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Bielliptic modular curves X (N ) with square-free levels

Francesc Bars*and Josep Gonzalez

Abstract

Let N > 1 be a square-free integer such that the modular curve Xj(V) has genus > 2.
We prove that Xj(N) is bielliptic exactly for 19 values of N, and we determine the
automorphism group of these bielliptic curves. In particular, we obtain the first examples
of nontrivial Aut(Xg(/N)) when the genus of Xj(/N) is > 3. Moreover, we prove that the
set of all quadratic points over Q for the modular curve Xj(N) with genus > 2 and N
square-free is not finite exactly for 50 values of N.

1 Introduction

Let X be a smooth projective curve defined over a number field K of genus gx at least two.
In [9], Faltings proved the finiteness of the set of points of X defined over K, denoted by X (K).
After that, for a finite extension L/K, the natural object to consider was the set of points of
X defined over all quadratic extensions of L, i.e. the set

Io(X, L) = Upp.pj<2 X (F).

In |13], Harris and Silverman proved that the above set is not finite for some number field L
if, and only if, X is hyperelliptic or bielliptic, i.e. the curve X xx K admits a degree 2 map
to the projective line or to an elliptic curve over a fixed algebraic closure K of K. Moreover,
from the work of Abramovich, Harris and Silverman, in [5, Theorem 2.14] it is proved that
the set ['y(X, L) is infinite if, and only if, X is hyperelliptic over L, i.e. there is a morphism
¢: X — PL of degree two defined over L, or X is bielliptic over L, i.e. there exist an elliptic
curve E over L and a morphism ¢ : X — E of degree two defined over L, such that the L-rank
of E is at least one.

This made the study of bielliptic curves a matter of deep interest for Arithmetic Geometry.
This was developed for the modular world, because L-points of modular curves have a moduli
interpretation on elliptic curves. The first work concerned the modular curves Xo(N). The
levels N for which the set I'y(Xo(V), Q) is finite are determined in [4].

Later, different results determining the bielliptic curves among some modular curves re-
covering Xo(N) can be found in [17] for X;(N), in [19] for XA(N) and in [6] and [18] for
X(N).

Two important tools to obtain such results are the following. First, if there is a morphism of
curves X — X’ such that X is bielliptic and the genus of X’ is at least 2, then X" is hyperelliptic
or bielliptic [13, Proposition 1]. One can use results about hyperelliptic modular curves, whose
study has been widely treated in the last decades. Second, X is bielliptic if, and only if, there
exists an involution of X fixing 2¢gx — 2-many points, where gx denotes de genus of X.
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In this paper we consider the modular curves X§(N). They are defined as the quotient of
the modular curve Xo(N) by the group of all Atkin-Lehner involutions, which is defined over
Q. Its K-points, which are not cuspidal, correspond to K-curves with additional data from the
level N. See [8] for further information.

Here, we restrict our attention to the case where N is square-free. Under such assumption,
the modular curve Xj(N) corresponds to the quotient Xo(N)/ Aut(Xo(V)) and, thus, it does
not have any natural automorphisms (in particular, involutions) coming from Xy(N), except
for N = 37. These curves have two properties that play an important role in the development
of this article. On the one hand, all involutions of Xj(N) are defined over Q. On the other
hand, the endomorphism algebra End(Jac(X{(/V)) ® Q is isomorphic to the product of totally
real numbers fields (cf. [3, §2]). Any of these properties can fail when N is non square-free and
the study of this case needs additional tools.

We point out that if X§(V) is bielliptic, then a bielliptic quotient (i.e. the quotient of
X§(N) by a bielliptic involution), is an elliptic curve E defined over Q of conductor M|N with
odd analytic rank, because the attached newform is invariant under the Atkin-Lehner involution
wyr. Hence, it is expected that the algebraic rank of E is odd.

In our case, the knowledge of the values of N for which X((/V) is bielliptic is not useful to
obtain bielliptic curves Xj(N), because, in this case, these curves have genus at most one or are
hyperelliptic. A new approach is needed to deal with our case and, here, we use a method given
in [11] to discard automorphisms of certain order in the automorphism group of a curve defined
over a finite field. In particular, this method allows us to deduce that the automorphism group
is trivial for such values of N, when such method works. This approach behaves well for odd
square-free integers N, when N is the product of two or three primes. When it fails, we use
the usual method of reducing modulo a prime p to discard some situations. For the remaining
cases, using a Theorem of Petri [?], we implement a method to recognize whether a curve
X (N) is bielliptic and compute equations for the elliptic quotient.

The main result of this article is the following.

Theorem 1. Let N > 1 be a square-free integer. Assume that the genus of the modular curve
X§(N) is at least 2. Then, the modular curve X;(N) is bielliptic if, and only if, N is in the
following table

genus N
2 106, 122,129, 158, 166, 215, 390
3 178,183, 246, 249, 258, 290, 303, 318, 430, 455, 510
4 370

For these values of N, the automorphism group of X;(N) has order 2 when its genus is greater
than two, otherwise it is the Klein group.

Concerning Aut(X;(N)), with N square-free and genus > 2, it is known that it is an abelian
2-group (cf. [3]). Moreover, when N is prime this group is nontrivial if, and only if, the genus
of the curve is 2 and, in this case, the group has order 2 (cf. [3, Theorem 1.1]). In fact, it is
expected that this group is trivial for almost all square-free N.

In this paper, we can observe that the Klein group appears naturally for genus two curves
which are also bielliptic (cf. Remark . Moreover, we point out that a bielliptic curve could
have several involutions and also more than one bielliptic involution when its genus is < 5
(cf. |5, Prop.2.10]). Nevertheless, this does not happen in our case

As a by-product of this work, we also obtain the following result.



Proposition 2. The automorphism group of X§(N) is trivial for the following values of N :

185,202, 259, 262, 267, 273, 282, 301, 305, 310, 326, 354, 393, 394, 395, 399, 426, 427, 429, 445,
458, 462, 489, 505, 518, 546, 553, 570, 581, 582, 602, 627, 638, 710, 754, 786, 795, 814, 826, 854,
903,915, 1001, 1015 .

Moreover, the group Aut(X;(366)) has order 2, and the quotient curve has genus 2.

For many of these values (see Propositions |11| and , this result is obtained by using the
method to discard the existence of involutions, which was mentioned above. A Magma code to
be applied in our case can be found in

http://mat.uab.cat/~francesc/programmesXoestrellaMagma.html
(this html page, also contains different codes in Magma for computing the genus of Xj(N) and
its F,x-points). For the remaining values of the above proposition (see Propositions , ,
and , Theorem of Petri is the main tool.

As for quadratic points, by the work of Hasegawa and Hashimoto (cf. [15]), we know that
X§(N) is hyperelliptic with N square-free if, and only if, the curve has genus 2. When X (N)
is bielliptic with genus > 2, the rank of the elliptic quotient turns out to be one. So we conclude

Theorem 3. Let N > 1 be a square-free integer. Assume that the genus of the modular curve
X§(N) is > 2. Then, the set T'o(X5(N), Q) is infinite if, and only if, N lies in the set

{67,73,85,93,103, 106, 107, 115,122, 129, 133, 134, 146, 154, 158, 161, 165, 166, 167, 170, 177, 178,
183,186, 191, 205, 206, 209, 213, 215, 221, 230, 246, 249, 255, 258, 266, 285, 286, 287, 290, 299, 303,
318,330, 357, 370, 390, 430, 455, 510} .

Theorem [ holds when we replace I'y (X3 (N), Q) with Iy (X (N), K), where K is any number
field. This is due to the fact that if Xj(N) is hyperelliptic or bielliptic over K, then it is
hyperelliptic or biellitic over Q (cf. Lemma |4)

2 Preliminary results

Let N > 1 be an integer. We fix once and for all the following notation. We denote by gy
and gy the genus of Xo(N) and Xj(N), respectively, and n is the number of primes dividing
N. For any 1 < d|N with (d, N/d) = 1 we have an involution wy € Aut(Xo(N)), called the
Atkin-Lehner involution attached to d, and we denote by B(N) the group of all Atkin-Lehner
involutions. We denote by Newy the set of normalized newforms in S»(I'g(N)), and Newy is
the subset of Newy consisting of the newforms invariant under the action of the group B(IV).
For an integer m > 1 and a newform f € Newy, a,,(f) is the m-th Fourier coefficient of f.
For an eigenform f € S3(I'o(N), A, denotes the abelian variety defined over Q attached by
Shimura to ¢g. As usual, ¥ is the Dedekind psi function.
In the sequel, N is square-free. We recall the following result of Baker and Hasegawa.

Lemma 4 (Corollary 2.6 in [3]). The group Aut X;(N) is elementary 2-abelian and every
automorphism of XJ(N) is defined over Q.

From now on, we assume that X$(/N) has a bielliptic involution u. Let us denote by E the
elliptic quotient X (N)/(u) and by 7 the nonconstant morphism Xy(N) — X} (N) — E, which
has degree 2""! and is defined over Q. Let M be the conductor of E. It is well-known that M|N
and there exist a morphism my: Xj(M) — E and a normalized newform fr € Newj, such

that 73,(Q5,q) = Q(fr(g)d ¢/q). Moreover, 7 (Qy o) = Q(g(q)d ¢/q), where g is the eigenform
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> r<anym walf) € Sy(To(N))BW) and wy stands for the Atkin-Lehner involution attached to
d. More precisely, g(q) = 3=, 4/ d fr(q%).

Since the gonality of X (N) is < 4, by applying Proposition 4.4 in [2], we obtain g} < 35.
Nevertheless, this fact is not very useful in order to determine a finite set of possible values

for N. The following lemma helps us to achieve this goal. Note that for a prime p { M,
|E(F)| < (p+1) but |E(Fy)| = (p+1)* —a.(fe) due to the congruence of Eichler-Shimura.

Lemma 5. The following inequalities hold:

(i) If p1 N, then

N 21E(F2)| —1 E(F,: E(F,:
2n p—1 p—1 p—1
(i) Ifp | N, then gy, <1 or
Y(N/p) 2[EF2) -1, |E(F,2)| nEER)]
WSU#a gN/pSQﬁ, gn/p < 2 fpl, ifpt M,
b(N/p) _ 20" +1 . p’+1 DAL
o1 §12F, gN/p§2pja Ingp < 2 b1 if p|M.

Proof. Assume p{ N. We generalize the argument used by Ogg in [20]. Indeed, Xo(N)(F,2)
contains 2" cusps and at least (p — 1)#]2\0 many supersingular points (cf. [2, Lemma 3.20 and
3.21]). Since there is a nonconstant morphism defined over Q from X,(N) to an elliptic quotient
E of X;(N) which has degree 2" | Xo(N)(F,2)| < 2" |E(F,2)|. Parts (b) and (c) in (i) are
obtained applying [2, Lemma 3.25].

If p|N, then X(NV)/F, is the copy of two curves Xo(N/p)/F, , and the normalization of
X5 (N)/F, is the curve X§(N/p)/F, (cf. [10]). If the reduction of the involution w is the identity,
then gy, is the genus of E/F,. Otherwise, |X¢(N/p)(F;2)| is at most 2(p* + 1) or |E(F,2)|,
depending on whether p | M or not. O

Remark 6. The above conditions imply n < 4, when N is odd, and n < 5 in the even case.
The values N for which gy < 1 can be found in [12, Proposition 3.1 and 3.2/, and those for
which gy = 2 can be found in (14, Theorem 2 ].

Keeping the above notation, we present the following lemma, which will used to discard
some elliptic curves E for a value N.

Lemma 7. Let E' be the elliptic curve in the Q-isogeny class of E that is an optimal quotient
of the jacobian of X5(M). If M = N, then the degree D of the modular parametrization
n: Xo(N) — E' divides 2",

Proof. The statement follows from the optimality of 7 and the fact that the degree of 7 is
2n+1' O

Remark 8. The degree D can be found in [7, Table 5].



3 0Odd case

If N is odd, applying Lemma [5| for p = 2, we have ¢)(N)/2" < 204. This fact implies n < 3,
except for the values N € {3-5-7-11,3-5-7-13}. The case n = 1 can be discarded, since
Aut(Xg(p)) is trivial for all p except for g5 = 2 and, in this particular hyperelliptic case, the
automorphism group has order two (cf. |3, Theorem 1.1]). We assume also that g3 > 2 and
apply Lemma 5| for the values ged(V,3) for which ¢(N)/2™ < 186. There are exactly 146
values for odd N such that n > 1, ¢»(N) < 204 - 2™ (or < 186 - 2" if 61 N ) and all of these
satisfy 1 < gy < 927" More precisely, we have 100 cases for n = 2, 44 for n = 3 and 2
for n = 4. We can reduce this list by applying Lemma [5| for each candidate N, we consider
the pairs (N, E), where E is the Q-isogeny class of the elliptic curves of conductor M|N such
that its attached newform fg lies in New},. From [7, Table 5,Table 3], we obtain the degree D
of mn, when M = N, and ay(fg), as3(fg) and a5(fg). In particular, we know |E(Fy4)|, |E(Fy)]
when 31 M, and |E(Fo5)| when 514 M.

For n > 1, we can discard the pairs (IV, F) that do not satisfy the conditions in Lemmas

and

[] In Table 1, we present the remaining possibilities,
where the label of the elliptic curve F is the one in Cremona tables.

yN \gN\gjv M\LabelE\
273 —=3-7-13 33] 4] 91 a
= o Tao T AT B 385=5-7-11 5 4 7] a
PSP EE R LR S : 390 =3-7-19 9] 4] 57| a
- 3 . 120=3-11-13 53| 3143 a
185=5-37 | 17| 3| 37 a o o Z
215=5-43 |21 2 i\; Z 165 =3-5-31 61| 51565 c
T e B e . 555 = 3-5-37 73] 5135 c
S —s s T 3w ; 615 =3-5-41 81| 6123 b
%3 . 645 — 3-5 - 43 85| 5215 a
129 a
250 = 7 - 23] 4
2222223 23 - g; Z 705=3-5-47 88| 8141 d
=3 o3 . 715=5-11-13 81| 8 1g§ Z
303 =3-101 | 33| 3101 a
ST TE M B : 795 =3-5-53 105 | 10 222 Z
S93=5 183 SIS a 861=3-7-41  [109] 7|123] b
305=5-79 | 39| 4] 79 a
903 = 3-7-43 113 | 11 129 a
115=5-83 | 41| 8| 83 a
087 = 3-7-47 125 9141 d
27=7-61 |39] 8| 61 a
100l =7-11-13 |109| 8143 a
M5=5-89 |43 T| 89) 1015=5-7-20 | 117 11| 145
581 =7-83 | 55| 8| 83 a — ¢
1155=3-5-7-11]185| 8] 77| &
1365 =3-5-7-13|237| 9455 a
65 a

Table 1



First, we examine the hyperelliptic cases in Table 1, which correspond to those such that
gy =2 (cf. |10, Theorem 2]).

Proposition 9. The curves of genus two X (129) and X;(215) are bielliptic.

Proof. For N = 129 and N = 215, the jacobian of X(N) is isogenous over Q to the product of
two elliptic curves E; x Fy, where E; has conductor N and E5 has conductor M = 43. Hence,
there exist two normalized newforms f; € New)y and f, € New), such that the elliptic curves
Ay, and Ay, are isogenous over Q to £y and Ej respectively. The set of the regular differentials

wi = filg)dq/q, w2 = (f2lq) + (f2(q"))dq/q, with ¢ =N/M,

w dx
is a basis of Q&S (N)/Q" The functions z = — and y = — on X (V) satisfy the equations

w1 w1
N equations
129 [44% = 20 —112* +352% — 9
215 | 49y? = —a% — 52t — 322+ 25

For N = 129 and 215, it is clear that the curves have two bielliptic involutions (x,y)
(—z, ty). O

Remark 10. Assume that X§(N) has genus two

If X§;(N) has
a bielliptic involution u, then u*(E;) = E; and their reqular differentials wy and wq are eigenvec-
tors of uw. Hence, u*(wy) must be tw; and u*(ws) = Fwy. Therefore u*(x) = u*(wy/wq) = —x
and u*(y) is y or —y depending on whether u*(ws) is —ws or not. In any case, y*> = P(z?)
for a degree three polynomial P € Q[z], and the automorphism group of the curve is the Klein
group generated by u and the hyperelliptic involution w.

Now, we will apply two sieves to discard some values of N. Both are based on the values
of | XJ(N)(Fyn)| for a prime p 4 N. The first of them uses [11, Theorem 2.1], which allows us
to detect some curves X/Q without involutions defined over Q (see [?, Prop.10.3.38]). More
precisely, for a prime p of good reduction for a curve X/Q and an integer n > 1, consider the
sequence

Py(n) :=mod [(Y _ p(n/d)| X (Fpn)])/n,2]
dn
where mod [r, 2] denotes 0 or 1 depending on whether r is even or not, and p is the Moebius
function. Set Q,(2k + 1) = Z,’;O(Qn +1)P,(2n +1). If Xj(N) has an involution defined over
Q, then -
Qp(2k +1) <2¢gy +2forall k >0.

Proposition 11. The curve X} (N) is not bielliptic and, moreover, Aut(Xg(N)) is the trivial
group for the following values of N :

259,267,301, 305, 393, 395,427, 445, 581, 795,903, 1001, 1015 .

Proof. For f € New,,, denote by K the number field Q({a,(f)}n>1). Let p be a prime not
dividing M. By the Eichler-Shimura congruence, the characteristic polynomial of Frob,, acting
on the Tate module of Ay is

H (% = ay(f7) +p),

o: K—=Q



where o runs over the set of all Q-embeddings of K into a fixed algebraic closure of Q. The
jacobian of Xg(N) is isogenous over Q to the product [],p,y erNeW*M JGo Ar, where Gg

denotes the absolute Galois group Gal(Q/Q).

To compute | XF(N)(F,n)|, we proceed as follows. By using Magma, we determine New),
for all M|N and, then, the characteristic polynomial R,(x) of Frob, acting on the Tate module
of Jac(X§(NV)) is obtained as follows

2%
H H 2? — a,(f w+p):H($—(xi).
M|N feNewps* i=1

Finally,
2 g}‘v

[ XG(N)(Fpe)| =p" +1 =) af.
i=1

The statement follows from these computations:

| N [ Q,(2k+1) |29 + 2]
259 =7-37 | Q2(9) =17 10
267 =3-89 | Q2(7) =15 10 ;
301 =7-43 [ Q(11) = 22 7] | @+ 1) [29% +2]
305 =5-61 | Qu(7) =15 0] [795=3-5-53 | Qy(13)=27| 22
2 — . . — D
303 = 3. 131 | Qy(11) = 23 12 91)821—_37 7114313 Qz(ﬁ’) = 3; ?;l
395=5-79 | Qu(7) =15 10 |t : ! '29 Q2(13) -z B8
427 =T7-61 | Qo(11) =27 18 =91 Q2(13) =
445 =5-89 | Q3(9) = 22 i
581 =7-83 | Q2(13) = 20 18

The second sieve is based on the following fact. For a degree two morphism of curves X — Y
defined over Q and a prime p of good reduction for X, one has

| X(Fpe)| = 2[Y(Fpe)| <0, forall k> 0.
Proposition 12. The pairs (N, E) in the set

{(273,91a), (385, T7a), (415, 83a), (429, 143a), (435, 145a), (455, 91a),
(465, 155¢), (555, 185¢), (615, 123b), (705, 141d), (715, 65a), (715, 143a),
(861, 123b), (987, 141d), (1155, 77a), (1365, 65a), (1365, 455a) }

are not bielliptic. In particular, the curve X§(N) is not bielliptic for the following values of N :

273,385, 415, 429, 435, 465, 555, 615, 705, 715, 861, 987, 1155, 1365 .



Proof.

N [p] F | X3 (Fpr )| — 2| E(F )|
273 | 8 | 91a 3
38 | 9| T7a 3
415 | 9 | 83a 4
429 |16 | 143a b}
455 | 4 | 91a 1
435 | 8 | 145a 2
465 | 7 | 155¢ 2
555 | 2 | 185¢ 1 0
615 | 11| 123b 4
705 | 4 | 141d 1
715 | 9 | 65a 7
715 | 9 | 143a 1
861 | 4 | 123b 1
987 | 25| 141d 10
1155 | 2 | T7a 1
1365 | 4 | 65a 1
1365 | 2 | 455a 3

After applying the two sieves, the following possibilities for the pairs (N, E), ordered by the
genus, remain.

N Jgv| E
183 3[6la| [N [on] E |
185| 3] 37a | [399] 4] 57a |
249 3| 83a | [237] 5] 79

2496 | 1645 5|129a
303 | 3| 101la 215a
455 31 65a

Table 2

Finally, in order to decide which values N in Table 2 correspond to bielliptic curves, we
shall use equations.

We recall that, for a nonhyperelliptic curve X defined over C with genus g > 2, the image
of the canonical map X — P91 is the common zero locus of a set of homogeneous polynomials
of degree 2 and 3, when g > 3, or of a homogenous polynomial of degree 4, if g = 3.

More precisely, assume that X is defined over Q and choose a basis wi,---w, of Q% 10
For any integer ¢ > 2, let us denote by L£; the Q-vector space of homogeneous polynomials
Q € Q[zy,- -+ , x4 of degree i that satisfy Q(ws, -+ ,w,y) = 0. Of course, dim £; < dim £, 4
because one has z; - Q) € L;1; for all Q € £; and for 1 < j <g.

If g = 3, then dim £y = dim L3 = 0 and dim£; = 1. Any generator of £, provides an
equation for X. For g > 3, dim Ly = (¢ — 2)(g — 3)/2 > 0 and a basis of Ly @ L3 provides a
system of equations for X. When X is neither trigonal nor a smooth plane quintic (g = 6), it
suffices to take a basis of L.

For the curve X (N) there exists a set of normalized eigenforms gy, - - - , gx € Sa(To(N))EW)

such that Jac(Xj(N)) 2 Ay x - x Ay, , where the symbol % means isogenous over Q. These
abelian varieties are simple and pairwise nonisogenous over Q. Hence, any involution u of the



curve leaves stable A, and acts on th, as the product by —1 or the identity, because the
endomorphism algebra Endg A,, ® Q is isomorphic to a (totally real) number field.

We choose a basis {wy, -+ ,wgr } of Qﬁ(g (/o Obtained as the union of bases of all Qigi /0"
An involution u of X§(N) induces a linear map w* : Q. /g = Qs (g Sending (wi, -+, wgr )
to (e1wi, -+, Enyy ) With g; = £1 for all i < g3, and satisfying

Q(e171, -+ ,€43,7g1,) € L; for all Q € L; and for all 4. (3.1)

Conversely, for a linear map u* as above satisfying condition (3.1)), only one of the two maps
+u* comes from an involution of the curve, because we are assuming that X is nonhyperelliptic.

We particularize this fact to our case.

Lemma 13. Assume X{(N) is nonhyperelliptic. Let wy,--- ,wgz, be a basis of QkS(N)/Q as

above, such that wy is the differential attached to an elliptic curve E. Then, the pair (N, E) is
bielliptic if, and only, if

Q(—x1, T2, Tgr1,Ty1) € Ly for all Q € L; and for all i (3.2)

Proof. If u is an involution of X(N) such that E is Q-isogenous to X{(N)/(u), then u*(w;) =
wy and u*(w;) = —w; for ¢ > 1. Hence, condition (3.2)) is satisfied. Conversely, since the curve
is nonhyperelliptic the condition (3.2]) implies that only one of the two linear maps

(w17w27 e awg}‘\,—lawg}‘\,) = i(_wlaw% o 7wg;‘v—17wg;‘v>

comes from an involution w of the curve. The genus g, of the curve Xj(N)/(u) agrees with
the number of differentials w; invariant under the action of u. When g3, > 3, it follows that g,
must be 1 because it cannot be gy — 1 due to Riemann-Hurwitz formula. For g3 = 3, the genus
g, must be different from 2, since otherwise the curve would be hyperelliptic (cf. [1, Lemma
5.10]). 0

Remark 14. When gy > 4, dim £y > 1. If w; is the differential attached to an elliptic curve,
we need to check that the vector space

£2,j = {Q € 52: Q(‘,Eh e 7_Ij7 o ,ZEng) S LQ}
is Lo. Note that
LQ,j - {Q S £2: Q(xly"' y Lgy st 7ngv) :Q(xlv"' y T Ljy axg;‘\,>}
Indeed, if Q € Ly, then H == Q(x1,-++ , 2, , g1 ) — Q(z1,+ -+, =14, - 2gx ) € La. There-
fore, H = x;P for an homogenous polynomial P € Q[x1,--- , x4 ] of degree at most 1. Hence,
P must be 0, otherwise P(wy, -+ ,wgr ) = 0.

Remark 15. Recall that, for each one of the normalized eigenforms g; € So(To(N))EW) | there
is [i € New), such that g; = ZdW/Mdfi(qd) and Ag, S Ay To get a basis of Qi‘g_/Q we can
proceed as follows. If dim Ay, = 1, we take as basis g;(q) dg/q. When dim Ay, = r > 1, the
endomorphism algebra Endg(Ay,) ® Q is generated by Hecke operators and is isomorphic to the

totally real number field K; := Q({a,(f:)}n>0) of degree r. Let T be the set of Q-embeddings of
K; into a fized algebraic closure of Q. For every a € K; there is a Hecke operator T" such that



T(f7) =a’f{ forallo € I. The two cusp-form h =Y __; f{ is nonzero because the coefficient
of q is g. Hence, taking T" such that a is a primitive element of K;, the set

f=Tih) = (a)f7 €Qllg], 0<j<r—1,

oel

s a basis of the vector space generated by f7. Therefore,

= (> dfi(¢"))dg/q 0<j<r—1
d|N/M

s a basis of QA o One can take a as the value provided by Magma in the g-expansion of f;
and, in this case, f; € Z[[q]]. The curve X;(N) is determined by the first Fourier coefficients
of the chosen basis for Q% X3 (N)/Q (cf [2, Proposition 2.8]). In order to get shorter equations, it
is suitable to replace the basis f; with a basis of the Z-module Q(f1,---, f;) N (Z[[q]] dq).

Proposition 16. Among the curves of genus three X;(183), X5(185), X;(249), X;(303), and
X;(455), only X;(183), X;(249), X;5(303) and X;5(455) are bielliptic. The corresponding ellip-
tic quotients are labeled as E61al, E24901, E101al and E65al, respectively. In all these cases,

the automorphism group has order 2. The automorphism groups of the remaining curves are
trivial.

Proof. For these values of N, the splitting of the jacobian of X (N), Ji(N), is as follows:

—
Q0
w

2, A, . Aj R E6la,  fo € Newly, dimAy, =2,
[P, A,, Ay RE37a, A, ~EI18b, Ay~ E185c,
> Ay R E83a, Ay, ~ E249a, Ay, 2 E249b,
12, A, A;, R El0la, f, € Newly, dimA, =2,
[, A, Aj R E65a, Ay < E9la, Ay 2 E455a.

—
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We take a basis of 0} X3(N)/Q following the order exhibited in the splitting of its jacobian and
we obtain the followmg generators () € Ly:

N Q
183 ot — 102%y? + 9y* — 242%yz + 24132 + 329%2% + 32y2° — 162°
185 2432* — 17282%y% — 768xy> — 2816y* — 324232 — 17282%yz — 115229%2

+5888y32 — 9182222 + 1152zy22 — 192y%2% — 852123 + 2624y 23 + 5712*
249 | 162* — 6423y — 122%y% + 441> + 97y* — 1802222 + 362y2% — 18y%2% + 812*
303 at 4 22%y? — 3yt — 169222 + 16y2® — 162*
455 8lzt — 16222y — T9y* — 324x%yz + 244132 + 192222 + 64y23 — 162*

By Lemma only the curves corresponding to N = 183,249,303, 455 are bielliptic with an
only bielliptic involution u. The affine equations for the bielliptic quotients are

N XG(N)/(u)

183 22 — 100 4+ 9 — 2422 + 242 + 3222 + 322° — 1621 =0
249 | 97 + 44x — 122% — 642 + 162* — 182 + 3622 — 180222 + 8122 =0
303 22422 —3 — 1622 4+ 1623 — 1622 =0
455 81z — 1622 — 79 — 324xz + 2442 + 19222 4+ 6423 — 1622 =0

10



o : 912673 357911 262144 117649
have genus one and their j-invariants are —==, =27-=, 255 and =2

the elliptic curves F6lal, £249b1, E101al and E65al.

Taking into account the splitting of their jacobians and their equations, all their automor-
phism groups have order 2. The remaining curves have trivial automorphism groups. For
instance, for N = 249, the linear map (w1, ws, ws) — (w1, wq, —ws3) is the only option to be con-
sidered and Q(—=z,y,2) ¢ L4. For N = 185, none of the polynomials Q(—z,y, 2),Q(z, -y, 2),
Q(z,y, —2z) lies in Ly. O

. They correspond to

Proposition 17. The curves of genus four X;(399) is not bielliptic and its automorphism
group 1S trivial.

Proof. The splitting of J;(399) is:

Jr(399) 2 Ap x Ag, x Ay, A R E5Ta, Ay R E399a, f; € Newly, dimAp =2.

In this case dim £, = 1. As in the previous proposition, we take a basis of Qﬁ(g (399)Q following
the order exhibited in the splitting of its jacobian. Next, we show a generator Q(z,y, z,t) € Ls:

N | Q
399 | —99¢% + 90tz + 1252% + 189ty + 80xy — 151y* + 306tz — 10522 + 42y= + 92

Since Q(—x,y, z,t) ¢ Lo, the curve is not bielliptic. The conditions Q(z, —vy, 2,t), Q(—z, —y, z,t) ¢
Lo imply that the curve does not have any nontrivial involutions. 0

Proposition 18. The curves of genus five X;(237) and X;(645) are not bielliptic.

Proof. The splitting of J§(N) is:

237 2 T2, Ay As R ET9,  f» € Newly,, dimAy, =4,
Jr645) & [[', Ay, Ay R Ed3a, Ay, R E129a, Ay R E215a, fi € Newly;
dll’n Af4 =2.

Now, dim£y; = 3. For N = 237, dim£Ly; = 0 and for N = 645 we also have dim Ly, =
dim £273 = 0. ]

As a consequence, we obtain the statement of Theorem [I| for N odd.
Corollary 19. For N odd, X;(N) is bielliptic if, and only if, N € {129, 183,215,249, 303, 455} .

For these values of N, the automorphism group has order 2 when gy > 2, otherwise it is the
Klein group.

4 Even case

By applying Lemma [5] we determine a finite set of possible values of N. Then, we proceed
as in the odd case and we obtain the pairs (N, E') exhibited in Table 3 together the genera of
Xo(N) and X(N). As in the odd case, for gy = 2 we can discard N = 154,286 because both
curves X;(NN) have an elliptic quotient of conductor N that does not satisfy Lemma [7] Table
3 is divided into 4 cases: 3t N, 6 | N and 301 N, 30 | N and 210 { N and, finally, 210 | N.

11



[ 6]N,301 N [ gy [ g5y | M | Label E |

NN T o T TabeTE 246 = 2.3 - 41 39 3| 82 a
106 = 2 - 53 12 2 | 106 b 123 b
53 . 258 =23 - 43 11 3| 43 a
122 = 2 61 4 2 | 122 a 129 a
61 . 282 = 2.3 .47 15 3 [ 141 d
g o R b 318=2-3-53 51 3| 53 a
29 o 106 b
66 =583 50 > 166 a 354 = 2359 57 1| 118 o
83 a 366 =23 61 59 I 61 a
178 = 2 - 89 21 3| 89 a 122 a
505 — 5 T0T 51 T To1 - 102=2-3-67 65 5 | 201 a
262 = 2 - 131 32 1| 131 a i _ i 201 c
304 = 2197 18 | 10 | 197 a 426=2-3-71 69 4| 142 b
158 = 2 - 229 56 | 10 | 229 a 438=2-3-73 1 5 gig a
290=2-5-29 a3 58 a ITd=12-3-79 T 7| 7 <
145 a 158 b
310 =2 -5 - 31 15 3 | 155 c 95 =5 353 ST =33 "
370 =2 537 53 1| 185 a 166 o
185 c 249 a
370 a 249 b
410=2-5-41 59 5 | 82 a 534 =2-3-89 87 8| 89 a
130=2 5 43 63 3| 43 a TS — 5 307 95 =T 391 -
215 a 606 = 2 - 3 - 101 99 8 | 101 a
530 =2-5-53 7 7| 106 b 642 = 2 -3 - 107 105 9 | 214 b
265 a 786 = 2 -3 - 131 129 | 11 | 131 a

574 =27 - 41 1 5| 82 a - - -
590 = 2559 87 6 | 118 a 462=2-3-7-11 89 3 1;1 ¢

602 =2 -7 - 43 35 9 [ 43 a

Tt o 5 : 546 = 23713 105 7| o1 o
713 = 2753 105 | 10 | 371 a T4=2-3-7-17 715 ;g; .
7T0=2-5-7-11 1 137 5 ng . 798 =2.3.7.190 153 5 33; a
— 5 < J a
910=2-5-7-13 | 161 ° g;‘ ; S58=2-3-11-13 | 161 6 | 143 a
455 a 286 c
1190 =2.5.7-17 | 209 | 8 | 238 b 966 =2-3-7-23 185 | 8 | 138 a
1122 = 231117 | 209 9 | 374 o
1254 =2.3.11-19 | 233 | 12 | 57 o

30|N,2101 N IN | 9N M | Label E
[30[N, 210 N [ gn | 9x [ M [Label E | [1230=2-3-5- 41 245 | 10 | 123 b
390=2-3-5-13 77 2| 65 a 615 a
390 o 1200 =2-3-5 43 257 | 10 | 129 a
510=2-3-5-17 | 101 3 | 102 a 215 a
0 —2. 5.5 19 13 T 57 - 410 =2-3-5 47 281 | 14 | 141 d
190 b 705 a
285 b 1500 = 2-3-5 53 317 | 14 53 a
690 =2-3-5-23 | 137 6 | 138 a 265 a
870=2-3-5.20 | 173 7 [ 58 a 795 a
145 a 210|N IN | 9N M | Label E
290 a 2310 =2-3-5.7-11 | 561 | 12 77 @
930 =2-3-5-31 | 185 8 | 155 c 1155 a
1110 = 2-3-5-37 | 221 9 | 185 c 2730 =2-3-5-7-13 | 657 | 14 65 a
455 a
Table 3

As in the odd case, first we examine the hyperelliptic curves.

Proposition 20. All the curves of genus two appearing in Table 3, i.e. X;(106), X (122),
X;(158), X;(166) and X;(390), are bielliptic.

Proof. For N € {106,122, 154, 158, 166, 286, 390}, the jacobian of X (N) is isogenous over Q
to the product of two elliptic curves F and F of conductors N and M < N, respectively. We
have that M = N/6 for N = 390 and M = N/2 otherwise. Let fr € New)y and fr € New},
be the corresponding newforms attached to these elliptic curves. The functions

o fr(q) Y = 2qdx
. Zd|N/MdfF(qd) ’ ‘ Zd|N/MdfF(qd) ’

provide the following equations

H(106):  y* = 48 + 172 — 622 + 1,
F(122): y? = 428 + 2% + 1022 + 1,
S(158): y* = —22% + 112 +82° — 1,
X5(166):  y* = —42% + 172" + 222 + 1,
X2(390): 3 = —(3zr+1)(4xt =722 —-1).

12



In all cases, one has the involutions (z,y) — +(—z, +y).

Next, we use the sieve based on |11, Theorem 2.1].

Proposition 21. The curve X§(N) is not bielliptic and its automorphism group is trivial for
the following values of N:
394, 458, 582,602, 710, 786, .

Proof. For a prime p f N, let Q,(2k 4+ 1) be as in Proposition [I1} ~After the following

computations,

N Qp(2k+1) | 295 +2
394=2-197 | @3(9) =25 22
458 =2-229 | Q5(15) = 36 22
582 =2-3-97 | Q15(9) =18 16
602 =2-7-43 | Q5(11) = 31 20
710=2-5-71 | Q3(9) =25 16

786 =2-3-131 | Q5(11) = 27 24

O

Now, we apply the sieve based on the values of | X (V) (Fyn)| —2|E(F,»)| and a modification
for primes p dividing the conductor V.

the statement follows.

Proposition 22. The pairs (N, E) in the set

{(290,58a),  (370,37a),  (370,185a), (402,201a), (410,82a),  (438,219c),
(474,79a),  (474,158b),  (498,83a),  (498,166a), (498,249a),  (498,249b),
(530,106b),  (530,265a),  (534,89a),  (574,82a), (590,118a), (606, 101a),
(642,214b)  (714,102a), (742,371a), (770,77a),  (770,154a),  (798,57a),
(870,584),  (910,65a),  (930,155¢), (966,138a), (1122,374a), (1190,238b),
(1230,123b), (1230,615a), (1254,57a), (1290,129a), (1290,215a), (1410,141d),
(1410,705d), (1590,53a), (1590,265a), (1590,795a), (2310,77a), (2310,1155a),
(2730,65a), (2730, 455a)}

are not bielliptic. In particular, the curve X;(N) is not bielliptic for the following values of N :

410,474, 498, 530, 534, 574, 590, 606, 642, 742, 770, 930, 966, 1122, 1190,
1230, 1254, 1290, 1410, 1590, 2310, 2730 .

Proof. We put n(N, E, p*) = | X§(N)(Fpe)| — 2|E(F ).

N | pF E n(N, E, p¥)
290 | 9 | 58a 5 13 %
370 | 9 | 37a 6 N [ pF E | n(N,E,p") lé\’ Z lfb n(NHE’p )
3 | 185a 2 606 | 5 | 10la 2 30 | 49 3 9
402 5 201a 2 642 7 214b 9 1 615a 2
= 1254 | 5 57a T
410 13 82a 1 714 25 102a 6 1590 19 139 3
438 | 25 | 219¢ 12 742 9 | 371la 1 10 215; 3
174 | 25 | 79a 10 770 | 9 | 77a 9
1410 | 49 | 141d 20
11 | 158b 7 3 | 154a 1 > | 7054 0
498 | 11 | 83a 5 798 | 25 | 5Ta 3 1590 | 49 | 53 54
7 | 166a 3 870 | 13 | 5%a T . 265“@ A
7 | 249a 1 910 | 9 | 6ba 3 7 | 7054 10
13 | 2496 5 930 | 7 | 156c 2 5310 T 17 1 77 T
530 | 25 | 1066 35 966 | 25 | 138a 7
17 | 1155a 9
7 | 265a 8 1122 | 5 | 374a 5 =
2730 | 11 | 65a 7
534 | 5 | 89a 2 1190 | 3 | 238b T 11 | 4554 3
574 | 9 | 82a 1
590 | 9 | 118a 2

13



ul O

After applying the two sieves, the following possibilities for the pairs (N, E), ordered by the
genus, remain:

N lov| B N o] E |
178] 3] 89%a | [NV [gx E | Taz T 51 201c
246 | 3| 82a,123b| [202] 4 101a e ("
258 | 3 143a,120a | |262| 4 131a i T 238
22| 3| 141d 351 4 1184 o5 T E T 3000
200 3| 145a 366 4| 6la,122a 910 15 91a 455
310 3| 155c 370 4| 185¢,370a TR IR
318 | 3534, 1060 | | 426 4 142b 3556 1130 9550
430 | 3| 43a,215a 546 | 4 91a

162 3 77a. 1540 | [5701 4| 57,1006 2855 | o0 | 7| 145a,290a
510 3| 102a [1110] 9] 185 |

Table 4

Proposition 23. Among the curves of genus three XJ(178), X((246), X;(258), X;(282),
X§(290), X§(310), X35(318), X((430), X5(462) and X5(510), only XF(178), X5(246), X;(258),
X3(290), X5(318),X5(430) and X;(510) are bielliptic. The corresponding elliptic quotients are
labeled as E89al, E82al, F43al, E145al, E53al, F43al and FE102al, respectively. In all
these cases, the automorphism group of X;(N) has order 2. The automorphism groups of the
remaining curves are trivial.

Proof. For these values of N, the splitting of the jacobian of XJ(N), J(N), is as follows:

—_
EN|
o

[I2,A;, A; ~E89a, fy€Newiy, dimAy, =2,
[, A, A; RER2a, Ay, ~E123b, Ay < E246d,
[P, A, ., Ay R FE43a, Ay, R E129a, Ay ~ E258q,
H?:l Afi , Af1 ’@/ E141d, fa € Newzgz ) dim Af2 =2,
2, A, Ay R El45a, Ay, 2 E58, Ay < E290a,
[, A, Ap R E155c,  fo € Newsy,, dimAp, =2.
[, A, A; ®E53a, Ay, ~FE106b, Ay, ~ E318c,

[, Ay, Ap R Ed3a, Ap R E215a,, Ap & E430a,

[IL,A;,, A, RETla, Ay, ~El5da, Ay < E462a,
[I2, A, Ap R E102a, fy€Newly,  dimAy, =2,
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'F:Bars, is a problem because we reduce modulo 2 a degree two morphism TO ARISE: Now, suppose that
the pair (IV, E) is bielliptic. If p| N, we know that X¢(/N) modulo p is the copy of two curves Xo(N/p)/F,, and
the normalization of X§(INV)/F, is the curve X;(N/p)/F, (cf. [10]). If p does not divide the conductor of E,
then E/F, is an elliptic curve. If g}*\,/p > 1, then this is the quotient curve of X§(N/p)/F, by an involution

defined over F,. Therefore, n(N/p, E,p*) < 0. Taking N = 1110, p = 2 and E with the label 185¢, we get
n(555, E,2) = 1 and, thus, the pair (1110, F) can be discarded
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We take a basis of Q! X3 (V)Q following the order exhibited in the splitting of the jacobian, and
we obtain the followmg generators ) € Ly:

N Q
178 xt — 22%y? +yt — 122%yz — 4oy — 42?2 4 20227 + 32923
246 81zt — 16y* + 324x%yz — 3232 — 1622222 + 48y%2% — 260y2> + 172*
258 81zt — 902%y? + 41y* + 288x%yz — 17632 — 362222 + 841222 — 128y23 — 6424
282 xt — 423y + 622y — 4oy + y* — 6232 — 182%yz — 27xy?2 — 30932
—92%2% + 45ay2? — 117y? 22 + Sdx 23 + 108y23
290 27x* + 362%y? + 362%y2 + 3232 — 1262222 + 12y%2% — 84y23 + 672*
310 | 2t + 223y — 3a%y? — 4oy + 4yt — Slay?z — S8layz? — 81y?2% — 5wz + Sdy23 4 8124
318 9z — 1022y + y* — 282%yz + 12932 + 202222 — 49?22 — 32y23 + 322*
430 81zt + 5da?y? — Tyt — 4322%y2 — 128y°2 — 1082222 + 4441222 + 64y23 + 322*
462 128x% — 32023y + 2642%y? — 4421 — y* — 448232 + 4822y + 492xy% 2 — 9232
+840x%2% + 12xy2% + 498y222 — 972223 — 972y2 + 5672*
510 3at — 422y + y* + 182%yz — 10y32 + 142222 4 18y%2% + 40y23 + 162*

By Lemma [13] only the curves corresponding to N = 178,246, 258,290, 318,430, 510 are biel-
liptic and only have a bielliptic involution u. The affine equations for the bielliptic quotients
are

N Xg(N)/ )

178 —4x + 2% + 32y — 122y + 209> — 2z — 43 +4y* =0
246 17 — 1622 + 8122 — 260y + 324xy + 48y — 32¢% — 16y* = 0
258 | —64 — 36x + 8122 — 128y + 288xy + 84y? — 90xy? — 176y> + 41y* =0
290 67 — 126z + 2722 — 84y + 362y + 12y% + 362y% + 32y = 0
318 32 + 202 + 922 — 32y — 28zy — 4y — 10zy® + 1247 +y* = 0
430 | 32 — 108z + 81z% + 64y — 432zy + 444y* + Sday? — 128y3 — Tyt =0
510 16 + 14z + 32% + 40y + 18zy + 18y* — 4xy® — 10y° + y* =0

have genus one and their j-invariants are — 1049 389017 = 4096 2196089 3375 ©_ 4096 5y ATE56L,

They correspond to the elliptic curves in the statement. By the splitting of the jacobians and
the equations of these curves, we obtain that all their automorphism groups have order 2. It is
easy to check that the automorphism groups of the remaining curves are trivial. O

Proposition 24. Among the curves of genus four X;(202), X(}(262), X;5(354), X((366),
X;(370), X5(426), X;(546) and X;(570), only X;(370) is bielliptic. The corresponding quo-
tient curve is the elliptic curve labeled as E370al and the automorphism group of X;(370)
has order 2. The automorphism groups of the curves X§(202), X§(262), X;5(354), X(426),
X;(546) and X;(570) are trivial. The automorphism group of X;(366) has order 2 and the

quotient curve has genus 2.

Proof. The splitting of J§(N) is:

T2, Ay As, % E10la, f, € New)y,, dimAy, =3,
L A, Ay R El13la, Ay~ E262b, f;€ Newyy, dimAp, =2,
[, A, Ay R Ell8a, Ay, 2 E354b, f;€ Newl,;, dimAp, =2,
[, A, . Ay R E6la, Ay~ E122a, f;€Newly, dimAp, =2,
[, A, Ay R E370a, Ay, X E185a, Ay 2 E185c, Ay, ~ E37a,
[P, Ay, Ay R El42a, Ay, 2 E426b,  fs € Newh,,, dimAp, =2,
12, Ay, Ap, R E9la, f, € Newhy, dimAy, =3,
[, A, . Ap R E57a, Ay, 2 E190b, Ay 2 E285h, Ay, ~ E570a.
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In all cases, dim £5 = 1. Next, we show a generator Qs(x,y, 2,t) € Lo:

N Q@2

202 —9t? + 22 + Oty — 22y + y* + 9tz — vz — 8yz — 222
262 Tt —tx +a® — Aty — xy — 4tz — 12 + Y2
354 —42t% — 5tx + 2ty — 102y + 22y* + 48tz — 1522 + 6yz — 322
366 — 412 + 2 + 2xy — y? — 222
370 —27t2 + 14422 + 72ty + 32y* — bdtz — 40yz — 12722
426 —108t% + 165tz + 10022 + 78ty + 5dxy — 137y? + 27tz — 3022 + S84yz — 722>
546 388t2 + 36tz + x? — 68ty — 10zy + 9y* — 420tz — 34xz + 58yz + 12522
570 | —327t? — 232tx + 17622 + 36ty + 64xy + 192y* + 70tz — 402z + 188yz — 12722

Only X§(370) could be bielliptic. In this case, the curve is trigonal (see [16, Proposition 1])
and dim £3 = 5. By computing a polynomial Q3 € L3 that is not multiple of )5, we get

Qs(m,y,2,t) = —81t3 — 3024tx? + 3456x%y + 1056ty* — 20162%2 — 4056ty> — 1408y>2
+1479t2% + 248y 2% 4 434623 .

Since Q3(—x,y, z,t) € L3, the curve X(370) is bielliptic by Lemma [I3] Let us check this
result. Set P(X,Y) := Resultant (Q2(X,Y, Z,1),Q3(X,Y, Z, 1), Z). More precisely,

P(X,Y) = =592+ 12952X2 — 109468 X% + 45796.X° + (10816 X2 + 60978 X1)Y
+(3304 — 6112X2% — 1763X4)Y2 + (3712 — 26412X2)Y3
+(908 + 5066 X2)Y4 + 1210V — 395Y°° .

The curve determined by the equation P(X,Y) = 0 has genus 4. Hence, it is a plane model for
X(370). The model admits the involution u: (X,Y) — (—X,Y). Replacing X? with X, we
obtain a genus one curve, whose j-invariant is 15438249/2960. Checking |7, Tablel], the elliptic
quotient has conductor 370 and label al. The polynomials ()5 and ()3 show that u is the only
nontrivial involution of the curve. It is clear that the remaining curves, except X;(366), have
trivial automorphism group.

Looking at the polynomial @) for N = 366, we may ask whether one of the two linear
maps (wi, wa,ws,wy) +— E£(—wy, —ws,ws,wy) comes from an involution u of X;(366). After
determining L3, the answer is affirmative. Hence, Jac(X((366)) is isogenous over Q to E6la x
FE122a or Ay,. After checking which of the vector subspaces (w;,ws) or (ws,w,) provides a
hyperelliptic curve, the right answer is Ay, and an equation for the quotient curve X;(366)/(u)
is

V?=X0—6X°+23X" —42X° +53X% —24X +4. O

Remark 25. [t is expected that the automorphism group of X (N) is trivial for a large enough
N and, thus, the genera of the quotients curves by nontrivial involutions are bounded. The
curve X (366) shows that if this bound exists, then it is at least 2.

Proposition 26. The curves X§(402), X;(438), X§5(714), X;(798), X§(910), X;(690), X (858)
and X (870) are not bielliptic.

16



Proof. The splitting of J5(N) for the curves of genus 5 in the statement is:

Jr402) & [IM, Ay, Ap R E201lc, Ay, 2 E20la, Ay, 2 E402a, f; € New),,

dim Af4 = 2,
Jr(438) & [I', Ay, Ay R E219a, Ay, 2 E219¢c, Ay, & E438a, fi € New?,,
dim Af4 = 2,
T 2 [, Ay, Ay, R E238b, Ay, R E102a, Ay < ETlda,  f; € Newly,
dim Af4 = 2,
Jr98) & TI', Ay, Ay R E399a, Ay, R E5Ta, Ay, 2 ET98a, fi € Newly,,
d1m Af4 = 2,
. Q 4 Q Q Q *
‘]0 (910) ~ Hz‘:l Afi , Af1 ~ FE9la, Af2 ~ E455a , AfS ~ FE6ba, f4€ Newglo,
dlm Af4 =2.

In all cases, dim £57 = 0. For N = 910, also dim L9 = 0.
For the curves of genus 6, the splitting of J§(N) is:

Ji610) & [[L A, Ap, R E138a, Ay, 2 E690a, f;€ Newly,, fi€ Newls,
dimAfg =2 dimAf4 = 2,

J5(858) S H?:l Afi ) Afl S E143a, Afz S E290a , f3€ NeWZQQ? Ja € Newg%
dimAf3 =2 dimAf4 = 2,
In all cases, dim £57 = 1. Hence, dim £y5; =1 < dim £y = 6. For N = 898, also dim £, = 1.
Finally, the splitting for the curve X{(870) of genus seven is:

Jr870) 2 [, A;, Ay R Eldba, Ay, = E290a, Ap, ~ E58a, fi € Newlys
dlm Af4 =4.

In this case, dim £5; = dim L£95 = 4 < dim £y = 10. O

As a consequence of the previous results, we obtain the statement of Theorem (I for N even.

Corollary 27. For N even, the curve XJ(N) is bielliptic exactly for the thirteen values of N

i the set
{106, 122, 158, 166, 178, 246, 258, 290, 318, 370, 390, 430, 510} .

For these values of N automorphism group has order 2 when gy > 2, otherwise it is the Klein
group.

5 Quadratic points

Let us now prove Theorem 2. We know by [15] that if N is square-free and X () is hyper-
elliptic, then g3 = 2. On the other hand, a genus two curve defined over a number field K is
hyperelliptic over K and, thus, all genus two curves X (V) are hyperelliptic over Q. The set
of values of N in Theorem 2 are those for which g} = 2 and those such that X (V) is bielliptic
and gy > 3. This is due to the fact that, when gy > 3, the quotient curve is always an elliptic
curve with rank equal to 1 (see |7, Tablel]). Hence, all these values of N are exactly the values
for which T'y(X§(N), Q) is infinite (cf. |5, Theorem 2.14]).
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6

Appendix

Here we list the values N such that g3 < 2. The table for genus 2 reproduces the one in [14].
The tables for genus 0 or 1 are taken from [12]. We note that the value N = 141, which does
not appear in Proposition 1.1 of [12], is included in the appendix of this paper and here.

gy =0 2.3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,30,31,33,34,35,38,39,
41,42,46,47,51,55,59,62,66,69,70,71,78,87,94,95,105,110,119 .
gh =1 37,43,53,57,58,61,65,74,77,79,82,83,86,89,91,101,102,111,114,118,123,

130,131,138,141,142,143,145,155,159,174,182,190,195,210,222,231,238 .

g =2 | 67, 73,85,03,103,106,107,115,122, 129,133,134,146,154,158,161,165, 166,167
170, 177,186,191,205,206,209,213,215,221,230,255,266,285,286,287, 299
330,357,390 .
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