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Recently, the calculation of tunneling actions that control the exponential suppression of the decay of
metastable vacua has been reformulated as an elementary variational problem in field space. This paper
extends this formalism to include the effect of gravity. Considering tunneling potentials VtðϕÞ that go from
the false vacuum ϕþ to some ϕ0 on the stable basin of the scalar potential VðϕÞ, the tunneling action is the
minimum of the functional SE½Vt� ¼ 6π2m4

P

R ϕ0

ϕþ ðDþ V 0
tÞ2=ðV2

t DÞdϕ, where D≡ ½ðV 0
tÞ2 þ 6ðV − VtÞVt=

m2
P�1=2, V 0

t ¼ dVt=dϕ, and mP is the reduced Planck mass. This one-line simple result applies equally to
anti–de Sitter, Minkowski, or de Sitter vacua decays and reproduces the Hawking-Moss action in the
appropriate cases. This formalism provides new handles for the theoretical understanding of different
features of vacuum decay in the presence of gravity.

DOI: 10.1103/PhysRevD.100.104007

I. INTRODUCTION

The calculation of the tunneling action that controls the
exponential suppression of the decay of metastable states
has been reformulated recently in [1]. The new method
offers an alternative to the standard solution by Coleman
[2], which is based on the calculation of a tunneling bounce
by solving a differential equation in Euclidean space.
In a nutshell, the new approach works as follows.

Consider a potential VðϕÞ with a false vacuum at ϕþ
and a true vacuum at ϕ− > ϕþ, as in the examples shown in
Fig. 1. Take a tunneling potential VtðϕÞ ≤ VðϕÞ that
connects the false vacuum with some point ϕ0 on the
slope beyond the barrier, in the basin of the true vacuum,
with VtðϕþÞ ¼ VðϕþÞ≡ Vþ and Vtðϕ0Þ ¼ Vðϕ0Þ≡ V0.
To any such function VtðϕÞ, associate the action

S½Vt�≡ 54π2
Z

ϕ0

ϕþ

ðV − VtÞ2
ð−V 0

tÞ3
dϕ; ð1Þ

where V 0
t ¼ dVt=dϕ. Then, under the condition that the

action density should satisfy

sðVtÞ≡ 54π2
ðV − VtÞ2
ð−V0

tÞ3
≥ 0; ð2Þ

find the VtðϕÞ that minimizes S½Vt�. The minimum action
thus found is the tunneling action corresponding to the
decay of the false vacuum at ϕþ. For details about the
derivation of this simple result, see [1].
The newmethod of calculation has a number of attractive

features: it can be considered as a generalization of the
thin-wall case for arbitrary potentials; it allows a fast and
flexible numerical estimate of S, including the case of
multifield potentials [3]; it can be used to generate
potentials that admit analytic solutions to the tunneling
problem; it can be readily extended to the case of decays by
thermal fluctuations etc.; see [1]. Moreover, it is useful to
have alternative formulations of important problems as
different approaches can offer a better handle in dealing
with different issues. Last but not least, the new formulation
is extremely direct and simple to state.
The purpose of this paper is to extend the work in [1]

including the effect of gravity, which can be quite relevant
for vacuum decay in cosmological settings or in discussions
of the population of vacua in the string landscape etc.
The solution to this problem in the Euclidean bounce
formulation dates back to the work of Coleman and De
Luccia in [4].
In the new approach, the inclusion of gravitational

effects simply modifies the action density to
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sðVtÞ≡ 6π2

κ2
ðDþ V 0

tÞ2
V2
t D

; ð3Þ

where κ ≡ 1=m2
P, with mP ¼ 2.435 × 1018 GeV being the

reduced Planck mass; D is a generalization of the field
derivative of Vt that includes gravitational corrections

D ¼ DðϕÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV 0

tÞ2 þ 6κðV − VtÞVt

q
: ð4Þ

The problem to solve is as before: find the Vt that
minimizes the action

R ϕ0

ϕþ sðVtÞdϕ. Now the action density
(3) is explicitly positive definite, but it should be real, too,
of course, so Vt is constrained to give real D.
This remarkably simple formulation applies to the decay

of any type of vacua: anti–de Sitter (AdS) (Vþ < 0),
Minkowski (Vþ ¼ 0) or de Sitter (dS) (Vþ > 0) and, in
the latter case, it reproduces the Hawking-Moss exponent
[5] in the appropriate cases. Examples of Vt functions that
minimize the tunneling action are shown by the red curves
in Fig. 1 for an AdS vacuum (upper plot) and a dS one
(lower plot). The qualitatively different behavior of the two
cases is apparent (the Minkowski case is similar to the
AdS one).

The rest of the paper is organized as follows. In Sec. II,
the standard Euclidean approach of Coleman and De
Luccia to the calculation of the semiclassical tunneling
exponent for vacuum decay in the presence of gravity is
reviewed. In Sec. III, the main result (3) is obtained, and the
corresponding Euler-Lagrange equation for the instanton
contribution to the tunneling exponent is derived. After
some comments in Sec. IV on the new action, the new
method is applied in “reverse gear” to obtain analytically a
potential VðϕÞ from a simple VtðϕÞ in Sec. V.
After drawing some conclusions, several appendixes are

devoted to more technical (but important) discussions.
Appendix A contains the proof that the new formulation
agrees with the standard formulation. Appendix B derives
the thin-wall limit for the tunneling action using the new
formulation.

II. EUCLIDEAN ACTION VIA THE
TUNNELING BOUNCE

Take a single scalar field ϕ in four dimensions, with a
potential VðϕÞ that has a metastable false minimum at ϕþ
and a deeper minimum at ϕ−; see Fig. 1. For simplicity
ϕþ ¼ 0 is chosen in many of the plots, without loss of
generality.
The decay of this false vacuum proceeds by fluctuations

that nucleate bubbles of the energetically preferred phase,
which grow and eat out the metastable phase. For suffi-
ciently long-lived states, the vacuum decay rate (per unit
volume) Γ=V is exponentially suppressed. For the decay
by quantum fluctuations Γ=V ¼ Ae−ΔSE=ℏ, where ΔSE is
the difference between two Euclidean actions, one for the
instanton mediating the decay (a bounce/instanton con-
figuration that connects the two phases) and the other for
the false vacuum background.
The bounce configuration results from solving a non-

linear differential equation, a Euler-Lagrange Euclidean
equation of motion with appropriate boundary conditions.
In the presence of gravity one also has to deal with the
cross-talk between the Euclidean space-time metric and the
instanton configuration. Assuming that the instanton sol-
ution that dominates the decay has Oð4Þ symmetry, the
most general Oð4Þ-symmetric metric can be written as

ds2 ¼ gμνdxμdxν ¼ dξ2 þ ρðξÞ2dΩ2
3; ð5Þ

where ξ is a radial coordinate that measures the radial
distance along lines normal to three spheres of radius of
curvature ρðξÞwhile dΩ2

3 is the line element on a unit three-
sphere. The Ricci curvature scalar for this metric is

R ¼ 6

ρ2
ð1 − ρρ̈ − _ρ2Þ; ð6Þ

where the dots stand for derivatives with respect to ξ.

FIG. 1. Tunneling potential VtðϕÞ (red) for decay out of an AdS
vacuum (upper plot) or a dS vacuum (lower plot) in some
example potentials VðϕÞ (blue).
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The instanton action for the decay of the metastable ϕþ
(false) vacuum is obtained [2] by finding an Oð4Þ-
symmetric bounce ϕbðrÞ (or Euclidean bubble) that inter-
polates between the false vacuum and (the basin of) the true
vacuum at ϕ−. This bounce solves the Euclidean equation
of motion

ϕ̈þ 3 _ρ

ρ
_ϕ ¼ V0; ð7Þ

where a dot (prime) represents a derivative with respect to ξ
(ϕ). On the other hand, from Einstein’s equations it follows
that ρðξÞ satisfies the equation

_ρ2 ¼ 1þ κρ2

3

�
1

2
_ϕ2 − V

�
; ð8Þ

where κ ≡ 1=m2
P.

The system of coupled differential equations (7) and (8)
should be solved with the boundary conditions

_ϕbð0Þ ¼ 0; ρð0Þ ¼ 0 ð9Þ

at the origin ξ ¼ 0, with ϕ0 ¼ ϕbð0Þ being an unknown.
For the decay of a dS vacuum, ρðξÞ returns to 0 at
some point

ρðξmaxÞ ¼ 0; ð10Þ

and the bounce is compact. Instead, for AdS and
Minkowski vacuum decay, ρðξÞ keeps growing indefinitely
and the bounce is noncompact. In these cases we take
ξmax ¼ ∞. The boundary condition on the bounce at that
point is

_ϕbðξmaxÞ ¼ 0: ð11Þ

In the presence of gravity it is not guaranteed that
ϕbðξmaxÞ ¼ ϕþ: for dS vacua ϕbðξmaxÞ≡ ϕ0þ can be quite
different from ϕþ (although it is always on the basin of the
false vacuum).
Identifying ξ with time, Eq. (7) corresponds to the

classical motion of a particle in the inverted potential
−VðϕÞ with a velocity and time dependent friction force.
The solution can be found by undershooting and over-
shooting, changing the value of the field at the center of the
Euclidean bubble, ϕbðξ ¼ 0Þ≡ ϕ0, till the boundary con-
dition at ξ → ∞ is satisfied. At the same time, Eq. (8) has to
be solved, with different asymptotic behaviors, depending
on the type of vacua VðϕþÞ is. For AdS and Minkowski
vacua, the bounce is noncompact, with ρ extending over
the infinite range ξ ¼ ð0;∞Þ. At ξ → ∞, for Minkowski
vacua ρðξÞ ∼ ξ while for AdS, ρðξÞ ∼ expðξ=ρ̄Þ, with
1=ρ̄2 ¼ −Vþκ=3. For dS vacua, instead, the bounce is
compact and ρ extends over a finite range ξ ¼ ð0; ξmaxÞ,

with ρ ¼ 0 at both ends of the interval. For more details on
the standard picture, see [4,6].
The Euclidean action, from which the previous equations

for ϕ and ρ follow, is

SE½ϕ� ¼
Z

d4x
ffiffiffi
g

p �
1

2
gμν∂μϕ∂νϕþ VðϕÞ − R

2κ

�
þ SGHY

ð12Þ
where SGHY is the (Euclidean) Gibbons-Hawking-York
(GHY) boundary term [7]. Applying this general expres-
sion to the Euclidean bounce, one gets

SE½ϕb� ¼ 2π2
Z

ξmax

0

�
ρ3
�
1

2
_ϕ2 þ VðϕÞ

�

þ 3ρ

κ
ðρρ̈þ _ρ2 − 1Þ

�
dξþ SGHY; ð13Þ

where it is understood that ξmax ¼ ∞ for noncompact
bounces, and

SGHY ¼ −6π2
ρ2 _ρ

κ

				ξ¼ξmax

ξ¼0

: ð14Þ

Integration by parts gets rid of the ρ̈ term and cancels out
the GHY term. One gets

SE½ϕb� ¼ 2π2
Z

ξmax

0

�
ρ3
�
1

2
_ϕ2 þ V

�
−
3ρ

κ
ð _ρ2 þ 1Þ

�
dξ:

ð15Þ
Furthermore, both expressions (13) and (15) for the bounce
action can be simplified by using the equation of motion (7)
and the constraint (8) to get the two expressions

SE;1½ϕb� ¼ −2π2
Z

ξmax

0

ρ3Vdξ; ð16Þ

SE;2½ϕb� ¼ 4π2
Z

ξmax

0

�
ρ3V −

3

κ
ρ

�
dξ: ð17Þ

The tunneling exponent that suppresses vacuum decay is
the difference between this action evaluated for the bounce
and the action associated to the background (false vacuum)
field configuration.
The background action can be obtained by substituting

in the actions above the potential V by its value at the false
vacuum, V ¼ Vþ, and the radius ρðξÞ by the corresponding
solutions of (8) in such a background,

ρdSðξÞ ¼ ρ̄ sinðξ=ρ̄Þ;
ρMðξÞ ¼ ξ;

ρAdSðξÞ ¼ ρ̄ sinhðξ=ρ̄Þ; ð18Þ

with ρ̄≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3=ðκjVþjÞ

p
for decays from dS, Minkowski, or

AdS vacua, as indicated. One can obtain the background
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actions SEþ analytically. In the case of Minkowski or AdS
decays, which occur through a noncompact bounce (with
ξmax ¼ ∞), the background action SEþ diverges, but the
divergence cancels against a similar divergence coming
from the bounce action SE½ϕb� and one ends up with a finite
tunneling exponent,

ΔSE ≡ SE½ϕb� − SEþ: ð19Þ

It is customary to regulate such actions using a cutoff in the
ξ integrals matching both solutions to enforce the cancel-
lation, but it is more convenient to leave the SEþ integral
unevaluated and rewrite it in terms of an integral over the
bounce ξ-coordinate, as shown below.
Consider the AdS vacuum decay first. Using form (16),

the background action for the AdS false vacuum (Vþ < 0)
can be written as

SEþ ¼ −2π2
Z

∞

0

ρ3AdSVþdξAdS: ð20Þ

One can change the integration variable from ξAdS to the
bounce ξ-coordinate by identifying ρAdSðξAdSÞ ¼ ρðξÞ,
from which one gets

dξAdS
dξ

¼ _ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κVþρ2=3

p : ð21Þ

Using this to rewrite SEþ one ends up with the expression

ΔSE;1 ¼ −2π2
Z

∞

0

ρ3
�
V −

Vþ _ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − κVþρ2=3

p �
dξ: ð22Þ

If form (17) of the action is used instead, following the
same procedure one arrives at

ΔSE;2 ¼ 4π2
Z

∞

0

�
ρ3V −

3ρ

κ
−
ðρ3Vþ − 3ρ=κÞ _ρffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − κVþρ2=3
p �

dξ: ð23Þ

Of course one should get ΔSE;1 ¼ ΔSE;2. Both tunneling
actions (22) and (23) also reproduce the Minkowski result
simply setting Vþ ¼ 0, as the procedure followed goes
through with dξM=dξ ¼ _ρ [which is the Vþ ¼ 0 limit
of (21)].
For the dS case this rewriting of SEþ is not needed and

one simply has, using (16)

ΔSE ¼ SE½ϕb� þ
24π2

κ2Vþ
: ð24Þ

As in the case without gravity, analytical results for these
tunneling exponents are generically not possible and one
resorts to numerical solutions of the differential equations.
One exception is the case when the false vacuum is nearly
degenerate with the true one, a case in which an analytical

thin-wall expression can be used. The standard derivation is
not discussed here but Appendix B contains a simple and
direct derivation of this formula using the alternative
approach presented in this paper.

III. EUCLIDEAN ACTION VIA A TUNNELING
POTENTIAL

Let us follow the approach of [1] and introduce an
auxiliary function, VtðϕÞ, the tunneling potential. Its
connection with the standard bounce method is

VtðϕÞ≡ VðϕÞ − 1

2
_ϕ2
b; ð25Þ

where it is understood that _ϕb is considered as a function of
the field ϕ.
The properties of VtðϕÞ are nearly the same as in [1]:

(1) obviously VtðϕÞ ≤ VðϕÞ, with Vtðϕ0Þ ¼ Vðϕ0Þ and
Vtðϕ0þÞ ¼ Vðϕ0þÞ, as _ϕbð0; ξmaxÞ ¼ 0 at these end points
of the bounce; (2) VtðϕÞ is a monotonic function for the
case of noncompact bounces but it is not monotonic for
compact bounces. This difference in behavior follows from
the fact that VtðϕÞ is minus the Euclidean energy, which
varies with ξ as

d
dξ

�
1

2
_ϕ2
b − VðϕbÞ

�
¼ −

3

ρ
_ρ _ϕ2

b: ð26Þ

For noncompact bounces _ρ > 0 and the Euclidean energy is
dissipated by the friction term in (7). However, for compact
bounces, _ρ changes sign at some intermediate value ξ ¼ ξt
in the interval (0, ξmax). For ξ > ξt, _ρ < 0 and there is
antifriction. Noting that the bounce is also a monotonic
function of ξ (intuitively clear from the “motion in an
inverted potential” picture1), there is a one-to-one corre-
spondence between the slope of ρ and that of VtðϕÞ. So, for
noncompact bounces (for decay from AdS or Minkowski
vacua) Vt is monotonically decreasing (V 0

t < 0) as in the
case without gravity. For compact cases, corresponding to
decays from dS space, the slope of Vt is negative on the side
closer to the true vacuum but turns positive on the side
closer to the false vacuum (corresponding to ξ > ξt).
Examples of these different behaviors of VtðϕÞ are shown
in Fig. 1.
Proceeding as in [1] one can remove any reference to the

bounce (and the four-dimensional Euclidean space in
which it lives) in favor of VtðϕÞ. From (25)

_ϕb ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2½VðϕÞ − VtðϕÞ�

p
; ð27Þ

where the minus sign, chosen due to ϕþ < ϕ−, would be a
plus if one takes ϕþ > ϕ−. Equation (27) can then be used

1Nonmonotonic oscillating Coleman-De Luccia bounces exist
[8] but for the purposes of this paper only their monotonic part
starting at ξ ¼ 0 is relevant.
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to remove any ξ-derivative of ϕb in terms of Vt (and V).
The Euclidean radius ρ can be obtained from (7) and (8) as

ρ ¼ 3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − VtÞ

p
D

; ð28Þ

where the combination

D ¼ DðϕÞ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðV 0

tÞ2 þ 6κðV − VtÞVt

q
ð29Þ

first appears. Further derivatives of ρ can be eliminated in
the same way, e.g.,

_ρ ¼ −
V 0
t

D
; ρ̈ ¼ −

κ

3
ρð3V − 2VtÞ: ð30Þ

Notice that the 0 in _ρðξtÞ for compact bounces is related to a
0 in V 0

t (at some ϕt away from the end points), in agreement
with the previous discussion. Notice that, to keep D real,
this requires VtðϕtÞ > 0. By continuity, V 0

t > 0 [in the
interval (ϕþ, ϕt)] also requires Vt > 0.
Taking a derivative of (28) with respect to ξ one gets the

differential equation for Vt,

ð4V 0
t − 3V 0ÞV 0

t ¼ 6ðVt − VÞ½V 00
t þ κð3V − 2VtÞ� ; ð31Þ

which takes the place of (7) in the new formulation of the
tunneling problem (at least for Minkowski and AdS vacua):
find a ϕ0 and a VtðϕÞ that solve (31) with the boundary
conditions,

VtðϕþÞ ¼ VðϕþÞ; Vtðϕ0Þ ¼ Vðϕ0Þ: ð32Þ

Equation (31) also leads [assuming V 0ðϕþÞ ¼ 0] to

V 0
tðϕþÞ ¼ 0; V 0

tðϕ0Þ ¼ 3V 0ðϕ0Þ=4: ð33Þ

The case of dS vacua, for which the instanton does not
reach all the way to ϕþ, is discussed below.
Note that the limit κ → 0 of Eq. (31) reduces to the

differential equation for the casewithout gravity discussed in
[1], as it should. Notice also that with the new formulation
there is no need to keep track of the two functions ρðξÞ and
ϕðξÞ but just one: VtðϕÞ.
For later use, notice that Eq. (31) can be rewritten in

terms of D as

d
dϕ

logD ¼ 3V 0 − 4V 0
t

6ðV − VtÞ
: ð34Þ

Once Vt has been found, one still needs to calculate the
action associated to it. In the case without gravity Derrick’s
theorem [9] was used to select one particular form of the
bounce action to be transformed to the new language [1], but
there is no recourse to a Derrick’s theorem with gravity.

However, one can reverse engineer the problem and find
what action density reproduces Eq. (31) under variations
with respect to Vt. Following that route, one can determine
the tunneling action density up to an arbitrary term that only
depends on Vt. Comparing with the bounce action of the
standard approach that constant is fixed and one arrives at

S½Vt� ¼
6π2

κ2

Z
ϕ0

ϕþ

ðDþ V 0
tÞ2

V2
t D

dϕ : ð35Þ

The detailed proof of the exact correspondence between this
action and the standard one is presented in Appendix A. In
that appendix it is shown that, for the decay of Minkowski or
AdS vacua, one has

S½Vt� ¼ ΔSoldE ≡ SE½ϕb� − SEþ; ð36Þ

so that the new action encapsulates in a single expression the
difference of the bounce and background actions of the
standard formulation.
The dS case requires a more detailed discussion as in

general ϕbðξmaxÞ≡ ϕ0þ ≠ ϕþ, so that the field range
covered by the compact bounce, (ϕ0þ, ϕ0) does not
correspond to the range (ϕþ, ϕ0) in the integral of
Eq. (35). Remarkably, an equality like (36) also holds in
the dS case if one extends the definition of Vt outside the
instanton field range, taking Vt ¼ V in the interval (ϕþ,
ϕ0þ). Such extended Vt is shown in Fig. 1, lower plot. With
that extension, one has

S½Vt� ¼
24π2

κ2

Z
ϕ0þ

ϕþ

V 0
t

V2
t
dϕþ 6π2

κ2

Z
ϕ0

ϕ0þ

ðDþ V 0
tÞ2

V2
t D

dϕ

¼ 24π2

κ2

�
1

Vþ
−

1

V0þ

�
þ
Z

ϕ0

ϕ0þ
sðϕÞdϕ: ð37Þ

In Appendix A it is shown that, again, this exactly
reproduces the standard result, so that (36) also holds for dS.
Note that Vt ¼ V is not a solution of the instanton

equation of motion (31). Nevertheless, an important prop-
erty of the action (35) is, by construction, that its functional
variation with respect to VtðϕÞ returns the equation of
motion (31). More explicitly, one gets

δS
δVt

¼ −108π2
ðV − VtÞ

D5
EoM; ð38Þ

where EoM≡ð4V 0
t−3V 0ÞV 0

tþ6ðV−VtÞ½V 00
t þκð3V−2VtÞ�.

From the additional (V − Vt) factor one sees that the
extension V ¼ Vt away from the instanton range also
extremizes the action.
Another interesting consequence of Eq. (37) is that it

returns the Hawking-Moss action when the Coleman-De
Luccia bounce disappears. In that case, ϕ0þ and ϕ0

converge to ϕT , the field value corresponding to the top
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of the barrier. In that case the instanton part of the action
(37) vanishes and one gets, with VT ≡ VðϕTÞ,

S½Vt� ¼
24π2

κ2

�
1

Vþ
−

1

VT

�
≡ SHM; ð39Þ

precisely the Hawking-Moss result [5].
To see this in more quantitative terms, assume that (the

instanton part of) Vt is very flat, say Vt ≃ Vi, where Vi is a
positive constant (with Vþ ≤ Vi ≤ VT). Then one can
neglect V 0

t and pull Vt out of the integral for S½Vt�.
Using (37)

S ≃
24π2

κ2

�
1

Vþ
−

1

Vi

�
þ 6π2

ffiffiffi
3

p
σðViÞ

ðκViÞ3=2
; ð40Þ

with

σðViÞ≡
Z

ϕi−

ϕiþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − ViÞ

p
dϕ; ð41Þ

where ϕiþ;i− are the two solutions of VðϕÞ ¼ Vi. For a
more realistic trial solution, σðViÞ would be replaced by a
more complicated integral, but the rough approximation
with flat Vi can be used to estimate parametrically the
behavior of the tunneling solution.
The noninstanton piece of (40) starts at 0 for Vi ¼ Vþ

and grows to the Hawking-Moss action for Vi ¼ VT, the
top of the barrier. The instanton piece instead starts at some
positive value for Vi ¼ Vþ [with σðViÞ corresponding then
to the usual wall tension if the thin-wall limit is applicable],
and goes to 0 when Vi ¼ VT . For the restricted type of
approximate Vt configurations considered, but also in
general, the action is minimized by the interplay of these
two opposite tendencies.
If κVþ grows [keeping the shape of VðϕÞ unchanged],

the noninstanton piece of (40) decreases as 1=ðκVþÞ2 while
the instanton piece decreases at the slower rate 1=ðκVþÞ3=2.
Therefore, for sufficiently large κVþ the noninstanton part
wins and the action is minimized by the Hawking-Moss
configuration.
In the opposite limit of κVþ → 0 the noninstanton part

diverges and the instanton part dominates the tunneling
(with Vi → Vþ and ϕ0þ → ϕþ).
When the minimum of the action occurs at some

intermediate value of Vi, that value could be calculated
by solving

dS
dVi

¼ 0; ð42Þ

which leads to

4

ffiffiffiffiffi
Vi

3κ

r
¼ 3

2
σðViÞ þ

Z
ϕi−

ϕiþ

Vidϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − ViÞ

p : ð43Þ

For a thermal description of this two-step dS tunneling
see [10].

IV. COMMENTS ON S

Some additional comments on the action (35) are the
following.
(a) The action density is explicitly positive definite,

s≡ 6π2

κ2
ðDþ V 0

tÞ2
V2
t D

≥ 0; ð44Þ

and should be integrated over a finite field interval. As a
trivial consequence, this expression is better suited for
numerical evaluation than the standard ones, which can
take both negative and positive values. For illustration,
Fig. 2 shows the new action density (red curve, upper plot)
and the two versions of the standard action densities
corresponding to (22) and (23), rewritten as functions of
ϕ (lower plot) for a particular potential (described in the
next section). Although the final action is SE ≃ 870, the
standard action densities take very large peak values, which
can lead to lower precision of numerical evaluations (that

FIG. 2. Comparison of the new action density of Eq. (44)
(upper plot) with standard tunneling action densities sE;1;2 of
Eqs. (22) and (23) (lower plot), for the potential of Sec. V, with
C ¼ 100, κ0 ¼ 1, Vþ=μ4 ¼ −0.5.
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require a cancellation between contributions of opposite
sign much larger than the end result).
(b) When the gravitational effects are small one can

expand the action density in powers of κ. For the decay
from Minkowski or AdS, V 0

t ≤ 0, and the expansion is

s ¼ 54π2
ðV − VtÞ2
ð−V 0

tÞ3
�
1 −

6κðV − VtÞVt

ðV 0
tÞ2

�
þOðκ2Þ: ð45Þ

The κ0 term reproduces the action presented in [1].
Concerning the OðκÞ terms, noting that Vt ≤ 0 in such
decays, one sees that the small gravitational effects always
make the vacua more stable (higher tunneling action).
In assessing this effect there is no need to worry about the
OðκÞ effect of gravity on the Vt calculation itself as the
zero-gravity action is stationary and such corrections affect
the action only at Oðκ2Þ.
For the decay of dS vacua, there is always a region of

field space for which V 0
t ≥ 0, Vt ≥ 0. In that region one gets

a different expansion,

s¼ 24π2
V 0
t

κ2V2
t

þ54π2
ðV−VtÞ2
ðV 0

tÞ3
�
1−

6κðV−VtÞVt

ðV 0
tÞ2

�
þOðκ2Þ: ð46Þ

As explained before, the 1=κ2 term plays an important
role in connecting the tunneling action (35) to the
Hawking-Moss action. When the effects of gravity are
small, however, ϕ0þ is exponentially close to ϕþ and
the divergent contribution from the 1=κ2 term goes to 0,
as we have discussed before.
(c) The action density s would blow up if either Vt or D

goes to 0. When Vt crosses 0 (as it must happen for a decay
from dS to AdS), an expansion in powers of Vt gives

s ¼ 12π2

κ2V2
t

h ffiffiffiffiffiffiffiffiffiffiffi
ðV 0

tÞ2
q

þ V 0
t

i
þOðV0

t Þ: ð47Þ

The divergence is absent if V 0
t < 0, which is satisfied for dS

decays at the point where Vt crosses 0 (remember that V 0
t

starts positive from ϕþ, reaches 0 at some intermediate
value where Vt > 0, and only later becomes negative).
ConcerningD, which is positive definite, the equation of

motion for Vt, written in the form (34), shows that D
approaches 0 only exponentially, because its derivative is
proportional to itself. So, one does not expect to findD ¼ 0
at some intermediate value of ϕ but D → 0 happens at ϕþ
for AdS or Minkowski decays. In order to get a finite value
of S the condition

lim
ϕ→ϕþ

V 0
t

D
ðϕ − ϕþÞ ¼ 0 ð48Þ

should be satisfied. An explicit case of this behavior is
shown in the discussion of Appendix A.
(d) Already from the pioneering work of Coleman and

De Luccia [4] it is known that gravitational effects could
quench vacuum decay forbidding decays that would be
allowed without gravity (see Appendix B for a rederivation
of this famous result in the thin-wall limit). In the new
formalism, gravitational quenching of vacuum decay can
be understood quite simply as the result of the impossibility
of finding tunneling paths with real D for some potentials.
In the Minkowski or AdS cases, the monotonicity of Vt sets
a limit on the average values of V 0

t and Vt that might not
be sufficiently large to compensate the negative value
of 6κðV − VtÞVt. In integral form, Vt should satisfy the
inequality

ΔVþ0 ≡ Vþ − V0 ≥
Z

ϕ0

ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6κðV − VtÞð−VtÞ

p
dϕ; ð49Þ

and it is easy to imagine cases in which this is not possible.
For instance, large enough κðV − VþÞ would lead to
gravitational quenching.
(e) As in the case without gravity, one expects that it

should be simple to estimate VtðϕÞ for a given potential
making educated guesses (as in [1]) to get an accurate
approximation to the tunneling action using (35), although
no dedicated study of this application is performed in this
paper. The success of such a numerical approach rests on
the fact that the action (1) is not only an extremal for the Vt
that solves the corresponding Euler-Lagrange equation but
is in fact an absolute minimum. In the case with gravity, the
action (35) is, by construction, an extremal for the right Vt
that solves (31) (supplemented by an interval with Vt ¼ V
in the case of dS vacua). Although we expect that also with
gravity present the action (35) is an absolute minimum at
the right Vt, we have not been able to prove it in full
generality and leave such a proof for future work.

V. POTENTIALS WITH EXACT
TUNNELING SOLUTIONS

Having potentials that allow one to solve the tunneling
problem analytically is quite useful and there are a number
of papers in the literature that provide such potentials using
different methods of attack. In the presence of gravity, a
possibly incomplete list of such previous work is [11].
The new approach to tunneling action calculations based

on the tunneling potential is also useful for the purpose of
finding such analytical potentials, as was demonstrated in
[1]. Here this application is extended to the case with gravity.
Instead of starting from V and solving for Vt, one

postulates a given Vt and integrates (31) to obtain the
corresponding V. While in the case without gravity a closed
form solution for V could be given, this does not seem
possible with gravity. Nevertheless, one can still solve for V
for particular choices of Vt.
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Take, for instance,

Vt ¼ Vþ − μ4sin2φ; ð50Þ

where Vþ ≤ 0 (only Minkowski or AdS vacua) and
φ≡ ϕ=M, with μ, M being some mass scales that control
the depth and slope of VtðϕÞ. It is possible to integrate (31)
obtaining

V ¼ Vt −
μ8s22φ
6κ0Vt

�
1þ μ4cακ0φ s−ð1þαÞκ0

φ

2½AðφÞ þ C�Vt

�
; ð51Þ

where sφ ≡ sinφ, cφ ≡ cosφ, κ0 ≡ κM2, α≡ Vþ=μ4 − 1.
The function AðφÞ is given in terms of the Appell
hypergeometric function of two variables, F1ða; b1;
b2; c; x; yÞ, as

AðφÞ≡ c2þακ0
φ

α2ð2þ ακ0Þ
F1ða;b1; b2; c; c2φ;−c2φ=αÞ; ð52Þ

with a ¼ 1þ ακ0=2, b1 ¼ ð1þ αÞκ0=2, b2 ¼ 2, and
c ¼ 2þ ακ0=2. Finally, C is an integration constant that
can be expressed in terms of ϕ0 solving Vðϕ0Þ ¼ Vtðϕ0Þ.
An example of this potential is given in the upper plot of

Fig. 1, corresponding to the parameter choice C ¼ 4,
κ0 ¼ 0.8, and Vþ=μ4 ¼ −0.25. The potential (51) also
has a thin-wall limit for κ0 ≪ 1. As an example, for
C ¼ 100, κ0 ¼ 0.01, Vþ=μ4 ¼ 0.01 both VðϕÞ and
VtðϕÞ are plotted in Fig. 3.
Rather than a thorough search for the simplest analytical

cases, here we just give this example. No doubt other
interesting potentials can be found using this method.

VI. CONCLUSIONS

The new formulation of [1] shows how to calculate
tunneling actions purely in field space, without reference to
an auxiliary Euclidean space in which the standard bounce

lives. Moreover, it allows one to formulate the problem of
obtaining such actions in rather elementary terms, as a quite
simple variational problem: find a function Vt that mini-
mizes the actional functional (1) connecting the metastable
and stable phases.
An obvious extension of the work in [1] was to include the

effects of gravity, which can be very relevant, and it was not
clear whether the simple alternative prescription would also
hold in this rather more complicated situation. In this paper it
is shown that this is indeed the case, with the problem being
reduced to a similar variational problem, with just a slightly
more complicated action density, as given in (3). It is
remarkable that such a simple prescription encompasses
decays from all types of vacua (dS, Minkowski, and AdS) in
a single universal formula and also reproduces the Hawking-
Moss exponent in the appropriate limit. Sidney Coleman
would have been pleased with it.
In spite of its very appealing features in terms of simplicity

and ease of implementation, this new method cannot be
taken as an alternative to completely replace the bounce
approach, which is certainly more fundamental. To begin
with, the alternative method relies on the Oð4Þ symmetry of
the bounce that dominates the decay (an assumption that
remains unproven in the case with gravity) and cannot be
applied if that symmetry is not present. Moreover, the
quantum corrections [12] to the semiclassical decay rate
have to be computed by considering fluctuations over the
bounce and these are explicitly not Oð4Þ symmetric.
Rather than as a replacement for the bounce method, the

new approach is complementary to it and can be most
useful not only in numerical applications but also in gaining
theoretical insight in particular problems in which such
insight is more difficult to gather from the standard
approach. Hopefully it will be fruitful also in this respect.
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APPENDIX A: PROOF THAT S=ΔSE
That the new tunneling action, given in (35), agrees with

the conventional one can be proven by showing that the two
action densities differ by an exact differential that vanishes
at the boundaries. Let us write the action functional (35) as

S ¼
Z

ϕ0

ϕþ
s dϕ; ðA1Þ

FIG. 3. Potential VðϕÞ of Eq. (51), with C ¼ 100, κ0 ¼ 1,
Vþ=μ4 ¼ −0.5 (blue) and its corresponding VtðϕÞ, from
Eq. (50), (red).
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with the (positive definite) action density

s ¼ 6π2

κ2
ðDþ V 0

tÞ2
V2
t D

: ðA2Þ

Consider first the decay fromMinkowski or AdS vacua and
take as the conventional action Eq. (22). Transforming the
integral to a field-space integral using the procedure
explained in the main text one gets

ΔSE ¼
Z

ϕ0

ϕþ
sE dϕ; ðA3Þ

with

sE ¼ −108π2
ðV − VtÞ

D3

�
V þ V 0

tVþ
Dþ

�
; ðA4Þ

where

Dþ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 − 6κðV − VtÞVþ

q
: ðA5Þ

Then it is straightforward to check that, for Vt satisfying its
equation of motion,

s − sE ¼ dF
dϕ

; ðA6Þ

with

FðϕÞ ¼ −
12π2

κ2Vt

�
1 −

Vt

Vþ
þ 3V 0

t

2D
−
ðV 0

tÞ3
2D3

þ VtDþ
2VþD

�
3 −

D2þ
D2

��
: ðA7Þ

To find FðϕÞ it was useful to follow the homotopy operator
method, as explained, e.g., in [13]. In the Minkowski case
(for Vþ → 0), this function has the finite limit

F0ðϕÞ ¼ −
6π2

κ2Vt

�
1þ V 0

t

D

�
2
�
2 −

V 0
t

D

�
: ðA8Þ

Integrating (A6) in ϕ one gets

S − ΔSE ¼ Fðϕ0Þ − FðϕþÞ: ðA9Þ

Noting that Dðϕ0Þ ¼ Dþðϕ0Þ ¼ −V 0
tðϕ0Þ, it follows that

Fðϕ0Þ ¼ 0. To evaluate FðϕþÞ, notice that one has
DðϕþÞ ¼ DþðϕþÞ ¼ 0 [assuming that V 0ðϕþÞ ¼ 0 at the
false vacuum]. To calculate the ratios of these quantities,
consider first the AdS case. Both V 0

t=D and Dþ=D diverge
at ϕ → ϕþ and one needs to know in more detail how
V 0
t; D;Dþ approach 0.

Close to ϕþ, let us approximate the potential by keeping
up to its second derivative

VðϕÞ ¼ Vþ þ 1

2
m2ðϕ − ϕþÞ2 þ… ðA10Þ

Solving the equation of motion (31) for the above potential
leads to the following expansion for the tunneling potential2

VtðϕÞ ¼ Vþ þ 1

2
Bðϕ − ϕþÞ2 þ Bαðϕ − ϕþÞ2þα þ…

ðA11Þ

with

B ¼ 3κVþ
2

 
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4m2

3κVþ

s !
< 0; ðA12Þ

and

α ¼ 2κVþ
B

> 0: ðA13Þ

On the other hand, Bα is a free constant that cannot be
determined by solving (31) around ϕþ but is fixed instead
by the boundary condition at ϕ0. Such behavior is expected,
as VtðϕÞmust depend on the shape of the potential far from
ϕþ. From this result it follows that

V 0
t; Dþ ∼ ðϕ − ϕþÞ; D ∼ ðϕ − ϕþÞ1þα=2; ðA14Þ

which shows how the leading terms of ðV 0
tÞ2 and 6κðV −

VtÞVt cancel out in D, which is then controlled by the
subleading term.
The expansion of FðϕþÞ around ϕþ gives terms that are

clearly 0 except for a term proportional to

ðV 0
tÞ3

D3
ðϕ − ϕþÞ2 ∼ ðϕ − ϕþÞ2−3α=2: ðA15Þ

From Eqs. (A12) and (A13), it follows that α < 4=3 and
so the quantity (A15) goes to 0 for ϕ → ϕþ ensuring that
FðϕþÞ ¼ 0.
An alternative way of obtaining the same result is to

transform FðϕÞ back to the bounce language and use the
asymptotic behavior of ρðξÞ and ϕðξÞ for ξ → ∞ (see, e.g.,
Appendix A of [14]).
In the Minkowski case, remember that −V 0

t=D ¼ _ρ
asymptotes to _ρ ¼ 1 at ξ → ∞, so that limϕ→ϕþV

0
t=

D ¼ −1, while limϕ→ϕþVtðϕÞ ¼ 0. One has therefore that
FMðϕþÞ ¼ 0. In conclusion, for Minkowski and AdS

2This is a Frobenius type of expansion, as expected given the
fact that ϕþ is a regular singular point of (31).
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decays the vanishing of F and F0 at the boundaries ϕ0 and
ϕþ proves that S ¼ ΔSE, as promised.
Consider next the dS case, for which

ΔSE ¼
Z

ϕ0

ϕ0þ
sE dϕþ 24π2

κ2Vþ
; ðA16Þ

with

sE ¼ −108π2
ðV − VtÞV

D3
; ðA17Þ

which is obtained translating (16) to field space.
One also has

S ¼
Z

ϕ0

ϕþ
s dϕ

¼
Z

ϕ0

ϕ0þ
s dϕþ 24π2

κ2

�
1

Vþ
−

1

V0þ

�
; ðA18Þ

where s is as given in (A2) and V0þ ≡ Vðϕ0þÞ.
For this dS case one can check that

s − sE ¼ dF0

dϕ
; ðA19Þ

with F0ðϕÞ given in (A8). Integrating this in the interval
(ϕ0þ, ϕ0) one has

S − ΔSE ¼ F0ðϕ0Þ − F0ðϕ0þÞ −
24π2

κ2V0þ
: ðA20Þ

Now, at ϕ0 one still has D ¼ −V 0
t, so that F0ðϕ0Þ ¼ 0,

while at ϕ0þ one has V 0
t > 0 so that D ¼ V 0

t, and
F0ðϕ0þÞ ¼ 24π2=ðκ2V0þÞ. Plugging this in (A20) leads
to the claimed equality S ¼ ΔSE.

APPENDIX B: THIN-WALL CASE

When the potential difference between false and true
vacua is very small, one expects to be in the thin-wall limit
(with the bounce having a sharp transition between ϕ0 ≃ ϕ−
and ϕþ at some ξ). In such cases an analytical expression
for the tunneling action can be obtained, in terms of the wall
tension σ [4,6].
The derivation of the analytic thin-wall expression for

the tunneling action using the tunneling potential approach
proceeds as follows. Consider first the Minkowski and
AdS cases. When the barrier separating the false and true
minima in V is high compared to Vt one has V 0

t ≪
ðV − VtÞ0. Using this, one can approximate the equation
of motion for Vt, written in the form (34) as

d
dϕ

logD ≃
ðV − VtÞ0
2ðV − VtÞ

; ðB1Þ

which is readily integrated to get

D2 ¼ ðV 0
tÞ2 þ 6κðV − VtÞVt ≃ CðV − VtÞ; ðB2Þ

where C is an integration constant that can be expressed in
terms of the wall tension as follows. Rewrite the previous
equation as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V − Vt

p
≃

−V 0
tffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C − 6κVt
p : ðB3Þ

From this, one gets

σ ≡
Z

ϕ0

ϕþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðV − VtÞ

p
dϕ ¼ −

ffiffiffi
2

p Z
ϕ0

ϕþ

V 0
tdϕffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

C − 6κVt
p

≃
ffiffiffi
2

p

3κ
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C − 6κV−

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C − 6κVþ

p Þ; ðB4Þ

where Vðϕ0Þ ≃ V−, valid in the thin-wall case, has been
used. From this, C is extracted as

C ¼ 6κVþ þ 1

8σ2
ð4ΔV − 3κσ2Þ2; ðB5Þ

where ΔV ≡ Vþ − V−.
Using the results above, the tunneling action (A2) can be

rewritten as

Stw ¼ 6π2

κ2

Z
ϕ−

ϕþ
dϕ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V − Vt

p

V2
t

ffiffiffiffi
C

p ð
ffiffiffiffi
C

p
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C − 6κVt

p
Þ2:

ðB6Þ

This integral can be performed if one gets rid of the only V
appearance in the integrand using (B3) to get

Stw ¼ 12π2

κ2Vt
ð1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 6κVt=C

p
ÞjVt¼Vþ
Vt¼V−

: ðB7Þ

This agrees with the known result in the literature; see, e.g.,
[6,15,16]. In the case of small gravitational effects an
expansion in κ gives

Stw ¼ Sðκ¼0Þ
tw

�
1 −

3κhViσ2
ΔV2

þOðκ2Þ
�
; ðB8Þ

where

Sðκ¼0Þ
tw ¼ 27π2σ4

2ΔV3
; ðB9Þ

and hVi≡ ðVþ þ V−Þ=2.
In the Minkowski limit (Vþ → 0) one recovers from the

general expression (B7) the Coleman result [4]
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ΔStw ¼ ΔSðκ¼0Þ
tw

ð1 − κ=κcÞ2
; ðB10Þ

with

κc ≡ 4ΔV
3σ2

; ðB11Þ

displaying the gravitational quenching of the decay for
κ=κc → 1. For κ=κc > 1 the decay is forbidden. In the new
formalism this critical value comes from the requirement
that D should be real. This translates into the inequality

−V 0
tffiffiffiffiffiffiffiffi

−Vt
p >

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6κðV − VtÞ

p
; ðB12Þ

integration of which results in the condition 3κσ2 < 4ΔV.

Generalizing this discussion to include also AdS decays,
one gets

κc ≡ 4ð ffiffiffiffiffiffiffiffiffiffi
−Vþ

p
−

ffiffiffiffiffiffiffiffiffiffi
−V−

p Þ2
3σ2

; ðB13Þ

with decays forbidden if κ=κc > 1.
In the dS case the near degeneracy of false and true vacua

does not necessarily imply the thin wall case. In terms of
the tunneling potential approach, near-degenerate vacua do
not necessarily imply that Vt is very flat in this case. This is
because, first, now there is no obstruction preventing Vt to
curve upwards and second, the instanton part of the Vt
solution does not necessarily connect to ϕþ. Nevertheless,
when the instanton part of the dS tunneling dominates (for
small enough κVþ) with ϕ0þ, ϕt → ϕþ, the derivation of
the thin-wall action proceeds as before.
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