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1 Introduction

This paper summarizes the calibration procedure and reports the single-hit spatial resolution of the
monitored drift tubes (MDT) in the ATLAS muon spectrometer (MS) during Run 2 of the Large
Hadron Collider (LHC), spanning the 2015-2018 operating period. In this context, single-hit refers
to the signal produced by a charged particle passing through a drift tube. The calibrations use data
from both the spectrometer MDT chambers and a dedicated gas monitor MDT chamber (GMC),
and are performed at the ATLAS muon calibration centers [1].

The MS design momentum resolution 6p/p is ~3% at 100 GeV and around 10% at 1 TeV [2],
allowing both Standard Model measurements and new physics searches in processes containing
high-momentum final-state muons [3]. Such searches may include the decay of heavy resonances
into high transverse momentum (p;) muons, demanding superior spectrometer performance for
their discovery. For muons of p. above 100 GeV, the drift tube single-hit resolution (and to a lesser
extent, the chamber alignment) becomes an important contribution to the transverse momentum



resolution, and is the dominant factor above 250 GeV [2]. At high momentum, the p, resolution
Op; is determined by the relation o, /pr o 0ves X pr [4], Where o7 is the single-hit spatial
resolution. The design resolution is ores = 80 wm [2].

The objective of the MDT calibration program is to achieve this resolution for all 354 000 drift
tubes assembled into 1172 MDT chambers throughout all ATLAS data taking in LHC Run 2. The
primary MDT calibration ingredients consist of tube 7, timing offsets (referred to here as 7 offsets or
just 7)) and chamber-specific drift electron time to drift distance transfer relations, hereafter referred
to as R(?) functions. The 7, offset is primarily a function of cable length and electronics delays,
while the R(r) function depends on the gas properties.

The operating conditions of the MDT detectors in the ATLAS cavern are characterized by large
temperature gradients, occasional component faults, variations in humidity, background radiation,
flow, pressure and mixture instabilities of the gas supply, all of which affect the timing response. In
order to achieve the optimal resolution the calibration constants are routinely monitored, corrected
for many of these second-order effects, and updated.

This paper describes the algorithms which generate a pair of correction parameters for the
t, offsets and the R(z) functions. These pairs of chamber-specific constants compensate for a
number of systematic uncertainties associated with the operating conditions of the MDT chambers.
As a final result, the MDT tube spatial resolution that has been achieved in ATLAS Run 2 is
presented. Unless otherwise noted, all reported errors are statistical.

2 ATLAS detector

The ATLAS experiment [5] at the LHC is a multipurpose particle detector with a forward-backward
symmetric cylindrical geometry and a near 4m coverage in solid angle.! It consists of an inner track-
ing detector (ID) surrounded by a thin superconducting solenoid providing a 2 T axial magnetic
field, electromagnetic and hadronic calorimeters, and a muon spectrometer. The ID covers the pseu-
dorapidity range |f| < 2.5. It consists of silicon pixel, silicon microstrip, and transition-radiation
tracking detectors. Lead/liquid-argon (LAr) sampling calorimeters provide electromagnetic (EM)
energy measurements with high granularity. A steel/scintillator-tile hadronic calorimeter covers the
central pseudorapidity range (|| < 1.7). The endcap and forward regions are instrumented with
LAr calorimeters for EM and hadronic energy measurements up to || = 4.9.

The ATLAS muon spectrometer is cylindrical, 22 m in diameter and 45 m in length, surrounding
the calorimeters with an acceptance coverage of 2z in azimuth and +2.7 in pseudorapidity. It
consists of a barrel and two endcap sections located in an air-core toroidal magnetic field generated
by eight coils for each section. The field integral of the toroids ranges between 2.0 and 6.0 Tm
for most of the acceptance, while the field magnitude at the MDT chambers ranges from near zero
to 0.2 T in most of the endcap region (1.05 < || < 2.7), and averages about 0.6 T in the barrel
(In| < 1.05) region [2]. The MS identifies muons, provides muon triggers and, integrating with the

IATLAS uses a right-handed coordinate system with its origin at the nominal interaction point in the center of the
detector and the z-axis along the beam pipe. The x-axis points from the interaction point to the center of the LHC ring,
and the y-axis points upwards. Cylindrical coordinates (r, ¢) are used in the transverse plane, ¢ being the azimuthal
angle around the z-axis. The pseudorapidity is defined in terms of the polar angle 6 as n = — In tan(6/2). The momentum
in the transverse plane is denoted by p...



inner detector information, measures their charge sign and momenta. The MDT chambers perform
precision charged-particle tracking in the plane defined by the beam axis (z) and the radial distance to
the beam (7). The momentum measurement is based on the track curvature in these r-z coordinates,
while resistive-plate chambers (RPC) and thin-gap chambers (TGC) provide triggering in the barrel
and endcaps respectively, and readout of the so called second coordinate in the r-¢ non-bending
plane. The MDT chambers are assembled in three nested cylindrical barrel stations and three main
coaxial discs in each of the endcap regions. A fourth annulus of endcap chambers covers a limited
pseudorapidity region spanning from the barrel to the endcap. They are constructed of pairs of
close-packed multilayers of 3 cm diameter cylindrical aluminum drift tubes, 1 m to 6 m long for the
inner stations close to the beam and outer stations, respectively. Each multilayer comprises either
three or four single planes, depending on the barrel (endcap) chamber radial (Z-axis) position, with
each plane containing from 12 to 72 tubes. A 50 um diameter anode wire is centered to within 30 um
of the axis of a 1.46 cm (1.5 cm) inner (outer) radius aluminum tube. The MDT gas is a mixture of
93% Ar and 7% CO, plus a few hundred ppm of water vapour at 3 bar pressure. The gas flows in
a common trunk line to distribution racks and is fed in parallel to all drift tubes at a rate of roughly
one tube volume per day. The total gas throughput to the entire MDT system is about 2 x 10° L/day.
The tubes are operated at 3080 V anode voltage to deliver a gas avalanche amplification gain of
20000. The single-hit efficiency for a minimum-ionizing particle is nearly 100% [6].

First-level triggers [7] are implemented in hardware and combine muon spectrometer and
calorimeter measurements to accept events at a maximum rate of 100 kHz. These first-level triggers
are followed by more refined software-based triggers that reduce the accepted event rate to 1 kHz
on average.

3 Analysed data

The results presented here are based on a subset of the ATLAS Run 2 proton-proton collision
data at a center-of-mass energy /s = 13 TeV. Specifically, this analysis uses 1.3fb™! of data that
were acquired in 2015, 23.8 fb~! in 2016, and 22.3fb~! in 2017. The 2015 and 2017 data include
7.9pb~! and 55.3 pb~!, respectively, collected with the MS toroid magnet turned off. The data set is
from the primary ATLAS physics data stream that includes all triggers and was processed with data
quality selections common to all physics analyses. The selected set of data runs is distributed along
the whole data acquisition period for each year, allowing checks of the stability of the parameters
under study in different conditions. Each single run contains enough muon tracks per chamber to
allow the determination of the R(#) and resolution functions. Two corrections that depend on the
non-bending plane second coordinate are applied to the time of the MDT signal by the offline event
reconstruction software: (1) the magnetic-field-induced Lorentz angle effect on the drift time [8]
and (2) the signal propagation time associated with the hit position along the wire.

This paper uses single-hit information from muon tracks with p. > 20 GeV that are recon-
structed in the ID and MS. The data include drift times, drift radii and timing offsets as used by
the offline tracking reconstruction algorithms. A minimum of 1000 tube hits per chamber per run
is required to obtain stable fit results in the analysis. As a consequence of these selection criteria
the number of chambers for which results are obtained has a run-to-run variation of 0.3%. When



possible, multiple consecutive runs with the same gas conditions are grouped together in order to
reach a minimum number of muon tracks per chamber.

4 MDT calibration

This section introduces the drift radius measurement and the basic calibration parameters necessary
for its determination. The operational definition of the single-hit spatial resolution as applied in
this analysis is then presented.

4.1 Drift radius determination

The MDT drift tube signal, or hit, provides the pulse arrival time, and a quantity reconstructed as the
collected electric charge of the signal pulse. Read-out is accomplished with 24-channel front-end
cards. These cards amplify, shape and discriminate the signals with programmable thresholds, then
digitize the data. The hit time data are recorded in 1.2 us windows initiated by a first-level trigger
signal with a 0.78125 ns minimum digitization time. The charge contained in the leading edge of
the signal is stored as voltage on a capacitor and read out as a run-down time using the Wilkinson
technique [9].

The signal arrival time is relative to a specific proton-proton interaction time called the bunch
crossing identifier. The bunch crossing time is measured in 25 ns ticks synchronized with an LHC
global 40 MHz clock, and is subtracted in the read-out electronics hardware to yield the raw pulse
arrival time. This pulse arrival time includes, in addition to the drift time, several timing offsets: the
time-of-flight of the particle (muon) from the proton-proton interaction point to the tube, the signal
propagation time along the tube wire, plus various fixed electronics and cable latencies. The sum
of all these is referred to as the 7, offset. The 7, offset therefore represents the drift time produced
by a particle crossing at the tube wire.

The raw time for every hit is converted into a drift time by subtracting the tube time offset.
The drift time is a measure of the transit time of electrons generated by the primary ionization
and subsequent avalanche multiplication to arrive at the anode wire. The resultant drift time is
then mapped to the drift distance (circle) by means of a time-to-distance R(¢) transfer function, an
example of which is shown in figure 1. The best straight line tangent to all such drift circles in a
single chamber forms a track segment.

In ATLAS, the ¢, offset is a property of a single tube, whereas an R(¢) function is associated to a
single MDT chamber. This association is valid to the extent that the operating conditions are uniform.
Since chambers share a common high-voltage supply, gas pressure and thermal environment, these
conditions are generally met at the chamber level. These 7, offsets and R(z) functions, globally
called calibration constants, are generated by the ATLAS calibration computing centers.

4.2 ty determination

While the 7, offset represents the drift time of a hit at the wire, operationally it is defined as the
point of 50% of maximum amplitude of a Fermi-Dirac sigmoid function fit to the rising edge of an
MDT drift time spectrum [10], as illustrated in figure 2. ¢, offsets are nominally determined for all
tubes in the MS using single tube spectra or, when hit statistics are poor, the combined spectra from
groups of 24 equal-length tubes sharing a common readout card. This 7, offset definition is subject
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Figure 1. Gas monitor chamber R(¢) function for
93% Ar-7% CO, (and less than 0.1% of water

Figure 2. Measured drift time spectrum for a
generic MDT chamber with a Fermi-Dirac func-

vapour) for standard condition: 293 K, 3080 V tion fit to the rising edge of the distribution.

and 3 bar, obtained via autocalibration.

to small systematic uncertainties of order 1 ns. These arise from different data selection, different
background level and operating conditions in the GMC (see section 4.4) and the MDT systems,
which affect the number of hits near the wire, the slope of the rising edge, and the subsequent fit
result. These systematic effects are relevant for the GMC-based universal R(¢) function described
in section 4.3 which is computed using the GMC 7, offsets. They are resolved using a correction
parameter, 6t,,, described in section 5.1.

4.3 R(t) function determination

A standard method to extract the R(¢) function is by an autocalibration algorithm [11]. This
algorithm, using a given set of 7, offsets, iterates the linear fit to the drift radii in a chamber,
each time updating the R(¢) function until the residuals converge to a minimum. An autocalibration
R(r) function is self-adapting to the chamber conditions, but a daily implementation of this procedure
for every single MDT chamber requires significant computing resources and a large amount of data
transfer and storage.

The alternative R(¢) function calibration method used here adopts the temperature-corrected
universal R(z) (URT), where the URT is the GMC R(¢) function derived using autocalibration for
standard operating conditions (defined as gas pressure 3 bar, high voltage 3080 V, temperature 293 K,
and GMC i, offsets). The URT method assumes that the absolute measured values of the chamber
operating conditions of both the GMC and the MDT chambers are all known and that their differences
can be corrected. The main sources of systematic differences resulting from this assumption are:

* The MDT chamber pressures can differ from the 3 bar nominal point due to several factors:
local gas flow rates, pressure gauge location in the gas flow circuit, and pressure sensor
offsets. Furthermore, sensors used in the GMC and in the MDT gas racks have systematic
uncertainties of 10-20 mbar.

* The internal MDT gas temperature may be systematically misrepresented by the thermal
sensors. There are typically eight sensors mounted on the tube walls at different locations in



the chamber. These sensors are read out periodically, and a daily average value over all sensors
is computed. However, due to possible thermal gradients across the chambers (on average
1.8 £ 0.7 (RMS) K), and because the sensors are external to the tubes, this average temperature
may not accurately represent the internal temperature everywhere in the gas volume.

* The actual high voltage supplied to chambers might deviate slightly (by about 1 V) from
the nominal 3080 V operating voltage, although this has an effect of less than 0.1% on the
maximum drift time. A larger high-voltage deviation generally indicates equipment failure,
not a systematic error, and it is addressed during the detector access periods.

To correct for these effects a single catch-all parameter, referred to as effective pressure, 0P, is
defined. This parameter is used in a phenomenological correction function described in section 5.2.
In summary, an MDT chamber requires two types of calibrations: an R(¢) function and a set
of 7, offsets, each with a specific set of uncertainties. Two similar algorithms provide correction
factors that compensate for these uncertainties and lead to improved single-hit spatial resolution.

4.4 Gas monitor chamber

The GMC [10] is an independent MDT chamber that operates in the surface gas facility, outside of
the ATLAS experimental cavern. It has two gas partitions each independently sampling the common
MDT trunk supply and exhaust lines that serve the entire MDT system, and records cosmic-ray
muons at a rate of about 14 Hz. It is housed in a stable thermal enclosure where all operating
parameters, gas flow, pressure, temperature, and high voltage, are continuously monitored.

The principal GMC output is a measurement of the maximum drift time, ,,,,, = #,,—t,, where r,,
is the arrival time of a hit located at the tube wall. A drift time spectrum, similar to figure 2, is com-
puted for standard operating conditions by applying a correction function [12] based on the output
of chamber-mounted pressure and temperature sensors. The tail end of the spectrum is fitted using
a modified Fermi-Dirac sigmoid function similar to that used to obtain the 7 offsets, and the 7, is

max

defined as a fit parameter, as described in ref. [10]. The ¢, is published hourly to the online run

max
monitoring system and to the muon calibration centers. A variation of#,,, > 1 ns triggers the calcu-

lation of a new set of R(¢) functions for the track reconstruction. The ¢

max 1S sensitive to small changes

in the gas composition: for example, a 100 ppm absolute increase in water vapour content yields
anearly 7 ns increase in #,,,, [13]. A single 24-hour period of GMC ¢,,,, data is shown in figure 3,
where the stability is better than 1 ns RMS. The GMC ¢, superimposed with the same quantity de-
termined from the average of all chambers over the 2016 data-taking period is presented in figure 4.
A one-time offset of —12 ns is applied to compensate for the typical difference in gas temperature
between the MDT and the standard URT that range from about 4.5 to 5 K. The range of 7, variation
over one year is 15 ns. This change, observed annually, is attributed to the seasonal variation in am-
bient humidity in the ATLAS cavern that modulates the content of water vapour in the gas mixture.

The GMC produces URT functions every two hours. After local GMC temperature and
pressure corrections are applied, the URT registers only changes in the gas composition. Based on
the daily average of measurements from detector-mounted thermal sensors, the URT is converted
into chamber-specific R(¢) functions [12]. These chamber R(¢) functions are further tuned by the
0P correction parameter, as detailed in section 5.2.
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4.5 Residuals and resolution

Track segments in a chamber are the best-fit straight lines tangent to the N circles defined by N drift
radii. The distance of closest approach of a hit radius to this fit line is either a fif or hif residual. The
former results when all N data points are included in the linear fit, and the latter is a measure of the
j residual when the j" point is excluded from the fit of the other N — 1 points. Hit and fit residual
distributions (N entries per track, for all tracks in the analysed data set) are generated for each
MDT chamber. Residuals are calculated for each of 15 radial bins, 1 mm wide, from O to 15 mm
in drift radius r, as well as for a single 15-mm-wide radial bin. The former are used to obtain the
radial dependence of the resolution and the latter is used to obtain the single-hit spatial resolution,
both averaged over all tubes in a chamber. The residual distributions are fitted using a double-
Gaussian function as expressed in equation (4.1): this choice is dictated by the stochastic nature
of the signal formation that arises from ion-pair creation, gas diffusion and electron-ion transport
and, importantly, allows for the dependence of the drift velocity on drift radius, as indicated by the
non-linearity of the R(¢) function in figure 1. These properties produce residual distributions with
radially dependent widths, including tails that are attributed to misassociated track hits from delta-
rays and asynchronous background hits. While a single-Gaussian function inadequately describes
the distributions for all radial bins, the double-Gaussian function used here provides a good fit to
the residuals with a minimal increase in the number of free parameters. The fit function is:

—(r=7)? —(r=7)2

fr)y=Ae > +Age 2% , 4.1)

where A, A,,, 0y, 0, are the amplitudes and standard deviations of a narrow and a wide Gaussian
component. The two terms in equation (4.1) are constrained to a common mean 7, and fit over a
residual range of + 0.5 mm, which contains more than 99% of hits (section 7). The o parameters
(for fit and hit residuals) are determined for the " radial bin of the amplitude-weighted standard



deviations of the double-Gaussian function by:

A + Ay ()
) = A ) T A

where the dependence of the fit parameters on the drift radius is explicitly indicated. Fit and

4.2)

hit residual distributions for a representative chamber at a drift radius near the wire, where the
resolution is broader than far away from the wire, are shown in figures 5 and 6, respectively. These
distributions are fit with the function of equation (4.1). For comparison purposes a single-Gaussian
fit within the FWHM of these distributions is also shown.
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Figure 5. Fit residual distribution for a represen- Figure 6. Hit residual distribution for the same
tative chamber for the radial bin » = [2,3] mm. chamber and radial bin as in figure 5.

A double-Gaussian (solid line) is fit in the range
+0.5 mm. A single-Gaussian (dotted line) is fit
within the FWHM but shown out to +0.5 mm.

The drift tube spatial resolution, o,
defined as:

os» 15 the geometric mean of the fit and hit residual widths [14]

Ores(r) = Vo'ﬁt(r) - Ohig(r) 4.3)

This approach was checked by Monte Carlo simulation. About 10° tracks incident on a generic
chamber within a 10° angular range were generated. The drift radii assigned to these tracks were
Gaussian distributed about their initial values using a radially dependent input resolution function
derived from a test beam [15]. These smeared hit points were linearly fit and the output resolution
for each radial bin was obtained using equation (4.3). The mean difference over the tube radius
between the output and input resolution is 0.3 + 0.2 um, confirming the validity of the formulation.

5 Correction algorithms

This section describes the algorithms used to determine the 67, and 6P corrections and their
associated metrics, the track residuals and the resolution.
5.1 Oty correction

The default 7, offset definition may vary by the order of 1 ns from the 7, value that provides the best
resolution. The algorithm described here is a variant of the tuning procedures designed to find the



best linear fit to a track segment by tuning the 7, on a track-by-track basis [16]. The 61, correction
method instead optimizes the default 7, by testing a new, modified 7, associated with a single
chamber simultaneously for all tubes and for all tracks in a data run, while keeping the R(¢) function
fixed. The algorithm operates on track segments containing at least as many hits as there are drift
tube layers in the chamber, i.e. a minimum of six (eight) hits for a six-layer (eight-layer) chamber.
The procedure steps through 67, over arange of £10 ns in 0.5 ns steps. At each step, new drift times
and drift radii are computed and the segments are re-fit. Importantly, the residuals are evaluated
only for hits with drift radii » < 5 mm where the drift velocity is largest, about 50 um/ns. By using
only these near-wire residuals the procedure is practically insensitive to the R(¢) function and avoids
compensating for systematic uncertainties which come into play at larger drift radii (see figure 12).
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Figure 7. Hit residual distributions for a repre- Figure 8. Typical RMS widths of hit residual
sentative chamber for 7, correction parameter set distributions of hits less than 5 mm from the wire
to —4 ns (left), +1 ns (center) and +6 ns (right) as a function of the 7, correction, for the same
from the default value. Widths are 296, 188 and chamber as in figure 7.

303 um, respectively.

Figure 7 shows segment hit residuals from the 7, correction procedure for a representative
chamber for 67, values of —4, +1, and +6 ns. Figure 8 shows the incremental change with each
step of the residual RMS widths for the entire range of 67, values relative to the initial 7,. The
optimal 67, is the one yielding the minima of the RMS widths of the fit and hit residual distributions.
The value on the vertical axis corresponding to the minimum in figure 8 does not represent the
resolution, but only the RMS spread of the hit residuals near the wire.?

The 61, correction procedure is applied to 2015 data (the first year of Run 2 operation) using
initial 7, offsets generated by the MDT calibration centers. The 67, corrections obtained in a much
higher peak-luminosity November 2015 run, 4.8 x 10°*cm=2s~!, are shown in figure 9, which
reveals an average f,, global correction of 1.3 ns with a RMS spread of 0.7 ns. The tails of the
distribution are populated by a few chambers that were measured to have been constructed with
structural non-conformities affecting the internal alignment of the tubes and therefore of the hit

positions. The 61, correction tries to compensate for this misalignment.

?For over 95% of the MDT chambers the double-Gaussian fits yield the same 7, minima as obtained using the RMS

of the residual distributions. In the remaining chambers the fit method can lead to anomalous minima, so for consistency
and stability of the results, the RMS method to establish the minimum is adopted for all chambers.
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The determination of the 67, corrections for all MDT chambers was repeated for a selection of
data runs that span all data-taking periods in 2016 and 2017. The chamber-averaged 67, corrections
for each run are shown in figure 10. At least 1165 out of the total 1172 chambers are included in
each data point used for this average, depending on the integrated luminosity of the run. For the 65
runs analysed in 2016 the mean global 67, offset is 1.35 + 0.05 (RMS) ns, consistent with the result
determined from the 2015 data set. The 67, corrections from 2016 are then added to the calibration
constants for 2017, so that the algorithm, when applied to the 2017 data set, produces a smaller
global shift with a mean of 0.43 + 0.07 (RMS) ns.

Figure 11 shows the chamber-by-chamber 67, difference between the first and last runs of the
2017 data set. In the first run, the toroid magnetic field was off and in the last run the field was at
full strength and the instantaneous luminosity was higher by one order of magnitude. The mean
difference is consistent with zero. This result demonstrates that the 6t0 parameter, once established,
remains stable for all chambers over a large range of instantaneous luminosity and is insensitive to
the magnetic field.

5.2 6P correction

Optimization of the R(¢) functions is done with an effective pressure parameter, § P, that corrects
for the (small) inaccuracies in gas pressure sensors, temperature measurement, and high voltage.
In all three cases, minor variations from nominal values produce radially dependent changes in the
R(¢) function, such that a single, scalable correction function can be used. The calculation of this
function is done using the Garfield program [17] configured to model the drift electron transport
in MDT tubes with standard operating parameters as in section 2. Specifically, a pure Ar-CO, gas
mixture without water vapour and zero magnetic field is used. Figure 12 shows the predicted change
in the drift time as a function of drift radius for variations of temperature, pressure and high voltage
from their reference values. This drift time response was previously validated with temperature
data [12]. The maximum effect on the drift time is at the tube wall as expressed in equation (5.1),
where the temperature correction is —2.6 ns/K, while the pressure correction function scales as
—0.1 K/mbar relative to the temperature correction. The negative sign means that an increase in gas
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pressure at fixed temperature corresponds to an increase in gas density, a decreased drift electron
mean free path, and thus longer drift times. Similarly, a higher voltage at fixed pressure leads to
an increased electric field and higher drift velocity. Importantly, for any of these parameters, the
curves in figure 12 indicate a negligible effect on drift times for radii smaller than 5 mm. For
small deviations of the high voltage from the nominal setting, the drift time changes by only about
0.26 ns/V at the tube wall, thus typical systematic offsets of 1 V have a negligible effect:

ns

At(wall) [ns] = —2.6 % X AT [K] = +0.26 x AP [mbar] = —0.26 % XAV[V].  (5.1)

mbar

The effective pressure correction algorithm is similar to the 67, method and uses the same track-
segment hit selection. For a collection of track-segment hits, P is incremented in 5 mbar steps
through a +100 mbar range of test pressures centered around the nominal 3 bar. The R(¢) function is
recalculated using the correction function shown in figure 12 rescaled by the P+ 6P effective pressure
value assumed in the scan, new drift radii are obtained from the newly corrected R(¢) function, and
track segments are re-fit and residuals evaluated. The procedure is initiated with the set of chamber-
specific R(¢) functions of the day of the run. The 61, corrections found previously are applied to
the hit drift times. For 6 P determination, the residuals are calculated for all drift radii.

Similar to the 67, procedure, the optimal 6 P is the one yielding the minimum of the RMS width
of the fit and hit residual distributions. The hit residuals for three § P values, of —40 mbar, 10 mbar
and 60 mbar, are shown for a representative chamber in figure 13. Figure 14 shows the RMS width
of the hit residual distribution as a function of ¢ P for the full scan range. The minimum at 10 mbar
represents the best value of this parameter.

The minima of curves similar to figure 14, taken as the §P step corresponding to the lowest
residual, were initially determined for all MDT chambers using data from August 2015 with the
toroid magnet turned off. The algorithm was applied to a set of collision runs acquired 2.5 months
later with the magnetic field turned on, and with 25 times higher instantaneous luminosity (from
0.17 x 103 cm™2 57! in mid August to 4.8 x 103> cm=2s~! at beginning of November), yielding in
both cases an average correction 6 P of 30.0 =+ 0.3 mbar with an 11 mbar RMS spread. Distributions
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(right). RMS widths are 141, 131 and 144 pm,
respectively.

of the latter 6P results are shown in figure 15, and the chamber-by-chamber differences in the
0P correction for the two data sets are shown in figure 16. The measured change is within the
OP step size. The corrections are stable in time and insensitive to both the magnetic field and the
increased hit rates that result from higher instantaneous luminosity.
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Figure 15. Distribution of 6P for a high- Figure 16. Chamber-by-chamber difference of
luminosity run in November 2015. OP for a run with the toroidal magnetic field off

and a run 2.5 months later with 25 times higher
luminosity and the toroid on.

The 6P algorithm was further applied to 65 collision runs acquired from May to October
2016, where the peak luminosity exceeded 10** cm™2 s~!, more than twice that of November 2015.
These runs used R(¢) functions which included the 6P corrections determined in the 2015 data.
The chamber-averaged 6 P value for each of the runs in 2016 and 2017 is shown in figure 17 as a
function of run date. The average of 6 P over all of 2016 data is 9.5 + 0.8 mbar (RMS = 1.3 mbar)
and for 2017 is 12.3 = 1.0 mbar (RMS = 1.3 mbar). The 6P correction is stable over each year

to better than 3 mbar. Figure 18 shows the distribution of the chamber-by-chamber 6P difference
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between the first and last runs in the 2016 data set. The mean difference is 2.3 + 4.5 (RMS) mbar,
within the systematic uncertainty of the algorithm (section 7). This overall result supports the initial
hypothesis that 6 P represents primarily systematic offsets of pressure gauges and other sensors and,

once determined, would remain stable throughout a year of running.
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Figure 17. Chamber-averaged 6P for each anal-
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certainties are the RMS spread of the chamber’s
OP distribution.

Figure 18. Chamber-by-chamber differences in
0P between the first and last 2016 analysed run.

6 Resolution results

The single-hit MDT tube spatial resolution, as defined in equation (4.3), is measured in runs with
the toroidal magnetic field on. A requirement of p. > 20 GeV for the muon transverse momentum
measured with the ID is applied to reduce the track curvature such that track segments could be
reliably fit with a linear function, even in the chambers in a high magnetic field. For these tracks the
negligible effects of the curvature due to magnetic field are folded into the systematic uncertainty.

The resolution obtained for a series of runs in each year of Run 2 is reported in figure 19. The
full circles are calculated directly from fits to the default reconstructed track segments using the
standard 7, and R(¢) calibration constants. The triangles include the 67, corrections, and the blue
inverted triangles also include d P corrections. Significant improvements to the resolution in 2015
are the result of a first implementation of the corrections, dominated by 6 P. These 6 P corrections
were subsequently included in the standard production of R(¢) function calibration constants. The
application of the procedure in each year yields 1-2 pum better resolution. The 67, corrections in 2015
and 2016 each lead to a 3—4 pm improvement in resolution. From the beginning of 2017 the previous
year’s 61, corrections are also applied, but only the 6 P corrections from 2016 (not those from 2015).
However, they yield an improvement of only 1.2 um as shown in the right panel of figure 19.

Both the best 67 and 6 P values are incorporated in the end-of-year data reprocessing in order
to provide the best calibrated data for subsequent physics analyses.

Figure 20 summarizes the resolution averaged over all runs in 2015, 2016, and 2017, for each
MDT chamber. The left panels show the initial resolutions obtained with the standard calibrations.
The right panels show the resolutions after all 67, and 6P corrections are implemented and using
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Figure 19. Resolution averaged over chambers Figure 20. Single-hit resolutions for each cham-
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the right panel already include the 67, corrections
from 2016; additional & 1, correction is not needed.

daily updated R(¢) functions: 84.9 + 0.2 um for 2015, 82.3 = 0.2 um for 2016, and 81.7 + 0.2 um
for 2017. Notably the improvements are measured both by the decrease of the mean value of the
distribution and by the decrease of the RMS width, indicating greater uniformity of the resolutions
of the whole ensemble of MDT chambers. In 2015, the 6P corrections were applied for the first
time in Run 2, and then incorporated into the default calibrations for 2016. In 2016, the larger data
set allowed a much higher fraction of the initial 7, offsets to be determined for single tubes by the
calibration centers, resulting in a better overall initial resolution. The 61, corrections from 2016 were
propagated into the default calibrations for 2017. For this reason, the incremental improvement in
both the mean and the RMS spread decreases with each year and the standard offline tube resolution
approaches the fully corrected result.

The final MDT drift tube spatial resolution, with all corrections described in previous sections
included, is shown as a function of drift radius in figure 21 and in figure 22. In particular, figure 21
shows for 2016 the run-averaged resolution distributions oyes(r) in 1 mm radial bins, where each
histogram bin entry represents a single chamber. This set of histograms therefore represents the full
range of resolution functions obtained for the entire ensemble of MDT chambers. The mean values
of these distributions are plotted as a single resolution function in figure 22, where the uncertainties
are the RMS widths of the distributions for all chambers. For comparison, the resolution curves of a
single MDT chamber deployed in a test beam [15], with and without background irradiation, are also
displayed. The 2016 chamber-weighted resolution averaged over all radial bins is 86.4 + 0.2 pm and
the average excluding the radial bin closest to the wire is 79.7 + 0.2 um. These two values bracket
the final 2016 resolution averaged over all chambers, presented in figure 20, of 82.3 + 0.2 um.

Specific high instantaneous luminosity collision runs are analysed in order to measure the drift
tube rates by counting all chamber hits occurring within the MDT read-out time window of 1.2 us
initiated by any muon trigger. This total number of hits per time window is normalized to the
total tube area to obtain a rate per unit area. These rates are consistently less than 10 Hz/cm?,
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except for one set of 16 endcap inner chambers at high pseudorapidity whose rates range from
20 to 50 Hz/cm?, and another set of 16 chambers nearest the beam-line where rates range from
60 to 140 Hz/cm?. At background rates above 100 Hz/cm?, some loss in tracking efficiency and
resolution is expected due to increased read-out electronics dead time and space charge in the gas,
respectively. Furthermore, an increase of the read-out electronics dead time was observed in special
high instantaneous luminosity runs at the end of Run 1, and addressed in Run 2 by optimizing the
data acquisition parameters. The resolutions from the analysed runs recorded in 2017 are entirely
consistent with the results from 2016 shown here.
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Figure 21. Distribution of resolutions in 1 mm Figure 22. Resolution as a function of drift radius
radial bins of drift radius for all MDT chambers, averaged over all MDT chambers and all analysed
averaged over all analysed runs from 2016. runs from 2016. Muon test-beam resolutions of an

MDT chamber with background radiation from 0
to 64 Hz/cm? are also shown for comparison [15].
Uncertainties are RMS widths of the resolution
distribution for all chambers.

7 Systematic uncertainties

The main sources of systematic uncertainty affecting the determination of the MDT resolution are:
(1) the fit uncertainty associated with the range of the double-Gaussian fit; (2) the use of linear fits
for curved track segments; (3) the precision of the 67, and 6 P determinations; and (4) the accuracy
of equation (4.3) to describe the resolution. They are described in this section.

A double-Gaussian function is fit in a range of +500 pm for both the fit and hit residual
distributions. This fit function matches well the central region with a narrow component and the
tails with the wider component. The fraction of hits included in the residual distributions exceeds
99% for most drift radii, and (95-97)% for the first millimeter nearest the wire. The reason for this
additional loss is attributed to the minimum 1 mm path length corresponding to the MDT front-end
electronics threshold of 23 primary ionization electrons [9]. For radial distances below 1 mm,
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the precision of the drift radius determination deteriorates due to the small number of ion pairs,
increasing the fraction of large residuals. A modification of the fit range down to +400 um and up
to =1 mm produces an overall systematic variation in the resolution of 1 um.

The path of a low-p. muon track is slightly deflected by the magnetic field as it passes through
a chamber. For this reason, the tracks used in the analysis have a minimum transverse momentum
of 20 GeV, yielding an average p of 40 GeV. The systematic resolution broadening from using a
linear fit is determined from a Monte Carlo calculation using a worst-case 0.6 T magnetic field and
for the most prevalent MDT geometry: a six-layer chamber with a 17 cm spacer frame separating
the two multilayers. The hits are smeared with the nominal 80 um resolution, linearly fit to generate
residuals, and the resolution computed from equation (4.3). The average resolution for p. = 40 GeV
muons is broadened by about 2 um relative to the nominal value. In addition, this uncertainty
from track curvature in the magnetic field is also directly investigated by comparing the resolutions
obtained with and without the toroidal magnetic field. The average resolution of all chambers with
the toroid field off is oox = 80.1 = 0.2 um. The average broadening of the measured resolution due
to the toroidal field is 1.6 + 0.3 um, consistent with the result from Monte Carlo calculation.

The step of the correction algorithm is 0.5 ns for 67, and 5 mbar for 6 P. The minima are found
separately for the hit and fit residual distributions, and agree to within one step for more than 90% of
the chambers. Therefore, the precision with which the parameters can be reliably established is esti-
mated to be half of the step size. The uncertainty for each parameter is determined by altering the op-
timal 67, and 6 P values within +£0.25 ns for 67, and +£2.5 mbar for 6 P and recalculating the resolution
functions. The average systematic uncertainty in the correction parameter determination is 1 pm.

A final, small systematic uncertainty derives from the accuracy to which the resolution function
of equation (4.2) reproduces the true resolution. This uncertainty, described in section 4.5, is 0.3 um.

The total systematic error of the single-hit spatial resolution measurement, taken as the sum in
quadrature of all contributions, is 2.2 um, as summarized in table 1, and about 2.6% of the overall
average resolution.

Table 1. Main resolution systematic uncertainties averaged over all chambers.

Systematic uncertainty Size [um]
Double-Gaussian fit range 1.0
Straight-line track fit 1.6
Optimal 6P and 61, values 1.0
Resolution function accuracy 0.3
Total 2.2

8 Conclusion

This document describes a novel method to optimize the single-hit spatial resolution of the muon
MDT chambers of the ATLAS experiment during Run 2 of the LHC. This method tunes the initial
t, derived from drift time spectra and provides a correction parameter for R(#) functions produced
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by a gas monitor MDT chamber. The extracted corrections were used in the 2015 and 2016
end-of-year data reprocessing, and became fully integrated in the online calibrations from 2017
onward, yielding results consistent with those presented here. These two combined correction
parameters are shown to be very stable over a year, insensitive to increasing luminosity, variations
in environmental conditions, or the magnetic field. The method applied to the 2017 data achieves
a mean single-hit spatial resolution of 81.7 + 0.2 + 2.2 (sys) wm with an RMS spread of 7 um over
all 1172 MDT chambers in the spectrometer. The resolution approaches the design value of 80 um,
consistent over all MDT chambers, and stable across all run periods.
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