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1 Introduction

Electric dipole moments (EDM) provide one of the best indirect probes for new-physics.

Since a non-zero EDM requires a violation of the CP symmetry, and the Standard Model

(SM) contributions are accidentally highly suppressed, the EDM is an exceptionally clean

observable to uncover beyond the SM (BSM) physics. Indeed, if BSM physics lies at the TeV

scale, we expect new interactions and therefore new sources of CP violation to be present,1

inducing sizable EDM to be observed in the near future. For this reason, experimental

bounds on the electron and neutron EDM have provided the most substantial constraints

on the best motivated BSM scenarios, such as supersymmetry or composite Higgs models.

1As in the SM, we can expect that any parameter of the BSM that can be complex will be complex,

providing unavoidably large new sources of CP violation.
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The ACME experiment has recently released a new bound on the electron EDM that

improve by a factor ∼ 8.6 their previous bound [1]:

|de| < 1.1 · 10−29 e · cm . (1.1)

This unprecedented level of accuracy allows for a sensitivity to BSM effects even if they

appear at the two-loop level. Indeed, using the rough estimate,

de
e
'
(

g2

16π2

)2
me

Λ2
, (1.2)

we get from eq. (1.1) a bound on the scale of new-physics Λ & 2.5 TeV, being competitive

with direct LHC searches. It is therefore of crucial interest to understand how and which

BSM sectors affect the electron EDM up to the two-loop level, and which constraints can

be derived from the bound eq. (1.1).

The purpose of the paper is to use the Effective Field Theory (EFT) approach to

provide a classification of the leading BSM effects on the EDM of the electron up to the

two-loop level. In the EFT approach BSM indirect effects are encoded in the Wilson coef-

ficients of higher-dimensional SM operators. At the loop level these Wilson coefficients can

enter, via operator mixing, into the renormalization of the CP-violating dipole operators

responsible for the EDM. By calculating the anomalous dimensions of these operators, we

can provide all log-enhanced contributions to the EDM coming from new physics.

At the leading order in a m2
W /Λ

2 expansion, the electron EDM arises from two

dimension-6 operators, OeB and OeW (see below). We will present here the relevant anoma-

lous dimensions of the imaginary part of the corresponding Wilson coefficients, CeB and

CeW , up to the two-loop level. In particular, we will provide the leading correction (ei-

ther at the one-loop level or two-loop level) of the different Wilson coefficients Ci to the

imaginary part of CeB and CeW . We will see that due to selection rules, only few Wilson

coefficients enter into the renormalization of CeB and CeW at the one-loop or two-loop

level. Calculating these leading corrections will allow to extract bounds on these Wilson

coefficients from the recent EDM measurement.

In addition, we will also provide the most relevant one-loop anomalous dimensions of

the dimension-8 operators affecting the electron EDM. Although sub-leading in the m2
W /Λ

2

expansion, dimension-8 operators give contributions of order

de
e
' g2

16π2

mem
2
W

Λ4
, (1.3)

that can also be relevant as eq. (1.1) leads to the bound Λ & 2 TeV, similar to those from

eq. (1.2).

Our results can be useful to derive from eq. (1.1) new bounds on BSM particle masses.

As an example, we will provide bounds on BSM with leptoquarks or extra Higgs, showing

that we can exclude masses below hundreds of TeV. We will also present constraints on

new regions of the parameter space of the MSSM, as well as bounds on top-partners in

composite Higgs models. These bounds can be better than those from present and future

direct searches at the LHC, unless the BSM preserve CP.
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2 EDM of the electron in the EFT approach

We are interested in calculating new physics contributions to the electron EDM following

the EFT approach. This is a valid approximation whenever the new-physics scale Λ is larger

than the electroweak (EW) scale, such that new-physics effects on the SM can be char-

acterized by the Wilson coefficients Ci(µ) of higher-dimensional SM operators. Assuming

lepton number conservation, the leading effects arise from dimension-6 operators

∆L =
∑

i

Ci(µ)

Λ2
Oi , (2.1)

where the Wilson coefficients are induced at the new-physics scale, Ci(µ = Λ), and must

be evolved via the renormalization group equations (RGEs) down to the relevant physical

scale at which the measurement takes place. Since the Wilson coefficients mix via loop

effects in the RGEs, precise measurements, such as the EDM, can be sensitive to different

Wilson coefficients induced by different sectors of the BSM.

The EDM of the electron is measured at low-energies µ � me, and can then be

extracted in the EFT approach from the coefficient of the operator

− i

2
de(µ) ēσµνγ5eF

µν , (2.2)

evaluated at the electron mass,

de = de(µ = me) , (2.3)

where Fµν is the field-strength of the photon. The RG evolution of de(µ) from Λ to me

must be computed in the EFT made with the states lighter than µ. This means that from

the new-physics scale Λ down to the EW scale we must use the SM EFT, while below the

EW scale we must use the effective theory including only light SM fermions, gluons and

photons. Let us start discussing the contributions to de(µ) in the SM EFT.

2.1 SM EFT basis

We will work mainly within the Warsaw basis [2], as the loop operator mixing is simpler in

this basis due to the presence of many non-renormalization results. Nevertheless, we will

make two changes in the four-fermion operators of the Warsaw basis. In particular, we will

make the replacement2

O(3)
lequ = (L̄aLσµνeR)εab(Q̄

b
Lσ

µνuR) → Oluqe = (L̄aLuR)εab(Q̄
b
LeR) , (2.4)

Ole = (L̄Lγ
µL′L)(ē′RγµeR) → Oleē′ l̄′ = (L̄LeR)(ē′RL

′
L) , (2.5)

where a, b denote the SU(2)L doublet indices, and LL and eR denote only the first generation

lepton multiplets, while L′L and e′R the second and third generation ones.3 We also relabel

the operator

Oledq = (L̄aLeR)(d̄RQLa) ≡ Oled̄q̄ . (2.6)

2These operators are related to the ones in the Warsaw basis [2] by Fierz identities, namely O(3)
lequ =

−8Oluqe − 4O(1)
lequ and Ole = −2Oleē′ l̄′ .

3Notice that in our formulae we will suppress the fermion generation indices, except in the cases in which

they cannot be straightforwardly reconstructed from the context.
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tree level

OeW = (L̄Lσ
aσµνeR)HW a

µν

OeB = (L̄Lσ
µνeR)HBµν

1-loop

Oluqe = (L̄LuR)(Q̄LeR)

O
WW̃

= |H|2W aµνW̃ a
µν

O
BB̃

= |H|2BµνB̃µν

O
WB̃

= (H†σaH)W aµνB̃µν

O
W̃

= εabcW̃
aν
µ W bρ

ν W
cµ
ρ

2-loop

O(1)
lequ = (L̄LeR)(Q̄LuR)

Oe′W = (L̄′Lσ
aσµνe′R)HW a

µν

Oe′B = (L̄′Lσ
µνe′R)HBµν

OuW = (Q̄Lσ
aσµνuR) H̃W a

µν

OuB = (Q̄Lσ
µνuR) H̃Bµν

OdW = (Q̄Lσ
aσµνdR)HW a

µν

OdB = (Q̄Lσ
µνdR)HBµν

Oled̄q̄ = (L̄LeR)(d̄RQL)

Oleē′ l̄′ = (L̄LeR)(ē′RL
′
L)

Oye = |H|2L̄LeRH

Table 1. Operators involved in our analysis. Top-left: operators contributing to the electron EDM

at tree-level. Bottom-left: operators contributing to the electron EDM at the one-loop level via

mixing. Right: operators contributing to the electron EDM at the two-loop level via mixing. In

this table we denoted by LL and eR only the first generation lepton multiplets, while L′
L and e′R

denote the second and third generation ones.

Our labeling is to make clear that there are two types of operators Oψψψψ and Oψψψ̄ψ̄ that

in Weyl notation are respectively ψ4 of total helicity 2 and ψ2ψ̄2 of total helicity zero. As

we will see in the following, the helicity of the operator plays a crucial role in understanding

the properties of the operator mixing at the loop level [3]. In Dirac notation these two

type of operators could also be written (after Fierzing) respectively as operators of type

(Ψ̄γµΨ)(Ψ̄γµΨ) and of type (Ψ̄LΨR)(Ψ̄LΨR). In this case, for example, we would have

Oled̄q̄ = −(L̄aLγµQLa)(d̄Rγ
µeR)/2.

2.2 Tree-level contributions

At tree-level there are only two dimension-6 operators that contribute to the electron EDM,

namely the dipole operators OeW and OeB, given in table 1. We have

de(µ) =

√
2v

Λ2
Im [sθW CeW (µ)− cθW CeB(µ)] , (2.7)

where we defined v ' 246 GeV as the Higgs VEV, and sθW ≡ sin θW with θW the weak

angle (similarly for the other trigonometric functions). Notice that contributions to the

electron EDM arised only from the imaginary part of CeW,eB . For this reason, we will

only be interested in loop contributions to the dipole operators that can generate nonzero

Im[CeW,eB ].

2.3 One-loop effects

At the one-loop level, however, other dimension-6 operators can mix with the dipole oper-

ators OeW and OeB, giving a contribution to de. Selection rules, mainly based on helicity

– 4 –
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y y
F 3 → Hψ2F , ψ4 , H2F 2

Table 2. Selection rules [3, 4] for the mixing at the one-loop level between the different types of

dimension-6 operators (in Weyl notation).

arguments, dictate that only few operators contribute at the one-loop order to the anoma-

lous dimension of the Wilson coefficients CeW and/or CeB, as has been argued in refs. [3, 4]

based on the analysis of ref. [5]. The relevant selection rules for our analysis are given in

table 2,4 where we use Weyl notation, and denote with F any SM field strength, with ψ

any Weyl fermion and with H any Higgs insertion. The OeW and OeB operators are of

type Hψ2F and can then only receive contributions from operators of type ψ4, F 3 and

H2F 2 of total helicity ≥ 2.

There are four dimension-6 operators of type ψ4, but only two contain two leptons,

Oluqe and O(1)
lequ given in table 1. The second one, however, after closing the quark loop,

can only give rise to the Lorentz-singlet structure L̄LeR, and therefore cannot contribute to

the electron dipoles. Hence only Oluqe contributes at the one-loop level to the anomalous

dimension of OeW and OeB.5 This contribution is given by

d

d lnµ

(
CeB
CeW

)
=

yug

16π2

(
−1

2 tθWNc(YQ + Yu)
1
4Nc

)
Cluqe , (2.8)

where Yf refers to the hypercharge of the fermion f (YQ = 1/6, Yu = 2/3 and Yd = −1/3),

and Nc = 3 is the number of QCD colors. Since we can work in a basis where the Yukawa

matrix yu is diagonal, the renormalization of the imaginary part of CeW,eB from eq. (2.8)

only arises from the imaginary part of Cluqe.

A second type of operators, involving SM bosons, are H2FµνF̃
µν . There are three

operators of this type in the SM, presented in the bottom-left of table 1. All of them

contribute to the EDM at the one-loop level [6, 7]:

d

d lnµ
Im

(
CeB
CeW

)
= − yeg

16π2

(
0 2tθW (YL + Ye)

3
2

1 0 tθW (YL + Ye)

)

C
WW̃

C
BB̃

C
WB̃


 . (2.9)

It is instructive to write eq. (2.9) in a more physically oriented way, by relating the con-

tributions to the EDM to those to the CP-violating Higgs couplings hγγ, hγZ, and to the

anomalous triple gauge coupling δκ̃γ , defined as

vh

Λ2

(
κ̃γγFµνF̃

µν + 2κ̃γZFµνZ̃
µν
)

+ ieδκ̃γW
+
µ W

−
ν F̃

µν . (2.10)

4There is an exemption to these selection rules when the pair of Yukawas yuye or yuyd is involved in the

loop, as this can induce a mixing from ψ2ψ̄2 to ψ4 [3, 4]. This can only affect the EDM operators at the

two-loop level and will be discussed later.
5As explained in ref. [4], this is easily seen in Weyl notation where the dipole operator is ∝ LαEβF

αβ

with Lα and Eβ being respectively the SU(2)L doublet and singlet Weyl electron. Therefore, only four-

fermion operators containing LαEβ (antisymmetric under α ↔ β) can contribute at the loop level to the

dipole. The only one is LαEβU
αQβ that corresponds to Oluqe in Dirac notation. Notice that this argument

applies also to one-loop finite parts.

– 5 –
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We have

κ̃γγ = c2
θW
CBB̃ + s2

θW
C
WW̃
− cθW sθWCWB̃

,

κ̃γZ = cθW sθW
(
C
WW̃
− C

BB̃

)
− 1

2
(c2
θW
− s2

θW
)C

WB̃
,

δκ̃γ =
1

tθW

v2

Λ2
C
WB̃

, (2.11)

that, using eq. (2.9), leads to

d

d lnµ
de(µ) =

e

8π2

me

Λ2

[
4Qeκ̃γγ −

4

s2θW

(
1

2
+ 2Qes

2
θW

)
κ̃γZ +

Λ2

v2
δκ̃γ

]
, (2.12)

where Qe ≡ −1/2+YL = Ye = −1 is the electric charge of the electron. Due to the approxi-

mate accidental cancellation in the electron vector coupling to the Z, (1/2+2Qes
2
θW

) ∼ 0.04,

the main contribution to the EDM comes from κ̃γγ and δκ̃γ . In fact, this second contribu-

tion is often found to be small in many BSM scenarios, such as the MSSM or composite

Higgs models, as we will see later. In these models the contribution from κ̃γγ is the dom-

inant one. This allows in many cases to give a direct relation between the electron EDM

and the CP-violating Higgs coupling to photons.

Another class of operators that can in principle mix at the one-loop level with the

electron dipole operators are other type of dipole operators Hψ2F , for example, those

involving other fermions in the SM. It is easy to see, however, that there are no possible

Feynman diagrams from quark dipole operators contributing to the electron EDM at the

one-loop level. For dipole operators involving other SM leptons, for example, HeµF , these

contributions are also absent at the one-loop level. Indeed, since we can work in a basis

where the SM lepton Yukawa matrix ye is diagonal, none of these operators can affect

the electron EDM at the one-loop level. Below we will see that there can be, however,

contributions at the two-loop level.

Finally, there are operators of type F 3 that could potentially mix with the dipole

operators. In the SM there are two of these operators, either with gluons (O
G̃

) or W a

bosons (O
W̃

). The O
G̃

operator obviously can not give corrections to the electron dipole

operators at one-loop or two-loop level, as there are no possible Feynman diagrams at these

orders. On the other hand, the O
W̃

operator can contribute to the OeW dipole at one loop.

It turns out, however, that this contribution is finite, so it does not induce a running

for the dipole operator. The finite contribution can be readily computed in dimensional

regularization, leading to the result [8]6

Im[CeW ] =
3

64π2
yeg

2C
W̃
. (2.13)

6Notice that the result depends on the regularization procedure used to compute the one-loop integral [8].

It has been argued in ref. [9] that, for this computation, dimensional regularization provides the only sensible

regularization procedure within the EFT framework.

– 6 –
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OeW ,OeB

Oluqe

O
WW̃

,OBB̃,OWB̃

1-loop

Oye

Oled̄q̄,Olel̄′ē′
2-loop

O(1)
lequ

Oe′W ,OuW ,OdW

O
W̃

1-loop

Oe′B,OuB,OdB

1-loop (finite)

Figure 1. Corrections to the electron EDM (imaginary part of CeW,eB) induced up to the 2-loop

level. The dashed and solid arrows denote mixing at 1-loop and 2-loop order respectively. On the

right we list the operators that generate contributions enhanced by a double logarithm (showing

the 1-loop mixing patterns that generate it), whereas on the left we list operators giving rise to a

single logarithm.

2.4 Two-loop effects

At the two-loop level, more dimension-6 operators can contribute to the electron EDM

by mixing with the dipoles OeW and OeB. We remark that we are only interested in

calculating two-loop effects for those Wilson coefficients that did not mix with the EDM

operators at the loop level. We are interested in extracting bounds to their corresponding

Wilson coefficients and therefore we are only interested in calculating the leading correction

to the EDM. For Wilson coefficients affecting the EDM already at the one-loop level, such

as Cluqe, the two-loop corrections would only provide a small correction to their bound.

New dimension-6 operators can contribute to the electron EDM by mixing with the

dipoles OeW and OeB in two different ways. Either by mixing at the one-loop level with the

operators we discussed in the previous section, Oluqe and OV Ṽ (V = W,B), that contribute

at the one-loop level to the dipoles, or by direct two-loop contribution to the anomalous

dimension of OeW and OeB (see figure 1).

The first case can potentially give larger corrections, as in the leading-log approxi-

mation, they will contain two logarithms, i.e. ∝ ln2(Λ2/m2
W ). From the selection rules of

table 2, we see that only two classes of operators can contribute at this order. One is given

by the ψ4 operators that could not generate an electron dipole at the one-loop due to the

absence of Feynman diagrams, namely the O(1)
lequ operator. The second class is given by

dipole operators involving the second and third lepton generations, Oe′W and Oe′B, or the

quarks, OuW , OuB, OdW and OdB.

Notice that, as we pointed out before, there is an exception to the selection rules of

table 2, corresponding to a possible mixing of ψ̄2ψ2 operators into ψ4 when the pair of

Yukawas either yuye or yuyd is involved in the loop [3, 4]. Nevertheless, by working in the

basis in which the lepton and up-type quark Yukawa matrices are real and diagonal, one

can easily find that there are not ψ̄2ψ2 operators contributing to the imaginary part of

Oluqe at the one-loop level. Indeed, in this basis yuye is real and diagonal, and the only

ψ̄2ψ2 operators that could contribute to Oluqe are the ones involving two electron fields

and two same-generation quarks. The Wilson coefficients of these operators are necessarily

real and do not induce CP-violating effects.

– 7 –
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Therefore the one-loop mixing pattern and RGEs are the following. The Olequ operator

can mix with Oluqe at the one-loop level [6, 7]:

d

d lnµ
Cluqe =

g2

16π2

[
4(YL + Ye)(YQ + Yu)t2θW − 3

]
C

(1)
lequ . (2.14)

The dipole operators, on the other hand, mix with the Oluqe operator, [6, 7]7

d

d lnµ
Cluqe =

g ye
16π2

[
− 8tθW (YL + Ye)CuB + 12CuW

]
, (2.15)

as well as with O
V Ṽ

operators [10]:

d

d lnµ
C
WW̃

= − 2g

16π2
Im
[
ye′ Ce′W + yuNcCuW + ydNcCdW

]
, (2.16)

d

d lnµ
C
BB̃

= − 4g′

16π2
Im
[
ye′(YL + Ye)Ce′B + yuNc(YQ + Yu)CuB + ydNc(YQ + Yd)CdB

]
,

(2.17)

d

d lnµ
C
WB̃

= − 2g

16π2
Im
[
2tθW

(
ye′(YL + Ye)Ce′W − yuNc(YQ + Yu)CuW

+ ydNc(YQ + Yd)CdW
)

+ ye′ Ce′B − yuNcCuB + ydNcCdB

]
. (2.18)

Flavor indices are easily understood as we can always work with diagonal Yukawa matrix

ye and either yu or yd.

The operator O
W̃

also enters at two loops via renormalization of the OV Ṽ opera-

tors [6, 7],

d

d lnµ
C
WW̃

= − 1

16π2
15g3C

W̃
,

d

d lnµ
C
WB̃

= +
1

16π2
6g′g2YHCW̃ . (2.19)

This leads to a two loop, double log contribution to the electron EDM, to be compared

with the finite contribution at one loop in eq. (2.13). The two loop contribution becomes

comparable to the one-loop one already for Λ ∼ 10 TeV.

Let us now discuss those dimension-6 operators that can directly contribute at the two-

loop level to the anomalous dimension of the electron dipole operators. In fact, we are only

interested in the EDM, i.e. the imaginary part of the the dipole operators, and therefore

only complex Wilson coefficients can contribute, as the SM interactions preserve CP up

to small Yukawa couplings that we neglect. This reduces the list of possible dimension-6

operators to those to the right of table 1. For example, operators of the type Ψ̄γµΨH†DµH

are Hermitian (and then have real Wilson coefficients) unless the two fermions involved

are different, meaning that they must involve different flavors. But since in the SM we can

work in the basis where ye and either yu or yd are diagonal, we cannot draw any two-loop

Feynman diagram contributing to the electron EDM operators.

7The heavy lepton dipole operators induce a running for Oluqe at one loop. However in the basis with

diagonal lepton Yukawa’s they contribute only to the Oluqe involving heavy leptons, which then does not

contribute to the electron dipoles at one loop.

– 8 –



J
H
E
P
0
4
(
2
0
1
9
)
0
9
0

Similar conclusions can be obtained for four-fermion operators, except for those in

table 1, namely Oled̄q̄ and Oleē′ l̄′ . There is however an important subtlety related to these

operators, which results in an ambiguity in the determination of their contributions to the

electron EDM.

Within the basis we are using, in which Oled̄q̄ and Oleē′ l̄′ are written as the product

of scalar currents, it is simple to check that the 1-loop contributions to the electron EDM

trivially vanish due to the tensor structure. However, through a Fierz rearrangement,

Oled̄q̄ and Oleē′ l̄′ can also be rewritten in the form (Ψ̄γµΨ)(Ψ̄γµΨ), i.e. as a product of

vector currents. With this choice, if dimensional regularization (in particular the MS

scheme) is used to compute the contributions to the electron EDM, a finite 1-loop effect

is found. The origin of this contribution is related to the presence of additional four-

fermion interactions involving multiple gamma matrices that are generated at intermediate

steps of the calculation. These are known as “evanescent operators” (for a review, see

for example [11]). The coefficients of these interactions carry an ε = 4 − d factor, but

they can give finite effects in the presence of 1/ε poles. As an example, we report the

contributions to the electron EDM induced by the O`e = C`e(L̄Lγ
µL′L)(ē′RγµeR) operator

(see for instance [12, 13])

de
e

= 2
m`′

16π2
ImC`e . (2.20)

A similar result is obtained for the Oled̄q̄ operator in vector-current form.

Summarizing the above discussion, one finds that the contributions from the Oled̄q̄ and

Oleē′ l̄′ 4-fermion operators crucially depend on the choice of the operator basis and on the

regularization procedure. This, in turn, can affect the matching from a UV model. In

particular, finite 1-loop contributions can be shifted from the matching to the 4-fermion

operators into the EDM operators OeB and OeW and vice versa.8 As already mentioned,

for our analysis we choose the scalar-current form for the 4-fermion operators, (L̄LeR)(Ψ̄Ψ).

Therefore no finite one-loop contributions arise for the electron EDM from the Oled̄q̄ and

Oleē′ l̄′ operators. As we will see in section 3.2.3, this choice is particularly convenient for

studying UV models including heavy Higgs-like states, in which case only scalar-current

4-fermion operators are obtained from the matching.

We have then only Oye , Oled̄q̄ and Oleē′ l̄′ giving a two-loop mixing with the electric

dipole operators. From Oye (see left-hand side of figure 2), we obtain

d

d lnµ

(
CeB
CeW

)
=

g3

(16π2)2

3

4

(
tθW YH + 4t3θW Y

2
H(YL + Ye)

1
2 + 2

3 t
2
θW
YH(YL + Ye)

)
Cye , (2.21)

while from Oled̄q̄ and Oleē′ l̄′ (see right-hand side of figure 2), we get respectively

d

d lnµ
Im

(
CeB
CeW

)
=

ydg
3

(16π2)2

Nc

4

(
3tθW YQ + 4t3θW (YL + Ye)(Y

2
Q + Y 2

d )
1
2 + 2t2θW (YL + Ye)YQ

)
Cled̄q̄ (2.22)

8Analogous ambiguities are present in the case of 4-fermion contributions to the magnetic dipole mo-

ments. For instance see the analysis of the b→ sγ transitions in ref. [14].
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Figure 2. Feynman contributions to the anomalous dimension of OeW and OeB at the two-loop

level from Oye (left) and Oled̄q̄,Oleē′ l̄′ (right).

and

d

d lnµ
Im

(
CeB
CeW

)
=

ye′g
3

(16π2)2

1

4

(
3tθW YL + 4t3θW (YL + Ye)(Y

2
L + Y 2

e )
1
2 + 2t2θW (YL + Ye)YL

)
Cleē′ l̄′ . (2.23)

We summarize our results by schematically presenting in figure 1 the mixing patterns

of the effective operators contributing to the electron dipoles at 2-loop order. For complete-

ness we also include the 2-loop mixing of the O
W̃

operator, which, at 1-loop order, only

induces finite corrections to the electron dipoles. We also provide below the leading-log

approximation to the electron EDM that can be good enough since the new physics scale is

not constrained yet to be far away from the electroweak scale, and therefore we do not need

to resum the logs by exactly solving the RGEs. We find that the one-loop corrections are

de
e
' − 1

16π2

√
2v

Λ2

[
yu ImCluqe − ye

(
2κ̃γγ +

1− 4s2
θW

sθW cθW
κ̃γZ −

Λ2

2v2
δκ̃γ

)]
ln

Λ2

m2
h

. (2.24)

The double-log 2-loop corrections are given by

de
e
' 1

(16π2)2

√
2v

Λ2

1

8
Im

[
gye

(
ye′(11 + 9t2θW )ce′W + 15yu(3 + t2θW )CuW + 3yd(3 + t2θW )CdW

)

− 3
g

tθW
ye

(
ye′(1 + 7t2θW )ce′B − 3yu(1 + 7t2θW )CuB + yd(3 + 5t2θW )CdB

)

+ 2g2yu(3 + 5t2θW )C
(1)
lequ + yeg

3
(
13 + 3 tan θ2

W

)
C
W̃

]
ln2 Λ2

m2
h

. (2.25)

Finally, the single-log 2-loop corrections are

de
e
' − g2

(16π2)2

√
2v

Λ2
Im

[
3

8
t2θW Cye + yd

1

8
t2θWCled̄q̄ + ye′

1

8

(
2 + 9t2θW

)
Cleē′ l̄′

]
ln

Λ2

m2
h

. (2.26)

Notice that we did not include in the above formula finite corrections that can arise at

the matching scales. In fact, few other dimension-6 operators can enter in this way into the

renormalization of the electron EDM. As we saw in section 2.3, an example is provided by

the O
W̃

operator, whose dominant corrections to the electron EDM arise as finite one-loop

contributions. An analogous result is valid for the H3f̄f operator (f = u, d, e′) that modify

the quarks and heavy lepton Yukawa couplings. These operators start to contribute to the

electron EDM at the two-loop level through finite Barr-Zee-type diagrams [15]. We will

discuss these operators in section 2.6.
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2.5 Dimension-8 operators

Since we are calculating corrections to the EDM at the two-loop level coming from

dimension-6 operators, it is appropriate to ask whether dimension-8 operators can also

give similar contributions. The effects of these operators are suppressed with respect to

dimension-6 operators by an extra m2
W /Λ

2, but this could be overcome if their contributions

to the EDM arises at the one-loop level instead of two-loops. We will only be interested here

in dimension-8 operators that can be generated from integrating new physics at tree-level

and that have not been constrained from previous dimension-6 operators. For example,

dimension-8 operators involving extra |H|2 or extra derivatives will not be relevant. We

only find two of these operators,

Oldqe = (L̄LdRH)(Q̄LeRH) , Ole′l′e = (L̄Le
′
RH)(L̄′LeRH) , (2.27)

that at the one-loop level can mix with dimension-8 operators of dipole type,

Oh2eW = |H|2OeW , Oh2eB = |H|2OeB , (2.28)

similarly to eq. (2.8):

d

d lnµ

(
Ch2eB

Ch2eW

)
=

ydg

16π2

(
−1

2 tθWNc(YQ + Yd)
1
4Nc

)
Cldqe , (2.29)

and equivalently for Cle′l′e with the replacement yd → ye, YQ → YL and Yd → Ye. We get

a contribution to EDM of order

de
e
' −
√

2v3

Λ4

ydIm[Cldqe]

16π2

Nc

24
ln

Λ2

m2
W

. (2.30)

2.6 Threshold effects at the EW scale: the impact of CP-violating Yukawa’s

The log-enhanced contributions we considered in the previous sections are expected to

give the dominant corrections to the electron EDM. Nevertheless, being this logarithm

not always so large, there are cases in which finite corrections can be more important. A

noticeable example, that we will discuss here, is the case of two-loop corrections to the EDM

generated when integrating out the top and the Higgs at the EW scale. These corrections

come from CP-violating Yukawa couplings induced by the SM dimension-6 operator Oyf
at the EW scale:

cfhf̄LfR , cf =
v2

√
2Λ2

Cyf . (2.31)

For the particular case of Cye we obtain, from Barr-Zee diagrams, that these contributions

are given by
de
e
' −16

3

e2

(16π2)2
v

(
2 + ln

m2
t

m2
h

)
ImCye

Λ2
, (2.32)

where we only kept the leading corrections due to diagrams with a virtual photon and a

top loop. Contributions from a virtual Z-boson are highly suppressed by the small vector
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Z coupling to the electron, whereas diagrams involving light quarks are suppressed by the

light quark Yukawa’s. Diagrams involving a virtual W boson are expected to be subleading

with respect to the photon contribution, although not negligible. For simplicity we however

neglect these contribution as often done in the literature. Notice that in the above formula

we only included the leading terms in an expansion for large m2
t /m

2
h, which reproduce the

full result with an accuracy ∼ 10%.9 The appearance of lnm2
t /m

2
h in eq. (2.32) can be

understood as a RG running of the electron EDM from the top mass, where the top is

integrated out generating a hFµνFµν term at the one-loop level, down to the Higgs mass.

In particular, this arises from a loop diagram involving hFµνFµν and the CP-violating

Yukawa eq. (2.31).

Comparing the result in eq. (2.32) with the two-loop running in eq. (2.26), we find

that the former is typically dominant and is a factor of few larger than the latter for a

cut-off scale in the 10 TeV range. This is because the contributions of eq. (2.26) are slightly

smaller than the naive estimate since they are proportional to g′ and are suppressed by

an accidental factor 3/8. The two contributions become comparable only for a very large

cut-off scale ∼ 104 TeV.

Similarly, Cyu,d and Cye′ , which can give CP-violating corrections to the quark and to

the heavy lepton Yukawa’s, can lead to finite Barr-Zee contributions to the electron EDM.

For the top case, we have

de
e
' − e2

(16π2)2
4NcQ

2
t

me

mt
v

(
2 + ln

m2
t

m2
h

)
ImCyt

Λ2
. (2.33)

Again, the lnm2
t /m

2
h can be understood as a RG running of the electron EDM from the top

mass, where a hFF̃ term is generated from the CP-violating top Yukawa after integrating

out the top, down to the Higgs mass.

2.7 EFT below the electroweak scale and relevant RGEs

Let us now discuss the RG running effects below the EW scale. At the scale µ ∼ mW ,

we must integrate out all the heavy SM particles, the W , Z, the Higgs and top, and work

for µ < mW with the EFT built with the light fermions, the photon and the gluons. The

EDM of the electron arises in this EFT from a dimension-5 operator

Oeγ = ēLσ
µνeRFµν , (2.34)

whose coefficient, from the tree-level matching with the SM EFT at the EW scale, is

given by

Ceγ(mW ) =
v√
2Λ

(sθW CeW (mW )− cθW CeB(mW ))

+
v3

2
√

2Λ3
(sθW Ch2eW (mW )− cθW Ch2eB(mW )) . (2.35)

9We report the full expression in appendix A.
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Other relevant operators below the EW scale are four-fermion operators made with the

light SM fermions. The matching at the EW scale is given by

Cluqe(mW )Oluqe = Ceuue(mW )(ēLuR)(ūLeR) + · · · ,
C

(1)
lequ(mW )O(1)

lequ = Ceeuu(mW )(ēLeR)(ūLuR) + · · · ,
Cled̄q̄(mW )Oled̄q̄ = Ceed̄d̄(mW )(ēLeR)(d̄RdL) + · · · ,
Cleēl̄(mW )Oleēl̄ = Cleēē(mW )(ēLeR)(ē′Re

′
L) + · · · , (2.36)

and

Cldqe(mW )Oldqe =
v2

2Λ2
Cedde(mW )(ēLdR)(d̄LeR) + · · · ,

Cle′l′e(mW )Ole′l′e =
v2

2Λ2
Cee′e′e(mW )(ēLe

′
R)(ē′LeR) + · · · ,

Cldqe(mW )Oleqd =
v2

2Λ2
Ceedd(mW )(ēLeR)(d̄LdR) + · · · ,

Cle′l′e(mW )Olel′e′ =
v2

2Λ2
Ceee′e′(mW )(ēLeR)(ē′Le

′
R) + · · · , (2.37)

where we have also included the matching of the dimension-8 SM operators

Oleqd = (L̄LeRH)(Q̄LdRH) , Olel′e′ = (L̄LeRH)(L̄′Le
′
RH) . (2.38)

The above four-fermion operators can enter into the anomalous dimension of Oeγ at the one

or two loop level. Using our previous results, we can easily extract the RGE for Ceγ since

the renormalization of the photon can be read from that of the U(1)Y -boson in the SM.

At the one-loop level we only have, equivalently to eq. (2.8) and eq. (2.29), (see also [16])

d

d lnµ
Ceγ = − e

16π2

1√
2

(
mu

Λ
NcQuCeuue +

mdv
2

2Λ3
NcQdCedde +

me′v
2

2Λ3
QeCee′e′e

)
, (2.39)

where Qf refers to the EM charge of the fermion f . At the two-loop level, we can have

contribution to Ceγ either by a one-loop mixing of Oeeff with Oeffe (f = u, d, e′), similarly

to eq. (2.14),
d

d lnµ
Ceffe =

e2

π2
QeQfCeeff , (2.40)

or by a direct contribution to Ceγ :

d

d lnµ
ImCeγ =

e3

(16π2)2

(md

Λ
4NcQeQ

2
dCeed̄d̄ +

me

Λ
4Q3

eCee′ē′ē

)
. (2.41)

The RGE running should be considered from mW down to the mass of the heaviest fermion

in the four-fermion operator, where the state should be integrated out.10 Therefore this

running can be important for lighter fermions.

10We have also to include here self-renormalization effects. These are however small and generically

correct the bounds on the Wilson coefficients by roughly 10%.
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We can compare our results with those obtained from Barr-Zee diagrams arising from

CP-violating Yukawa interactions eq. (2.31). For light quarks and leptons e′, one finds

respectively

de
e
' − e2

(16π2)2
4NcQ

2
qv
memq

m2
h

(
ln2

m2
q

m2
h

+
π2

3

)
ImCyq

Λ2
, (2.42)

and
de
e
' − e2

(16π2)2
4Q2

ev
meme′

m2
h

(
ln2 m

2
e′

m2
h

+
π2

3

)
ImCye′

Λ2
. (2.43)

The double logarithm in eqs. (2.42) and (2.43) can be understood from an EFT perspective

as the RG running from the Higgs mass, where integrating the Higgs generates a complex

Ceeff from eq. (2.31), down to the light fermion masses. The relevant RGEs are indeed

those in eq. (2.39) and eq. (2.40).

For light quarks, however, a better bound on the corresponding Wilson coefficient

can be obtained from constraints on CP-violating electron-nucleon interactions, that the

ACME collaboration has also recently reported [1]:

− GF√
2
iēγ5eN̄

(
C

(0)
S + C

(1)
S σ3

)
N , CS = C

(0)
S +

Z −N
Z +N

C
(1)
S < 7.3 · 10−10 . (2.44)

Neglecting isospin breakings that in the ThO are small [1], we have for the down-quarks

CS ' C(0)
S = − Im[Ceed̄d̄]√

2GFΛ2
〈N |d̄d|N〉 . (2.45)

We have checked that bounds from de are slightly better than those from CS for operators

involving the bottom (using 〈N |b̄b|N〉 ' 74 MeV/mb [17]), while the bound from CS is

better for ligher quarks.

3 Impact on BSM

3.1 Power counting of the Wilson coefficients

So far we have presented the leading contributions of the dimension-6 operators to the

anomalous dimension of the electron electric dipole operators up to two loops. All the

possible contributing operators are given in table 1. Nevertheless, the importance of the

different operators depends on the size of their Wilson coefficients, which crucially depends

on the BSM dynamics.

In the following we will be interested in BSM theories that can be described as weakly-

coupled renormalizable theories. These includes all possible extensions of the SM with

extra particles with renormalizable interactions. In these BSM theories we can classify the

Wilson coefficients as those that can be generated at tree-level and those generated at most

at the loop level. For example, among the operators of table 1, the only ones with Wilson

coefficients that can be induced at tree-level by integrating out new heavy states are all

the four-fermion operators and Oye ; the rest, involving always field-strengths, can only be

generated by loops. Therefore, we expect

CfV ∼
g3
∗g

16π2
, C

V Ṽ
∼ g2

∗g
2

16π2
, Cluqe, Clequ, Cled̄q̄, Cleē′ l̄′ , Cye ∼ g2

∗ , (3.1)
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Oluqe Scalar (3,2,7/6)

Scalar (3̄,1,1/3)

O(1)
lequ Scalar (1,2,1/2)

Scalar (3̄,1,1/3)

Oled̄q̄ Vector (3̄,2,5/6)

Vector (3,1,2/3)

Scalar (1,2,1/2)

Oleē′ l̄′ Vector (1,1,0)

Vector (1,2,1/2)

Scalar (1,2,1/2)

Oye Fermion (1,2,−1/2)⊕ (1,1(3),−1)

Fermion (1,2,−1/2)⊕ (1,1(3),0)

Fermion (1,2,−3/2)⊕ (1,1(3),0)

Scalar (1,2,1/2)

Table 3. States transforming under the SM group SU(3)c × SU(2)L × U(1)Y contributing at the

tree-level to the operators of table 1.

where g∗ refers to a generic coupling of the BSM dynamics to the SM, f = e, u, d and

V = W,B.

In this class of BSM theories the contributions to the electron EDM have

the following loop expansion. The leading contributions are of order de/e ∼
(g2
∗/16π2)(mu/Λ

2) ln(Λ/mW ) and can arise from those particular BSM that contribute

to Oluqe at tree-level. There are only two types of particles that can generate Oluqe at

tree-level (see table 3), the leptoquarks R2 and S1 that will be discussed below.

Next, we can have BSM dynamics contributing directly to the Wilson coefficients of

the electron dipole operators, that can give corrections of one-loop order (but without

a log-enhancement), de/e ∼ (g2
∗/16π2)(g∗v/Λ

2). This can happen in BSM theories that

contain fermions and bosons coupled to the electron, with at least one of them charged, as

for example, the selectron and wino in supersymmetric theories.

Contributing at the two-loop level, we have those BSM theories induc-

ing O(1)
lequ at tree-level, which leads to a double-log enhanced EDM, de/e ∼

g2g2
∗/(16π2)2(mu/Λ

2) ln2(Λ/mW ). As shown in table 3, this includes BSM theories with

extra Higgses.

Single-log two-loop contributions can come from BSM scenarios generating OV Ṽ at

the loop level (those BSM containing extra charged fermions coupled to the Higgs), or

generating Oled̄q̄, Oleē′ l̄′ or Oye at tree-level (see table 3). Also BSM theories generating

Oluqe at one-loop level can lead to a single-log two-loop contribution to the electron EDM,

as we will see later for the case of the MSSM.

Finally, BSM theories with extra SU(2)L fermions can generate O
W̃

at the loop-level,

leading to a contribution to the electron EDM at the two-loop level with no log enhance-

ment. On the other hand, BSM theories contributing to the EDM of a fermion different

from the electron are expected to give negligible effects to the electron EDM, as these arise

at best at the three-loop level.

Examples of these classes of BSM theories will be given below. We must also notice

that there is a large class of low-energy effective descriptions of strongly-coupled theories
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tree-level

CeW 5.5× 10−5 yeg

CeB 5.5× 10−5 yeg
′

one-loop

Cluqe 1.0× 10−3 yeyt

C
WW̃

4.7× 10−3 g2

C
BB̃

5.2× 10−3 g′ 2

C
WB̃

2.4× 10−3 gg′

C
W̃

6.4× 10−2 g3

two-loops

Clequ 3.8× 10−2 yeyt

CτW 260 yτg

CτB 380 yτg
′

CtW 6.9× 10−3 ytg

CtB 1.2× 10−2 ytg
′

CbW 64 ybg

CbB 47 ybg
′

Cled̄q̄ 10 yeyt(yt/yb)

Cleē′ l̄′ 0.63 yeyt(yt/yτ )

two-loops finite

Cye 14 yeλh

Cyt 14 ytλh

Cyb 2.9× 103 ybλh

Cyτ 3.4× 103 yτλh

Table 4. Bounds on the Wilson coefficients coming from eq. (1.1) taking Λ = 10 TeV. For a better

appreciation of the bound, we have extracted the Yukawa, gauge or Higgs coupling (λh = 0.1)

that we naturally expect to carry these Wilson coefficients. For Cled̄q̄ and Cleē′ l̄′ we have further

extracted a factor (yt/yb) and (yt/yτ ) respectively to reflect the fact that these coefficients can be

potentially larger consistently with their natural sizes eq. (3.2).

that follow the same power counting described above. These are those theories that were

assumed to follow the “minimal coupling” assumption [18], and correspond to holographic

models as well as their deconstructed versions.

It is also important to keep in mind that operators of table 1 containing the fields L̄L
and eR can potentially give a contribution to the electron mass. This places a constraint

on the natural size of their Wilson coefficients. In particular, we find

{
CeV v

16π2
,
Cye v

3

Λ2
,
Clequmu

16π2
,
Cluqemu

16π2
,
Cled̄q̄md

16π2
,
Cleēl̄me′

16π2

}
. me . (3.2)

In fact, in most of the UV-complete BSM theories (e.g. supersymmetry, composite Higgs or

theories with flavor symmetries only broken by Yukawas) we expect operators with chirality

flips to carry yukawa couplings, i.e.,

CfV ∝ yf , Cye ∝ ye , Clequ ∝ yeyu , Cluqe ∝ yeyu , Cled̄q̄ ∝ yeyd , Cleē′ l̄′ ∝ yeye′ ,
(3.3)

implying that we only expect sizable contributions to the electron EDM from four-fermion

operators involving the third family. All these considerations can be useful for a proper

interpretation of the recent ACME bound.

In table 4 we list the bounds on individual Wilson coefficients that can be inferred

from the new electron EDM measurement eq. (1.1). To derive the bounds we considered

the various Wilson coefficients one-by-one. Although typical BSM theories give rise to

simultaneous contributions to several Wilson coefficients, strong cancellations are typically

not present. In such situation the bounds obtained on single Wilson coefficients remain

approximately valid.11

11Bounds on effective operators coming from measurements of the electron EDM were previously derived

in the literature in refs. [13, 19–22].
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3.2 Leptoquarks and extra Higgs

As a first example of an application of the above EFT analysis, we focus here on new-

physics models containing states of table 3. In particular, we focus on leptoquarks and

heavy Higgs-like states.12

As can be seen from table 3, four leptoquark multiplets can give rise to electron EDM

contributions up to two-loop order.13 Among scalar leptoquarks only the R2 and the S1

multiplets give rise to contributions to de. In both cases the contributions arise at one-loop

level and include a logarithmically-enhanced term. On the other hand, vector leptoquarks,

in particular the V2 and the U1 multiplets can contribute to the electron EDM at one-loop

order only with finite contributions.

We analyze the various cases in the following, providing the matching with the EFT

operators in the limit of heavy multiplet masses. For the scalar leptoquarks, we also com-

pare the leading running contributions to the EDM with the full results, which are already

known in the literature. For simplicity we only include couplings to third-generation quarks,

since interactions with the light generations give rise to EDM contributions suppressed by

the light-fermion Yukawa couplings.

3.2.1 Scalar leptoquarks

We start our discussion with the case of scalar leptoquarks.

The R2 leptoquark. The first case we consider is the R2 multiplet, whose SU(3)c ×
SU(2)L×U(1)Y quantum numbers are (3,2,7/6). The Lagrangian describing the relevant

leptoquark interactions with the SM fermions is

L = −yRL2 tRR
aεabLbL1

+ yLR2 eRR
a∗QaL3

+ h.c. , (3.4)

where LLi and QLi labels the i-generation lepton and quark respectively. In the limit of

large mass, the R2 leptoquark gives rise to a contribution to the Oluqe effective operator,

namely

LR2
eff =

yLR∗2 yRL∗2

m2
R2

Oluqe + h.c. . (3.5)

Using eq. (2.24), we can obtain the log-enhanced one-loop contribution to the elec-

tron EDM:
de
e
' 1

8π2

mt

m2
R2

Im
(
yLR2 yRL2

)
ln
m2
R2

m2
t

. (3.6)

The full one-loop contribution to the electron EDM is also known in the literature [27]

de
e

=
3

32π2

mt

m2
R2

Im
(
yLR2 yRL2

) [
QtI2

(
m2
t /m

2
R2

)
+QLQJ2

(
m2
t /m

2
R2

)]
, (3.7)

12Notice that, in addition to the electron EDM, leptoquarks and heavy Higgs-like states, as well as

supersymmetric scenarios, can also be constrained by the EDM of 199Hg atom through the CP-odd electron-

nucleon interaction [23, 24].
13See ref. [25] for a review of leptoquark properties and for the nomenclature. See also ref. [26] for a

recent reappraisal of the contributions of the scalar leptoquarks to electron and light quark EDMs.
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where Qt = 2/3 and QLQ = 5/3 are the electric charges of the top quark and R2 leptoquark,

while the I2 and J2 functions are given by

I2(x) =
1

(1− x)3
(−3 + 4x− x2 − 2 lnx) , J2(x) =

1

(1− x)3
(1− x2 + 2x lnx) . (3.8)

One can easily check that the leading logarithmic term in eq. (3.8) agrees with the result of

the EFT calculation in eq. (3.6). In fact, the leading-log contribution in eq. (3.6) provides

a quite good approximation of the full result even for relatively small leptoquark masses.

The discrepancy is below 25% for mR2 > 300 GeV and below 10% for mR2 > 360 GeV.

The recent bound on the electron EDM eq. (1.1) translates into the constraint14

mR2 & 420 TeV

√
|Im(yLR2 yRL2 )|

yeyt

(
1 + 0.075 ln

|Im(yLR2 yRL2 )|
yeyt

)
, (3.9)

where we have normalized yLR2 yRL2 to the electron and top Yukawa coupling, following the

estimates presented in eq. (3.3).

The S1 leptoquark. The second leptoquark state that can give rise to one-loop contri-

butions to the electron EDM is the S1 multiplet, which has (3,1,1/3) quantum numbers.

Its interactions with the SM fermions can be parametrized by

L = yLL1 Q
C a
L3
S1ε

abLbL1
+ yRR1 tRS1eR + h.c. , (3.10)

where the C superscript denotes the charge conjugation operation, namely ψC ≡ CψT with

C = iγ2γ0. Integrating out S1 gives rise to a contribution to Oluqe and O(1)
`equ, namely

LS1
eff =

yLL∗1 yRR1

m2
S1

[
Oluqe +O(1)

lequ

]
+ h.c. . (3.11)

Therefore, from eq. (2.24), we obtain the following log-enhanced one-loop contribution to

the electron EDM
de
e
' 1

8π2

mt

m2
S1

Im
(
yLL1 yRR∗1

)
ln
m2
S1

m2
t

. (3.12)

The full one-loop result reads [25]

de
e

=
1

32π2

mt

m2
S1

Im
(
yLL1 yRR∗1

)
G
(
m2
t /m

2
S1

)
, (3.13)

where the G function is defined by

G(x) =
1

(1− x)3

(
5− 8x+ 3x2 + 2(2− x) lnx

)
. (3.14)

We find that the leading-log approximation in eq. (3.12) is in fair agreement with the full

result, the difference being . 30% for mS1 & 220 GeV.

Eq. (1.1) translates into the bound

mS1 & 400 TeV

√
|Im(yLL1 yRR∗1 )|

yeyt

(
1 + 0.081 ln

|Im(yLL1 yRR∗1 )|
yeyt

)
. (3.15)

14Notice that eq. (3.9), as well as eqs. (3.15), (3.21), (3.24), (3.31), (3.32), (3.33) and (3.34), are valid

as far as the mass bound is & 1 TeV. Below this value the leading-log approximation is not accurate since

threshold effects can become relevant.
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3.2.2 Vector leptoquarks

We now consider the case of vector leptoquarks. Before specializing the discussion to the

V2 and U1 cases, we discuss some generic features of these models.

As we already mentioned, vector leptoquarks can give rise to a finite contribution to

the electron EDM at the 1-loop order. In order to compute the EDM effects, one needs first

of all to embed the vector leptoquark into a well-behaved (i.e. renormalizable) UV theory.15

For this purpose one can consider GUT-like extensions of the SM, as done in refs. [28, 29],

which always lead to the following Lagrangian for the couplings of the Leptoquark Vµ to

the photon Aµ

L ⊃ −i eQV
[
(∂µV

†
ν − ∂νV †µ )AµV ν − (∂µVν − ∂νVµ)AµV ν† + (VµV

†
ν − VνV †µ )∂µAν

]
,

(3.16)

where QV is the leptoquark electric charge. The couplings of a vector leptoquark to the

electron and a quark q can be parametrized as

L ⊃ gLēLγµqLVµ + gRēRγ
µqRVµ + h.c. . (3.17)

The 1-loop contribution to the electron EDM is given by

de
e

=
Nc(QV −Qq)

8π2

mq

m2
V

Im(gLg
?
R) , (3.18)

where mq and Qq are the mass and the electric charge of the quark, while mV is the

leptoquark mass. Notice that contributions come from two type of diagrams, one in which

the photon is attached to the quark line and one in which it is attached to the leptoquark

line. The two contributions are therefore proportional to Qq ad QV respectively.

Within our EFT description, these contributions must be matched directly into the

Wilson coefficients CeW and CeB at the scale mV . Notice, however, that the leptoquark

gives also rise to effective 4-fermion interactions of the form (L̄aLγµQLa)(b̄Rγ
µeR) that after

Fierzing leads to Oled̄q̄. As we discussed, the Oled̄q̄ operator however do not contribute at

1-loop to the electron EDM but at the 2-loop order.16

The V2 leptoquark. Let us now consider V2 multiplet with quantum numbers

(3,2,5/6). The relevant interactions with the SM fermions read

L = xRL2 b
C
Rγ

µV a
2,µε

abLbL1
+ xLR2 Q

C a
L3
γµεabV b

2,µeR + h.c. . (3.19)

Using the above formulae we find the following 1-loop contribution to the electron EDM

de
e

= − 5

8π2

mb

m2
V2

Im(xLR2 xRL?2 ) . (3.20)

15If the vector leptoquarks are described through the non-renormalizable Proca Lagrangian, divergent

contributions are obtained for the EDM [29].
16If the 4-fermion operators are written in vector-current form and MS regularization is used, the 1-

loop contribution to the electron EDM proportional to the quark charge would be matched onto the Wilson

coefficient of (L̄aLγµQLa)(b̄Rγ
µeR). We checked that the finite 1-loop contribution coming from this operator

indeed matches the Qq term in eq. (3.18).
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The new bound from the ACME collaboration leads to

mV2 & 5.5 TeV

√
Im(xLR2 xRL?2 )

yeyb
. (3.21)

The U1 leptoquark. The second possible vector leptoquark that gives a contributions to

the electron EDM is the U1 state, with quantum numbers (3,1,2/3). Its Lagrangian reads

L = xLL1 Q
a
L3
γµU1,µL

a
L1

+ xRR1 bRγ
µU1,µeR + h.c. . (3.22)

The 1-loop contributions to the electron EDM are given by .

de
e

= − 1

8π2

mb

m2
U1

Im(xRR2 xLL?2 ) . (3.23)

The bound in eq. (1.1) leads to

mV2 & 2.5 TeV

√
Im(xRR2 xLL?2 )

yeyb
. (3.24)

3.2.3 The heavy Higgs

The last type of massive multiplets we consider are Higgs-like states H with quantum

numbers (1,2,1/2).17 Depending on their allowed couplings to the SM fermions they can

give rise to different sets of contributions to the electron EDM.

In general a Higgs-like multiplet can have couplings to all SM fermion species. For sim-

plicity we consider only couplings to the electron family and to third generation fermions,

discarding flavor-violating couplings. We parametrize the relevant heavy Higgs interac-

tions as18

L = κeH
aL

a
L1
eR + κtH̃

aQ
a
L3
tR + κbH

aQ
a
L3
bR + κτH

aL
a
L3
τR + η(H†h)|h|2 + h.c. , (3.25)

where H̃a ≡ εabHb∗ and h denotes here the SM Higgs doublet. In the limit of heavy mass,

integrating out the Higgs-like state gives rise to three effective operators that contribute

to the electron EDM, namely

LHeff = −κeκt
m2
H

O(1)
lequ +

κeκ
∗
b

m2
H

Oled̄q̄ +
κeκ

∗
τ

m2
H

Oleτ̄ l̄ +
κeη

m2
H

Oye , (3.26)

where Oleτ l = (L
a
L1
eR)(τRL

a
L3

). As we saw in the previous sections all the effective opera-

tors in eq. (3.26) give rise to a contribution to the electron EDM at two-loop order. There

are however some important differences. The O(1)
lequ operator can potentially lead to the

largest contribution, since its effects are enhanced by a double logarithm. The remaining

two operators lead instead to the single logarithmic.

17We are working in the basis at which the SM Higgs has no mass-mixing with the heavy Higgs-like states

before EW symmetry breaking. This can always be achieved by an SU(2)L rotation.
18For simplicity we neglect a possible coupling (H†h)2 +h.c., which could give a finite 1-loop contribution

to the operators OV Ṽ that, in turn, give rise to a running for the electron EDM.
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The leading contributions to the electron EDM from the four effective operators are

given respectively by

de
e
' 3g2 + 5g′2

2(16π2)2

mt

m2
H

Im(κeκt) ln2 m
2
H

m2
t

, (3.27)

de
e
' − 4

(16π2)2

mb

m2
H

Im (κeκ
∗
b)

[
e2

3
ln
m2
H

m2
b

+ gZe g
Z
b ln

m2
H

m2
Z

− g2

16
ln
m2
H

m2
W

]
, (3.28)

de
e
' − 4

(16π2)2

mτ

m2
H

Im (κeκ
∗
τ )

[
e2 ln

m2
H

m2
τ

+ (gZe )2 ln
m2
H

m2
Z

+
g2

16
ln
m2
H

m2
W

]
, (3.29)

and
de
e
' −

3g2t2θW
8(16π2)2

√
2v

m2
H

Im (κeη) ln
m2
H

m2
h

. (3.30)

These two-loop results agree with the Barr-Zee results [15, 30].

The new bound on the electron EDM leads to the constraints

mH & 66 TeV

√
|Im(κeκt)|

yeyt

(
1 + 0.11 ln

|Im(κeκt)|
yeyt

)
, (3.31)

mH & 0.88 TeV

√
|Im(κeκb)|

yeyt

(
1 + 0.036 ln

|Im(κeκb)|
yeyt

)
, (3.32)

and

mH & 1.4 TeV

√
|Im(κeκτ )|

yeyt

(
1 + 0.092 ln

|Im(κeκτ )|
yeyt

)
, (3.33)

for a Higgs coupling to top, bottom and tau respectively. In the presence of a non-vanishing

η, the contribution to the CP-violating electron Yukawa leads to the additional bound

mH & 4.9 TeV

√
|Im(κeη)|

ye

(
1 + 0.18 ln

|Im(κeη)|
ye

)
. (3.34)

Notice that this bound, for η ∼ 1, is significantly stronger than the ones derived in the

presence of couplings to the bottom or τ , but is much weaker than the one expected in the

presence of a sizeable coupling to the top quark.

3.3 The MSSM

We will work within the MSSM assuming that the superpartner masses are larger than the

EW scale. CP-violating phases can appear in several terms of the MSSM. Either in the

supersymmetric parameter µ (that corresponds to the Higgsino mass), or in soft super-

symmetry breaking terms: Bino and Wino masses, M1 and M2 respectively, Higgs mixing

mass term, m2
12HuHd, and the scalar trilinears, e.g. yuAuHuQ̃LũR. Nevertheless, only

those combinations of MSSM parameters whose phase cannot be removed by redefinitions

of fields can lead to physical CP-violating effects. A recent analysis of the impact of the

new ACME bound on the MSSM can be found in ref. [31].
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The main contribution from the MSSM arise from one-loop contributions to CeW and

CeB, that generate an electron EDM calculated long ago -see for example [32]. From Winos

and left-handed selectrons (L̃L), we have

de
e
' − g2

16π2

me

m2
L̃L

tanβ
Im(M2µ)

|M2|2 − |µ|2

[
I2

(
M2

2

m2
L̃L

)
− I2

(
µ2

m2
L̃L

)]
, (3.35)

where I2 is defined in eq. (3.8). These effects are generated at Λ ∼ mass of the superpart-

ners. Taking tan β sin(Arg[µM2]) ∼ 1, we get from the new bound eq. (1.1)

mL̃L
& 25 (50) TeV , (3.36)

for mL̃L
= M2 = µ (mL̃L

� µ = M2).

At the two-loop order, we can get contributions from other regions of the parameter

space of the MSSM. For example, Wino-Higgsino loops can induce the Wilson coefficients

C
WW̃

, C
BB̃
, C

WB̃
(the Bino contribution is much smaller for M1 ∼M2), that, contrary to

the one-loop eq. (3.35), do not involve a L̃L. These are give by

C
WW̃

= Cloop
−8 + 27ρ− 24ρ2 + 5ρ3 + 6ρ2 ln ρ

16(ρ− 1)3
,

C
BB̃

= t2θWCloop
ρ(11− 16ρ+ 5ρ2 − 2(ρ− 4) ln ρ)

16(ρ− 1)3
,

C
WB̃

= tθWCloop
ρ(7− 8ρ+ ρ2 + 2(ρ+ 2) ln ρ)

8(ρ− 1)3
, (3.37)

where ρ ≡ |M2/µ|2 and

Cloop ≡
g4 sin 2β sinϕ

16π2|M2µ|
, ϕ = Arg[m2

12µ
∗M∗2 ] . (3.38)

Using eq. (3.37) and eq. (2.12), we can obtain the contribution to the electron EDM in

agreement with ref. [33] in the large log-approximation. From the ACME bound eq. (1.1),

we get a limit on the Wino and Higgsino masses that can be approximately written as

√
|M2µ| & 4 TeV , (3.39)

where we have taken sin 2β ∼ sinϕ ∼ 1.

Another type of two-loop contributions to the electron EDM can arise from one-loop

contributions to Cluqe. From loops involving selectrons, squarks, Winos and Higgsinos (see

figure 3), we have

ImCluqe = −yeyu
3g2 Im[µM2]

16π2 sin 2β
F (m2

i ) , (3.40)

where

F (m2
i ) = −

∑

i

m2
i lnm2

i

Πi 6=j(m
2
i −m2

j )
, (3.41)
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Figure 3. Feynman diagram of the MSSM contribution to Oluqe.

with i running over the mass of the Higgsino, Wino, ũR and L̃L. These results are valid

for any quark generation u → u, c, t. For equal superpartner masses, we have F (m2
i ) =

1/(12m4
i ), and eq. (2.24) and the ACME bound lead to

mi & 7.5 TeV , (3.42)

for sin(Arg[µM2])/ sin 2β ∼ 1. Notice that, contrary to eq. (3.35) and eq. (3.38), the sin 2β

appears in eq. (3.40) in the denominator and therefore becomes larger for small values

of tanβ.

3.4 Composite Higgs

As a last example we consider the class of composite Higgs models. For definiteness we focus

on minimal scenarios based on the SO(5)→ SO(4) symmetry breaking pattern, which gives

rise to a single Higgs doublet [34]. Depending on the implementation of the flavor structure

different contributions to the electron EDM can arise. In models based on the anarchic

partial compositeness paradigm naively extended to both quark and lepton sectors [35–38],

large contributions arise at the one-loop level due to the presence of partners of the SM

leptons and/or composite vector resonances. These contributions are generated at the mass

scale of the composite states and can be estimated as [39, 40]

de
e
∼ 1

8π2

me

f2
, (3.43)

where f denotes the Goldstone Higgs decay constant (or equivalently the scale of sponta-

neous SO(5)→ SO(4) symmetry breaking). The new ACME result implies a severe bound

on the compositeness scale

f & 107 TeV , (3.44)

which pushes these scenarios into highly fine-tuned territory.

The one-loop contributions to the electron EDM can be efficiently suppressed by either

introducing flavor symmetries (in particular a U(2) family symmetry involving the light

fermion generations [41, 42]) or generating the light fermion masses by a bilinear f̄f mixing

with the strong sector [43]. In both cases the leading corrections to the electron EDM arise

at the two-loop level due to the presence of relatively light fermionic partners of the top

quark [44–47].
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In a large set of minimal models,19 only derivative interactions involving the Higgs and

the top partners give rise to CP-violating effects. Using a CCWZ notation (see ref. [40] for

a review of the CCWZ formalism), a typical representative of such operators is given by

ct d
i
µΨ1γ

µΨi
4 + h.c. , (3.45)

where diµ denotes the CCWZ d-symbol, while Ψ1,4 are composite fermions in the singlet

and fourplet SO(4) representation respectively. The ct coefficient is in general complex,

thus containing a CP-violating phase.

The two-loop corrections to the electron EDM arises from Barr-Zee-type diagrams and

contain a leading, log-enhanced contribution. The origin of the latter can be traced back

to a two-step evolution. At the energy scale of the top partners a finite contribution to the

O
WW̃

, O
BB̃

and O
WB̃

operators is generated, which then according to eq. (2.9) induces a

running for the electron EDM [49].

As an explicit example we report the results for the 14 + 1 model with a light SO(4)

fourplet and a fully composite right-handed top.20 By integrating out the heavy top-

partners, we obtain, at leading order in the v/f expansion,

C
WW̃

=
Ncg

2

16π2
(T 3
u )2 cT

v
,

C
BB̃

=
Ncg

′2

16π2
Y 2
Q

cT
v
,

C
WB̃

=
Ncgg

′

16π2
(−2T 3

uYQ)
cT
v
,

(3.46)

while at the tree-level, that will be relevant later, we get

Cyt = i
√

2ytcT , (3.47)

where we have defined

cT ≡
√

2vyL4yLt
m2
T

Im ct , (3.48)

with mT being the mass of the charged-2/3 top partner T , and yL4, yLt the mixing of the

QL doublet with the composite states as defined in ref. [49]. Notice that the contribution

to Cyt is purely imaginary, i.e. CP-violating.

Using the RGE eq. (2.12), we obtain an electron EDM given by

de
e

= − Nc

64π4

ye√
2
cT

[
e2Q2

u +
g2

4c2
θW

Qu(T 3
u −Qus2

θW
)(1− 4s2

θW
) +

1

2
g2T 3

uYQ

]
ln
m2
T

m2
t

. (3.49)

19These models are the ones in which only one SO(4)-invariant effective operator exists which gives rise

to the Yukawa couplings. This happens, for instance, in the original holographic MCHM theories [34, 48],

as well as in “minimally tuned” scenarios with a fully-composite right-handed top quark [47].
20For more details on the model see refs. [47, 50].
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Figure 4. Bounds on the mass of the top partner derived from the recent ACME results. The

bounds are derived by setting f = 800 GeV, although the dependence on f is quite mild. The

labels on the solid lines show the top partner mass mT in TeV.

The three terms in square brackets come from diagrams containing a virtual photon, a

virtual Z-boson and a virtual W -boson respectively. Since, as we said, the Z-boson vector

coupling to the electron is quite suppressed, the main contribution is coming from the

photon loop, whereas the W -boson term gives a ∼ 40% correction. In eq. (3.49) the RG

running of the EDM starts at mT and stops at the top mass. At that scale, indeed, we have

to integrate the top, inducing an additional finite contribution to C
FF̃

due to eq. (3.47).

Surprisingly,21 this contribution exactly cancels the one coming from top partners loops,

eq. (3.46), so that no net contribution to O
FF̃

is left below mt.

In figure 4 we give the constraints on the mass of the T top partner in the (yL4, Im[ct])

plane. To derive these bounds we assumed that the result in eq. (3.49) provides the main

correction to the electron EDM and no additional contributions (or at least no strong

cancellations) are present. We can see that for natural values of the parameters of the

theory, yL4 ∼ 1 and Im[ct] ∼ 1, the bounds from the electron EDM measurements can

exclude top partner masses up to ∼ 15 TeV. This bound is significantly stronger than

the current direct LHC exclusions and cannot be matched even in the high-luminosity

LHC runs [51].

21As noticed in ref. [49], the cancellation of the contributions to the OFF̃ operators at low energy is a

direct consequence of the fact that the derivative Higgs operator in eq. (3.45) induces purely off-diagonal

couplings with the composite fermions. For this reason the trace of the coupling matrix vanishes and the

top loop exactly cancels the contributions from the top partners. The cancellation is rather generic and

happens in a large class of models. Indeed, since the dµ CCWZ symbol transform non-trivially under SO(4)

(it is in the representation 4), it can only give rise to couplings involving fermions in two different SO(4)

representations, which are therefore purely off-diagonal.
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4 Conclusions

We performed a two-loop analysis of the EDM of the electron using the EFT approach.

In particular, we calculated the RGEs of the dimension-6 CP-violating dipole operators at

the two-loop order,22 as well as the one-loop RGEs of most relevant dimension-8 operators.

We have shown that, due to selection rules, few operators can mix with EDM operators, as

appreciated in figure 1 where we present a summary of which and how dimension-6 opera-

tors enter into the EDM. We also commented on the RG running of the Wilson coefficients

below the electroweak scale, and when CP-violating electron-nucleon interactions can be

competitive with bounds on the electron EDM.

These results are important to provide a proper interpretation of the new ACME bound

on the electron EDM in terms of constraints on BSM particles. The recent improvement

on the bound allows to constrain TeV new-physics even when it only contributes at the

two-loop level. We have shown this with some examples. In particular, we considered

theories with leptoquarks or extra Higgs, obtaining bounds ranging 1 − 100 TeV. We also

considered two of the most motivated BSM scenarios for TeV new-physics, supersymmetry

and composite Higgs. We first reinterpreted previous calculations in the EFT language.

Then, we used our RGE two-loop results to understand which sectors or which new regions

of the parameter space of these BSM are now constrained by the recent ACME result.

In the MSSM case, for example, we showed how our two-loop results can provide new

constraints on the small tan β region in the s-electron and wino sector. For the composite

Higgs, after reinterpreting calculations on top-partners in the EFT language, we showed

that bounds on these particles put them out of the reach of the LHC, unless they have

CP-conserving couplings.

Therefore, we conclude that, unless we find a reason of why, contrary to the SM, the

interactions in these BSM do respect CP, the ACME result makes these theories much less

natural. More importantly, future improvement on the the electron EDM bound (see for

example [53–55]) could constrain BSM beyond the reach of future colliders.
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A EDM contributions from Barr-Zee diagrams

In this appendix we report the full expressions for the contributions to the electron EDM

coming from CP-violating Higgs Yukawa’s originating from H3f̄f operators.

22We have only calculated the leading effect to the EDM for each Wilson coefficient Ci up to the two-loop

order. This means that we have not included, for example, self-renormalization effects, neither two-loop

effects from Wilson coefficients entering in the renormalization of the EDM at the one-loop level. These

effects are only expected to correct the derived bounds by less than O(1), and could be easily incorporated

if needed (see for example [52] for the case of the magnetic dipole moment of the muon).
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Before giving the formulae for the EDM contributions, it is useful to introduce a few

definitions. We define the j(r, s) function as [30]

j(r, s) ≡ 1

r − s

(
r ln r

r − 1
− s ln s

s− 1

)
. (A.1)

The Barr-Zee results with a CP-violating quark Yukawa can be rewritten in terms of the

following integrals [56]

F1(a, 0) ≡
∫ 1

0
dx

1

x(1− x)
j

(
0,

a

x(1− x)

)

=
2√

1− 4a

[
Li2

(
1− 1−

√
1− 4a

2a

)
− Li2

(
1− 1 +

√
1− 4a

2a

)]
, (A.2)

and

F1(a, b) ≡
∫ 1

0
dx

1

x(1− x)
j

(
b,

a

x(1− x)

)
=

1

1− b [F1(a, 0)− F1(a/b, 0)] . (A.3)

Notice that the result in eq. (A.3) follows immediately from the relation j(r, s) = [j(0, s)−
j(0, s/r)]/(1− r). For the diagrams involving a CP-violating electron Yukawa we need the

following integrals

F2(a, 0) ≡
∫ 1

0
dx

(1− x)2 + x2

x(1− x)
j

(
0,

a

x(1− x)

)
= (1− 2a)F1(a, 0) + 2(ln a+ 2) , (A.4)

and

F2(a, b) ≡
∫ 1

0
dx

(1− x)2 + x2

x(1− x)
j

(
b,

a

x(1− x)

)

=
1

1− b

[
(1− 2a)F1(a, 0)−

(
1− 2

a

b

)
F1

(a
b
, 0
)

+ 2 ln
a

b

]
. (A.5)

The expansion of the F1(a, 0) integral for large a is given by

F1(a, 0) ' 1

a
(2 + ln a) , (A.6)

while for small a one finds

F1(a, 0) ' ln2 a+
π2

3
. (A.7)

We can now give the results for the Barr-Zee contributions to the electron EDM. The

contribution from a Oyf operator for a generic quark or a heavy lepton is given by

de
e

=
Nc

64π4
Qf

mfme

m2
h

v
ImCyq

Λ2

∑

V=γ,Z

gVe g
V
f F1

(
m2
f

m2
h

,
m2
V

m2
h

)
, (A.8)

where gVe,f denote the vector couplings of the gauge boson V , namely gγf = eQf for the

photon and gZf = g/(2cθW )(T 3
f − 2Qfs

2
θW

). The contribution from the Oye operator is

instead
de
e

=
Nc

64π4
Qt
m2
t

m2
h

v
ImCye

Λ2

∑

V=γ,Z

gVe g
V
t F2

(
m2
t

m2
h

,
m2
V

m2
h

)
, (A.9)

where we only included the contributions from top loops, since the ones from the other

fermions are suppressed by the small Yukawa’s.
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