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IMPORTANCE Genetic studies of intracerebral hemorrhage (ICH) have focused mainly on
white participants, but genetic risk may vary or could be concealed by differing nongenetic
coexposures in nonwhite populations. Transethnic analysis of risk may clarify the role of
genetics in ICH risk across populations.

OBJECTIVE To evaluate associations between established differences in ICH risk by
race/ethnicity and the variability in the risks of apolipoprotein E (APOE) ε4 alleles, the most
potent genetic risk factor for ICH.

DESIGN, SETTING, AND PARTICIPANTS This case-control study of primary ICH meta-analyzed the
association of APOE allele status on ICH risk, applying a 2-stage clustering approach based on race/
ethnicity and stratified by a contributing study. A propensity score analysis was used to model the
association of APOE with the burden of hypertension across race/ethnic groups. Primary ICH cases
and controls were collected from 3 hospital- and population-based studies in the United States
and 8 in European sites in the International Stroke Genetic Consortium. Participants were enrolled
from January 1, 1999, to December 31, 2017. Participants with secondary causes of ICH were
excluded from enrollment. Controls were regionally matched within each participating study.

MAIN OUTCOMES AND MEASURES Clinical variables were systematically obtained from structured
interviews within each site. APOE genotype was centrally determined for all studies.

RESULTS In total, 13 124 participants (7153 [54.5%] male with a median [interquartile range]
age of 66 [56-76] years) were included. In white participants, APOE ε2 (odds ratio [OR], 1.49;
95% CI, 1.24-1.80; P < .001) and APOE ε4 (OR, 1.51; 95% CI, 1.23-1.85; P < .001) were
associated with lobar ICH risk; however, within self-identified Hispanic and black participants,
no associations were found. After propensity score matching for hypertension burden, APOE
ε4 was associated with lobar ICH risk among Hispanic (OR, 1.14; 95% CI, 1.03-1.28; P = .01) but
not in black (OR, 1.02; 95% CI, 0.98-1.07; P = .25) participants. APOE ε2 and ε4 did not show
an association with nonlobar ICH risk in any race/ethnicity.

CONCLUSIONS AND RELEVANCE APOE ε4 and ε2 alleles appear to affect lobar ICH risk variably by
race/ethnicity, associations that are confirmed in white individuals but can be shown in Hispanic
individuals only when the excess burden of hypertension is propensity score–matched; further
studies are needed to explore the interactions between APOE alleles and environmental
exposures that vary by race/ethnicity in representative populations at risk for ICH.
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S pontaneous intracerebral hemorrhage (ICH) is the most
severe form of stroke. In the United States, 160 000 people
experience an ICH each year with a case fatality rate of

54% at 1 year.1 The prevalence of ICH has increased 47%
between 1990 and 2010,2 and ICH risk appears to vary among
white, black and Hispanic populations.3-6 Compared with white
individuals, young and middle-aged black individuals have
an almost 2-fold increased risk for ICH.3,4 Similarly, Hispanic
individuals have a relative risk increase that ranges from 1.4
for lobar ICH to 3.7 for nonlobar ICH.5 Moreover, not only is
hypertension prevalence among older adults lower among
non-Hispanic white groups (76.3%) than among non-Hispanic
black (82.5%) and Hispanic (79.2%) groups, but the risk of ICH
in the presence of hypertension increases more than 50% from
white to Hispanic groups.7-9 The associations of genetic and
acquired ICH risk factors with these observed risk differences
are poorly understood.

Previous studies conducted in predominantly European-
ancestry populations have demonstrated that apolipoprotein
E (APOE [OMIM 107741]) ε2 and ε4 alleles potently increase
risk of lobar ICH.10 In Alzheimer disease, another disorder as-
sociated with APOE ε allele status, the degree of risk contrib-
uted by APOE genotype varies substantially by the ancestry
of the population studied. Among non-Hispanic white people,
homozygous carriers of APOE ε4 exhibit up to a 12-fold higher
risk of Alzheimer disease, but this same haplotype exerts little
or no risk for black or Hispanic people.11-13

Understanding how genetic risk factors vary across race/
ethnicity may highlight novel underlying disease mecha-
nisms and identify populations who may be particularly re-
sponsive to specific prevention strategies, as has previously
been shown in treatment response for heart failure by
race/ethnicity.14 Unfortunately, with individuals of African
American and Hispanic ancestry representing less than 4% of
all samples in genome-wide association studies, only re-
cently has it become possible to study genetic risk of com-
mon disease across representative US populations.15

We tested the associations of APOE ε alleles with risk of
lobar and nonlobar ICH among white, black, and Hispanic
individuals, using direct genotyping data supplemented by
genome-wide genotyping as available in cases and controls from
the International Stroke Genetics Consortium. Because these
analyses revealed substantial heterogeneity by race/ethnicity,
we further explored the degree to which the differential
burden of hypertension across populations is associated with
the variability in observed APOE risks.

Methods
Participating Studies and Data Collection
Case and control participants included in the study were
gathered from 3 multicenter studies in the United States and
from 8 European sites participating in the International
Stroke Genetics Consortium, according to availability of
directly ascertained APOE ε genotypes and a harmonized
local acute case recruitment scheme. These participants
were enrolled in the aforementioned studies from January 1,

1999, to December 31, 2017. Institutional review board
approval was obtained from all participating centers, and
informed consent was obtained from all participants or their
legally authorized representative.

The ICH cases from population-based cohorts were not in-
cluded because of potential imbalances in lethal case recruit-
ment between the 2 sampling approaches.16 Studies included
the Genetics of Cerebral Hemorrhage with Anticoagulation
(GOCHA) study,17 the Genetic and Environmental Risk Factors
for Hemorrhagic Stroke (GERFHS) study,18 the Ethnic/Racial
Variations of Intracerebral Hemorrhage (ERICH) study,19 the
Hospital del Mar and Vall d’Hebron Hospital ICH studies,20,21 the
Jagiellonian University Hemorrhagic Stroke Study,22 the Lund
Stroke Register study,23 the Edinburgh Stroke Study and
LINCHPIN,24 the UMC Utrecht ICH study, and the Brescia Stroke
Registry.25 Because of variable sample sizes from contributing
centers, data from European studies were analyzed together for
association testing in a meta-analysis (International Stroke
Genetics Consortium Europe), as done previously.26,27

Participants with secondary causes of ICH were excluded
from enrollment. More specific inclusion and exclusion crite-
ria for each of the included studies are reported in eTable 1
in the Supplement. Demographic variables, including self-
identified race/ethnicity,8 were systematically obtained from
structured patient and family member interviews within each
site,19,28 along with additional covariates.29 Computed tomo-
graphic images on admission were analyzed at each partici-
pating site for classification as lobar (involving predomi-
nantly the cortex and underlying white matter) and nonlobar
(involving predominately the basal ganglia, periventricular
white matter, or internal capsule) according to prespecified
criteria.26,27 The APOE genotype was centrally determined
according to standard procedures.30 Genomewide data were
available for a subgroup of participants. Genetic and bioinfor-
matic analysis followed standardized prespecified quality-
control procedures31 (eMethods in the Supplement).

Population Stratification
Fifteen ancestry informative markers were selected from par-
ticipants with direct or genomewide genotyping and sub-
jected to principal component (PC) analysis in accordance with

Key Points
Question Is history of hypertension and apolipoprotein E (APOE)
associated with intracerebral hemorrhage risk in participants
stratified by self-reported race/ethnicity?

Findings In this case-control study of 13 124 adults, having a copy
of APOE ε4 alleles increased the risk for lobar intracerebral
hemorrhage only in white individuals, but after propensity score
matching for hypertension burden, Hispanic individuals showed
the same risk of APOE ε4.

Meaning APOE ε4 appears to be confirmed as a risk factor for
lobar intracerebral hemorrhage in nonwhite populations but is
masked by differential hypertension burden in Hispanic
individuals; further studies are needed to explore the interactions
between APOE alleles and environmental exposures.
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previously published methods.32-35 The first 4 PCs were in-
cluded in regression models to adjust for population stratifi-
cation in this subgroup. This PC analysis was not used to re-
classify participants, as self-identified race/ethnicity may
capture exposures that transcend genetic ancestry and could
help explain the stratification among different populations.
A complete description of the genetic analysis, the partici-
pants genotyped, and the markers selected is available in
eTable 2 in the Supplement.

Statistical Analysis
Categorical variables were expressed as count (%), and con-
tinuous variables were expressed as median (interquartile
range [IQR]) or mean (SD), as appropriate. Categorical
variables were compared using the 2-tailed χ2 test, whereas
continuous variables were compared with unpaired Mann-
Whitney tests. The threshold for statistical significance
was set at P = .05.

We tested APOE allele association with ICH risk using 3
logistic regression models. Model 1 was adjusted for age, sex,
and history of hypertension. Model 2 included variables
from model 1 in addition to history of hypercholesterolemia;
history of ischemic stroke; warfarin, statin and antiplatelet
use; smoking; and alcohol use. Model 3 also included vari-
ables from model 1 with the addition of the first 4 principal
components derived from ancestry-informative genotypes.
APOE risk allele status was modeled as 2 variables, ε2 and
ε4, coded for allele counts (0, 1, or 2 for each) in an additive
model referent to the wildtype ε3 allele.17 Analyses were per-
formed in lobar and nonlobar ICH, given the known differ-
ences in underlying biology between the 2 ICH locations.36

All statistical analyses were performed using Stata, version
13.0 (Stata Corp LLC), and R statistical software (R Founda-
tion for Statistical Computing).

Transethnic Meta-analysis
We applied a 2-stage clustering approach for meta-analysis,
based on race/ethnicity and stratified by study.37 Cases and
controls in each study were divided into black, white, and
Hispanic groups, based on self-identified race/ethnicity.
Each race/ethnicity group within each study was allocated to
the same cluster and tested using the regression models
described above. Individual cluster results were presented
graphically by plotting OR estimates on a forest plot to visu-
ally assess heterogeneity. The effect sizes obtained were
then used for a DerSimonian-Laird random-effects, inverse-
weighted nonparametric meta-analysis.38 Cochran Q and I2

tests were used to quantify heterogeneity.

Propensity Score Modeling of APOE and Hypertension
To address imbalances in the burden of hypertension across
ICH populations, and associated imbalances of baseline
characteristics among participants with and without hyper-
tension, 2 propensity score (PS) analyses were performed
using the nearest neighbor matching method to compare
participants of similar underlying hypertensive pathophysi-
ologic burden.39,40 The first PS analysis was constructed
using history of hypertension and included variables of age,

sex, and self-identified race/ethnicity. The second PS analy-
sis, leveraging data only available in the ERICH study, con-
tained the same variables as the first PS analysis, in addition
to the number of medications prescribed to treat hyperten-
sion as well as systolic and diastolic blood pressure readings
at ICH presentation. Propensity score results were used in a
logistic regression model for ICH risk identical to model 1, as
described. In a sensitivity analysis, the same PS procedure
was tested against age (older or younger than 65 years), sex,
and hypercholesterolemia to increase the confidence that
the PS findings were specific for hypertension.

Power Calculation
Using empirical data from our analyses, we performed a post
hoc calculation of the statistical power to detect an associa-
tion of APOE ε alleles with lobar ICH risk in black and
Hispanic participants, commensurate with the effect size
detected in white participants. Type I error rate of 0.05, log
additive inheritance mode, and 0.01 of population risk were
assumed, with analyses performed using Quanto software,
version 1.2.4 (University of Southern California).41

Results
In total, 13 124 individuals (47.2% cases) were included from
the participating studies. Among this sample, 7153 (54.5%)
were male, with a median (IQR) age of 66 (56-76) years and
with 8334 white (63.5%), 2272 black (17.3%), 1781 Hispanic
(13.6%), and 736 other (5.6%) race/ethnicity (Table). The lat-
ter group was excluded from the primary analyses given its
low statistical power. Rates of APOE ε4 homozygosity in
cases were 128 (3.6%) in white, 62 (5.3%) in black, and 22
(1.8%) in Hispanic participants, and the rates of APOE ε2
homozygosity in cases were 36 (1.0%) in white, 14 (1.2%) in
black, and 5 (0.4%) in Hispanic participants. Among partici-
pants, 56.8% (4069 cases and 3379 controls of 13 124 partici-
pants) had genomewide or direct genotyping data on ances-
try informative markers for PC analysis (eTable 3 in the
Supplement). Self-identified race/ethnicity showed overall
strong concordance with PC-based ancestry (eFigure in the
Supplement). Additional clinical covariates were available
for a subset of participants (eTable 4 in the Supplement).

Lobar ICH
We analyzed 2305 lobar ICH cases from all studies. Model 1 con-
firmed the previously reported association of APOE ε2 (pooled
OR, 1.49; 95% CI, 1.24-1.80; P < .001) and APOE ε4 (pooled
OR, 1.51; 95% CI, 1.23-1.85; P < .001) with ICH risk; however,
within self-identified Hispanic and black groups, no associa-
tions were found (Figure 1). Model 2 was used to interrogate
the independent association of APOE alleles with ICH, con-
trolled for established ICH factors (Figure 2). Here, APOE ε2
and ε4 alleles retained an association with lobar ICH. As with
model 1, this association was observed in the white group, but
not in black or Hispanic groups (for APOE ε2 OR, 1.45 [95%
CI, 1.04-2.03; P = .03]; for APOE ε4 OR, 1.51 [95% CI, 1.14-
1.99; P = .004]). Model 3 considered population stratification
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(Figure 3). In the white group, both APOE ε2 (OR, 1.81; 95%
CI, 1.33-2.45; P < .001) and APOE ε4 (OR, 1.80; 95% CI, 1.33-
2.44; P < .001) conferred higher risk for lobar ICH. For APOE
ε4 alone, we found a similar association in the Hispanic group,
suggesting that population stratification may have played some
role in the lack of ε4 association found in models 1 and 2, par-
ticularly for the large and ethnically diverse Hispanic popula-
tion recruited through the ERICH study. In contrast, for the
black population, neither APOE ε2 nor APOE ε4 conferred a
statistically significant risk for lobar ICH after controlling for
population structure.

Nonlobar ICH
We analyzed 3897 nonlobar ICH cases (Figure 1). In model 1,
APOE ε2 and ε4 did not show an association with nonlobar ICH
risk, across any of the self-identified race/ethnicity groups.
When comparing nonlobar ICH cases with controls, we found
that the APOE ε4 P values were all P > .10. For model 2 and
model 3 in nonlobar ICH, again neither APOE ε2 nor APOE ε4
showed an association with disease risk across all the studies
and racial/ethnic groups (Figure 2 and Figure 3).

Power Calculation (Lobar ICH)
Given the differences in sample sizes between white, black,
and Hispanic groups, we performed post hoc power calcula-
tions to determine whether the study was powered to detect
a comparable APOE association in the smaller populations of
blacks and Hispanics. Given the frequency of APOE ε4 in
black participants (ε4 frequency 37.7%), the sample size
(assuming an unmatched case-control ratio of 1:1) would
provide 99% power to detect an ε4 association similar to the
lower bound of the 95% CI seen in white participants

(OR, 1.43). Our analyses of APOE ε4 association in Hispanic
participants were similarly powered at 90%. Furthermore,
the APOE ε2 frequency in black participants (19.9%) at the
reported sample sizes would provide 93.8% power to detect
the lower bound of the association seen in white participants
(OR, 1.38). For Hispanic participants, given the lower APOE
ε2 frequency (0.8%), 80% power would be achieved at a
slightly higher effect size (OR, 1.60) but still would be below
that found in white participants.

Propensity Score Modeling for Hypertension
We used a PS analysis to attempt to isolate the association of
APOE against the imbalanced burden of hypertension across
race/ethnicity. In the first PS, we selected case and control
participants with a balanced hypertension burden to form a
group comprising individuals of white, black, or Hispanic
ancestry. In this matched and homogeneous group, we were
able to detect an association of APOE ε4 with lobar ICH risk
among Hispanic participants (OR, 1.14; 95% CI, 1.03-1.28;
P = .01) but not in black participants (OR, 1.02; 95% CI, 0.98-
1.07; P = .25). Results were confirmed in the second PS
analysis performed only in the ERICH data set, which
included hypertension diagnosis as well as additional hyper-
tension severity variables, including number of medications
used to treat hypertension and systolic and diastolic blood
pressure readings (Figure 4).

Discussion
Although APOE associations with ICH risk have been charac-
terized in multiple previous studies and meta-analyses for

Table. Demographic Characteristics and Clinical and APOE Allele Frequencies Across Participating Studies

Source

No. (%)
ERICH
(n = 5017)

GOCHA
(n = 2297)

ISGC Europe
(n = 3471)

GERFHS
(n = 2339)

Male sex 2866 (57.1) 1266 (55.1) 1891 (54.6) 1130 (48.3)

Age, median (IQR) 61 (52-72) 73 (65-80) 70 (61-77) 65 (51-75)

Cases 2880 (57.4) 1322 (57.6) 1281 (36.9) 811 (34.7)

Lobar ICH 882 (30.6) 613 (47.8) 493 (40.2) 316 (39.0)

Nonlobar ICH 1998 (69.4) 670 (52.2) 734 (59.8) 495 (61.0)

Hypertension 3364/4976 (67.6) 1667/2275 (73.3) 1673/2893 (57.8) 1264/2337 (54.1)

Self-reported race/ethnicity

White 1739 (34.7) 2024 (88.1) 2622 (75.5) 1949 (83.3)

Black 1751 (34.9) 131 (5.7) NA 390 (16.7)

Hispanic 1527 (30.4) 60 (2.6) 194 (5.6) NA

Other/missing NA 82 (3.6) 654 (18.8) NA

APOE ε4 allele count

0 3553 (70.8) 1664 (71.8) 2789 (80.4) 1664 (71.1)

1 1298 (25.9) 570 (24.8) 637 (18.4) 601 (25.7)

2 166 (3.3) 77 (3.4) 45 (1.3) 74 (3.2)

APOE ε2 allele count

0 4262 (85.0) 1916 (83.4) 3034 (87.4) 1881 (80.4)

1 710 (14.2) 363 (15.8) 413 (11.9) 431(18.4)

2 45 (0.9) 18 (0.8) 24 (0.7) 27 (1.2)

Abbreviations: APOE, apolipoprotein
E; ERICH, Ethnic/Racial Variations of
Intracerebral Hemorrhage;
GERFHS, Genetic and Environmental
Risk Factors for Hemorrhagic Stroke;
GOCHA, Genetics of Cerebral
Hemorrhage with Anticoagulation;
ICH, intracerebral hemorrhage;
IQR, interquartile range;
ISGC, International Stroke Genetics
Consortium; NA, not applicable.
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populations with European, and more recently Asian, ances-
tries, there have been fewer opportunities for examination of
US minority populations at disproportionate risk for ICH.
Supplemented by data from the ERICH study, we are now able
to confirm variability in associations between APOE ε geno-
types and lobar ICH risk across white, black, and Hispanic

groups and to explore the degree to which differences in ge-
netic risk are attributable to comorbid exposures. Our results
demonstrate an association of APOE ε4 and ε2 alleles with
lobar ICH led primarily by white individuals and confirmed
by additional models adjusting for known covariates.29 When
the association of hypertension is propensity matched across

Figure 1. Forest Plots of Meta-analysis of Apolipoprotein E (APOE) in Lobar and Nonlobar Intracerebral Hemorrhage Cases and Controls in Model 1,
Stratified Across Participating Studies and Race/Ethnicity

Weight,
%

Decreasing
Risk

Increasing
RiskStudy

Participants,
No. OR (95% CI)

0.3 101
OR (95% CI)

Lobar, APOE ε4A

White participants
GOCHA 1369 1.67 (1.34-2.07) 15.85
ERICH 1184 2.07 (1.64-2.62) 15.36
GERFHS 1333 2.06 (1.62-2.62) 15.16
ISGC
   Europe

2089 1.27 (0.95-1.69)

1.75 (1.43-2.15)

13.86

Subtotal 
(I2 = 65%; P = .04) 60.24

Black participants
GOCHA 83 1.83 (0.85-4.10) 4.94
ERICH 1007 1.10 (0.84-1.43) 14.60
GERFHS 306 0.79 (0.39-1.49) 6.11

1.11 (0.81-1.53)
Subtotal 
(I2 = 20.1%; P = .30) 25.65

Hispanic participants
GOCHA 66 4.10 (0.55-99.77) 0.58
ERICH 811 1.32 (0.98-1.79) 13.52

1.34 (1.00-1.81)
Subtotal 
(I2 = 0%; P = .40) 14.11

1.51 (1.23-1.85)
Overall
(I2 = 68.5%; P = .001) 100

Weight,
%

Decreasing
Risk

Increasing
RiskStudy

Participants,
No. OR (95% CI)

0.5 101
OR (95% CI)

Nonlobar, APOE ε4C

White participants
GOCHA 1383 1.09 (0.87-1.37) 16.96
ERICH 1340 1.08 (0.85-1.38) 15.33
GERFHS 1464 1.25 (0.94-1.65) 11.56
ISGC
   Europe

2262 0.93 (0.70-1.22)

1.08 (0.95-1.23)

11.84

Subtotal 
(I2 = 0.0%; P = .54) 55.69

Black participants
GOCHA 85 1.12 (0.53-2.39) 1.59
ERICH 1508 1.13 (0.94-1.36) 25.70
GERFHS 354 1.09 (0.69-1.71) 4.29

1.12 (0.95-1.33)
Subtotal 
(I2 = 0.0%; P = .99) 31.59

Hispanic participants
GOCHA 38 1.32 (0.04-76.09) 0.06
ERICH 1256 0.88 (0.67-1.15) 12.67

0.88 (0.67-1.15)
Subtotal 
(I2 = 0.0%; P = .83) 12.73

1.07 (0.97-1.17)
Overall
(I2 = 0.0%; P = .80) 100

Weight,
%

Decreasing
Risk

Increasing
RiskStudy

Participants,
No. OR (95% CI)

0.3 101
OR (95% CI)

Lobar, APOE ε2B

White participants
GOCHA 1369 2.08 (1.57-2.75) 17.74
ERICH 1184 1.45 (1.08-1.94) 17.16
GERFHS 1333 1.80 (1.32-2.42) 16.59
ISGC
   Europe

2089 1.39 (1.01-1.89)

1.67 (1.38-2.01)

16.02

Subtotal 
(I2 = 37.3%; P = .20) 67.51

Black participants
GOCHA 85 1.16 (0.41-3.30) 2.84
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race/ethnicity, APOE ε4 emerges as a risk factor for lobar ICH
among self-identified Hispanic individuals.

These results highlight the challenges of generalizing
genetic risk factors across ancestries, where nongenetic
exposures are known to vary by race/ethnicity. In Alzheimer
disease, the relative risks for Hispanic or black individuals as-
sociated with an APOE ε 4 allele become progressively weaker
or disappear entirely in comparison with white individuals.42-46

In ICH, APOE ε alleles have already been shown to exert higher
risks in East Asian individuals when compared with those of
European ancestry.47 Although recent analyses by Sawyer
et al48 demonstrate the association of hypertension and APOE
ε allele status with ICH risk across race/ethnicity specific to the

ERICH study, the present analysis has the advantage of a larger
sample size via formal transethnic meta-analysis as well as a
PS matching approach that helps to illustrate the potential
mechanisms underlying the observed variability of APOE
ε alleles on lobar ICH risk across populations.

The observed differences in association between APOE
ε alleles and lobar ICH risk do not provide direct evidence that
the biological risks of the APOE gene or associations with
underlying cerebral amyloid angiopathy (CAA, a major cause
of lobar ICH) are necessarily different across racial/ethnic
boundaries. It would seem more likely that genetic and/or
environmental risk exposures covarying with race/ethnicity
exert a role in modifying or mitigating the underlying APOE

Figure 2. Forest Plots of Meta-analysis of Apolipoprotein E (APOE) in Lobar and Nonlobar Intracerebral Hemorrhage Cases and Controls in Model 2,
Stratified Across Participating Studies and Race/Ethnicity
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genetic risks. The PS analysis supports this conjecture, dem-
onstrating that hypertension, the most important known risk
factor for ICH, may simply obscure the APOE risks that may
be common across ancestries. Aside from variation in envi-
ronmental risk exposures, variants in a modifier gene (or genes)
that differ across populations may alter the biological risk of
APOE and consequently vary ICH risk, as has been hypoth-
esized for Alzheimer disease.49,50 Furthermore, genetic
variants that are racially stratified and not associated with APOE
may directly modify the risk of ICH. This hypothesis repre-
sents an alternative explanation for why the PS matching for
hypertension only partially remediated the association of
APOE ε4 with ICH risk in Hispanic participants and had little

to no association in black participants. APOE interaction stud-
ies and transethnic genome-wide association studies for ICH
will likely provide insights on these hypotheses. Similarly,
analyses of CAA in nonwhite populations will also clarify the
association of race/ethnicity with this pathologic pathway.

In this study, we have not attempted to stratify subsets of
participants by probable CAA status using magnetic reso-
nance imaging data as has been done in previous meta-
analyses. Most studies linking lobar hemorrhage locations to
the pathologic diagnosis of CAA were performed in largely
white populations.51 As such, widely accepted criteria for
classifying probable and possible CAA using hemorrhage
location and microbleed counts have not been validated in

Figure 3. Forest Plots of Meta-analysis of Apolipoprotein E (APOE) in Lobar and Nonlobar Intracerebral Hemorrhage Cases and Controls in Model 3,
Stratified Across Participating Studies and Race/Ethnicity
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nonwhite populations.52 Validating CAA burdens across mul-
tiethnic populations will require concomitant neuroimaging
and/or tissue pathologic data in genotyped individuals of many
races/ethnicities to ensure patients are not misassigned.

Previously demonstrated associations between APOE ε4
and nonlobar ICH risk, also seen in nonlobar ICH recurrence,17,53

were not replicated in this study. Potential explanations in-
clude a higher rate of participants affected by hypertension
and an overall younger age of participants in this study. These
factors may reflect the associations of environmental or
non-APOE genetic exposures in younger populations with non-
lobar ICH in particular. Demographic heterogeneity is also
higher in this study, and the reduced availability of covari-
ates such as steady state lipid levels53 for risk modeling may
have affected this finding. In addition, a previous meta-
analysis of APOE risks in ICH also did not show the associa-
tion between APOE ε4 and nonlobar ICH in black individuals,
a finding supported by the present analyses.17 Future studies
in larger data sets with well-phenotyped cases are needed to
further elucidate the potential role of APOE ε4 in nonlobar ICH.

Strengths and Limitations
The targeted enrollment of Hispanic and black individuals
through the ERICH study, lacking in previous reports,17,54 is
an important strength of the present study. The high number
of nonwhite individuals enrolled permits well-powered
analyses in these populations and promotes confidence
that the lack of observed associations is not a false accep-
tance of the null hypothesis, as supported by our post hoc
power calculations.

Some limitations of the study should be acknowledged.
Diagnoses of comorbidities were based on self-identified
attestation and therefore affected by patient or caregiver
awareness. This concern is present in both cases and con-
trols, however, and internal consistency between diagnoses
and prescribed medications helps to limit this potential
source of bias. Furthermore, the propensity score was
based on variables that only partially captured the complex
phenotype represented by hypertension. However, this
lack of information content is likely to bias our score results

toward the null; we expect that a more precise index of
hypertension burden would have increased our ability to
normalize this phenotype across race/ethnicity and to dem-
onstrate even more homogeneous APOE ε4 risks. Finally,
genomewide genotypes for the ERICH study participants are
not currently available, preventing us from determining
whether additional genetic exposures modify the associa-
tion of APOE with ICH risk across race/ethnicity.

Conclusions
In this meta-analysis, APOE ε2 and ε4 alleles remain genetic
risk factors for lobar ICH, but these results are largely driven
by the associations in white individuals. However, the
results support a biological risk of APOE ε4 alleles that
seems to transcend ancestral backgrounds,55 albeit with
varying effect because of the presence of racial/ethnic dis-
parities across associated risk factors. As availability of
genetic data on US minority populations continues to
increase, it is hoped that improved modeling of covarying
genetic and nongenetic exposures in these populations will
provide new insights into treatment and prevention strate-
gies in ICH that maximize the potential advantages for all.
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