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Abstract: Hepatitis C virus (HCV) is a highly variable infectious agent, classified into 8

genotypes and 86 subtypes. Our laboratory has implemented an in-house developed high-

resolution HCV subtyping method based on next-generation sequencing (NGS) for error-free

classification of the virus using phylogenetic analysis and analysis of genetic distances in

sequences from patient samples compared to reference sequences. During routine diagnostic,

a sample from an Equatorial Guinea patient could not be classified into any of the existing

subtypes. The whole genome was analyzed to confirm that the new isolate could be classified

as a new HCV subtype. In addition, naturally occurring resistance-associated substitutions

(RAS) were analyzed by NGS. Whole-genome analysis based on p-distances suggests that

the sample belongs to a new HCV genotype 1 subtype. Several RAS in the NS3 (S122T,

D168E and I170V) and NS5A protein (Q(1b)24K, R(1b)30Q and Y93L+Y93F) were found,

which could limit the use of some inhibitors for treating this subtype. RAS studies of new

subtypes are of great interest for tailoring treatment, as no data on treatment efficacy are

reported. In our case, the patient has not yet been treated, and the RAS report will be used to

design the most effective treatment.

Keywords: subtype, direct-acting antivirals, HCV, genotype 1

Background
Hepatitis C virus (HCV) is a blood-borne virus affecting an estimated 71 million

people worldwide resulting in a global prevalence of 1%-3%.1

HCV is a single-stranded, positive-sense RNA virus containing approximately

9600 nucleotides and one open reading frame. Eight genotypes and 86 subtypes

have been reported according to the International Committee on Taxonomy of

Viruses (ICTV).2 A genotype is assigned when its genetic distance to all other

genotypes is >30%, whereas subtypes are defined as having a genetic distance of

>15% to other subtypes of the same genotype.3 In a single patient, HCV can be

present as a complex mixture of viral variants having small genetic differences

(1–3%), known as a quasispecies.4 Because of this, HCV has high genetic hetero-

geneity, which has important implications for the diagnosis and treatment of

infected patients, and has impaired the development of an effective vaccine.

However, with the recent advances in HCV therapy, direct-acting antiviral (DAA)

treatment in chronically infected patients leads to a sustained virologic response

(SVR) rate greater than 90%. However, drug resistance-associated substitutions
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(RAS) can emerge during this therapy and lead to treat-

ment failure in 2%–10% of patients.5 In addition, RAS

have been detected in some HCV subtypes as natural

occurrences.6 Therefore, as HCV genotype and subtype

in an infected patient may have an impact on the outcome

of the treatment received, the therapy should be adjusted to

these characteristics of the virus for it to be effective.7–9 In

this scenario, accurate identification of HCV genotype and

subtype is of paramount importance for proper patient

management, especially in countries where pan-genotypic

drugs are not available. Additionally, the degree of liver

fibrosis and previous exposure to DAA and/or interferon,

together with the infecting genotype, are of pivotal impor-

tance for the treatment strategy (including the duration of

therapy).

A high-resolution HCV subtyping (HRCS) method

based on deep sequencing has been implemented in our

routine clinical laboratory.10 This method involves phylo-

genetic analysis and genetic distance analysis of the new

template compared to the confirmed HCV subtypes.11,12

Because of the large number of reads obtained with this

method (>2,000), new subtypes can be detected, as well as

mixed infections in patients with more than 1 genotype or

subtype.

Objectives
A genotype 1 sample from an untreated patient from

Equatorial Guinea could not be classified during routine

genotype-subtype analysis at the diagnostic laboratory.

The aim of this study was to characterize the sample

through complete analysis of the HCV genome sequence

and investigation of baseline RAS.

Methods
The original serum sample was obtained from an HCV-

infected woman from Equatorial Guinea diagnosed at the

Molecular Microbiology Department of the Instituto de

Investigación Sanitaria de les Illes Balears (IdISBa),

Hospital Universitario Son Espases (Spain) in May 2017.

Patient signed an informed consent to have the case details

published. As this study has no legal implications for the

institution, special approval from it was not required to

publish the case details. As it was impossible to classify

HCV subtype of this patient during the routine diagnostic

procedure and because HCV sequencing for further clas-

sification is a requirement during the diagnostic and treat-

ment procedure as the data sheet supports, a sample taken

in June 2018 was delivered to our laboratory on dry ice for

characterization using an HRCS technique, recently

adapted to the MiSeq platform. HRCS is based on study-

ing a short, highly variable region from the NS5B gene

flanked with highly conserved primers.10

In this study, we used next-generation sequencing

(NGS) to subtype HCV and characterize the RAS profile

of the proteins NS3, NS5A and NS5B, targeted by DAA

inhibitors. Sanger sequencing was used to sequence the

whole genome.

The complete HCV genome was obtained by nested

RT-PCR with 3 external primer pairs and 11 overlapping

internal primer pairs (Table S1). The first externals (1, 2)

and the internals (1, 2, 3, 5, 6, 7) were the primers reported

by Ordeig et al in 2016.11 The remaining external and

internal primer pairs were newly designed, using the clo-

sest subtype sequences (1l, 1h, 1c and 1e), identified dur-

ing the subtyping test performed by HRCS after 200

bootstrapping cycles. All primers were numbered accord-

ing to isolate H77 (accession number AF009606).13 The

external fragments were amplified using the Transcriptor

One Step RT-PCR Kit (#04655885001 Sigma, Roche), and

for the internals, the FastStart High Fidelity PCR System,

dNTPack (#04738292001 Sigma, Roche), adapting the

various PCR programs to the lengths and temperatures of

each specific primer pair. Due to the high variability of the

region corresponding to internal fragment number 11, a

random priming (#11034731001 Sigma, Roche) PCR was

necessary to perform between the RT-PCR and the nested

PCR with the specific primers, to obtain enough DNA for

analysis. All amplifications were checked in 1.5% agarose

gel to ensure that there was no contamination, and are

purified in columns using the QIAquick PCR Purification

Kit (#28106 QIAGEN). All fragments were Sanger-

sequenced, and were assembled, verified and edited using

the GeneDoc 2.7.000 (2006) software.

Twenty-two complete reference genomes, corresponding

to all the confirmed genotype 1 (G1) subtypes (1a, 1b, 1c,

1d, 1e, 1g, 1h, 1i, 1j, 1k, 1l, 1m, 1n) and 8 previously

unassigned isolates, were used to classify the sequence

under study;2 phylogenetic trees and a heatmap were con-

structed. The sequence was analyzed using a sliding window

procedure to investigate possible viral recombination of

different subtypes. The scripts in R language used to obtain

the figures are provided The scripts in R language used to

obtain the figures and provided elsewhere.11,14 The

R libraries included Biostrings, ape, stringr, RColorBrewer

and psych. MUSCLE was used for the required multiple

alignments.15 To characterize any naturally occurring
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baseline RAS in the putative new subtype taking into

account that any isolate is composed by a population of

sequences,4 four new internal primers pairs were designed,

corresponding to the three DAA-targeted regions of the

HCV genome (1 NS3, 1 NS5A and 2 NS5B); using this

time the isolate's full genome sequence, obtained with

Sanger ssequencing, was used as reference (Table S1). To

amplify these new fragments, we used the products of the

external RT-PCRs obtained previously on the FastStart High

Fidelity PCR System, dNTPack (#04738292001 Sigma,

Roche), adapting the thermocycler programs to the charac-

teristics of each different primer pair. Again all fragments

were checked and purified on 1.5% agarose gel, and were

deep-sequenced using the MiSeq Reagent Kit v3 (600

cycle) (#MS-102–3003, Illumina) according to

a previously described method.16 Briefly, each nested-PCR

purified product was pooled and normalized to 4nM, and

appropriate volumes of each pool were added to the final

library, which was quantified by LightCycler480 (Kapa

Library Quantification Kit, KapaBiosystems, Roche,

Pleasanton, CA, USA). The last dilution of the library was

prepared and mixed with an internal DNA control (PhiX

control V3, Illumina, San Diego, CA) before sequencing on

the MiSeq platform using the MiSeq Reagent Kit V3

(Illumina, San Diego, CA). Data management includes

a bioinformatics haplotype-centric procedure to exclude

full reads that did not meet minimum quality

requirements.16 The final steps included demultiplexing by

specific primers to obtain a fasta file by region. Reads were

then collapsed into haplotypes with corresponding frequen-

cies. Haplotypes were aligned with the reference sequence,

and haplotypes containing more than two indeterminations,

three gaps, or 99 differences were also discarded. Accepted

indeterminations and gaps were repaired as per the contents

of the dominant haplotype. The yield of this process was

above 90% in all cases. Then, reads were translated to

amino acids, and the intersection between forward and

reverse haplotypes with abundances not below 0.2% was

performed. The yield of this process has been found in the

range of 45%–60%. Based on the controls, all amino acid

variants by site or haplotype at 1% or above are reported.

The global yield is 15%–30% of raw reads.

Results
HCV subtyping of a short fragment of the NS5B gene using

a high-resolution method based on deep sequencing

(HRCS) revealed that the all reads belonged to the same

subtype and that this subtype was included in the genotype

1 cluster (Figure S1). However, it could not be classified

into any of the genotype 1 subtypes, with subtype 1h being

the closest. The next step was to design primers to sequence

and characterize the whole genome.

Phylogenetic analysis and pairwise

comparison of full-length genomes
The full sequence (9182nt) deposited in the GenBank

database with accession number “MH921830” includes

the almost complete coding region and a partial sequence

from 5ʹ UTR.

Phylogenetic analysis of the complete new genome

with the confirmed subtypes of all 8 genotypes showed

that our sequence clustered with G1 (Figure 1).

Furthermore, the new genome did not cluster with any of

the confirmed G1 subtypes when compared to the con-

firmed subtype reference sequences (Figure 2).

The heatmap on the matrix of p-distances further

demonstrated that our sequence did not cluster with any

confirmed subtype or unassigned isolate (Figure 3). The

shortest genetic p-distance measured (0.2447) was to a still

unassigned isolate “KY348757”,11 whereas the shortest

p-distance to a confirmed subtype was 0.2495 with sub-

type 1k (Table S2). Therefore, our sequence could not be

classified into any of the existing G1 subtypes and could

not be grouped with any other unassigned isolate.

Recombination: sliding window analysis
Sliding window analysis was conducted to exclude the

possibility of viral recombination between HCV genotype

1 subtypes (Figure 4). The p-distance of our sequence to

the nearest G1 subtype at any given position was higher

than the minimum p-distance between all subtypes.

Resistance-associated substitutions (RAS)
To characterize the viral genome, RAS were analyzed

for the NS3, NS5A and NS5B proteins by deep sequen-

cing using the Illumina MiSeq sequencing platform, to

identify resistances to various DAAs between our iso-

late and the wild-type replicons 1a and 1b, used as

references (Table 1). RAS S122T, D168E and I170V

were found in NS3 in almost all genomes reported after

NGS, and the substitutions Y93F/L and R30Q in NS5A.

Interestingly, variability was found in the Y93 residue of

NS5A, in which 72% of viral genomes were carrying

amino acid 93L (leucine) and 28% were carrying 93F

(phenylalanine). The amino acid composition of our
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isolate in the main RAS positions in the NS3 protein

was 80Q, 122T, 155R, 156A, 168E and 170V; and in

the NS5A protein 24K, 28L, 30Q, 58P, 62Q and 93L/F

(Table 1). Later, we discuss the scope of each mutation

and the combination of them in the same genome. No

RAS were detected in the NS5B protein.

Our isolate
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Figure 1 Phylogenetic tree of the entire sequences, including reference from accepted genotypes2 (shown in different colors) and our sequence (Px). Trees were generated

using neighbor-joining based on the p-distances. Only those bootstrap-values greater than 60 are shown.
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Discussion
This report describes and characterizes the full-length gen-

ome of a putative newHCV subtype identified during routine

HCV classification of a serum sample from an Equatorial

Guinea patient. Commercial methods were unable to geno-

type the viral isolate and it was then subjected to high-

resolution HCV subtyping, a methodology based on NGS10

adapted to the MiSeq platform, and phylogenetic analysis of

a short region of the NS5B gene, confirming that the isolate

could be member of a new subtype.

The complete genome sequence was then obtained

after PCR and Sanger sequencing and uploaded to

GenBank (MH921830). Through phylogenetic analysis,

genetic p-distance calculations by pairs, and heat-

mapping, we found that our sequence (Px) had a genetic

distance greater that 15% to the closest confirmed

Our isolate
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Figure 2 Phylogenetic tree of entire genomes from all 13 subtypes of genotype 1, and including 8 unassigned isolates (green) and our Px sequence (orange). The tree was

generated using neighbor-joining based on p-distances. Only those bootstrap-values greater than 60 are shown.
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reference sequence, which belonged to G1k (Table S2).

Interestingly, the closest sequence was a subtype-

unassigned sequence (KY348757), also isolated from an

Equatorial Guinean patient. This suggests that G1 has

a long-lasting presence in that country, which has facili-

tated divergence of this genotype into new, unclassified

subtypes. Additionally, sliding window analysis provided

evidence that the sequence did not result from recombina-

tion of different G1 subtypes. However, it will remain as

an unclassified lineage until a related sequence is discov-

ered, in keeping with the recommendations for a unified

nomenclature system.2

Deep sequencing analysis was used to trace the RAS

profile of the targeted NS3, NS5A, and NS5B proteins, to

identify with maximum reliability minor mutations,

exactly report the frequency at which each mutation was

present in the viral population, and determine whether two

mutations were combined in the same viral genome, parti-

cularly minor mutations. Interestingly, all genomes iso-

lated from this new isolate were carrying the NS3

mutations S122T and D168E.17 S122T has been found to

be a polymorphism of genotypes 4 and 6, but not genotype

1. S122T and D168E have been associated with resistance

to antivirals, especially in subtypes 1a and 1b, and D168E

additionally in subtypes 2a, 2b, 4a and 6,7,18 suggesting

that this subtype maybe basically resistant to NS3

inhibitors.7,8,9,18 NS3-D168E is especially relevant, as in

subtypes 1a and 1b, it can make the virus resistant to

almost all NS3 inhibitors, including vaniprevir (used for

genotype 1 in many countries) and voxilaprevir (NS3

Our isolate
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Figure 3 Heatmap visualizing the p-distances between all G1 reference sequences and the new isolate (Px). The scale on the right indicates the p-distance according to

color, with red representing a short and blue a long p-distance. The clusters shown in light colors indicate the grouping of subtypes based on their similarity. The new isolate

did not cluster with any subtype.
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inhibitor present in the pan-genotypic triple salvage treat-

ment with velpatasvir and sofosbuvir).19 The new subtype

carries the amino acid 170V which is considered wild type

for many subtypes, but we cannot exclude it as a RAS

because it has been described for subtype 1a.18 Variability

was found in the Y93 residue of NS5A in our new subtype

(Y93F/L). Y93F is reported to confer resistance in G1a to

ledipasvir and ombitasvir, and Y93L to ombitasvir and

velpatasvir in cell cultures as well as in treatment-failing

patients.18 Lysine (K) and glutamine (Q) in residues 24

and 30, respectively, have been found to be wild type in

G1a17 However, in genotype 1b, Q24K has been reported

Nucleotide position (from 1 to 8,830)

0

0.
0

0.
1

0.
2

0.
3

p-
di

st

0.
4

0.
5

2,000 4,000

Px min p- dist.
intersubtype min p- dist.
intersubtype average p- dist.
intersubtype max p- dist.

6,000 8,000

Figure 4 Visual representation of the sliding window analysis (500-bp, by 10-bp steps). The minimum p-distance between the new isolate (Px) and any reference sequence of

accepted subtypes for each 500-bp window is shown in black. The green dotted line represents the minimum p-distance between the closest sequences belonging to the

various subtypes. The blue dotted line indicates the average p-distance of all accepted G1 subtypes for each window. The red dotted line represents the maximum p-distance

between the farthest sequences belonging to the accepted subtypes for each window.

Table 1 Mean fold change in resistance compared with wild type, found in G1a and G1b (in brackets)7,8,9,18

Amino acids at the RAS positions:

NS3: V36, F43, T54, V55, Y56, Q80, S122T, I132, R155, A156, A158, A166, D168E, I170V, L175

NS5A: Q(1b)24K, L28, R(1b)30Q, L31, P32, S38, H58P, E62Q, A92, Y93L/F

NS5B: L159, E237, S282, L314, C316, S368, M414, Y448

RAS Frequency % HCV protein ASV GLE GZR PTV SMV MK-7009 VOXI

S122T 100.0 NS3 non-R 20 non-R

D168E 100.0 78 non-R 16; 3 14; 4 26–49; 15–90 12–57; 21–40 non-R

I170V 100.0 non-R 8 non-R

DCV EBR LDV OMV PIB VEL

Q (1b)24K 100.0 NS5A non-R <100

R (1b) 30Q 100.0 n.d 3 n.d non-R

Y93L 71.9 3006 non-R <100

Y93F 28.1 10 <100 27 non-R

Abbreviations: ASV, Asunaprevir; GLE, Lecaprevir; GZR, Grazoprevir; PTV, Paritaprevir; SMV, Simeprevir; MK-7009, Vaniprevir; VOXI, Voxilaprevir; DCV, Daclatasvir;

EBR, Elbasvir; LDV, Ledipasvir, OMV, Ombitasvir; PIB, Pibretasvir; VEL, Velpatasvir; n.d., described as resistant, but with no data; non-R, non-resistant.
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to confer resistance to daclatasvir and elbasvir, and R30Q

to velpatasvir.18 Cell culture studies are needed to deter-

mine whether these NS5A mutations (93F/L and 30Q) and

some of the NS3 mutations (170V) can be considered RAS

for the new subtype. The level of resistance to an inhibitor

depends on several conditions: the genetic barrier to resis-

tance of the HCV region and the drug, type of RAS,

freguency at which the RAS is present in the viral isolate,

and presence of RAS combinations in the same viral

particle, all of which can significantly increase resistance

to some DAA treatments. In the study of combinations of

RAS residues in the same genome, none of the combina-

tions found could be associated with a fold-change

increase in resistance to the inhibitors.18

Taking all this information together, the RAS report

suggests that our naïve patient should be treated with a

combination of an NS5B inhibitor such as sofosbuvir,

an NS3 inhibitor such as glecaprevir or voxilaprevir,

and/or the NS5A inhibitor pibrentasvir. As any treat-

ment should include a combination of two or even

three inhibitors with or without ribavirin, our patient

could be treated combining glecaprevir+pibrentasvir

(Maviret)+RBV or using voxilaprevir+velpatasvir

+sofosbuvir+RBV. In the latter option, velpatasvir

(which is included in the Vosevi commercial treatment)

will probably not work, but the combination of voxila-

previr plus sofosbuvir with ribavirin should be effec-

tive. Inclusion of ribavirin is recommended, if possible,

due to the presence of several baseline RAS.

In summary, high HCV variability among genotype

1 subtypes has been observed in Equatorial Guinean

patients. In general, HCV Isolates that cannot be

assigned by means of commercially available techni-

ques should be analyzed using a high-throughput tech-

nology, with the special recommendation to use NGS

and phylogenetic analysis for the NS5B region, as

mixed infections and minority mutants can be evi-

denced with these techniques, Further characterization

of the whole genome is interesting for epidemiological

reasons and study of RAS mutations using a high-

throughput technique is useful to identify whether the

new subtype is naturally harboring resistance-

associated mutations, which will be of help to prescribe

the most effective antiviral treatment.
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