∩ {(x, px, y, py) ∈ R4 : H2 = h2}
= Ih1 ∩ Ih2 =

(
Ih̃1
× R2

)
∩
(
R2 × Ih̃2

)

= Ih̃1
× Ih̃2

are invariant by the flow of the Hamiltonian system (1). The first
objective of this paper is to describe the foliations of the phase space
R4 by the invariant sets Ihi

for i = 1, 2 as well as by Ih1h2 . The foliations
provide a good description of the phase portraits of the Hamiltonian
flow (1) when a varies.

When b = −a the Hamiltonian has the form

H(x, px, y, py) =
1

2
(p2x + p2y)−

a

4
(x4 + y4) +

1

2
(x2 + y2)

=H̃3(x, px) + H̃4(y, py),

where a ∈ R with

H̃3(x, px) =
1

2
p2x −

a

4
x4 +

1

2
x2, H̃4(y, py) =

1

2
p2y −

a

4
y4 +

1

2
y2.

Note that H3 and H4 are two first integrals, independent and in
involution. Hence the Hamiltonian system

(2) ẋ = px, ẏ = py, ṗx = ax3 − x, ṗy = ay3 − y

is completely integrable. The sets

Ih3 ={(x, px, y, py) ∈ R4 : H3 = h3} = Ih̃3
× R2,

Ih4 ={(x, px, y, py) ∈ R4 : H4 = h4} = R2 × Ih̃3
,

as well as

Ih3h4 = {(x, px, y, py) ∈ R4 : H3 = h3, H4 = h4} = Ih3 ∩ Ih4 = Ih̃3
× Ih̃4

are invariant by the flow of the Hamiltonian system (2). The second
main objective of the paper is to describe the foliations of R4 by the
invariant sets Ihi

for i = 3, 4 and by the invariant sets Ih3h4 . Again,
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these foliations provide a good description of the phase portraits of the
Hamiltonian flow (2) when a varies.

The paper is organized as follows. In section 2 we recall the Liouville-
Arnold theory for Hamiltonians systems with two degrees of freedom.
In section 3 we describe the topology of the sets Ih1 (since the study
for Ih2 is analogous). For doing that and taking into account that
Ih1 = Ih̃1

× R2 we will only describe the topology of the sets Ih̃1
by

computing the sets of singular points and critical values for H̃1 and the
Hill regions according to the different values of a and h̃1. In section 4
we study the topology of the sets Ih1h2 . In section 5 we describe the
topology of the sets Ih3 (again because the study for Ih4 is analogous)
and recalling that Ih3 = Ih̃3

×R2 we will only describe the topology of
the sets Ih̃3

by computing the sets of singular points and critical values

for H̃3 and the Hill regions according to the different values of a and
h̃3. In section 6 we study the topology of the sets Ih3h4 .

2. Integrable Hamiltonian systems

In this section we recall the Liouville-Arnold theorem for the inte-
grable Hamiltonian systems with two degrees of freedom. We recall
that a flow defined on the phase space R4 is complete if its solutions
are defined for all time t in R.

Theorem 1. The Hamiltonian system (1) (resp. system (2)) defined
on the phase space R4 has the Hamiltonians H1 and H2 (resp. H3 and
H4) as two independent first integrals in involution. If Ih1h2 6= ∅ (resp.
Ih3h4 6= ∅) and (h1, h2) (resp. (h3, h4)) is a regular value of the map
(H1, H2) (resp. (H3, H4)) then the following statements hold.

(a) Ih1h2 (resp. Ih3h4) is a two-dimensional submanifold of R4 in-
variant under the flow of system (1) (resp. system (2)).

(b) If the flow on a connected component I∗h1h2
(resp. I∗h3h4

) of Ih1h2

(resp. Ih3h4) is complete, then I∗h1h2
(resp. I∗h3h4

) is diffeomor-
phic either to the torus S1 × S1, to the cylinder S1 × R, or to
the plane R2

(c) Under the assumption of statement (b), the flow on I∗h1h2
(resp.

on I∗h3h4
) is conjugated to a linear flow either on S1× S1, or on

S1 × R, or on R2.

Note that Theorem 1 does not provide information on the topology
of the invariant sets Ih1h2 (resp. Ih3h4) when (h1h2) (resp. (h3h4)) is
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not a regular value of the map (H1, H2) (resp. (H3, H4)), or how the
energy levels Ih1 or Ih2 (resp. Ih3 or Ih4) foliate R4.

In this paper we solve these problems for systems (1) and (2).

3. The topology of the invariant sets Ih1

As explained in the introduction, taking into account that Ih1 =
Ih̃1
× R2 we will restrict all the study to Ih̃1

.

A point (x, px) ∈ R2 is a singular point for the map H̃1 if it is a
solution of

∂H̃1

∂px
= 0,

∂H̃1

∂x
= 0.

The value h̃1 ∈ R is a critical value for the map H̃1 if there is some
singular point belonging to H̃−11 (h̃1) = Ih̃1

. If h̃1 is not critical value it

is said a regular value. It is well-known that if h̃1 is a regular value of
the map H̃1 then Ih̃1

is a one-dimensional manifold (see [6]).

Note that the singular points for the map H̃1 are

px = 0, x(ax2 − 1) = 0,

and so the set of singular points of H̃1 is (0, 0) if a ≤ 0, and (0, 0) ∪
(0,−1/

√
a) ∪ (0, 1/

√
a) if a > 0.

We define the Hill region as

Rh̃1
=
{
x ∈ R :

a

4
x4 − x2

2
≤ h̃1

}

This is the region of the configuration space {x ∈ R} where the motion
of all orbits of the Hamiltonian system associated to H̃1 having energy
h̃1 takes place. By Rh̃1

≈ S, we denote that Rh̃1
is diffeomorphic to S.

We will also denote by

P− =

√
1−

√
1 + 4ah̃1

a
, P+ =

√
1 +

√
1 + 4ah̃1

a

have:

(i) Rh̃1
≈ R if a = 0 and h̃1 > 0,

(ii) Rh̃1
≈ R but here {0}, which is a singular point for H̃1, is in

the boundary of the Hill region, if a = 0 and h̃1 = 0,

(iii) Rh̃1
≈ (−∞,−

√
−2h̃1] ∪ [

√
−2h̃1,∞) if a = 0 and h̃1 < 0,

(iv) Rh̃1
≈ R if a < 0 and h̃1 > 0,
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(v) Rh̃1
≈ R but here {0}, which is a singular point for H̃1, is in

the boundary of the Hill region, if a < 0 and h̃1 = 0,
(vi) Rh̃1

≈ (−∞,−P−] ∪ [P−,∞) if a < 0 and h̃1 < 0,

(vii) Rh̃1
≈ ∅ if a > 0 and h̃1 < −1/(4a),

(viii) Rh̃1
≈ {−

√
1
a
}∪ {

√
1
a
} which are two of the singular points for

the map H̃1, if a > 0 and h̃1 = −1/(4a),

(ix) Rh̃1
≈ [−P+,−P−] ∪ [P−, P+], if a > 0 and h̃1 ∈ (−1/(4a), 0) ,

(x) Rh̃1
≈ [−

√
2
a
,
√

2
a
] but here {0}, which is a singular point for

H̃1, is in the boundary of the Hill region, if a > 0 and h̃1 = 0,
(xi) Rh̃1

≈ [−P+, P+] if a > 0 and h̃1 > 0.

Now we compute the energy levels Ih̃1
. From the definition of Ih̃1

we
have

(3) Ih̃1
=
⋃

x∈Rh̃1

Ex

where

Ex =

{
(x, px) ∈ R2 :

p2x
2

+
a

4
x4 − 1

2
x2 = h̃1

}
.

Clearly for each x ∈ R the set Ex is either two points, or one point or
the emptyset, if the point x is in the interior of the Hill region Rh̃1

,
in its boundary, or it does not belong to Rh̃1

, respectively. Therefore,
from (3) and using the Hill region, the topology of Ih̃1

is:

(i) Ih̃1
≈ R ∪ R if a < 0 and h̃1 6= 0,

(ii) Ih̃1
≈ X if a ≤ 0 and h̃1 = 0. Here X denotes two straight lines

intersecting the origin of the two straight lines,
(iii) Ih̃1

≈ ∅ if a > 0 and h̃1 < −1/(4a),

(iv) Ih̃1
≈ (±

√
1
a
, 0) which are the two equilibrium points of H̃1 if

a > 0 and h̃1 = −1/(4a),

(v) Ih̃1
≈ S1 ∪ S1 if a > 0 and h̃1 ∈ (−1/(4a), 0),

(vi) Ih̃1
≈ ∞ if a > 0 and h̃1 = 0. Here ∞ denotes two homoclinic

orbits at the origin.
(vii) Ih̃1

≈ S1 if a > 0 and h̃1 < 0.

See in Figure 1 the phase portraits associated to the Hamiltonian
system with Hamiltonian H̃1 depending on whether a > 0, a = 0, and
a < 0. The phase portraits in Figure 1 are drawn in the Poincaré
disc, which essentially is a unit closed disc centered at the origin of
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coordinates with its interior identified to R2 and with its boundary
(the circle S1) identified with the infinity of R2, for more details on the
Poincaré disc see Chapter 5 of [3].

(a) a > 0 (b) a = 0 (c) a < 0

Figure 1. Phase portraits associated to the Hamilton-
ian system with Hamiltonian H̃1 depending on whether
a > 0, a = 0 and a < 0.

4. The topology of the invariant sets Ih1h2

To obtain Ih1h2 we recall that Ih2 is exactly the same as Ih1 and that
Ih1h2 = Ih1 ∩ Ih2 = Ih̃1

× Ih̃2
. Hence, in Table 1 we have given the

description of the invariant sets Ih1h2 for the different values of h1, h2

and a

5. The topology of the invariant sets Ih3

As we did for the case H1, we recall that Ih3 = Ih̃3
× R2 and so we

will study only Ih̃3
. The singular points for the map H̃3 satisfy

px = 0, x(1− ax2) = 0

and so they are (0, 0) if a ≤ 0 and (0, 0) ∪ (0,−1/
√
a) ∪ (0, 1/

√
a) if

a > 0. The Hill region is

Rh̃3
=
{
y ∈ R : −a

4
y4 +

y2

2
≤ h̃3

}

and so taking the notation

Q− =

√
1−

√
1− 4ah̃3

a
, Q+ =

√
1 +

√
1− 4ah̃3

a

we have

(i) Rh̃3
≈ ∅ if a = 0 and h̃3 < 0,
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a h1 h2 Ih1h2

≤ 0 6= 0 6= 0 (R ∪ R)× (R ∪ R)
≤ 0 6= 0 = 0 (R ∪ R)×X
≤ 0 = 0 6= 0 X × (R ∪ R)
≤ 0 = 0 = 0 X ×X
> 0 < −1/(4a) ∈ R ∅
> 0 = −1/(4a) < −1/(4a) ∅
> 0 = −1/(4a) = −1/(4a) (±

√
1
a
, 0)× (±

√
1
a
, 0)

> 0 = −1/(4a) ∈ (−1/(4a), 0) (±
√

1
a
, 0)× (S1 ∪ S1)

> 0 = −1/(4a) = 0 (±
√

1
a
, 0)×∞

> 0 = −1/(4a) < 0 (±
√

1
a
, 0)× S1

> 0 ∈ (−1/(4a), 0) < −1/(4a) ∅
> 0 ∈ (−1/(4a), 0) = −1/(4a) (S1 ∪ S1)× (±

√
1
a
, 0)

> 0 ∈ (−1/(4a), 0) ∈ (−1/(4a), 0) (S1 ∪ S1)× (S1 ∪ S1)
> 0 ∈ (−1/(4a), 0) = 0 (S1 ∪ S1)×∞
> 0 ∈ (−1/(4a), 0) < 0 (S1 ∪ S1)× S1

> 0 = 0 < −1/(4a) ∅
> 0 = 0 = −1/(4a) ∞× (±

√
1
a
, 0)

> 0 = 0 ∈ (−1/(4a), 0) ∞× (S1 ∪ S1)
> 0 = 0 = 0 ∞×∞
> 0 = 0 < 0 ∞× S1

> 0 < 0 < −1/(4a) ∅
> 0 < 0 = −1/(4a) S1 × (±

√
1
a
, 0)

> 0 < 0 ∈ (−1/(4a), 0) S1 × (S1 ∪ S1)
> 0 < 0 = 0 S1 ×∞
> 0 < 0 < 0 S1 × S1

Table 1. The invariant sets Ih1h2 for the different values
of h1, h2 and a

(ii) Rh̃3
≈ {0} if a = 0 and h̃3 = 0,then

(iii) Rh̃3
≈ [−

√
2h̃3,

√
2h̃3] if a = 0 and h̃3 > 0 then

(iv) Rh̃3
≈ ∅ if a < 0 and h̃3 < 0,

(v) Rh̃3
≈ {0} if a < 0 and h̃3 = 0,

(vi) Rh̃3
≈ [−Q+, Q−] if a < 0 and h̃3 > 0,

(vii) Rh̃3
≈ R if a > 0 and h3 > 1/(4a),
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(viii) Rh̃3
≈ R, but here {±

√
1
a
}, which are singular points for H̃1,

are in the boundary of the Hill region, if a > 0 and h̃3 = 1/(4a),

(ix) Rh̃3
≈ (−∞,−Q+] ∪ [−Q−, Q−] ∪ [Q+,+∞) if a > 0 and h̃3 ∈

(0, 1/(4a)),
(x) Rh̃3

≈ R, but here {0}, which is a singular point for H̃1, is in

the boundary of the Hill region, if a > 0 and h̃3 = 0,
(xi) Rh̃3

≈
(
−∞,−Q+] ∪ [Q+,+∞) if a > 0 and h̃3 < 0.

Now we compute the energy levels Ih̃3
. From the definition of Ih̃3

we
have

(4) Ih̃3
= ∪y∈Rh̃3

Ey

where

Ey =

{
(y, py) ∈ R2 :

p2y
2
− a

4
y4 +

1

2
y2 = h̃3

}
.

Clearly for each y ∈ R the set Ey is either two points, or one point
or the emptyset, if the point y is in the interior of the Hill region Rh̃3

,
in its boundary, or it does not belong to Rh̃3

, respectively. Therefore,
from (4) and using the Hill region, the topology of Ih̃3

is:

(i) Ih̃3
≈ ∅ if a ≤ 0 and h̃3 < 0,

(ii) Ih̃3
≈ {(0, 0)} if a ≤ 0 and h̃3 = 0,

(iii) Ih̃3
≈ S1 a ≤ 0 and h̃3 > 0,

(iv) Ih̃3
≈ R ∪ R if a > 0 and h̃3 > 1/(4a),

(v) Ih̃3
≈ P if a > 0 and h̃3 = 1/(4a). Here P denotes two curves

with the shape of a parabola intersecting in two different points
(the points are the two singular points),

(vi) Ih̃3
≈ R ∪ S1 ∪ R if a > 0 and h̃3 ∈ (0, 1/(4a)),

(vii) Ih̃3
≈ R ∪ {(0, 0)} ∪ R if a > 0 and h̃3 = 0,

(viii) Ih̃3
≈ R ∪ R if a > 0 and h̃3 < 0.

See the phase portrait associated to H̃3 depending on whether a > 0,
a = 0, or a < 0.

See in Figure 2 the phase portraits associated to the Hamiltonian
system with Hamiltonian H̃3 depending on whether a > 0 and a ≤ 0.

6. The topology of the invariant sets Ih3h4

To obtain Ih3h4 we recall that Ih4 is exactly the same as Ih3 and that
Ih3h4 = Ih3 ∩ Ih4 = Ih̃3

× Ih̃4
. Hence, in Table 2 we have given the
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(a) a > 0 (b) a ≤ 0

Figure 2. Phase portraits associated to the Hamilton-
ian system with Hamiltonian H̃3 depending on whether
a > 0 or a ≤ 0.

description of the invariant sets Ih3h4 for the different values of h3, h4

and a.
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≤ 0 ∈ (0, 1/(4a)) < 0 (R ∪ S1 ∪ R)× (R ∪ R)
≤ 0 = 0 > 1/(4a) (R ∪ {(0, 0)} ∪ R)× (R ∪ R)
≤ 0 = 0 = 1/(4a) (R ∪ {(0, 0)} ∪ R)× P
≤ 0 = 0 ∈ (0, 1/(4a)) (R ∪ {(0, 0)} ∪ R)× (R ∪ S1 ∪ R)
≤ 0 = 0 = 0 (R ∪ {(0, 0)} ∪ R)× (R ∪ {(0, 0)} ∪ R)
≤ 0 = 0 < 0 (R ∪ {(0, 0)} ∪ R)× (R ∪ R)
≤ 0 < 0 > 1/(4a) (R ∪ R)× (R ∪ R)
≤ 0 < 0 = 1/(4a) (R ∪ R)× P
≤ 0 < 0 ∈ (0, 1/(4a)) (R ∪ R)× (R ∪ S1 ∪ R)
≤ 0 < 0 = 0 (R ∪ R)× (R ∪ {(0, 0)} ∪ R)
≤ 0 < 0 < 0 (R ∪ R)× (R ∪ R)

Table 2. The invariant sets Ih3h4 for the different values
of h3, h4 and a

[8] T. Zeeuw and D. Merritt, Stellar orbits in a triaxial galaxy I. Orbits in
the plane of rotation, Astrophys. 267 (1983), 571–595.
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