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Periodic solutions for a class of Duffing differential equations
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Abstract. We provide sufficient conditions for the existence of periodic solutions for the class of Duffing
differential equations

x
′′
+ c(t)x

′
+ a(t)x + b(t)x3 = h(t, x),

where the functions a(t), b(t), c(t) and h(t, x) are C2 and T–periodic in the variable t.
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1. Introduction and statement of the main results

Several classes of Duffing differential equations have been investigated by many authors. They are mainly
interested in the existence of periodic solutions, in their multiplicity, stability, bifurcations, ... see the survey of
Mawhin [12], and also the articles [4]–[8], [13, 14, 17, 19] without trying to be exhaustive in the references.

In this work we study the periodic solutions for the class of Duffing differential equations

x
′′
+ c(t)x

′
+ a(t)x + b(t)x3 = h(t, x), (1.1)

where the functions a(t), b(t), c(t) and h(t, x) are C2 and T–periodic with respect to the variable t. As usual here
the prime denotes derivative with respect to the time t.

In [18] the authors used the Leray–Schauder method to prove the existence of periodic solutions of the Duffing
equation

x
′′
+ cx

′
+ g(t, x) = h(t), (1.2)

where c > 0 is fixed, h and g are T-periodic functions in t.
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During the past three decades the existence and stability of periodic solutions for the equation (1.2), or for
more general types of nonlinear second–order differential equations have been studied by many authors, see for
instance [5, 8, 13, 17]. Ortega initiated the study of the stability of periodic solutions of (1.2) with h(t) = 0 using
the relation between topological degree and stability [14]. Besides the topological degree method, the method of
upper and lower solutions is also successfully used to investigate stability properties. The techniques of these
methods are different from the one of our method.

In [1] Benterki and Llibre studied the periodic solutions of equation (1.1) with c(t) = c, h(t, x) = h(t), c > 0
is a constant, and a(t), b(t) and h(t) are continuous T-periodic functions. These differential equations were also
studied by Chen and Li in the papers [4, 6]. These authors studied the periodic solutions of the equation

x
′′
+ cx

′
+ a(t)x + b(t)x3 = h(t), (1.3)

with the following additional conditions, either b(t) > 0, h(t) > 0 and a(t) satisfies

a(t) ≤ π2

T2 +
c2

4
, and a0 =

1
T

T∫
0

a(t)dt > 0,

or a(t) = a > 0, b(t) = 1 and c > 0, a and c are constants.
In [10] the authors studied the existence and the stability of periodic solutions of the Duffing differential

equation (1.3) with c = εC > 0, a(t) = ε2 A(t), A0b0 > 0 where A0 =
1
T

T∫
0

A(t)dt, b0 =
1
T

T∫
0

b(t)dt and ε is

sufficiently small.
In [2] Benterki and Llibre studied the existence of periodic solutions of the two Duffing differential equations

y
′′
+ a sin y = b sin t and y

′′
+ ay− cy3 = b sin t, where a, b and c are real parameters.

In [9] Llibre and Makhlouf studied the periodic solutions of the second-order differential equation with variable

potentials of form (1.1) with c(t) = r(t) +
p′(t)
p(t)

, a(t) = − q(t)
p(t)

, b(t) = 0 and h(t, x) = − f (t, x)
p(t)

, where the

functions p(t) > 0, q(t), r(t) and f (t, x) are C2 and T–periodic in the variable t.
Instead of working with the T-periodic Duffing differential equation (1.1) we shall work with the following

equivalent T-periodic differential system of first–order

x
′
= y,

y
′
= −c(t)y− a(t)x− b(t)x3 + h(t, x).

(1.4)

We define the functions

k(t) =
t∫

0

c(s)ds, m(t) =
t∫

0

a(s)ek(s)ds,

n(t) =
t∫

0

b(s)ek(s)ds, g(t, x) =
t∫

0

h(s, x)ek(s)ds.

(1.5)

Our results on the periodic solutions of the differential system (1.4) are summarized in the next two theorems.
In these two theorems we provide 16 polynomial systems of the form f1(x0, y0) = f2(x0, y0) = 0, the ones of
Appendices 2 and 3, such that, under the assumptions of Theorems 1.1 or 1.2, for every simple zero (x∗0 , y∗0)
of one of such polynomial systems the differential system (1.4) has a T–periodic solution (x(t), y(t)) such that
(x(0), y(0)) is close to (x∗0 , y∗0).

Theorem 1.1. We consider the differential system (1.4) where the functions a(t), b(t), c(t) and h(t, x) are C2 and T–
periodic in the variable t. Assume that the functions of (1.5) are T–periodic in the variable t. Then for every simple zero
(x∗0 , y∗0) of one of polynomial systems (3.6)–(3.13) in the variables x0 and y0 given in Appendix 2, the differential system
(1.4) has a T–periodic solution (x(t), y(t)) such that (x(0), y(0)) is close to (x∗0 , y∗0).
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Now we define the functions

m(t) =
t∫

0

a(s)ds, n(t) =
t∫

0

b(s)ds, g(t, x) =
t∫

0

h(s, x)ds. (1.6)

Theorem 1.2. We consider the differential system (1.4) where the functions a(t), b(t), c(t) and h(t, x) are C2 and T–
periodic in the variable t. Assume that the functions of (1.6) are T–periodic in the variable t. Then for every simple zero
(x∗0 , y∗0) of one of polynomial systems (3.14)–(3.21) in the variables x0 and y0 given in Appendix 3, the differential system
(1.4) has a T–periodic solution (x(t), y(t)) such that (x(0), y(0)) is close to (x∗0 , y∗0).

Theorem 1.1 is proved in section 2.
The proof of Theorem 1.2 is similar to the proof of Theorem 1.1 and we do not provide it here, otherwise this

paper will duplicate the number of pages.
These proofs are based in the averaging theory and in different rescalings of the functions a(t), b(t), c(t) and

h(t, x), and of the variables x and y.
In section 3 we provide differential systems satisfying all the assumptions of Theorems 1.1 and 1.2, i.e. there

are differential systems for which every polynomial system from (3.6) up to (3.21) provides limit cycles of those
systems.

In Appendix 1 we recall the basic result of the averaging theory that we need for proving our results.

2. Proof of Theorem 1.1

We do the following rescaling of the functions and variables which appear in the differential system (1.4)

x = X,
y = εm2Y,

a(t) = εn1 A(t), (2.1)
b(t) = εn2 B(t),
c(t) = εn3 C(t),

h(t, x) = εn4 H(t, X),

where ε > 0 is a small parameter, then the differential system (1.4) becomes

X
′

= εm2Y,

Y
′

= −εn3 C(t)Y− εn1 − m2 A(t)X (2.2)

−εn2 −m2 B(t)X3 + εn4 − m2 H(t, X),

where we assume 0 ≤ n3, 0 ≤ m2 ≤ n1, m2 ≤ n2, m2 ≤ n4.
We distinguish the following two cases with their corresponding subcases
Case I : m2 = 1 and n3 = 0.
Case II : m2 = 1 and n3 = 1.
We split the cases I and II into the following eight subcases
(α.1) n1 −m2 = 0, n2 −m2 = 0, n4 −m2 = 0,
(α.2) n1 −m2 = 0, n2 −m2 = 0, n4 −m2 = 1,
(α.3) n1 −m2 = 0, n2 −m2 = 1, n4 −m2 = 0,
(α.4) n1 −m2 = 1, n2 −m2 = 0, n4 −m2 = 0,
(α.5) n1 −m2 = 0, n2 −m2 = 1, n4 −m2 = 1,
(α.6) n1 −m2 = 1, n2 −m2 = 0, n4 −m2 = 1,
(α.7) n1 −m2 = 1, n2 −m2 = 1, n4 −m2 = 0,
(α.8) n1 −m2 = 1, n2 −m2 = 1, n4 −m2 = 1,
where α ∈ {I, II} .
We shall prove Theorem 1.1 statement by statement.
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We assume that the following functions are T-periodic in the variable t

K(t) =
t∫

0

C(s)ds, M(t) =
t∫

0

A(s)eK(s)ds,

N(t) =
t∫

0

B(s)eK(s)ds, G(t, X0) =

t∫
0

H(s, X0)eK(s)ds.

Proof of Theorem 1.1 for the polynomial system (3.6). For the case (I.1), i.e. for n3 = 0, m2 = n1 = n2 = n4 = 1, the
differential system (2.2) writes

X
′
= εY,

Y
′
= −C(t)Y− A(t)X− B(t)X3 + H(t, X).

(2.3)

This system is in the normal form (3.1) for applying the averaging theory described in Appendix 1. More precisely,
we have x = (X, Y),

F0(t, x) =
(

0
−C(t)Y− A(t)X− B(t)X3 + H(t, X)

)
, F1(t, x) =

(
Y
0

)
and F2(t, x) =

(
0
0

)
.

Solving the differential system (3.2) associated to our system (2.3) we obtain the T–periodic solutions

(X(t), Y(t)) = (X0, (Y0 − X0M(t)− X3
0 N(t) + G(t, X0))e−K(t)),

for all (X0, Y0) ∈ R2\{(0, 0)}. Now taking z = (X0, Y0) and solving the variational differential equation (3.3)
corresponding to our system (2.3) we obtain the fundamental matrix

Mz(t) =
(

1 0
(−M(t)− 3X2

0 N(t) + Gx(t, X0))e−K(t) e−K(t)

)
.

We compute the average function F (z) = (F1(X0, Y0),F2(X0, Y0)) defined in (3.4) and we get

F1 = −X3
0

T∫
0

N(t)e−K(t)dt− X0

T∫
0

M(t)e−K(t)dt +
T∫

0

G(t, X0)e−K(t)dt + Y0

T∫
0

e−K(t)dt,

F2 = −3X5
0

T∫
0

N(t)2e−K(t)dt− X3
0

T∫
0

N(t)(4M(t)− Gx(t, X0))e−K(t)dt+

3X2
0Y0

T∫
0

N(t)e−K(t)dt + 3X2
0

T∫
0

N(t)G(t, X0)e−K(t)dt− X0

T∫
0

M(t)·

(M(t)− Gx(t, X0))e−K(t)dt +
T∫

0

G(t, X0)(M(t)− Gx(t, X0))e−K(t)dt

+Y0

T∫
0

(M(t)− Gx(t, X0))e−K(t)dt.

By Theorem 3.1 the differential system (2.3) has a periodic solution (X(t, ε), Y(t, ε)) such that (X(0, ε), Y(0, ε))→
(X∗0 , Y∗0 ) when ε → 0, for each zero (X∗0 , Y∗0 ) of the system F1 = F2 = 0, whose Jacobian is different from zero,
i.e. (X∗0 , Y∗0 ) is a simple zero of the system F1 = F2 = 0. Going back to the differential system (1.4) through the
rescalings (2.1) the polynomial system F1 = F2 = 0 in the variables X0 and Y0 becomes the polynomial system
(3.6) in the variables x0 and y0. Consequently the theorem is proved for system (3.6).
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Proof of Theorem 1.1 for the polynomial system (3.7). For the case (I.2), i.e. for n3 = 0, m2 = n1 = n2 = 1, n4 = 2, the
differential system (2.2) writes

X
′
= εY,

Y
′
= −C(t)Y− A(t)X− B(t)X3 + εH(t, X).

(2.4)

This system is in the normal form (3.1) for applying the averaging theory described in Appendix 1.
Solving the differential system (3.2) we obtain the T–periodic solutions

(X(t), Y(t)) = (X0, (−X0M(t)− X3
0 N(t) + Y0)e−K(t)),

for all (X0, Y0) ∈ R2\{(0, 0)}. Now taking z = (X0, Y0) and solving the variational differential equation (3.3) we
obtain the fundamental matrix

Mz(t) =
(

1 0
(−M(t)− 3X2

0 N(t))e−K(t) e−K(t)

)
.

We compute the average function F (z) = (F1(X0, Y0),F2(X0, Y0)) defined in (3.4) and we get

F1 = −X3
0

T∫
0

N(t)e−K(t)dt− X0

T∫
0

M(t)e−K(t)dt + Y0

T∫
0

e−K(t)dt,

F2 = −3X5
0

T∫
0

N(t)2e−K(t)dt− 4X3
0

T∫
0

N(t)M(t)e−K(t)dt + 3X2
0Y0

T∫
0

N(t)·

e−K(t)dt− X0

T∫
0

M(t)2e−K(t)dt +
T∫

0

H(t, X0)eK(t)dt + Y0

T∫
0

M(t)e−K(t)dt.

By Theorem 3.1 the differential system (2.4) has a periodic solution (X(t, ε), Y(t, ε)) such that (X(0, ε), Y(0, ε))→
(X∗0 , Y∗0 ) when ε → 0, for each zero (X∗0 , Y∗0 ) of the system F1 = F2 = 0, whose Jacobian is different from zero.
Going back to the differential system (1.4) through the rescalings (2.1) the theorem follows for system (3.7).

Proof of Theorem 1.1 for the polynomial system (3.8). For the case (I.3), i.e. for n3 = 0, m2 = n1 = n4 = 1, n2 = 2, the
differential system (2.2) writes

X
′
= εY,

Y
′
= −C(t)Y− A(t)X + H(t, X)− εB(t)X3.

This system is in the normal form (3.1) for applying the averaging theory. Solving the differential system (3.2)
we obtain the T–periodic solutions

(X(t), Y(t)) = (X0, (−X0M(t) + G(t, X0) + Y0)e−K(t)),

for all (X0, Y0) ∈ R2\{(0, 0)}. Now in a similar way to the proof of the previous two systems (3.6) and (3.7) we
obtain the fundamental matrix

Mz(t) =
(

1 0
(−M(t) + Gx(t, X0))e−K(t) e−K(t)

)
.
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Computing the average function F (z) = (F1(X0, Y0),F2(X0, Y0)) we get

F1 = −X0

T∫
0

M(t)e−K(t)dt +
T∫

0

G(t, X0)e−K(t)dt + Y0

T∫
0

e−K(t)dt,

F2 = −X3
0

T∫
0

B(t)eK(t)dt− X0

T∫
0

M(t)(M(t)− Gx(t, X0))e−K(t)dt +
T∫

0

G(t, X0)

(M(t)− Gx(t, X0))e−K(t)dt + Y0

T∫
0

(M(t)− Gx(t, X0))e−K(t)dt.

Now the proof of the theorem for the polynomial system (3.8) follows as the proofs for the previous polynomial
systems (3.6) and (3.7).

Proof of Theorem 1.1 for the polynomial system (3.9). For the case (I.4), i.e. for n3 = 0, m2 = n2 = n4 = 1, n1 = 2, the
differential system (2.2) writes

X
′
= εY,

Y
′
= −C(t)Y− B(t)X3 + H(t, X)− εA(t)X.

This system is in the normal form (3.1) for applying the averaging theory. Solving the differential system (3.2) we
obtain the T–periodic solutions

(X(t), Y(t)) = (X0, (−X3
0 N(t) + G(t, X0) + Y0)e−K(t)),

for all (X0, Y0) ∈ R2\{(0, 0)}. Solving the variational differential equation (3.3) we obtain the fundamental matrix

Mz(t) =
(

1 0
(−3X2

0 N(t) + Gx(t, X0))e−K(t) e−K(t)

)
.

We compute the average function and we obtain

F1 = −X3
0

T∫
0

N(t)e−K(t)dt +
T∫

0

G(t, X0)e−K(t)dt + Y0

T∫
0

e−K(t)dt,

F2 = −3X5
0

T∫
0

N(t)2e−K(t)dt + X3
0

T∫
0

N(t)Gx(t, X0)e−K(t)dt + 3X2
0Y0

T∫
0

N(t)

e−K(t)dt + 3X2
0

T∫
0

N(t)G(t, X0)e−K(t)dt− X0

T∫
0

A(t)eK(t)dt−
T∫

0

G(t, X0)

Gx(t, X0)e−K(t)dt−Y0

T∫
0

Gx(t, X0)e−K(t)dt.

As in the proofs of the theorem for the previous polynomial systems it follows the proof for the polynomial
system (3.9).

Proof of Theorem 1.1 for the polynomial system (3.10). For the case (I.5), i.e. for n3 = 0, m2 = n1 = 1, n2 = n4 = 2,
the differential system (2.2) writes

X
′
= εY,

Y
′
= −C(t)Y− A(t)X + εH(t, X)− εB(t)X3.
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We can apply the averaging theory to system (2.5). Solving the differential system (3.2) we obtain the T–periodic
solutions

(X(t), Y(t)) = (X0, (−X0M(t) + Y0)e−K(t)),

for all (X0, Y0) ∈ R2\{(0, 0)}. Solving the variational differential equation (3.3) we obtain the fundamental matrix

Mz(t) =
(

1 0
−M(t)e−K(t) e−K(t)

)
.

We compute the average function

F1 = −X0

T∫
0

M(t)e−K(t)dt + Y0

T∫
0

e−K(t)dt,

F2 = −X3
0

T∫
0

B(t)eK(t)dt− X0

T∫
0

M(t)2e−K(t)dt +
T∫

0

H(t, X0)eK(t)dt+

Y0

T∫
0

M(t)e−K(t)dt.

As in the proofs of the theorem for the previous polynomial systems it follows the proof for the polynomial
system (3.10).

Proof of Theorem 1.1 for the polynomial system (3.11). For the case (I.6), i.e. for n3 = 0, m2 = n2 = 1, n1 = n4 = 2,
the differential system (2.2) writes

X
′
= εY,

Y
′
= −C(t)Y− B(t)X3 − εA(t)X + εH(t, X).

We apply the averaging theory, so solving the differential system (3.2) we obtain the T– periodic solutions

(X(t), Y(t)) = (X0, (−X3
0 N(t) + Y0)e−K(t)),

for all (X0, Y0) ∈ R2\{(0, 0)}. Solving the variational differential equation (3.3) we obtain the fundamental matrix

Mz(t) =
(

1 0
−3X2

0 N(t)e−K(t) e−K(t)

)
.

And we obtain the corresponding average function

F1 = −X3
0

T∫
0

N(t)e−K(t)dt + Y0

T∫
0

e−K(t)dt,

F2 = −3X5
0

T∫
0

N(t)2e−K(t)dt + 3X2
0Y0

T∫
0

N(t)e−K(t)dt− X0

T∫
0

A(t)eK(t)dt+

T∫
0

H(t, X0)eK(t)dt.

As in the proofs of the theorem for the previous polynomial systems it follows the proof for the polynomial
system (3.11).
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Proof of Theorem 1.1 for the polynomial system (3.12). For the case (I.7), i.e. for n3 = 0, m2 = n4 = 1, n1 = n2 = 2,
the differential system (2.2) writes

X
′
= εY,

Y
′
= −C(t)Y + H(t, X)− εA(t)X− εB(t)X3.

Solving the differential system (3.2) we obtain the T–periodic solutions

(X(t), Y(t)) = (X0, (G(t, X0) + Y0)e−K(t)),

for all (X0, Y0) ∈ R2\{(0, 0)}. Now solving the variational differential equation (3.3) we obtain the fundamental
matrix

Mz(t) =
(

1 0
Gx(t, X0)e−K(t) e−K(t)

)
.

We compute the average function and we obtain

F1 =

T∫
0

G(t, X0)e−K(t)dt + Y0

T∫
0

e−K(t)dt,

F2 = −X3
0

T∫
0

B(t)eK(t)dt− X0

T∫
0

A(t)eK(t)dt−
T∫

0

G(t, X0)Gx(t, X0)e−K(t)dt−

Y0

T∫
0

Gx(t, X0)e−K(t)dt.

As in the proofs of the theorem for the previous polynomial systems it follows the proof for the polynomial
system (3.12).

Proof of Theorem 1.1 for the polynomial system (3.13). For the case (I.8), i.e. for n3 = 0, m2 = 1, n1 = n2 = n4 = 2,
the differential system (2.2) writes

X
′
= εY,

Y
′
= −C(t)Y− εA(t)X− εB(t)X3 + εH(t, X).

Solving the differential system (3.2) we obtain the T–periodic solutions

(X(t), Y(t)) = (X0, Y0e−K(t)),

for all (X0, Y0) ∈ R2\{(0, 0)}. Solving the variational differential equation (3.3) we obtain the fundamental matrix

Mz(t) =
(

1 0
0 e−K(t)

)
.

We compute the average function and we get

F1 = Y0

T∫
0

e−K(t)dt,

F2 = −X3
0

T∫
0

B(t)eK(t)dt− X0

T∫
0

A(t)eK(t)dt +
T∫

0

H(t, X0)eK(t)dt.

As in the proofs of the theorem for the previous polynomial systems it follows the proof for the polynomial
system (3.13).

This completes the proof of Theorem 1.1.
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3. Examples

In this section we provide examples of each one of the statements of Theorems 1.1 and 1.2.

Example (1.1) : Consider the differential system (1.4) with a(t) = −(2
3
+

1
3

cos t) sin t cos t, b(t) = (
2
3
+

1
3

cos t) cos t, c(t) =
sin t

2 + cos t
and h(t, x) = x(

2
3
+

1
3

cos t) cos t. These functions are 2π–periodic in the vari-

able t. Then we obtain the functions k(t) =

t∫
0

c(s)ds = − ln(
2 + cos t

3
), g(t, x) =

t∫
0

h(s, x)ek(s)ds = x sin t,

m(t) =
t∫

0

a(s)ek(s)ds = −1
2
+

1
2

cos2 t and n(t) =
t∫

0

b(s)ek(s)ds = sin t, are 2π–periodic in the variable t. Now the

system (3.6) of Theorem 1.1 becomes

1
3

x0 +
4
3

y0 = 0, −2x5
0 +

8
3

x3
0 −

19
24

x0 −
1
3

y0 = 0.

This system has five solutions:

(0, 0), s± = ±(1
6

√
24− 3

√
13,− 1

24

√
24− 3

√
13), r± = ±(1

6

√
24 + 3

√
13,− 1

24

√
24 + 3

√
13).

We omit the solution (0, 0), which corresponds to an equilibrium point. The differential system (1.4) for this

example is invariant under the symmetry (x, y) → (−x,−y). So since the Jacobian (3.5) is
26
27
− 16

27

√
13 for the

second and third solution, and
26
27

+
16
27

√
13 for the fourth and fifth solution, the differential system (1.4) for ε 6= 0

sufficiently small has two periodic solutions (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε)) tends to s+ or r+ when
ε→ 0.

Example (1.2) : Consider the differential system (1.4) with a(t) = (1+(sin t)/2) sin t, b(t) = (1+(sin t)/2) cos t, c(t) =
− cos t/(2 + sin t), h(t, x) = x. These functions are 2π-periodic in the variable t. Then we get the functions

k(t) =
t∫

0

c(s)ds = − ln((2 + sin t)/2), m(t) =
t∫

0

a(s)ek(s)ds = 1− cos t and n(t) =
t∫

0

b(s)ek(s)ds = sin t, which are

2π–periodic in the variable t. Now computing the polynomial system (3.7) of Theorem 1.1 we obtain the system

−1
2

x3
0 − 2x0 + 2y0 = 0, −3x5

0 − 2x3
0 +

3
2

x2
0y0 − 3x0 +

4
3

√
3x0 + 2y0 = 0.

This system has only two real solutions different from (0, 0):

s± = ±(
√

42
21

(−42 + 56
√

3)1/4,

√
42

882
(−42 + 56

√
3)3/4 +

√
42

21
(−42 + 56

√
3)1/4).

The differential system (1.4) for this example is invariant under the symmetry (x, y) → (−x,−y). So since the
Jacobian (3.5) is 32

√
3/3− 8 for the second and third solution, the differential system (1.4) for ε 6= 0 sufficiently

small has one periodic solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε)) tends to s+ when ε→ 0.

Example (1.3) : Consider the differential system (1.4) with a(t) = (1 + (sin t)/2) cos t, b(t) = cos t, c(t) =
− sin t/(2 + cos t), h(t, x) = (x + 1)(1 + (sin t)/2) sin t. These functions are 2π-periodic in the variable t. Then

we obtain the functions k(t) =

t∫
0

c(s)ds = − ln((2 + cos t)/3), m(t) =

t∫
0

a(s)ek(s)ds = sin t and g(t, x) =
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t∫
0

h(s, x)ek(s)ds = −x cos t− cos t + x + 1, which are 2π–periodic in the variable t. Now the polynomial sys-

tem (3.8) of Theorem 1.1 becomes
3
2

x0 + 2y0 + 2 = 0, −3x0 −
3
2

y0 −
5
2
= 0.

This system has the unique solution z = (−8/15,−3/5). Since the Jacobian (3.5), for this solution is 15/4, the dif-
ferential system (1.4) for ε 6= 0 sufficiently small has one periodic solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε))
tends to s when ε→ 0.

Example (1.4) : Consider the differential system (1.4) with a(t) = sin t + cos t, b(t) = (2 + cos t) cos t/3,
c(t) = sin t/(2 + cos t), h(t, x) = x(2 + cos t) sin t/3. These functions are 2π–periodic in the variable t. Then

we compute the functions k(t) =

t∫
0

c(s)ds = − ln((2 + cos t)/3), g(t, x) =

t∫
0

h(s, x)ek(s)ds = x − x cos t and

n(t) =
t∫

0

b(s)ek(s)ds = sin t, which are 2π–periodic in the variable t. For this system the polynomial system (3.9)

of Theorem 1.1 is
x0 +

4
3

y0 = 0, −2x5
0 −

22
3

x0 + 4
√

3x0 − y0 = 0.

This system has only two non–zero real solutions

s± = ±(
√

3
6

(−474 + 288
√

3)1/4,−
√

3
8

(−474 + 288
√

3)1/4).

The differential system (1.4) for this example is invariant under the symmetry (x, y) → (−x,−y). So since the
Jacobian (3.5) is −316/9 + 64

√
3/3 for both solutions, the differential system (1.4) for ε 6= 0 sufficiently small has

one periodic solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε)) tends to s+ when ε→ 0.
Example (1.5) : Consider the differential system (1.4) with a(t) = 3(1 + sin2 t) sin t, b(t) = sin2 t(1 + cos t),

c(t) = −2 sin t cos t/(1 + sin2 t) and h(t, x) = (x3 + 1) sin2 t. These functions are 2π–periodic in the variable t.

Then we obtain the functions k(t) =
t∫

0

c(s)ds = − ln(1 + sin2 t) and m(t) =
t∫

0

a(s)ek(s)ds = 3− 3 cos t, which are

2π–periodic in the variable t. For this system the polynomial system (3.10) of Theorem 1.1 is

−9x0 + 3y0 = 0, −153
4

x0 + 9y0 −
√

2 + 2 = 0.

This system has the unique solution s = ((8− 4
√

2)/45, (8− 4
√

2)/15). Since the Jacobian (3.5) for this solution
is 135/4, the differential system (1.4) for ε 6= 0 sufficiently small has one periodic solution (x(t, ε), y(t, ε)) such
that (x(0, ε), y(0, ε)) tends to s when ε→ 0.

Example (1.6) : Consider the differential system (1.4) with a(t) = sin2 t, b(t) = cos t(1 + sin2 t), c(t) =
−2 sin t cos t/(1 + sin2 t) and h(t, x) = (x + 1) sin2 t. These functions are 2π–periodic in the variable t. Then we

compute the functions k(t) =
t∫

0

c(s)ds = − ln(1 + sin2 t) and n(t) =
t∫

0

b(s)ek(s)ds = sin t, which are 2π–periodic

in the variable t. Here the polynomial system (3.11) of Theorem 1.1 becomes

3y0 = 0, −21
4

x5
0 + 2−

√
2 = 0.

This system has the unique real solution s = ((−777924
√

2 + 1555848)1/5/21, 0). Since the Jacobian (3.5) for this
solution is 5(−777924

√
2 + 1555848)4/5/12348, the differential system (1.4) for ε 6= 0 sufficiently small has one

periodic solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε)) tends to s when ε→ 0.
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Example (1.7) : Consider the differential system (1.4) with a(t) = sin2 t, b(t) = cos t(1 + sin2 t), c(t) =
−2 sin t cos t/(1 + sin2 t) and h(t, x) = (x + 1)(1 + sin2 t) cos t. These functions are 2π–periodic in the variable

t. Then we get the functions k(t) =
t∫

0

c(s)ds = − ln(1+ sin2 t) and g(t, x) =
t∫

0

h(s, x)ek(s)ds = (x + 1) sin t, which

are 2π–periodic in the variable t. Now the polynomial system (3.12) of Theorem 1.1 is

3y0 = 0, −15
4

x0 +
√

2x0 −
7
4
= 0.

This system has the unique solution s = (7/(4
√

2− 15), 0). Since the Jacobian (3.5) for this solution is −3(−15 +
4
√

2)/4, the differential system (1.4) for ε 6= 0 sufficiently small has one periodic solution (x(t, ε), y(t, ε)) such
that (x(0, ε), y(0, ε)) tends to s when ε→ 0.

Example (1.8) : Consider the differential system (1.4) with a(t) = 2 cos t, b(t) = cos2 t, c(t) = sin t/(2 + cos t)
and h(t, x) = x cos t sin2 t. These functions are 2π–periodic in the variable t. Then we compute the function

k(t) =

t∫
0

c(s)ds = − ln((2 + cos t)/3), which is 2π–periodic in the variable t. For this differential system the

polynomial system (3.13) of Theorem 1.1 becomes

y0 = 0, −8
√

3x3
0 + 12x3

0 + 20
√

3x0 − 33x0 = 0.

It has the two non–zero solutions s± = ±
√

7− 2
√

3/2, whose Jacobians (3.5) are 40
√

3− 66. Since system (1.4) for
this example is invariant under the symmetry (x, y) → (−x,−y), it has for ε 6= 0 sufficiently small one periodic
solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε)) tends to s+ when ε→ 0.

Example (2.1) : Consider the differential system (1.4) with a(t) = sin t, b(t) = 2 cos t, c(t) = 2 sin t + cos t
and h(t, x) = x sin t. These functions are 2π–periodic in the variable t. Then we obtain the functions g(t, x) =

t∫
0

h(s, x)ds = x− x cos t, m(t) =
t∫

0

a(s)ds = 1− cos t and n(t) =
t∫

0

b(s)ds = 2 sin t, which are 2π–periodic in the

variable t. For this differential system the polynomial differential system (3.14) of Theorem 1.2 is

2y0 = 0, −12x5
0 + 4x3

0 = 0.

This system has the two non–zero solutions s± = ±(1/
√

3, 0). Since the Jacobian (3.5) is 16/3 for both solution,
and system (1.4) for this example is invariant under the symmetry (x, y) → (−x,−y) it has for ε 6= 0 sufficiently
small one periodic solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε)) tends to s+ when ε→ 0.

Example (2.2) : Consider the differential system (1.4) with a(t) = − sin t, b(t) = cos t, c(t) = sin t and h(t, x) =

x. These functions are 2π–periodic in the variable t. Then we compute the functions m(t) =
t∫

0

a(s)ds = −1+ cos t

and n(t) =
t∫

0

b(s)ds = sin t, which are 2π–periodic in the variable t. For this differential system the polynomial

system (3.15) of Theorem 1.2 becomes

2x0 + 2y0 = 0, −3x5
0 + x3

0 − x0 − 2y0 = 0.

This system has the two non–zero real solutions s± = ±(
√

6 + 6
√

13/6,−
√

6 + 6
√

13/6). Since the Jacobian
(3.5) is (26 + 2

√
13)/3 for both solution, and system (1.4) for this example is invariant under the symmetry

(x, y)→ (−x,−y) it has for ε 6= 0 sufficiently small one periodic solutions (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε))
tends to s+ when ε→ 0.

Example (2.3) : Consider the differential system (1.4) with a(t) = − cos t, b(t) = cos t, c(t) = sin t cos t and
h(t, x) = (x + 1) cos t. These functions are 2π–periodic in the variable t. Then we obtain the functions g(t, x) =
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t∫
0

h(s, x)ds = (x + 1) sin t and m(t) =
t∫

0

a(s)ds = − sin t, which are 2π–periodic in the variable t. The polynomial

system (3.16) of Theorem 1.2 for this differential system becomes

2y0 = 0, −4x0 − 2 = 0.

This system has the unique solution s = (−1/2, 0). Since the Jacobian (3.5) at this solution is 8, the differential
system (1.4) for ε 6= 0 sufficiently small has one periodic solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε)) tends
to s when ε→ 0.

Example (2.4) : Consider the differential system (1.4) with a(t) = cos t, b(t) = 2 sin t, c(t) = sin t + cos t
and h(t, x) = x sin t. These functions are 2π–periodic in the variable t. Then we compute the functions g(t, x) =

t∫
0

h(s, x)ds = x − x cos t and n(t) =

t∫
0

b(s)ds = 2− 2 cos t, which are 2π–periodic in the variable t. For this

differential system the polynomial system (3.17) of Theorem 1.2 is

−4x3
0 + 2x0 + 2y0 = 0, −36x5

0 + 22x3
0 + 12x2

0y0 − 2x0 − 2y0 = 0.

This system has two non–zero real solutions s± = ±(1/
√

2, 0). Since the Jacobian (3.5) is 12 for both solution,
and system (1.4) for this example is invariant under the symmetry (x, y)→ (−x,−y), it has for ε 6= 0 sufficiently
small one periodic solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε)) tends to s+ when ε→ 0.

Example (2.5) : Consider the differential system (1.4) with a(t) = sin t, b(t) = cos t, c(t) = 1 + cos t and
h(t, x) = sin2(t + x) + cos t. These functions are 2π–periodic in the variable t. Then we compute the function

m(t) =

t∫
0

a(s)ds = 1− cos t, which is 2π–periodic in the variable t. For this differential system the polynomial

system (3.18) of Theorem 1.2 becomes

−2x0 + 2y0 = 0, −2x0 + 1 = 0.

This system has the unique solution s = (1/2, 1/2). Since the Jacobian (3.5) for this solution is 4, the differential
system (1.4) for ε 6= 0 sufficiently small has one periodic solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε)) tends
to s when ε→ 0.

Example (2.6) : Consider the differential system (1.4) with a(t) = sin t, b(t) = cos t, c(t) = 1 + cos t and
h(t, x) = sin2(t + x) + cos t. These functions are 2π–periodic in the variable t. Then we obtain the function

n(t) =
t∫

0

b(s)ds = sin t, which is 2π–periodic in the variable t. For this differential system the polynomial system

(3.19) of Theorem 1.2 we obtain the system is

2y0 = 0, −3x5
0 − 2y0 + 1 = 0.

This system has the unique solution s = (34/5/3, 0). Since the Jacobian (3.5) for this solution is 10π231/5, the dif-
ferential system (1.4) for ε 6= 0 sufficiently small has one periodic solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε))
tends to s when ε→ 0.

Example (2.7) : Consider the differential system (1.4) with a(t) = 2, b(t) = − sin2 t, c(t) = cos t and h(t, x) =

x cos t. These functions are 2π–periodic in the variable t. Then we compute the function g(t, x) =
t∫

0

h(s, x)ds =

x sin t, which is 2π–periodic in the variable t. gx(t, x) = sin t. For this differential system the polynomial system
(3.20) of Theorem 1.2 becomes

2y0 = 0, x3
0 − 5x0 = 0.
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This system has two non–zero real solutions s± = ±(
√

5, 0). Since the Jacobian (3.5) is −20 for both solutions,
and system (1.4) for this example is invariant under the symmetry (x, y) → (−x,−y) it has for ε 6= 0 sufficiently
small one periodic solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε)) tends to s+ when ε→ 0.

Example (2.8) : Consider the differential system (1.4) with a(t) = − cos2 t, b(t) = 2, c(t) = cos t and h(t, x) =
−x cos t. These functions are 2π–periodic in the variable t. For this differential system the polynomial system
(3.21) of Theorem 1.2 is

y0 = 0, −4x3
0 + x0 = 0.

It has two non–zero solutions s± = (0,±1/2). Since the Jacobian (3.5) is 2 for both solutions, and system (1.4) for
this example is invariant under the symmetry (x, y) → (−x,−y) it has for ε 6= 0 sufficiently small one periodic
solution (x(t, ε), y(t, ε)) such that (x(0, ε), y(0, ε)) tends to s+ when ε→ 0.

Appendix 1: Averaging theory of first order

In this appendix we recall one of the basic results from the averaging theory that we need for proving the
results of this paper.

The averaging theory here presented provides an answer to the problem of the bifurcation of T–periodic
solutions from differential systems of the form

x ′ = F0(t, x) + εF1(t, x) + ε2F2(t, x, ε), (3.1)

with ε = 0 to ε 6= 0 sufficiently small, where the C2 functions F0,F1 : R×Ω→ Rn and F2 : R×Ω× (−ε0, ε0)→ Rn

are T-periodic in the first variable, and the domain of definition of the differential system is Ω an open subset of
Rn. We assume that the unperturbed system

x′ = F0(t, x), (3.2)
has a submanifold of dimension n filled with periodic solutions.

Let x(t, z, ε) be the solution of system (3.1) such that x(0, z, ε) = 0. So, in particular x(t, z, 0) is the solution of
system (3.2) such that x(0, z, 0) = 0.

The first variational equation of the unperturbed system (3.2) along the periodic solution x(t, z, 0) is

y′ = DxF0(t, x(t, z, 0))y, (3.3)

where y is an n× n matrix. In what follows we denote by Mz(t) a fundamental matrix of the linear differential
system (3.3).

We assume that there exists an open set V with C`(V) ⊂ Ω such that for each z ∈ V the solution x(t, z, 0)
is T–periodic. So the set of periodic solutions contained in V is isochronous for the system (3.1), i.e. it is a set
formed only by periodic orbits having the same period T. Now an answer to the problem: which T–periodic
solutions x(t, z, 0) of system (3.2) contained in V can be continued to T–periodic solutions x(t, z, ε) of system (3.1)
for ε 6= 0, is given in the following result.

Theorem 3.1. We assume that there exists an open and bounded set V with C`(V) ⊂ Ω such that for each z ∈ V the
solution x(t, z, 0) is T–periodic, then we consider the average function F : V −→ Rn defined by

F (z) =
T∫

0

M−1
z (t)F1(t, x(t, z, 0))dt. (3.4)

If there exists α ∈ V with F (α) = 0 and
det((dF�dz)(α)) 6= 0, (3.5)

then there exists a T–periodic solution x(t, ε) of system (3.1) for ε 6= 0 sufficiently small such that when ε → 0 we have
that x(0, ε)→ α.

Theorem 3.1 is due to Malkin and Roseau who proved it independently, see [11] and [15], respectively. For an
easy proof of Theorem 3.1 see Corollary 1 of [3].

For more information about the averaging theory see the books of [16, 18].
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Appendix 2

We define in this appendix the polynomial systems in the variables x0 and y0 which appear in the statements
of Theorem 1.1.

−x3
0

T∫
0

n(t)e−k(t)dt− x0

T∫
0

m(t)e−k(t)dt +
T∫

0

g(t, x0)e−k(t)dt + y0

T∫
0

e−k(t)dt = 0,

−3x5
0

T∫
0

n(t)2e−k(t)dt− x3
0

T∫
0

n(t)(4m(t)− gx(t, x0))e−k(t)dt + 3x2
0y0

T∫
0

n(t)·

e−k(t)dt + 3x2
0

T∫
0

n(t)g(t, x0)e−k(t)dt− x0

T∫
0

m(t)(m(t)− gx(t, x0))e−k(t)dt

+

T∫
0

g(t, x0)(m(t)− gx(t, x0))e−k(t)dt + y0

T∫
0

(m(t)− gx(t, x0))e−k(t)dt = 0.

(3.6)

−x3
0

T∫
0

n(t)e−k(t)dt− x0

T∫
0

m(t)e−k(t)dt + y0

T∫
0

e−k(t)dt = 0,

−3x5
0

T∫
0

n(t)2e−k(t)dt− 4x3
0

T∫
0

n(t)m(t)e−k(t)dt + 3x2
0y0

T∫
0

n(t)e−k(t)dt

−x0

T∫
0

m(t)2e−k(t)dt +
T∫

0

h(t, x0)ek(t)dt + y0

T∫
0

m(t)e−k(t)dt = 0.

(3.7)

−x0

T∫
0

m(t)e−k(t)dt +
T∫

0

g(t, x0)e−k(t)dt + y0

T∫
0

e−k(t)dt = 0,

−x3
0

T∫
0

b(t)ek(t)dt− x0

T∫
0

m(t)(m(t)− gx(t, x0))e−k(t)dt +
T∫

0

g(t, x0)(m(t)−

gx(t, x0))e−k(t)dt + y0

T∫
0

(m(t)− gx(t, x0))e−k(t)dt = 0.

(3.8)
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−x3
0

T∫
0

n(t)e−k(t)dt +
T∫

0

g(t, x0)e−k(t)dt + y0

T∫
0

e−k(t)dt = 0,

−3x5
0

T∫
0

n(t)2e−k(t)dt + x3
0

T∫
0

n(t)gx(t, x0)e−k(t)dt + 3x2
0y0

T∫
0

n(t)e−k(t)dt+

3x2
0

T∫
0

n(t)g(t, x0)e−k(t)dt− x0

T∫
0

a(t)ek(t)dt−
T∫

0

g(t, x0)gx(t, x0)e−k(t)dt

−y0

T∫
0

gx(t, x0)e−k(t)dt = 0.

(3.9)

−x0

T∫
0

m(t)e−k(t)dt + y0

T∫
0

e−k(t)dt = 0,

−x3
0

T∫
0

b(t)ek(t)dt− x0

T∫
0

m(t)2e−k(t)dt +
T∫

0

h(t, x0)ek(t)dt + y0

T∫
0

m(t)e−k(t)dt = 0.

(3.10)

−x3
0

T∫
0

n(t)e−k(t)dt + y0

T∫
0

e−k(t)dt = 0,

−3x5
0

T∫
0

n(t)2e−k(t)dt + 3x2
0y0

T∫
0

n(t)e−k(t)dt− x0

T∫
0

a(t)ek(t)dt +
T∫

0

h(t, x0)ek(t)dt = 0.

(3.11)

T∫
0

g(t, x0)e−k(t)dt + y0

T∫
0

e−k(t)dt = 0,

−x3
0

T∫
0

b(t)ek(t)dt− x0

T∫
0

a(t)ek(t)dt−
T∫

0

g(t, x0)gx(t, x0)e−k(t)dt− y0

T∫
0

gx(t, x0)e−k(t)dt = 0.

(3.12)

−x3
0

T∫
0

b(t)ek(t)dt− x0

T∫
0

a(t)ek(t)dt +
T∫

0

h(t, x0)ek(t)dt = 0,

y0 = 0.

(3.13)
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Appendix 3

We define in this appendix the polynomial systems in the variables x0 and y0 which appear in the statements
of Theorem 1.2.

−x3
0

T∫
0

n(t)dt− x0

T∫
0

m(t)dt +
T∫

0

g(t, x0)dt + Ty0 = 0,

−3x5
0

T∫
0

n(t)2dt− x3
0

T∫
0

n(t)(4m(t)− gx(t, x0)− c(t))dt + 3x2
0y0

T∫
0

n(t)dt+

3x2
0

T∫
0

n(t)g(t, x0)dt− x0

T∫
0

m(t)(m(t)− gx(t, x0)− c(t))dt +
T∫

0

g(t, x0)(m(t)

−gx(t, x0)− c(t))dt + y0

T∫
0

(m(t)− gx(t, x0)− c(t))dt = 0.

(3.14)

−x3
0

T∫
0

n(t)dt− x0

T∫
0

m(t)dt + Ty0 = 0,

−3x5
0

T∫
0

n(t)2dt− x3
0

T∫
0

n(t)(4m(t)− c(t))dt + 3x2
0y0

T∫
0

n(t)dt− x0

T∫
0

m(t)(m(t)−

c(t))dt +
T∫

0

h(t, x0)dt + y0

T∫
0

(m(t)− c(t))dt = 0.

(3.15)

−x0

T∫
0

m(t)dt +
T∫

0

g(t, x0)dt + Ty0 = 0,

−x3
0

T∫
0

b(t)dt− x0

T∫
0

m(t)(m(t)− gx(t, x0)− c(t))dt +
T∫

0

g(t, x0)(m(t)− gx(t, x0)−

c(t))dt + y0

T∫
0

(m(t)− gx(t, x0)− c(t))dt = 0.

(3.16)
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−x3
0

T∫
0

n(t)dt +
T∫

0

g(t, x0)dt + Ty0 = 0,

−3x5
0

T∫
0

n(t)2dt + x3
0

T∫
0

n(t)(gx(t, x0) + c(t))dt + 3x2
0y0

T∫
0

n(t)dt + 3x2
0

T∫
0

n(t)

g(t, x0)dt− x0

T∫
0

a(t)dt−
T∫

0

g(t, x0)(gx(t, x0) + c(t))dt− y0

T∫
0

(gx(t, x0) + c(t))dt = 0.

(3.17)

−x0

T∫
0

m(t)dt + Ty0 = 0,

−x3
0

T∫
0

b(t)dt− x0

T∫
0

m(t)(m(t)− c(t))dt +
T∫

0

h(t, x0)dt + y0

T∫
0

(m(t)− c(t))dt = 0.

(3.18)

−x3
0

T∫
0

n(t)dt + Ty0 = 0,

−3x5
0

T∫
0

n(t)2dt + x3
0

T∫
0

c(t)n(t)dt + 3x2
0y0

T∫
0

n(t)dt− x0

T∫
0

a(t)dt +
T∫

0

h(t, x0)dt−

y0

T∫
0

c(t)dt = 0.

(3.19)

T∫
0

g(t, x0)dt + Ty0 = 0,

−x3
0

T∫
0

b(t)dt− x0

T∫
0

a(t)dt−
T∫

0

g(t, x0)(gx(t, x0) + c(t))dt− y0

T∫
0

(gx(t, x0) + c(t))dt = 0.

(3.20)

−x3
0

T∫
0

b(t)dt− x0

T∫
0

a(t)dt +
T∫

0

h(t, x0)dt = 0,

y0 = 0.

(3.21)
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