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Abstract. We consider a family of planar vector fields that writes as a Liénard system
in suitable coordinates. It has a fixed closed invariant curve that often contains periodic
orbits of the system. We prove a general result that gives the hyperbolicity of these
periodic orbits and we also study the coexistence of them with other periodic orbits.
Our family contains the celebrated Wilson polynomial Liénard equation, as well as all
polynomial Liénard systems having hyperelliptic limit cycles. As an illustrative example
we study in more detail a natural 1-parametric extension of Wilson example. It has
at least two limit cycles, one of them fixed and algebraic and the other one moving
with the parameter, presents a transcritical bifurcation of limit cycles and for a given
parameter has a non-hyperbolic double algebraic limit cycle. In order to prove that for
some values of the parameter the system has exactly two hyperbolic limit cycles we use
several suitable Dulac functions.
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1. Introduction and main results

Liénard equations

ẍ+ f(x)ẋ+ g(x) = 0, (1)

are widely studied as models of physical, chemical, biological or electrical phenomena.
A particular interesting case is when they contain algebraic limit cycles or polycycles.
Wilson’s paper ([27]) is maybe one of the first works dealing with this question. In the
series of papers [2, 19, 27, 31] the study of hyperelliptic solutions (y+R(x))2+S(x) = 0 of
polynomial Liénard equations is completed. The computations involved in these works
are quite cumbersome, and some of them can be simplified by passing to some new
coordinates in which the hyperelliptic solutions write as y2 + S(x) = 0. In this work we
will consider the following family of smooth differential systems, that can be transformed
into equation (1),

{
ẋ = y − 2G(x)P (x),
ẏ = −G′(x)(1 + yP (x)),

(2)

with G ∈ C2(I,R), P ∈ C1(I,R), where I ⊂ R is a given real interval. We denote by
X(x, y) = (X1(x, y), X2(x, y)) its associated vector field.

The system (2) is equivalent to the Liénard equation (1) with

f(x) = 3G′(x)P (x) + 2G(x)P ′(x) and g(x) = G′(x)
(
1 + 2G(x)P 2(x)

)
. (3)
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Recall that given a smooth function F (x, y) and a vector field Y (x, y) = (Y1(x, y), Y2(x, y))
such that

Ḟ (x, y) = ∇F (x, y) · Y (x, y) = K(x, y)F (x, y),

for some smooth function K, then the curve F (x, y) = 0 is invariant for the flow defined
by Y (x, y) and K is called the cofactor of F. When F, Y1 and Y2 are polynomials then K
is polynomial as well and its degree is at most the maximum degree of the components
of Y minus one.

As we will see, if we consider

H(x, y) = y2 + 2G(x),

the curve H(x, y) = 0 is an invariant smooth curve for system (2). Moreover, when
[x−, x+] ⊂ I is such that G(x−) = G(x+) = 0, G′(x−)G′(x+) 6= 0, G|(x−,x+) < 0 and
(1 + 2G(x)P 2(x))|[x−,x+] > 0 it holds that the oval

γ := {H(x, y) = 0} ∩ {(x, y) : x ∈ [x−, x+]} (4)

is a periodic orbit of the system. In proposition 6 we will show cases where γ belongs
to a continuum of periodic orbits. Next we give a set of generic hypotheses that, in the
analytic case, will force that γ is a limit cycle.

Non-degeneracy conditions (NDC): Consider a periodic orbit γ contained in the
set {H(x, y) = 0} and also in the strip {(x, y) : x ∈ [x−, x+]} where [x−, x+] ⊂ I,
G(x−) = G(x+) = 0, G′(x−)G′(x+) 6= 0 and G|(x−,x+) < 0. These NDC are:

(a) If x̃ ∈ (x−, x+) is such that G′(x̃) = 0 then G′′(x̃) 6= 0.
(b) The equation G′(x) = 0 has finitely many solutions in (x−, x+). By hypothesis (a)

this number of solutions must be odd, 2k − 1, 0 < k ∈ N.
(c) When k = 1, then P ′(x̃) 6= 0, where x̃ is the solution of G′(x) = 0 in (x−, x+).
(d) When k > 1, let x̃1, x̃2, . . . , x̃k−1 be the solutions of G′(x) = 0 in (x−, x+) such

that G′′(x̃j) < 0. Set

ρj := −λ+
j /λ

−
j , where λ−j < 0 < λ+

j

are the eigenvalues of DX at the critical points (x̃j, 2G(x̃j)P (x̃j)), which are
hyperbolic saddles. Then

∆S :=
∏

k∈S
ρk 6= 1, (5)

for all non-empty subsets S ⊂ {1, 2, . . . , k − 1}.
As we will see, the above condition (d) is introduced to ensure that the polycycles that

system (2) might have, can not be accumulation of periodic orbits, see proposition 8.

Theorem 1. Let γ be the periodic orbit (4) of (2) contained in the strip {(x, y) : x ∈
[x−, x+]} where [x−, x+] ⊂ I, G(x−) = G(x+) = 0, G′(x−)G′(x+) 6= 0 and G|(x+,x−) < 0.
The following holds:

(i) When the non-degeneracy conditions (NDC) hold and (2) is an analytic system
then γ is a limit cycle.
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(ii) When P ′|[x−,x+] does not change sign and vanish only on a set of measure zero
then γ is a hyperbolic limit cycle, whose stability is given by the sign of −P ′ on
[x−, x+]. Moreover the system has not other limit cycles surrounded by γ.

In this paper when we say that the stability of a limit cycle Γ is given by the sign of
some quantity z, sgn(z), we mean that when z > 0 (resp. z < 0) the limit cycle Γ is
unstable (resp. stable).

Theorem 1 extends previous results of [1, 17]. Item (i) was proved in [17] only in the
case P ′ not zero in the whole interval. Item (ii) is totally new. In fact, the existence of
limit cycles not contained in H(x, y) = 0 has not been considered in that paper. The
main tool for proving this result is the use of suitable Dulac functions.

Our second result studies in detail an extension of Wilson example, that we recall in
section 4.1. As we will see, its main interest is that it presents coexistence of a fixed
limit cycle with other limit cycles and also a non-hyperbolic algebraic limit cycle. It is
given by (2) with G(x) = (x2 − 1)/2 and P (x) = x3 − bx, and writes as

{
ẋ = y − (x2 − 1)(x3 − bx),
ẏ = −x

(
1 + y(x3 − bx)

)
.

(6)

Such a system has the circle y2 + 2G(x) = x2 + y2 − 1 = 0 as invariant algebraic curve.
It is equivalent to the Liénard equation (1) with f(x) = 9x4 − 5bx2 − 6x2 + 2b, and
g(x) = x9 + (−1− 2b)x7 + b(2 + b)x5 − b2x3 + x. We prove:

Theorem 2. Consider system (6) and the values b ' −1.44 < b∗ ' 0.747 < b ' 2.44,
given in proposition 18. The following holds:

(i) It has the invariant algebraic curve γ = {x2 +y2−1 = 0} for all b ∈ R. Moreover
γ is a limit cycle if and only if b ∈ (b, b), and it is hyperbolic and stable if
b ∈ (b, b∗) and hyperbolic and unstable if b ∈ (b∗, b). When b = b∗, the system
has a transcritical bifurcation of limit cycles. In particular, when b = b∗, γ is
a double non-hyperbolic limit cycle and when b & b∗ (resp. b . b∗) a hyperbolic
unstable (resp. stable) limit cycle bifurcates from γ and it is surrounding (resp.
surrounded by) γ.

(ii) It has no other limit cycle when b ≤ 0.
(iii) When 0 < b < b∗, it has at least another limit cycle surrounded by γ. Moreover,

when 0 < b ≤ 0.7 it is unique, hyperbolic and unstable and the system has no
limit cycle surrounding γ.

(iv) When b > b∗, it has at least another limit cycle surrounding γ. Moreover, when
b ≥ 0.76, it is unique, hyperbolic and stable and the system has no limit cycle
surrounded by γ.

In fact, we believe that behavior of the limit cycles for system (6) is quite simple.
The algebraic limit cycle γ is fixed and its position is independent of b. Then varying
b a limit cycle Υb emerges for b & 0 through a Hopf bifurcation, increases with b and
collides with γ when b = b∗, interchanging their stabilities in a transcritical bifurcation
of limit cycles and then it exists for all b > b∗. Although we have not been able to prove
all the details of this description, all our results are compatible with this situation and
we prove it for all values of b outside a small neighborhood of b∗. In particular, it seems
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that the maximum number of limit cycles for system (6) is two, taking into account
their multiplicities, and this upper bound is attained for b ∈ (0, b). Nevertheless, more
complicated behaviors, with more limit cycles, could be possible for b ∈ (0.7, 0.76).

The paper is organized as follows. Section 2 contains several preliminary results and
tools that we will use along the work. Section 3 is devoted to prove theorem 1. Finally,
in section 4 we apply theorem 1 to several families of vector fields and we give the proof
of theorem 2. One of the main tools for its proof is the use of suitable Dulac functions.
In most cases we reduce the problem of proving the uniqueness or the non-existence of
the limit cycles in a given region to the control of the sign of a polynomial function.

2. Preliminary results

This section contains several preliminary results about system (2). We study its critical
points, the stability of its periodic orbits and the center problem. We also recall some
general tools like the extended Bendixson-Dulac theorem for controlling the number of
limit cycles, a method for controlling the sign of one-parameter families of polynomials,
the study of the stability of polycycles with hyperbolic corners and a result of Graef for
general Liénard equations for knowing its behavior at infinity.

Lemma 3. The system (2) has the invariant curve H(x, y) = 0, with cofactor K(x) =
−2G′(x)P (x). The critical points of the system (2) are of two types:

(I) The intersections of the graph y = 2G(x)P (x) with the lines G′(x) = 0;
(II) The intersections of the curve 1 + yP (x) = 0 with the curve H(x, y) = 0.

Proof. The curve H(x, y) = 0 is invariant since Ḣ(x, y) = −2G′(x)P (x)H(x, y). More-
over, one obtains the critical points of type (I) by equating to 0, X1(x, y) and the first
factor in X2(x, y).

The critical points of type (II) are obtained by observing that 1 + yP (x) = 0 implies
yP (x) 6= 0, hence P (x) = −1/y and

0 = X1(x, y) = y − 2G(x)P (x) = y +
2G(x)

y
=
y2 + 2G(x)

y
=
H(x, y)

y
,

hence H(x, y) has to vanish at such points. �

Lemma 4. Set [x−, x+] ⊂ I such that G(x−) = G(x+) = 0, G′(x−)G′(x+) 6= 0 and
G|(x−,x+) < 0. Then, if system (2) has no critical point of type (II) in the strip S =
{(x, y) : x ∈ [x−, x+]}, the oval

γ = {H(x, y) = 0} ∩ S
is a periodic orbit of the system. Moreover, in this strip, all the critical points of type (I)
are surrounded by γ.

Proof. It is clear that the set γ is an invariant oval for system (2). To prove that it is a
periodic orbit, it suffices to see that the vector field X has no critical point on γ. The
hypothesis G′(x−)G′(x+) 6= 0 implies that (x±, 0) ∈ γ are not critical points. Since we
assume that there are not critical points of type (II), it holds that 1 + 2G(x)P 2(x) > 0
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for all x ∈ [x−, x+]. Take a critical point of type (I) in this interval, say (x̃, 2G(x̃)P (x̃)).
Then,

H(x̃, 2G(x̃)P (x̃)) = 4G2(x̃)P 2(x̃) + 2G(x̃) = 2G(x̃)
(
1 + 2G(x̃)P 2(x̃)

)
< 0.

Then these critical points are surrounded by γ as we wanted to prove. �

It is well-known that given a T -periodic orbit Γ = {x(t), y(t) : t ∈ [0, T ]} of a C1

vector field Y (x, y), then the sign of its characteristic exponent

h(Γ) =

∫ T

0

div(Y )(x(t), y(t)) dt (7)

gives its stability, where div(X)(x, y) = ∂
∂x
Y1(x, y) + ∂

∂y
Y2(x, y) and t denotes the time

parametrization of Γ, see for instance [9, 29, 30]. More, concretely if h(Γ) > 0 (resp.
< 0) then Γ is a hyperbolic unstable (resp. stable) limit cycle. When h(Γ) = 0, the
periodic orbit can be isolated, can belong to a continuum of periodic orbits or it can also
be accumulation of infinitely many periodic orbits (isolated or not). Recall also that this
latter case is not possible in the analytical setting.

In the particular case that Γ ⊂ {F (x, y) = 0}, and the cofactor of F is known, an
alternative way of computing h(Γ) is given in [14], see also [13]. It holds that

h(Γ) =

∫ T

0

K(x(t), y(t)) dt. (8)

When the differential equation is written in polar coordinates there is a third method
to study the stability of a given periodic orbit, see Proposition 22.

By using (7) and (8), and ideas similar to those in [17] we will give some useful
expressions to study the stability of the explicit periodic orbits of system (2).

Proposition 5. Let γ be a periodic orbit of system (2) contained in {H(x, y) = 0}.
Then it holds that

h(γ) = 4

∫ T

0

G(x(t))P ′(x(t)) dt = −4

∫ x+

x−

P ′(x)
√
−2G(x)

1 + 2G(x)P 2(x)
dx,

where we use the same notation that in lemma 4. In particular, if h(γ) 6= 0 then γ is a
hyperbolic limit cycle of (2).

Proof. Notice that div(X)(x, y) = −3G′(x)P (x) − 2G(x)P ′(x). Moreover, by lemma 3
the cofactor of the curve H(x, y) = 0 is K(x, y) = −2G′(x)P (x). Therefore by using (7)
and (8), where

γ = {(x(t), y(t) : t ∈ [0, T ]} ⊂ {H(x, y) = 0},
it holds that

h(γ) = −
∫ T

0

(
3G′(x(t))P (x(t)) + 2G(x(t))P ′(x(t))

)
dt = −

∫ T

0

2G′(x(t))P (x(t)) dt

and as a consequence
∫ T

0

G′(x(t))P (x(t)) dt = −2

∫ T

0

G(x(t))P ′(x(t)) dt.
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Hence,

h(γ) =

∫ T

0

K(x(t)) dt = −2

∫ T

0

G′(x(t))P (x(t)) dt = 4

∫ T

0

G(x(t))P ′(x(t)) dt.

Let us parameterize the upper and lower parts of γ as (x, y±(x)) where y±(x) = ±
√
−2G(x).

Then

h(γ) = 4

∫ T

0

G(x(t))P ′(x(t)) dt =

= 4

∫ x+

x−

G(x)P ′(x)

y+(x)− 2G(x)P (x)
dx+ 4

∫ x−

x+

G(x)P ′(x)

y−(x)− 2G(x)P (x)
dx

= 4

∫ x+

x−

G(x)P ′(x)

y+(x)− 2G(x)P (x)
dx+ 4

∫ x+

x−

G(x)P ′(x)

y+(x) + 2G(x)P (x)
dx

= 4

∫ x+

x−

2G(x)P ′(x)y+(x)

(y+(x))2 − 4G2(x)P 2(x)
dx = 4

∫ x+

x−

2G(x)P ′(x)y+(x)

−2G(x)− 4G2(x)P 2(x)
dx

= −4

∫ x+

x−

P ′(x)y+(x)

1 + 2G(x)P 2(x)
dx = −4

∫ x+

x−

P ′(x)
√
−2G(x)

1 + 2G(x)P 2(x)
dx,

as we wanted to prove. �

By using the characterization of centers for Liénard equations given in [3, 6] in next
result we give a family of systems (2) for which an oval of H(x, y) = 0 belongs to a
continuum of periodic orbits surrounding a center.

Proposition 6. Consider an analytic system (2) and all the hypotheses and notation
of lemma 4. Let γ be the periodic orbit of the system contained in H(x, y) = 0 and
in the strip S. Assume also that p = (x̃, 2G(x̃)P (x̃)) is the unique critical point of (2)

surrounded by γ and that G′′(x̃) > 0. Then, if P (x) = P̂ (G(x)), for some analytic

function P̂ , the point p is a center and γ belongs to the continuum of periodic orbits
surrounding it.

Proof. Notice that writing our system as a Liénard second order equation following (3)
we get that

f(x) = 3G′(x)P (x) + 2G(x)P ′(x) =
(
3P (x) + 2G(x)P̂ ′(G(x))

)
G′(x)

g(x) = G′(x)
(
1 + 2G(x)P 2(x)

)
=
(
1 + 2G(x)P̂ 2(G(x))

)
G′(x).

Therefore the primitives of both functions, f(x) and g(x) are functions of G(x), and
moreover at x̃, G′(x̃) = 0 and G′′(x̃) > 0. These are the hypotheses of the results in
[3, 6] that imply that system (2) has a center at p. By analyticity, the periodic orbits
surrounding it include γ, as we wanted to prove. �
Remark 7. (i) A particular and simple case covered by the previous proposition is
P (x) ≡ p ∈ R \ {0}. In fact, it can be seen that in this case the function

I(x, y) =
1 + 2py − 2p2G(x)

(1 + py)2
(9)
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is a first integral of the system. Moreover H(x, y) = 0 coincides with the level set
I(x, y) = 1.

(i) Under the hypotheses of previous proposition it must hold that h(γ) = 0. This can
be seen directly by using proposition 5 as follows:

h(γ) = −4

∫ x+

x−

P ′(x)
√
−2G(x)

1 + 2G(x)P 2(x)
dx = −4

∫ x+

x−

P̂ ′(G(x))
√
−2G(x)G′(x)

1 + 2G(x)P̂ 2(G(x))
dx

= W (G(x))|x+x− = W (G(x+))−W (G(x−)) = 0.

where W (u) is a primitive of −4P̂ ′(u)
√
−2u/(1 + 2uP̂ 2(u)) in u < 0.

Next we recall a very useful result for knowing the stability of some generic polycycles.

Proposition 8. ([24]) Let G be a polycycle of an analytic vector field Y with elementary
saddles p1,p2, . . . ,pm at its corners and respective eigenvalues λ−j < 0 < λ+

j , j =

1, 2, . . . ,m. Then if ∆
.
=
∏m

j=1−λ+
j /λ

−
j is less than 1 (resp. bigger than 1) then G is an

attracting (resp. repelling) polycycle.

To control the number of periodic orbits that are not included in {H(x, y) = 0} we
will use the Bendixson-Dulac Theorem for multiple connected regions, [5, 12, 20, 28]. To
state it, recall that given an open subset U of R2 with smooth boundary, it is said to be

`-connected if its fundamental group, π1(U) is Z∗ `)· · · ∗Z, or in other words if the open
set U has ` holes. Region with ` = 0 are also called simply connected. On them the
following theorem is the classical Dulac theorem of non-existence of periodic orbits.

Theorem 9. (Extended Bendixson-Dulac theorem) Let U be an `-connected open subset
of R2 with smooth boundary and let X be a C1 vector field defined on it. Let D : U → R
be a C1 function such that M = div(DX) does not change sign in U and vanishes only
on a null measure Lebesgue set, such that {M = 0} ∩ {D = 0} does not contain periodic
orbits of X. Then the maximum number of periodic orbits of this vector field totally
contained in U is `. Furthermore each one of them is a hyperbolic limit cycle that does
not cut {D = 0} and its stability is given by the sign of DM over it.

To compute the function M appearing in the above theorem we will use several times
the following lemma. Its proof is straightforward.

Lemma 10. Let X be a C1 vector field, and let F1, F2 and F3 be C1 functions, all defined
in U ⊂ R2. Assume that F1 = 0 is a smooth invariant curve with cofactor K, that is
Y (F1) = KF1, and let s1, s2 ∈ R. Then

div
(
|F1|s1|F2|s2F3X

)

= sgn(F2)|F1|s1|F2|s2−1
(
s1KF2F3 + s2F3X(F2) + F2X(F3) + F2F3div(X)

)
.

Many times we will need to control the sign of a family of polynomials depending on
a parameter. Next result is well-known, see for instance [11]. As usual, we write 4x(p)
to denote the discriminant of a polynomial p(x) = anx

n + · · ·+ a1x+ a0, that is,

4x(p) = (−1)
n(n−1)

2
1

an
Res(p(x), p′(x)),
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where Res(p, p′) is the resultant of p and p′, see [26].

Lemma 11. Let pb(x) = an(b)xn + an−1(b)xn−1 + · · · + a1(b)x + a0(b), be a family of
real polynomials depending also polynomially on a real parameter b and let Ω ⊂ R be an
open interval. Suppose that there exists another open interval I = (u, v) ⊂ R such that:

(i) There is some b0 ∈ I, such that pb0(x) > 0 on Ω;
(ii) For all b ∈ I, 4x(pb(x)) 6= 0;
(iii) For all b ∈ I it holds that an(b) 6= 0 when (u, v) = R, or that pb(u)pb(v) 6= 0 when

u, v ∈ R.
Then for all b ∈ I, pb(x) > 0 on Ω.

We end this section with a result of Graef for general continuous Liénard equation
that allows to know the behavior of the solutions at infinity. It is said that the solutions
of a Liénard equation (1) are uniformly ultimately bounded if there exists a constant
K > 0 such that for any solution x(t) of (1) there is a time τ such that for all t > τ we
have |x(t)| < K and |ẋ(t)| < K.

Theorem 12. ( [18, Thm. 3.1]) Define F (x) =
∫ x

0
F (s) ds and assume that there exist

positive constants k and c such that

(i) xF (x) > 0 and xg(x) > 0 if |x| ≥ k;
(ii) F (x) ≥ c > 0 if x ≥ k or F (x) ≤ −c < 0 if x ≤ −k.

Then ∫ ±∞

0

(
f(x) + |g(x)|

)
dx = ±∞

is a sufficient condition for all solutions of (1) to be uniformly ultimately bounded.

The stability of the infinity for polynomial Liénard differential equations (1) can also
be studied by using the tools introduced in [8]. Notice that system (6) writes as (1) with
f and g the polynomials given in (3).

3. Proof of theorem 1

To prove (i) we start by studying the nature of the critical points of X surrounded by
γ. Let p = (x̃, 2G(x̃)P (x̃)), with G′(x̃) = 0, one of them. The differential matrix DX at
this point is

DX(p) =

(
−2G(x̃)P ′(x̃) 1

−G′′(x̃)
(
1 + 2G(x̃)P 2(x̃)

)
0

)
.

By lemma 3, since γ is a periodic orbit,
(
1 + 2G(x)P 2(x)

)
|x∈[x−,x+] > 0. Moreover by

NDC (a) it holds that G′′(x̃) 6= 0. Then sgn(det(DX(p)) = sgn(G′′(x̃)). Therefore, the
minima of G correspond to points of index +1, that are hyperbolic node or focus when
P ′(x̃) 6= 0 and weak focus when P ′(x̃) = 0. Similarly, the maxima of G are hyperbolic
saddle points.

To show that γ is a limit cycle we argue by contradiction. Assume that it is not.
Then, since system (2) is analytic, it holds hat γ belongs to a continuum of periodic
orbits contained in {H(x, y) ≤ 0} ∩ {(x, y) : x− ≤ x ≤ x+}. By considering this
continuum, and again by the analiticity of X and the Poincaré-Bendixson theory, we
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know that this continuum of periodic orbits must have a critical point q in its interior
boundary B.

If B = {q}, then k = 1 in the notation introduced when we give the non-degeneracy
conditions. Therefore q = (x̃, 2G(x̃)P (x̃)) must be a center, implying that P ′(x̃) = 0,
fact that is in contradiction with the NDC (c).

If B 6= {q}, then the continuum of periodic orbits ends in a polycycle whose corners
must be some of the k− 1 hyperbolic saddles that X has in the region surrounded by γ.
The NDC (d) prevents this fact, because the set of conditions (5) implies by proposition 8
that all possible polycycles are either attracting or repelling polycycles. Thus we have
again a contradiction, and (i) follows.

(ii) We will apply the extended Bendixson-Dulac theorem to X in the simply connected
region U given by the bounded region surrounded by γ. Thus ` = 0 in theorem 9. We
take F1 = H,F2 = F3 = 1 and s1 = s in lemma 10. Then K = −2G′P and

div
(
|H|sX

)
= |H|s

(
sK + div(X)

)
= −|H|s

(
2sG′P + 3G′P + 2GP ′

)

= −|H|s
(
(2s+ 3)G′P + 2GP ′

)
.

Then div
(
|H|−3/2X

)
= −2|H|−3/2GP ′ does not change sign and vanishes only of a set

of measure zero of vertical straight lines. Therefore system (3) has no limit cycle in U
as we wanted to prove. That γ is hyperbolic and that its stability is given by the sign
of −P ′ follows from the expression of h(γ) proved in proposition 5. �

4. Examples and proof of theorem 2

In this section we study in more detail several particular examples of system (2). We
consider Wilson equation, equations with many periodic orbits or many hyperbolic limit
cycles and an extension of Wilson equation that presents a fixed limit cycle together
with a moving limit cycle, as well as a non-hyperbolic algebraic limit cycle.

4.1. Wilson example and systems with hyperelliptic limit cycles. Wilson in
([27]) gives the first example of Liénard equation with an explicit algebraic hypereliptic

limit cycle
(
y + µx(x2 − 4)/4

)2
+ x2 − 4 = 0 for |µ| < 2. Wilson example writes as

ẍ+ µ(x2 − 1)ẋ+ µ2x3(x2 − 4)/16 + x = 0.

It is easy to see that if we take G(x) = x2/2− c and P (x) = bx in (2) we get
{
ẋ = y − bx (x2 − 2c),
ẏ = −x(1 + bxy),

(10)

and Wilson example corresponds to c = 2 and b = µ/4. Notice that Wilson example is
a cubic system when we write it as in (2) and it is of degree five written as an usual
Liénard system.

As a first corollary of our results we get the following proposition.

Proposition 13. System (10) has limit cycles if and only if 0 < |b| < 1/c and c > 0.
When these inequalities hold, the limit cycle is unique, algebraic, hyperbolic and it is the
ellipse y2 + 2G(x) = y2 + x2 − 2c = 0. Moreover, its stability is given by the sign of −b.
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Proof. By lemma 3, the conditions on the parameter for γ to be a periodic orbit are
precisely c > 0 and 0 < |b| < 1/c. By changing x → −x and t → −t if b < 0, we can
reduce this case to the case b > 0. Moreover, by theorem 1, since P ′(x)G(x) = (x2/2−c)b
does not change sign on the strip where γ lies, then γ is hyperbolic and stable, because
its stability is given by the − sgn(P ′) = − sgn(b) < 0. Furthermore we know that the
system has no limit cycle surrounded by γ.

To study the non-existence of limit cycles in the exterior of γ we will apply again the
extended Poincaré-Dulac theorem (theorem 9) to X in this region. In fact we consider
the two regions U1 and U2 given by the bounded and unbounded regions delimited by
γ, respectively, because this approach allows to treat simultaneously both regions. Thus
` = 0 for U1 and ` = 1 for U2 in theorem 9. We take F1 = H,F2 = F3 = 1 and s1 = s in
lemma 10 and we get

div
(
|H|sX

)
= −|H|s

(
2sG′P + 3G′P + 2GP ′

)

= −b|H|s
(
(2s+ 3)x2 + x2 − 2c

)
= −b|H|s

(
(2s+ 4)x2 − 2c

)
.

Then, taking s = −2, we get div
(
|H|−2X

)
= 2bc|H|−2 which does not vanish on Uj, j =

1, 2. Therefore we have proved again that system (3) has no limit cycle in the interior
of γ. Moreover we get that it has at most one limit cycle in its exterior. Furthermore,
if it exists it is hyperbolic and its stability is given by the sgn(bc) = sgn(b) > 0, so it
would be repeller. This is in contradiction with the uniqueness of this periodic orbit
and theorem 12, that implies that infinity of system (10) with b > 0 is also a repeller,
because when γ is a periodic orbit the origin is the unique critical point of the system.

When γ is not a periodic orbit, then it contains all the critical points of the system
different from the origin, and we can argue as in the previous paragraph, proving also
that the system has no periodic orbits outside γ. Then in this situation system (10) has
not periodic orbits. �

For Wilson example proposition 13 can also be obtained from the results of [10] where
it is proved that it has a Darboux first integral.

Remark 14. The results for system (10) can be extended to other G with qualitative
behavior like to the one of G(x) = x2/2 − c. For instance, taking P (x) = bx and
G(x) = x2n/(2n)−c, n ∈ N a similar result to proposition 13 holds. To prove it, it suffices
to follow the same steps that in the study of (10) and then take s = −(3n+1)/(2n) when
we apply lemma 10 and theorem 9.

4.1.1. Systems with hyperelliptic limit cycles. In papers [19, 31], polynomial Liénard
equations with hyperelliptic limit cycles are written as

ẍ+

(
R′(x) +

1

2
R(x)

Q′(x)

Q(x)

)
ẋ− 1

2
Q′(x) +

1

2
R2(x)

Q′(x)

Q(x)
= 0, (11)

for suitable polynomials R and Q. We remark that taking in our system P = −R/Q and
G(x) = −Q(x)/2 we get equation (11).

We also remark that in order to have a polynomial system (2) the possibility of choos-
ing G and P polynomial is not the only one. If we take G polynomial and W is any
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factor of gcd(G(x), G′(x)), then taking P (x) = P̃ (x)/W (x), with P̃ also polynomial gives
a polynomial system (2).

4.2. Systems with many periodic orbits. We start this section with systems having
many centers.

Proposition 15. (i) There exist polynomial systems of the form (2) of degree 2k, hav-
ing k non-nested centers.

(ii) There exist analytic systems of the form (2) having infinitely many non-nested
centers.

Proof. The proofs are straightforward consequences of proposition 6 and remark 7. (i)

Consider system (2) with P (x) ≡ 1 and G(x) =
∏k

j=1(x − j)2. Then the degree of the

system is 2k. Moreover, following the proof of (i) of theorem 1 we get that the critical
points (j, 0), j = 1, 2, . . . , k are weak foci. By remark 7, the system has the smooth first
integral I(x, y) given in (9), well defined in a neighborhood of all these k points. Hence
all them are centers.

For proving (ii), we can consider G(x) = sin2(x) and again P (x) ≡ 1. The proof is the
same, and all points (jπ, 0), j ∈ Z are centers. �

A similar result to proposition 15 but for limit cycles instead of centers is the following:

Proposition 16. (i) There exist polynomial systems of the form (2) of degree 2k + 1,
having k hyperbolic non-nested limit cycles.

(ii) There exist analytic systems of the form (2) having infinitely many hyperbolic
non-nested limit cycles.

Proof. (i) Consider

G(x) =
k∏

j=1

(x− j)2 − c and P (x) = bx

in system (2). Take c > 0 fixed, such that G(x) has 2k simple zeroes and 0 < b small
enough. By using (ii) of theorem 1 we can easily prove that the curve H(x, y) = 0 has
exactly k non-nested ovals. All them are periodic orbits because the equation 1+yP (x) =
0 writes as xy = −1/b, and for 0 < b small enough, this hyperbola does not cut these
ovals. Moreover, again by theorem 1, they are hyperbolic and attractive limit cycles and
the system has not more limit cycles inside them.

(ii) Consider G(x) = cos x) and P (x) = −1/(4+x2). Then it is easy to see that we are
under the hypotheses of (ii) of theorem 1 and the set H(x, y) = y2 + cosx = 0 contains
infinitely many non-nested hyperbolic limit cycles and each of them does not surround
other limit cycles. �

Remark 17. Notice that when we write the polynomial systems given in item (i) of
propositions 15 and 16 as Liénard equations (1) they have degrees 4k − 1 and 4k + 1,
respectively.



12 A. GASULL AND M. SABATINI

4.3. A degree five family and proof of theorem 2. In this section we will study
the number of limit cycles of system (6). For the sake of clarity, we write it again

{
ẋ = y − (x2 − 1)(x3 − bx),
ẏ = −x

(
1 + y(x3 − bx)

)
.

Recall that it has the circle y2 + 2G(x) = x2 + y2 − 1 = 0 as invariant algebraic curve.

4.3.1. The existence and stability of the algebraic limit cycle.

Proposition 18. System (2) has the periodic orbit γ, of equation H(x, y) = x2+y2−1 =
0, if and only if b ∈ (b, b), where b < 0 < b are the only real roots of the polynomial
R(b) = 4b6−12b5−4b4 +28b3 +56b2−72b−229. Moreover there exists b∗ ∈ (0.746, 0.749)
such that γ is:

(i) a hyperbolic stable limit cycle when b ∈ (b, b∗);
(ii) a non-hyperbolic limit cycle when b = b∗;
(iii) a hyperbolic unstable limit cycle when b ∈ (b∗, b).

Numerically b∗ ' 0.747024. Moreover b and b can be expressed by radicals, b ' 2.440096,
and b = 1− b ' −1.440096.

Proof. By lemma 2 we already know that γ is an invariant curve. In order to prove
that γ is a periodic orbit it is sufficient to prove that (6) has no critical point in γ. By
lemma 2, this is equivalent to show that the polynomial

Sb(x) = 1 + 2G(x)P 2(x) = 1 + x2(x2 − b)2(x2 − 1)

= x8 − (2b+ 1)x6 + (b+ 2)bx4 − b2x2 + 1 (12)

has no real root in the interval [−1, 1]. By using Sturm method and computing the dis-
criminant of Sb(x) we obtain precisely the condition of the statement, because 4x(Sb) =
256R2(b). For more details about the use of Sturm sequences see [25].

The polynomial R can be written as R(b) = −q
(
b(1− b)

)
, where q(z) = 4z3 + 16z2 +

72z + 229 = 0. Hence, its zeros can be found by radicals. In particular, b and b are the
solutions of b(1− b) = z0, where z0 is the real root of q(z), that writes as

z0 = −A
6

+
76

3A
− 4

3
, where A =

3

√
4103 + 273

√
273.

Take now γ for b ∈ (b, b). By proposition 5 its stability is given by

r(b)
.
= h(γ) = −4

∫ 1

−1

P ′(x)
√
−2G(x)

1 + 2G(x)P 2(x)
dx =

∫ 1

0

Ub(x)
√

1− x2 dx. (13)

where Ub is the rational function Ub(x) = 8(b− 3x2)/Sb(x).
Although we can not compute (13) in terms if elementary functions, there is a proce-

dure that will allow us to get r(b) with any desired precision.

Before starting to study more properties of r(b), first notice that for b ∈ (b, b), it holds
that Sb(x) > 0. Moreover for b ≤ 0, Ub(x) ≤ 0 and so for all b ≤ 0, r(b) < 0 giving that
γ is a hyperbolic stable limit cycle; as we wanted to prove.
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From now on we will assume that b ∈ (0, b). Notice that

r′(b) =

∫ 1

0

∂

∂b
Ub(x)

√
1− x2dx.

After some computations we get that

∂

∂b
Ub(x) =

−8
(
5x8 − (6b+ 5)x6 + b(b+ 6)x4 − b2x2 − 1

)

S2
b (x)

and using the same tools as before, we get that
∂

∂b
Ub(x) > 0, hence r′(b) > 0. Moreover,

we know that r(0) < 0 and limb→b r(b) = +∞, because Sb(x) vanishes in (0, 1). Therefore,
there exists a unique value of b, say b = b∗, such that r(b∗) = 0. For such a value γ is no
longer hyperbolic.

Let us prove that b∗ ∈ (0.746, 0.749). For the sake of conciseness we will give the full
details for proving that b∗ < 0.8, while for the rest of the proof we only show the main
differences with this easier bound.

We want to prove that r(0.8) > 0, that is
∫ 1

0
U0.8(x)

√
1− x2 > 0. We will bound

inferiorly U0.8(x) by a polynomial p(x) in Q[x], such that U0.8(x) > p(x) for x ∈ [0, 1],
and such that ∫ 1

0

U0.8(x)
√

1− x2 >

∫ 1

0

p(x)
√

1− x2 > 0.

Notice that then the right hand inequality con be analytically proved because for any
n ∈ N,

∫ 1

0

xn
√

1− x2 =

∫ π/2

0

sinn θ cos2 θ dθ = In − In+2,

where

In =

∫ π/2

0

sinn θ dθ =

{
(2m−1)!!

(2m)!!
π
2
, if n = 2m,

(2m−2)!!
(2m−1)!!

, if n = 2m− 1,

with 0 < m ∈ N, 0!! = 1!! = 1 and for 2 ≤ k ∈ N, k!! = k × (k − 2)!!.
In order to find a suitable polynomials p we fix a degree (in this case 3) and we

compute the interpolating polynomial for U0.8(x)−η, for some positive η. First we check
numerically for a good η, selecting η = 0.2. Then we get a degree 3 polynomial with big
rational coefficients that interpolates the points of table 1.

x 0 1
3

2
3

1

U0.8(x)− 1
5

31
5

2905463
781685

' 3.7 −731621
158905

' −4.6 −89
5

Table 1. Some values of U0.8(x)− η, with η = 0.2.

Afterwards, by hand we tune a little bit the values of table 1, proposing as interpolation
values the ones of table 2, where the numbers of the second row are approximations of
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the numbers of table 1. This new interpolating polynomial corresponding to the new
table 2 looks easier. It is p(x) =

(
27x3 − 279x2 + 12x+ 62)/10.

x 0 1
3

2
3

1

p(x) 31
5

18
5
−23

5
−89

5

Table 2. Final table for finding p(x).

By using once more Sturm method we can prove that for x ∈ [0, 1], U0.8(x) > p(x).
Hence

r(0.8) =

∫ 1

0

U0.8(x)
√

1− x2dx >

∫ 1

0

p(x)
√

1− x2dx =
19

25
− 31

160
π > 0.

In order to prove that r(0.749) > 0, we use as new p(x) the polynomial of degree 8
corresponding to the interpolating polynomial of the table(

j/8, U0.749 (j/8)− 1/200
)
, j = 0, 1, . . . , 8.

Similarly, in order to prove that h0.746 (γ) < 0, we use another polynomial of degree 8,
this time corresponding to the interpolating polynomial of the table(

j/8, U0.746 (j/8) + 1/300
)
, j = 0, 1, . . . , 8.

Now, it can be proved that this new polynomial q is an upper bound of U0.746, and it
holds that

r(0.746) =

∫ 1

0

U0.746(x)
√

1− x2dx <

∫ 1

0

q(x)
√

1− x2dx < 0.

The fact that when b = b∗, γ is a limit cycle is a consequence of statement (i) of theorem 1
because in this case the origin is the only critical point of the system and it is not a
center. �

4.3.2. The system in polar coordinates and other useful properties. The expression of (6)
in polar coordinates is {

ṙ = r(r2 − 1)(b− r2 cos2 θ) cos2 θ,

θ̇ = −1 + b sin θ cos θ − r2 sin θ cos3 θ.
(14)

By using the above expression we get the following results.

Lemma 19. (i) For b ≤ 0 the only periodic orbit of system (6) is x2 + y2 = 1 and it
exists if and only if b ∈ (b, 0].

(ii) Apart of r = 1, system (6) for b > 0 has not other periodic orbits in the region

{r ≤
√
b}.

Proof. Item (i) follows because when b ≤ 0 then ṙ(r2 − 1) ≤ 0. To prove item (ii) notice
that when b > 0 then

ṙ|r=√b =
√
b(b− 1)b sin2 θ cos2 θ

and moreover, when r ≤
√
b, ṙ(r2 − 1) ≥ 0. �
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The existence for system (6) of a limit cycle different of γ = {x2 +y2 = 1} when b 6= b∗

is guaranteed by the following results.

Lemma 20. System (6) has a Hopf bifurcation at the origin when b = 0. More specif-
ically, an unstable periodic orbit bifurcates from the origin when b & 0. Moreover, for
0 < b < b∗ the system has at least one periodic orbit in U1

.
= {x2 + y2 < 1}.

Proof. The existence of a Hopf bifurcation follows from straightforward computations.
Moreover a limit cycle always exists in U1 because of the Poincaré-Bendixson theory. For
these values of b, both the origin and γ are attractors (see (i) in proposition 18) and the
origin is the only critical point of the system. �

Lemma 21. For b > b∗, system (6) has at least one periodic orbit in U2
.
= {x2 +y2 > 1}.

Proof. We start proving that the set x2 + y2 = 1, that recall is invariant for the flow
of system (6), is a repeller for b ≥ b∗. We split the study in two cases b ∈ (b∗, b) and
b ∈ [ b,∞).

In the first case, b ∈ (b∗, b), by item (ii) in proposition 18, γ = {x2 + y2 = 1} is a
hyperbolic unstable limit cycle.

When b ∈ [b,∞), although the set x2 + y2 − 1 = 0 is invariant, it is is no more a
periodic orbit. Let us prove that it contains two couples of critical points (resp. one
couple of double critical points) when b > b (resp. b = b) and four (resp. two) regular
orbits. Moreover these critical points are two hyperbolic saddles and two hyperbolic
nodes (resp. two semi-hyperbolic saddle-nodes). It is convenient to choose the polar
expression (14) of the vector field X. Call Y, its associated vector field. On r = 1 the
critical points are (r, θ) = (1, θ∗) = p, where θ∗ are the solutions of

Wb(θ) = −1 + b sin θ cos θ − sin θ cos3 θ = 0 (15)

and

DY (p) =

(
2(b− cos2 θ∗) cos2 θ∗ 0
−2 sin θ∗ cos3 θ∗ W ′

b(θ
∗)

)
.

Notice that the number of solutions of (15) varies as the number of solutions of Sb(x) = 0,
see (12). For b > b (resp. b = b) both equations have four simple (resp. two double)
solutions.

In any case, the eigenvalues of the critical points corresponding to the normal direction
to r = 1 are λ(θ∗)

.
= 2(b− cos2 θ∗) cos2 θ∗ > 0 and the other ones, corresponding to the

tangent direction to the invariant set r = 1, are W ′
b(θ
∗). Hence, the only critical points on

r = 1 are two couples of hyperbolic repeller nodes and two couples of hyperbolic saddles
(resp. a couple of semi-hyperbolic saddle-nodes) when b > b (resp. b = b), as we wanted
to prove. Moreover, because for all θ∗, λ(θ∗) > 0, we get that the set x2 + y2 − 1 = 0 is
repeller.

Moreover we can prove that for all b ∈ R the system (6) is under the hypotheses of
theorem 12, hence all the solutions are attracted to a compact set. In particular infinity
is a repeller. Hence, by using the Poincaré-Bendixson theory and the fact that the system
has no critical points in U2, the existence of a limit cycle in U2 follows. �
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When b ∈ (b, b), and in a neighborhood of r = 1, system (14) is equivalent to

∂r

∂θ
= S(r, θ) =

−r(r2 − 1)(b− r2 cos2 θ) cos2 θ

1− b sin θ cos θ + r2 sin θ cos3 θ
. (16)

By using next result of Lloyd, we will prove the existence of a transcritical bifurcation
of limit cycles at γ when b = b∗. In particular, we will prove that when b = b∗, γ
is a double limit cycle. As usual, given a C2, non-autonomous 2π-periodic differential
equation dr

dθ
= T (r, θ) we denote by R(θ, ρ) the solution such that R(0, ρ) = ρ and by

Π(ρ)
.
= R(2π, ρ) its Poincaré map. In particular the fixed points of the Poincaré map,

which correspond to the zeroes of the displacement map ∆(ρ)
.
= Π(ρ) − ρ, are initial

conditions that give rise to periodic orbits of the differential equation.

Proposition 22. ( [20]) Consider a C2 non-autonomous 2π-periodic differential equation
dr
dθ

= T (r, θ) and let Π be its Poincaré return map. Then

Π′(ρ) = exp

(∫ 2π

0

∂T (R(θ, ρ), θ)

∂r
dθ

)
,

Π′′(ρ) = Π′(ρ)

[∫ 2π

0

∂2T (R(θ, ρ), θ)

∂r2
exp

(∫ θ

0

∂T (R(ψ, ρ), ψ)

∂r
dψ

)
dθ

]
.

Proposition 23. When b = b∗, system (6) has a transcritical bifurcation of limit cycles
at γ = {r = 1}. In particular, when b = b∗, γ is a double non-hyperbolic limit cycle and
when b & b∗ (resp. b . b∗) a hyperbolic unstable (resp. stable) limit cycle bifurcates from
γ and it is surrounding (resp. surrounded by) γ.

Proof. To prove this result we use the polar expression (16) of (6), which recall that it
is valid in a neighborhood of b = b∗ and r = 1. We also remark that all results about
the stability of the periodic orbits for equation (16) must be reversed when we deal with

system (6), because θ̇ < 0 in a neighborhood of r = 1, and when t increases, θ decreases,
and viceversa.

By proposition 22, the stability of r = 1 for (16) is given by the sign of

r̂(b)
.
=

∫ 2π

0

∂S(r, θ)

∂r

∣∣∣∣
r=1

dθ =

∫ 2π

0

2(cos2 θ − b) cos2 θ

1− b sin θ cos θ + sin θ cos3 θ
dθ, (17)

In fact, it can be seen that r̂(b) = −r(b), where r(b) is given in (13) (as we have explained

the minus sign comes from the fact that θ̇ < 0 on r = 1).
The formula (17), or its equivalent rational expression

r̂(b) = 4

∫ ∞

−∞

1− b− bu2

(
u4 − bu3 + 2u2 + (1− b)u+ 1

)
(1 + u2)

du,

seem worst that (13) for having good estimates of b∗. Anyway, formula (17) provides a
simple proof that r ′(b) > 0, fact used in the proof of proposition 18, because

r̂ ′(b) =

∫ 2π

0

−2 cos2 θ

(1− b sin θ cos θ + sin θ cos3 θ)2
dθ < 0. (18)
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If we call ∆(ρ, b) the displacement map for (16), where notice that we have added

its dependence on b, we know that ∆(1, b) ≡ 0. In particular ∂∆(1,b)
∂b

≡ ∂2∆(1,b)
∂b2

≡ 0.
Moreover, from proposition 22 and (18),

∂∆(1, b)

∂ρ
= er̂(b) − 1 and K(b)

.
=
∂2∆(1, b)

∂ρ∂b
= er̂(b)r̂ ′(b) < 0.

We claim that L := ∂2∆(1,b∗)
∂ρ2

> 0. Then we are under the hypotheses of the Weierstrass

preparation theorem and we get that

∆(ρ, b) =∆(1, b∗) +
∂∆(1, b∗)

∂ρ
(ρ− 1) +

∂∆(1, b∗)

∂b
(b− b∗) +

1

2

∂2∆(1, b∗)

∂ρ2
(ρ− 1)2

+
∂2∆(1, b∗)

∂ρ∂b
(ρ− 1)(b− b∗) +

1

2

∂2∆(1, b∗)

∂b2
(b− 1)2 +O3(ρ− 1, b− b∗)

=
L

2
(ρ− 1)2 +K(b∗)(ρ− 1)(b− b∗) +O3(ρ− 1, b− b∗).

In particular, equation ∆(ρ, b) = 0 has only two solutions in a neighborhood of (ρ, b) =
(1, b∗). They are ρ = 1 and

ρ = 1− 2r̂ ′(b∗)

L
(b− b∗) +O2(b− b∗),

which are the initial conditions of the periodic orbits of (16) near r = 1. Hence for b . b∗

a hyperbolic stable limit cycle, contained in U1 tends to r = 1 when b→ b∗ and crosses
it giving rise to a hyperbolic unstable limit cycle, contained in a neighborhood of r = 1
in U2. This proves the lemma.

To end the proof we need to prove the claim. Notice that it is equivalent to show that
r = 1 is a double limit cycle.

By proposition 22, it suffices to prove that

L =

∫ 2π

0

∂2S(r, θ)

∂r2

∣∣∣∣
r=1,b=b∗

exp

(∫ θ

0

∂S(r, ψ)

∂r

∣∣∣∣
r=1,=b∗

dψ

)
dθ > 0

We write L =
∫ 2π

0
Ab∗ (θ)Cb∗ (θ)

Bb∗ (θ)
dθ where

Ab(θ)
.
= 6b2 cos3 θ sin θ − 6b

(
2 cos3 θ sin θ + 1

)
cos2 θ + 2 cos4 θ

(
3 cos3 θ sin θ + 7),

Bb(θ)
.
= b2 sin2 θ cos2 θ + 2b cos θ

(
cos5 θ − cos3 θ − sin θ

)

− cos8 θ + cos6 θ + 2 cos3 θ sin θ + 1,

Cb(θ)
.
= exp

(∫ θ

0

2(cos2 ψ − b) cos2 ψ

1− b sinψ cosψ + sinψ cos3 ψ
dψ
)
.

We do not know the exact value of b∗, but by proposition 18 we know that b∗ ∈ J .
=

(b`, bu) = (0.746, 0.749). It holds that for b ∈ J ,

Ab(θ) > T (θ),
3

5
<

1

Bb(θ)
<

9

5
and

3

5
< Cb(θ) <

7

5
, (19)
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where T is the piecewise linear π-periodic map

T (θ) =





8− 32θ/π, 0 ≤ θ < π/4,

−1/2, π/4 ≤ θ < 3π/4,

32θ/π − 24, 3π/4 ≤ θ < π.

Then

L > 2
(∫ π/4

0

(
8− 32θ

π

)3

5

3

5
dθ −

∫ 3π/4

π/4

1

2

9

5

7

5
dθ +

∫ π

3π/4

(32θ

π
− 24

)3

5

3

5
dθ
)

=
9π

50
> 0.

The proof of each of the inequalities given in (19) needs some work. As an example
we will give the full details to show that for b ∈ J and θ ∈ (π/4, 3π/4), Ab(θ) > T (θ) ≡
−1/2.

First notice that studying the sign of the coefficients in b of Ab(θ) we get that

Ab(θ) >

{
A1(θ), θ ∈ (π/4, π/2),

A2(θ), θ ∈ (π/2, 3π/4),

where

A1(θ) =6b2
` cos3 θ sin θ − 6bu

(
2 cos3 θ sin θ + 1

)
cos2 θ + 2 cos4 θ

(
3 cos3 θ sin θ + 7),

A2(θ) =6b2
u cos3 θ sin θ − 6bu

(
2 cos3 θ sin θ + 1

)
cos2 θ + 2 cos4 θ

(
3 cos3 θ sin θ + 7).

To prove that A1(θ) + 1/2 > 0 for θ ∈ (π/2, 3π/4) it is convenient to use the rational
parametrization of x2 + y2 = 1. Then sin θ = 2r/(1 + r2) and cos θ = (1− r2)/(1 + r2),
the interval θ ∈ (π/2, 3π/4) is transformed into r ∈ (

√
2/2− 1, 1) and

(
A1(θ) +

1

2

)∣∣∣∣
sin θ=2r/(1+r2),cos θ=(1−r2)/(1+r2)

=
1

62500

P16(r)

(r2 + 1)8
,

where P16(r) = 625375r16−43887r15−· · ·+43887r+625375 is a polynomial without real
roots and positive. This fact is proved by using the Sturm method. Hence A1(θ)+ 1

2
> 0,

as we wanted to prove. The function A2(θ)+ 1
2

in (π/2, 3π/4) can be studied in a similar
way. The proof that Ab(θ) > T (θ), in the other intervals, can be done using the same
change of the independent variable. The only difference is that it also appears the
function θ = arctan(2r/(1− r2)), but it can be bounded by a polynomial map, arriving
at the end to a polynomial condition that can be treated again by using the Sturm
method. �
Lemma 24. Let U1 and U2 the bounded and unbounded regions of R2 \ γ, respectively.
Then system (6) is a semi-complete family of rotated vector fields on both invariant
regions Uj, j = 1, 2.

Proof. Following [7, 21, 22, 23] it suffices to compute

X1
∂X2

∂b
−X2

∂X1

∂b
= x2(x2 + y2 − 1)

and to observe that the above quantity does not change sign on each Uj, and vanishes
only on the straight line x = 0, which is not invariant by the flow of the system. �
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The fact that system (6) is a semi-complete family of rotated vector fields allows to
know the movement of the periodic orbits contained in each Uj when b varies. One of the
most useful properties is the so called non-intersection property. Fixed one Uj, it asserts
that if Υ1 and Υ2 are limit cycles corresponding to systems (6) with different values of b,
then Υ1∩Υ2 = ∅. Informally, it says that if for a set of values of b some limit cycles cover
a region of the phase plane, this region turns out to be forbidden for the periodic orbits
that the system could have for others values of the parameter. Another nice property in
U1 (resp. U2) is that stable limit cycles (resp. unstable limit cycles) increase when the
parameter b also increases. As a consequence, the study of the bifurcation diagrams for
such families is simpler.

4.3.3. The second limit cycle. Recall that U1 = {x2 + y2 < 1} and U2 = {x2 + y2 > 1}.
In this section we will study the number of limit cycles of system (6) on each of these
regions, according the values of b > 0, by applying again the extended Poincaré-Dulac
theorem (theorem 9) to this system. Recall that the case b ≤ 0 is already solved in
lemma 19.

The first results deals with the easier case b ≥ 1. Recall that we already know by
lemma 19 that the system has no limit cycle in U1. This approach treats together both
regions Uj, j = 1, 2.

Proposition 25. Consider system (6) with b ≥ 1. The following holds:

(i) It has no periodic orbit in U1.
(ii) It has exactly one periodic orbit in U2, which is a hyperbolic stable limit cycle.

Proof. We apply the extended Poincaré-Dulac theorem to X in both regions Uj, j = 1, 2.
Notice that ` = 0 for U1 and ` = 1 for U2 in the theorem. We take once more F1 =
H,F2 = F3 = 1 and s1 = s in lemma 10 and we get

div
(
|H|sX

)
= |H|s

(
− 2sG′P − 3G′P − 2GP ′

)

= |H|s
(
− (2s+ 6)x4 + (2bs+ 4b+ 3)x2 − b

)
.

We introduce Nb(s, u) = −(2s+ 6)u2 + (2bs+ 4b+ 3)u− b. Notice that the discriminant
with respect to u of Nb(s, u) is Ab(s)

.
= 4b2s2 + (16b2 + 4b)s+ 16b2 + 9. Therefore, when

b ≥ 1 we can take the solution of Ab(s) = 0,

s+ =
−1− 4b+ 2

√
2(b− 1)

2b
.

It can be seen that 2s+ + 6 6= 0. Then Ab(s
+) ≡ 0 and the function Nb(s

+, u) ≤ 0
because it has a double zero. As a consequence

div
(
|H|s+X

)
= |H|s+Nb(s

+, x2) ≤ 0.

By theorem 9 we have proved again that when b ≥ 1, system (6) has no limit cycle in
U1 and moreover that it has at most one limit cycles in U2. Moreover when it exists it
is hyperbolic and stable.

In fact, by lemma 21 we get that for b ≥ 1, system (6) has exactly one limit cycle in
U2, which is hyperbolic and stable. �



20 A. GASULL AND M. SABATINI

It remains to study the case b ∈ (0, 1). We get complete results outside a small
neighborhood of b = b∗, the value for which γ is an algebraic non-hyperbolic limit cycle.
We divide the study in two propositions. The first one covers b ∈ [0.76, 1), while the
second one studies b ∈ (0, 0.70].

Proposition 26. Consider system (6) with b ∈ [0.76, 1). The following holds:

(i) It has no periodic orbit in U1.
(ii) It has exactly one periodic orbit in U2, which is a hyperbolic stable limit cycle.

Proof. We will use Bendixson-Dulac theorem in Uj, j = 1, 2. To apply lemma 10 we
choose F1(x, y) = H(x, y) = x2 + y2 − 1, s1 = −5/2, F2 = 1 and F3(x, y) = y2n +∑2n−1

j=0 cj(x)yj is a polynomial to be determined. The value s1 = −5/2 is selected after
several trials. Then

div
(
|H|−5/2F3X

)
= |H|−5/2

(
− 5KF3/2 +X(F3) + F3 div(X)

) .
= |H|−5/2Dn,

where recall that K(x) = −x2(x2 − b) is the cofactor of H = 0. By using the same tools
that in the study of Liénard systems in its usual expression, see [4, 15, 16] it can be
seen that, fixed n ∈ N, we can choose in a unique way the polynomials cj(x) in such a
manner that cj(0) = 0 and Dn(x, y) is a function that depends only of x. The reason is
that this condition forces simple linear differential equations for each cj, with triangular
structure, starting with cn−1(x) and ending with c0(x). As an example we detail the
computations for n = 2.

The function D2 writes as

D2(x, y) =
(
c′1(x)− b+ (3 + b)x2 − 3x4

)
y2

+
((
− bx+ (b+ 1)x3 − x5

)
c′1(x) +

(
− b+ 3x2 − 2x4

)
c1(x) + c′0(x)− 2x

)
y

+
((
− bx+ (b+ 1)x3 − x5

)
c′0(x) +

(
− b+ (3− b)x2 − x4

)
c0(x) + c′0(x)− c1(x)x

)
.

Then it is clear that there are unique polynomials satisfying c0(0) = c1(0) = 0 such that
D2 depends only on x. Choosing these polynomials we get that D2(x, y) = x2d2,b(x),
where

d2,b(x) =− 231

50
x12 +

(
903b

100
+

3297

200

)
x10 −

(
21b2

4
+

6629b

200
+

819

40

)
x8

+

(
5b3

6
+

58b2

3
+

1737b

40
+ 9

)
x6 −

(
35b3

12
+

1597b2

60
+ 21b+

18

5

)
x4

+

(
47b3

12
+

4b

3
+ 15b2 + 6

)
x2 − b

(
3b2 + 4

)
.

We will apply lemma 11 to Ω = R to prove that for b ∈ I = (b2, 1) where b2 ' 0.906
is the real root of t(b) = 350b3 − 740b2 + 1307b− 837 = 0, it holds that d2,b(x) 6= 0.

In fact, t(b) is a factor of4x(d2,b), which is a polynomial of degree 51 in Q[b]. By using
Sturm algorithm it can be seen that b2 is the smallest positive root of 4x(d2,b). Hence
hypothesis (ii) of the lemma follows. Moreover the coefficient of x12 of db is −231/50,
so it is never zero and hypothesis (iii) of the lemma also is satisfied. Finally, using once
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more Sturm algorithm we can prove that d2,0.95(x) 6= 0 and as a consequence hypothesis
(i) is satisfied for 0.95 = b0 ∈ I. Then db(x) 6= 0 for x ∈ R and b ∈ I, as wanted to prove.

Then by the Bendixson-Dulac theorem, for b ∈ (b2, 1), the system has no limit cycle in
U1 and at most one limit cycle, hyperbolic and stable whenever it exists, in U2. Moreover
this limit cycle always exists by lemma 21.

To show that the proposition holds we proceed as in the case n = 2 but taking n = 60.
Then after many computations, done in Maple 18, we get the same result for b ∈ (b60, 1)
where b60 ' 0.7595 is the smallest positive real root of the corresponding 4x(d60,b). �

Although, theoretically it is possible to increase n in the proof of previous proposition
to have a bigger interval for which proposition 26 holds, the complexity and time needed
to perform all the computations make us to stop at n = 60.

Proposition 27. Consider system (6) with b ∈ (0, 0.7]. The following holds:

(i) It has exactly one periodic orbit in U1, which is a hyperbolic unstable limit cycle.
(ii) It has no periodic orbit in U2.

Proof. We will apply again Bendixson-Dulac theorem, but in the U1 \ {(0, 0)}, that has
` = 1, for proving the uniqueness of limit cycle in U1. Here, to apply lemma 10 we choose
F1(x, y) = H(x, y) = x2 +y2−1, s1 = −2; F2(x, y) = x2 +y2, s2 = −13/4 and F3(x, y) =
y4 +

∑3
j=0 cj(x)yj is a polynomial to be determined. In this case, higher degrees of

F3 seem not to increase the interval of applicability of Bendixson-Dulac theorem. The
values s1 and s2 are chosen by hand, after experimenting a little bit with the functions.

In this situation div
(
|H|−2F

−13/4
2 F3X

)
= |H|−2F

−17/4
2 D, where

D = −2KF2F3 − 13F3X(F2)/4 + F2X(F3) + F2F3 div(X).

Similarly that in the previous proposition we can prove that there is a unique choice of
cj(x), j = 0, 1, 2, 3, such that all cj(0) = 0 and

D(x, y) = Db(x, y) = α2(x, b)y2 + α1(x, b)y + α0(x, b),

for some polynomials αj(x, b). To force that Db does not change sign on U1 we impose
that

Eb(x)
.
= α2

1(x, b)− 4α0(x, b)α1(x, b) < 0 in x ∈ [−1, 1] \ {0}. (20)

By using lemma 11 for x ∈ I := (−1, 1) and b ∈ (0, 0.7) the result follows. In this occasion

the applicability of the lemma arrives until b̂ ' 0.7024, a real root of 4x(Eb(x)/x10).
If we impose that Eb(x) < 0 for all x ∈ R \ {0}, we get that this holds for b between

b′ ' 0.4068, another root of 4x(Eb(x)/x10) and b̂. This implies the non existence of limit
cycles in U2 because, by using the Bendixson-Dulac theorem, in this region we would
have at most one (hyperbolic) limit cycle, and this is in contradiction with the fact that
the stabilities of infinity and r = 1 are reversed.

To cover the interval b ∈ (0, 0.41] we repeat the computations, but now taking
F1(x, y) = H(x, y) = x2 + y2 − 1, s1 = s2 = −5/2, F2(x, y) = x2 + y2 − b2, and
again a polynomial F3(x, y) = y4 +

∑3
j=0 cj(x)yj satisfying the above restrictions, but

changing the initial condition c2(0) = 0 by c2(0) = 1. We can ensure that the possible
limit cycles do not cut the curve F2 = 0 because in the proof of the lemma 19 we show
that for 0 < b < 1 it is crossed inwards by the flow. We obtain that the new Eb is
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negative for all x ∈ R \{0}, for b between 0 and 0.447 . . . , a root of 4x(Eb(x)/x4). Then
the result follows arguing as in the previous situation. �
Proof of Theorem 2. Item (i) is a consequence of propositions 18 and 23. Item (ii) follows
from lemma 19. Lemma 20 and proposition 27 imply item (iii). Finally, item (iv) follows
from lemma 21 and proposition 25 when b ≥ 1 and from lemma 21 and proposition 26
when b ∈ [0.76, 1). �
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